Kirchhoff Index and Kirchhoff Energy

Document Type : Research Paper

Author

Hakkari University‎, ‎Department of Mathematics Education‎, ‎Hakkari‎30000, ‎Turkey

10.22052/ijmc.2022.246278.1619

Abstract

The Kirchhoff energy and Kirchhoff Laplacian energy for Kirchhoff matrix are examined in this paper‎. ‎The Kirchhoff index with Kirchhoff Laplacian eigenvalues is defined and different inequalities including the distances‎, ‎the vertices and the edges are obtained‎. ‎Indeed‎, ‎some bounds for the degree Kirchhoff index associated with its eigenvalues are found.‎

Keywords


  1. B‎. ‎Acar‎, ‎Introducing The New Kirchhoff Structures over Graphs‎, ‎‎Msc Thesis, Selcuk University‎, Türkiye,
  2. B‎. ‎Zhou‎, ‎I‎. ‎Gutman‎ and ‎T‎. ‎Aleksić, ‎A note on the Laplacian energy of graphs‎, ‎MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem‎. ‎60 (2008) 441–446.‎
  3. B‎. ‎Zhou and ‎N‎. ‎Trinajstić, ‎A note on Kirchhoff index‎, ‎Chem‎. ‎Phys‎. ‎Lett‎. ‎455 (1−3) (2008) 120–123.‎
  4. B.‎ Bozkurt and D.‎ Bozkurt, ‎On the sum of powers of normalized Laplacian eigenvalues of graphs‎, ‎MATCH Commun.Math‎. ‎Comput‎. ‎Chem.‎ ‎68 (3) (2012) 917–930.‎
  5. D‎. ‎Cvetković‎, ‎M‎. ‎Doob and H‎. ‎Sachs‎, ‎Spectra of Graphs‎, ‎Academic Press‎, ‎New York‎, ‎‎
  6. D‎. ‎J‎. ‎Klein and ‎M‎. ‎Randić, ‎Resistance distance‎, ‎J‎. ‎Math‎. ‎Chem‎. ‎12 (1993) 81–95.‎
  7. D‎. ‎S‎. ‎Mitrinović‎ and ‎P‎. ‎M‎. ‎Vasić, ‎Analytic Inequalities‎, ‎Springer‎, Berlin-Heidelberg-New York‎, ‎‎
  8. F‎. ‎R‎. ‎K‎. ‎Chung‎, ‎Spectral Graph Theory‎, ‎CBMS Regional Conference Series in Mathematics, 92. American. Mathematical Society, Providence, RI, 1997.‎
  9. G‎. ‎Yu‎ and ‎L‎. ‎Feng, Randić index and eigenvalues of graphs‎, ‎Rocky Mountain J‎. ‎Math‎. ‎40 (2010) 713–721.‎
  10. H‎. ‎Chen‎ and ‎F‎. ‎Zhang‎, ‎Resistance distance and the normalized Laplacian spectrum‎, ‎Discrete‎ Appl‎. ‎Math.‎ ‎155 (5) (2007)‎ ‎654–661.‎
  11. H‎. ‎Kober‎, ‎On the arithmetic and geometric means and on Hölder's inequality‎, ‎Proc‎. ‎Amer‎. ‎Math‎. ‎Soc‎. ‎9 (1958) ‎452–459.‎
  12. H‎. ‎Y‎. ‎Zhu‎, ‎D‎. ‎J‎. ‎Klein‎ and ‎I‎. ‎Lukovits‎, Extensions of the Wiener number, ‎J‎. ‎Chem‎. ‎Inf‎. ‎Comput‎. ‎Sci‎. ‎36 (1996) ‎420–428.‎
  13. I‎. ‎Gutman‎ and ‎B‎. ‎Mohar‎, The quasi-Wiener and the Kirchhoff indices coincide, ‎J‎. ‎Chem‎. ‎Inf‎. ‎Comput‎. ‎Sci‎. ‎36 (1996)‎ ‎982–985.‎
  14. I‎. ‎Gutman‎, ‎B‎. ‎Zhou and B‎. ‎Furtula‎, ‎The Laplacian-energy like invariant is an energy like invariant‎, MATCH Commun. Math‎. ‎Comput‎. ‎ 64 (1) (2010) 85–96.‎
  15. I‎. ‎Gutman‎, ‎The energy of a graph‎, ‎Ber‎. ‎–Statist‎. ‎Sekt‎. ‎Forsch‎. ‎Graz 103 (1978) 1–22.‎
  16. I‎. ‎Gutman‎, ‎The energy of a graph‎: ‎old and new results‎, Algebraic combinatorics and applications (Gößweinstein, 1999), 196–211, Springer, Berlin,
  17. I‎. ‎Ž‎. ‎Milovanović, ‎E‎. ‎I‎. ‎Milovanović‎ and ‎E‎. ‎Glogić‎, ‎Lower bounds of the Kirchhoff and degree Kirchhoff index‎, Publ. State Univ. Novi Pazar, Ser. A, Appl. Math. Inf. Mech.7 (2015) 25-31.‎
  18. I‎. ‎Ž‎. ‎Milovanović, ‎E‎. ‎I‎. ‎Milovanović‎, ‎E‎. ‎Glogić and M‎. ‎Matejić, ‎On Kirchhoff index‎, ‎Laplacian energy and their relations‎,‎ MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎ 81 (2019)‎ ‎405–418.‎
  19. I‎. ‎Ž‎. ‎Milovanović and ‎E‎. ‎I‎. ‎Milovanović‎, ‎On some lower bounds of the Kirchhoff index‎, ‎MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem‎. ‎78 (2017) 169-‎
  20. J‎. ‎Liu‎ and ‎B‎. ‎Liu‎, ‎A Laplacian-energy-like invariant of a graph‎, ‎MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎ 59 (2008) 397–419.‎
  21. K‎. ‎C‎. ‎Das‎, ‎A sharp upper bound for the number of spanning trees of a graph‎, ‎Graphs Combin‎. ‎23 (6) (2007) 625–632.‎
  22. K‎. ‎C‎. ‎Das‎, ‎On the Kirchhoff index of graphs‎, Naturforsch 68a (8−9) (2013) 531–538.‎
  23. K‎. ‎C‎. ‎Das‎, ‎A‎. ‎D‎. ‎Güngör and A‎. ‎S‎. ‎Çevik‎, ‎On Kirchhoff index and resistance distance energy of a graph‎, ‎MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎ 67 (2) (2012)‎ ‎541–556.‎
  24. K‎. ‎C‎. ‎Das‎, ‎I‎. ‎Gutman‎, ‎A‎. ‎S‎. Çevik‎, ‎On the Laplacian-energy-like invariant‎, ‎Linear Algebra Appl. ‎442 (2014) 58–68.‎
  25. ‎ ‎Zumstein‎, ‎Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph‎, ‎Diploma Thesis‎, ‎ETH, Zürich‎, ‎2005. ‎
  26. R‎. ‎Merris‎, ‎Laplacian matrices of graphs‎: ‎A survey‎, ‎Linear Algebra Appl. 197−198‎ (1994) ‎143–176.‎ ‎
  27. S‎. ‎Furuichi‎, ‎On refined Young inequalities and reverse inequalities‎, ‎J‎. Math‎. ‎Inequal‎. ‎5 (1) (2011) 21–31.‎