In this paper, we present two approaches to compute the resolvent energy of a digraph . The first method computes the energy by ER(G)=\sum_{i=1})^n\frac{1}{n-Re(z_i)}, where Re(z_i )denotes the real part of the eigenvalue z_i of G. In the second method we define ER(G)=\sum_{i=1}^n\frac{1}{n-σ_i}, where σ_i is the ith singular value of G. We prove some properties of resolvent energy for some special digraphs and determine the resolvent energy of unicyclic and bicyclic digraphs and present lower bound for resolvent energy of directed cycles.
E. Allem, J. Capaverde, V. Trevisan, I. Gutman, E. Zogic and E. Glogic, Resolvent energy of unicyclic, bicyclic and tricyclic graphs, MATCH Commun. Math. Comput. Chem.77 (2017) 96–104.
B. Bozkurt, D. Bozkurt and X. D. Zhang, On the spectral radius and the energy of a digraph, Linear Multilinear Algebra63 (10) (2015) 2009–2016.
Cafure, D. A. Jaume, L. N. Grippo, A. Pastine, M. D. Safe, V. Trevisan, I. Gutman, Some results for the (signless) Laplacian resolvent, MATCH Commun. Math. Comput. Chem. 77 (2017) 105–114.
M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.
C. Das, Conjectures on resolvent energy of graphs, MATCH Commun. Math. Comput. Chem.81 (2019) 453–464.
C. Das, I. Gutman, A. S. Cevik and B. Zhou, On Laplacian energy, MATCH Commun. Math. Comput. Chem.70 (2013) 689–696.
C. Das, S. A. Mojallal and I. Gutman, Improving McClellands lower bound for energy, MATCH Commun. Math. Comput. Chem.70 (2013) 663–668.
Farrugia, The increase in the resolvent energy of a graph due to the addition of a new edge, Appl. Math. Comput. 321 (2018) 25–36.
Ghebleh, A. Kanso and D. Stevanović, On trees with smallest resolvent energy, MATCH Commun. Math. Comput. Chem.77 (2017) 635–654.
Gutman, The energy of a graph: Old and new results,Algebraic combinatorics and applications (Gößweinstein, 1999), 196–211, Springer, Berlin, 2001.
Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz, 103 (1978) 1–22.
Gutman, B. Furtula, X. Chen and J. Qian, Graphs with smallest resolvent Estrada indices, MATCH Commun. Math. Comput. Chem.73 (2015) 267–270.
Gutman, B. Furtula, X. Chen and J. Qian, Resolvent Estrada index computational and mathematical studies, MATCH Commun. Math. Comput. Chem.74 (2015) 431–440.
Gutman, B. Furtula, E. Zogic and E. Glogic, Resolvent energy of graphs, MATCH Commun. Math. Comput. Chem.75 (2016) 279–290.
A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
M. Jovanović, Non-negative spectrum of a digraph, Ars Math. Contemp. 12 (1) (2016) 267–182.
Khan, R. Farooq and J. Rada, Complex adjacency matrix and energy of digraphs, Linear Multilinear Algebra65 (2017) 2170–2186.
Khan, R. Farooq and A .A. Siddiqui, On the extremal energy of bicyclic digraphs, J. Math. Inequal.9 (2015) 799–810.
N. Langville and C. D. Meyer, A survey of eigenvector methods for web information retrieval, SIAM Rev.47 (1) (2005) 135–161.
Li and Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem.59 (1) (2008) 127–156.
Minc, Nonnegative Matrices, John Wiley & Sons Inc, New York, 1988.
Monsalve and J. Rada, Bicyclic digraphs with maximal energy, Appl. Math. Comput. 280 (2016) 124–131.
Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl.326 (2007) 1472–1475.
Pena and J. Rada, Energy of digraphs, Linear Multilinear Algebra 56 (2008) 565–578.
Sun and K. C. Das, Comparison of resolvent energies of Laplacian matrices, MATCH Commun. Math. Comput. Chem. 82 (2) (2019) 491–514.
Zhu, On minimal energies of unicyclic graphs with perfect matching, MATCH Commun. Math. Comput. Chem.70 (2013) 97–118.
W. Yang and L. G. Wang, On the ordering of bicyclic digraphs with respect to energy and iota energy, Appl. Math. Comput.339 (2018) 768–778.
W. Yang and L. G. Wang, Extremal Laplacian energy of directed trees, unicyclic digraphs and bicyclic digraphs, Appl. Math. Comput. 366 (2020) 1–13.
H. You, M. Yang, W. So and W. G. Xi, On the spectrum of an equitable quotient matrix and its application, Linear Algebra Appl. 577 (2019) 21–40.
Golpar-Raboky, E., & Babai, A. (2021). Resolvent Energy of Digraphs. Iranian Journal of Mathematical Chemistry, 12(3), 139-159. doi: 10.22052/ijmc.2021.242877.1562
MLA
Effat Golpar-Raboky; Azam Babai. "Resolvent Energy of Digraphs", Iranian Journal of Mathematical Chemistry, 12, 3, 2021, 139-159. doi: 10.22052/ijmc.2021.242877.1562
HARVARD
Golpar-Raboky, E., Babai, A. (2021). 'Resolvent Energy of Digraphs', Iranian Journal of Mathematical Chemistry, 12(3), pp. 139-159. doi: 10.22052/ijmc.2021.242877.1562
VANCOUVER
Golpar-Raboky, E., Babai, A. Resolvent Energy of Digraphs. Iranian Journal of Mathematical Chemistry, 2021; 12(3): 139-159. doi: 10.22052/ijmc.2021.242877.1562