For a graph G, the exponential reduced Sombor index (ERSI), denoted by eSored , is ∑uv∈E(G)e√(dG(v)-1)^2+(dG(u)-1)^2), where dG(v) is the degree of vertex v. The authors in [On the reduced Sombor index and its applications, MATCH Commun. Math. Comput. Chem. 86 (2021) 729–753] conjectured that for each molecular tree T of order n, eSored(T)≤(2/3) (n+1) e3 +(1/3) (n-5) e 3√2, where n≡2 (mod 3), eSored(T)≤(1/3) (2n+1) e3 +(1/3) (n-13) e3√2 + 3e√13 , where n≡1 (mod 3) and eSored(T)≤(2/3) ne3 +(1/3) (n-9) e3√2 + 2e√10 , where n≡0 (mod 3). Recently, Hamza and Ali [On a conjecture regarding the exponential reduced Sombor index of chemical trees. Discrete Math. Lett. 9 (2022) 107–110] proved the modified version of this conjecture. In this paper, we adopt another method to prove it.
A. Aashtab, S. Akbari, S. Madadinia, M. Noei and F. Salehi, On the graphs with minimum Sombor index, MATCH Commun. Math. Comput. Chem. 88 (2022) 553–559.
A. Alidadi, A. Parsian and H. Arianpoor, The minimum Sombor index for unicyclic graphs with fixed diameter, MATCH Commun. Math. Comput. Chem. 88 (2022) 561–572.
S. Alikhani and N. Ghanbari, Sombor index of polymers, MATCH Commun. Math. Comput. Chem. 86 (2021) 715–728.
H. Chen, W. Li and J. Wang, Extremal values on the Sombor index of trees, MATCH Commun. Math. Comput. Chem. 87 (2022) 23–49.
R. Cruz, I. Gutman and J. Rada, Sombor index of chemical graphs, Appl. Math. Comput. 399 (2021) 126018.
R. Cruz and J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. Chem. 59 (2021) 1098–1116.
K. C. Das, A. Ghalavand and A. R. Ashrafi, On a conjecture about the Sombor index of graphs, Symmetry 13 (2021) 1830.
K. C. Das and I. Gutman, On Sombor index of trees, Appl. Math. Comput. 412 (2022) 126575.
H. Deng, Z. Tang and R. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum Chem. 121 (2021) e26622.
X. Fang, L. You and H. Liu, The expected values of Sombor indices in random hexagonal chains, phenylene chains and Sombor indices of some chemical graphs, Int. J. Quantum Chem. 121 (2021) e26740.
I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.
I. Gutman, Some basic properties of Sombor indices, Open J. Discr. Appl. Math. 4 (2021) 1–3.
A. E. Hamza and A. Ali, On a conjecture regarding the exponential reduced Sombor index of chemical trees, Discrete Math. Lett. 9 (2022) 107–110.
B. Horoldagva and C. Xu, On Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 86 (2021) 703–713.
S. Li, Z. Wang and M. Zhang, On the extremal Sombor index of trees with a given diameter, Appl. Math. Comput. 416 (2022) 126731.
Z. Lin, On the spectral radius and energy of the Sombor matrix of graphs, arXiv:2102.03960v.
H. Liu, Extremal cacti with respect to Sombor index, Iranian J. Math. Chem. 12 (2021) 197–208.
H. Liu, H. Chen, Q. Xiao, X. Fang and Z. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, Int. J. Quantum Chem. 121 (2021) e26689.
H. Liu, L. You and Y. Huang, Ordering chemical graphs by Sombor indices and its applications, MATCH Commun. Math. Comput. Chem. 87 (2022) 5–22.
H. Liu, L. You and Y. Huang, Extremal Sombor indices of tetracyclic (chemical) graphs, MATCH Commun. Math. Comput. Chem. 88 (2022) 573–581.
H. Liu, L. You, Y. Huang andX. Fang, Spectral properties of p-Sombor matrices and beyond, MATCH Commun. Math. Comput. Chem. 87 (2022) 59–87.
H. Liu, L. You, Z. Tang and J. B. Liu, On the reduced Sombor index and its applications, MATCH Commun. Math. Comput. Chem. 86 (2021) 729–753.
H. Liu, M. Zeng, H. Deng and Z. Tang, Some indices in the random spiro chains, Iranian J. Math. Chem. 11 (2020) 249–264.
I. Milovanović, E. Milovanović and M. Matejć, On some mathematical properties of Sombor indices, Bull. Int. Math. Virtual Inst. 11 (2021) 341–353.
J. Rada, J. M. Rodriguez and J. M. Sigarreta, General properties on Sombor indices, Discr. Appl. Math. 299 (2021) 87–97.
B. A. Rather and M. Imran, Sharp bounds on the Sombor energy of graphs, MATCH Commun. Math. Comput. Chem. 88 (2022) 605–624.
I. Redžepović and I. Gutman, Comparing energy and Sombor energy-an empirical study, MATCH Commun. Math. Comput. Chem. 88 (2022) 133–140.
T. Réti, T. Došlić and A. Ali, On the Sombor index of graphs, Contrib. Math. 3 (2021) 11–18.
A. Ülker, A. Gürsoy and N. K. Gürsoy, The energy and Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 51–58.
Z. Wang, Y. Mao, Y. Li and B. Furtula, On relations between Sombor and other degree-based indices, J. Appl. Math. Comput. 68 (2022) 1–17.
F. Wang and B. Wu, The proof of a conjecture on the reduced Sombor index, MATCH Commun. Math. Comput. Chem. 88 (2022) 583–591.
W. Zhang, L. You, H. Liu and Y. Huang, The expected values and variances for Sombor indices in a general random chain, Appl. Math. Comput. 411 (2021) 126521.
Ghalavand, A. and Tavakoli, M. (2022). Another Approach to a Conjecture about the Exponential Reduced Sombor Index of Molecular Trees. Iranian Journal of Mathematical Chemistry, 13(2), 99-108. doi: 10.22052/ijmc.2022.246488.1632
MLA
Ghalavand, A. , and Tavakoli, M. . "Another Approach to a Conjecture about the Exponential Reduced Sombor Index of Molecular Trees", Iranian Journal of Mathematical Chemistry, 13, 2, 2022, 99-108. doi: 10.22052/ijmc.2022.246488.1632
HARVARD
Ghalavand, A., Tavakoli, M. (2022). 'Another Approach to a Conjecture about the Exponential Reduced Sombor Index of Molecular Trees', Iranian Journal of Mathematical Chemistry, 13(2), pp. 99-108. doi: 10.22052/ijmc.2022.246488.1632
CHICAGO
A. Ghalavand and M. Tavakoli, "Another Approach to a Conjecture about the Exponential Reduced Sombor Index of Molecular Trees," Iranian Journal of Mathematical Chemistry, 13 2 (2022): 99-108, doi: 10.22052/ijmc.2022.246488.1632
VANCOUVER
Ghalavand, A., Tavakoli, M. Another Approach to a Conjecture about the Exponential Reduced Sombor Index of Molecular Trees. Iranian Journal of Mathematical Chemistry, 2022; 13(2): 99-108. doi: 10.22052/ijmc.2022.246488.1632