Controlled Synthesis Of One Dimensional Zinc Oxide Nanostructures in terms of Modelling

Document Type : Research Paper


1 NED University Of Engineering & Technology, Karachi, Pakistan

2 NED University ,University Road

3 NED University


In the present work, a Mathematical model is proposed for the control on the concentration of hydroxyl ion in the precursor solution to preserve low super saturation level, because in order to obtain the desired and high quality one dimensional Zinc oxide nanostructures it is important to control the super saturation of the reactants. It was observed that elevated super saturation amount support nucleation and moderate super saturation amount support crystal growth during the synthesis of one dimensional Zinc oxide nanostructures. The kinematic reactions in the precursor solution were observed with the help of Lengyel-Epistein theory. Experimentally, the synthesis of ZnO nanostructures was also performed through Aqueous chemical growth method.


Main Subjects

1.    Y. Zhang Y, M. K. Ram, E. K. Stefanakos and Y. D. Goswami, Synthesis, characterization, and Applications of ZnO Nanowires, J. Nanomaterial 2012 (2012) 624520.
2.    A. Hoshino, K. Fujioka, T. Oku, S. Nakamura, M. Suga, Y. Yamaguchi, K. Suzuki, M. Yasuhara and K. Yamamoto, Quantum dots targeted to the assigned organelle in living cells, Microbiol Immunol. 48 (12) (2004) 985-994. 
3.    Z. L. Wang, Zinc oxide nanostructures: growth, properties, and applications, J. Phys.: Condensed Matter. 16 (2004) R829-R858.
4.    Z. L. Wang, Ten years’ venturing in ZnO nanostructures: From discovery to scientific understanding and to technology applications, Chinese Sci. Bull. 54 (2009) 4021-4034.
5.    B. Weintraub, Z. Zhou, Y. Li and Y. Deng, Solution synthesis of one-dimensional ZnO nanomaterials and their applications, Nanoscale 2 (9) (2010) 1573-1587.
6.    S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim and G. T. Kim, Photoresponse of sol-gel-synthesized ZnO nanorods, Appl. Phys. Lett. 84 (2004) 5022-5024.
7.    Y. C. Wang and M. H. Hon, Preparation of Nanosized ZnO Arrays by Electrophoretic Deposition, Electrochem. Solid-State Lett. 5 (4) (2002) C53-C55.
8.    M. J. Zheng, L. D. Zhang, G. H. Li and W. Z. Shena, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique, Chem. Phys. Lett. 363 (1-2) (2002) 123-128.
9.    K. Keis, E. Magnusson, H. Lindstrom, S. E. Lindquist and A. Hagfeldt, A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes, Solar Energy Materials & Solar Cells. 73 (1) (2002) 51-58.
10.    D. Voss, Condensed Matter Physics: Switch-Hitter materials tantalize theorists, Science 292 (5524) (2001) 1987.
11.    W. Lee, M. C. Jeong and J. M. Myoung, Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation, Acta Materialia 52 (13) (2004) 3949-3957.
12.    Z. R. Dai, Z. W. Pan and Z. L. Wang, Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation, Adv. Funct. Material 13 (1) (2003) 9-24.
13.    W. Li, D. S. Mao, Z. H. Zheng, X. Wang, X. H. Liu, S. C. Zou, Y. K. Zhu, Q. Li and J. F. Xu, ZnO/Zn phosphor thin films prepared by IBED, Surface Coat. Tech. 128-129 (1) (2000) 346-350.
14.    Y. Sun, G. M. Fuge and M. N. R. Ashfold, Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods, Chem. Phys. Lett. 396 (1-3) (2004) 21-26.
15.    N. Mintcheva, A. A. Aljulaih, W. Wunderlich, S. A. Kulinich and S. Iwamori, Laser-Ablated ZnO Nanoparticles and Their Photocatalytic Activity toward Organic Pollutants, Material. 11 (7) (2018) 1127.
16.    W. T. Chiou, W. Y. Wu and J. M. Ting, Growth of single crystal ZnO nanowires using sputter deposition, Diamond Related Materials 12 (10-11) (2003) 1841-1844.
17.    M. A. Abbasi, Z. H. Ibupoto, M. Hussain, G. Pozina, J. Lu, L. Hultman, O. Nur and M. Willander, Decoration of ZnO Nanorods with Coral Reefs like NiO Nanostructures by the Hydrothermal Growth Method and their luminescence Study, Materials 7 (1) (2014) 430-440.
18.    L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. D. Yang, Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays, Angew. Chem. Int. Ed. 42 (26) (2003) 3031-3034.
19.    M. Hussain, M. A. Abbasi, A. Khan, O. Nur and M. Willander, Comparative Study of Energy Harvesting from ZnO Nanorods Using Different Flexible Substrates, Energy Harvesting Sys. 1 (1-2) (2014) 19-26.
20.    S. Baruah and J. Dutta, pH-dependent growth of zinc oxide nanorods, J. Cryst. Growth. 311 (8) (2009) 25492554.
21.    L. Vayssieres, Advanced semiconductor nanostructures, Comptes Rendus Chimie 9 (5-6) (2006) 691-701.
22.    L. Vayssieres, Growth of Arrayed Nanorods and nanowires of ZnO from Aqueous Solutions, Adv. Mater. 15 (5) (2003) 464-466.
23.    I. Lengyel and I. R. Epstein, A chemical approach to designing Turing patterns in reaction-diffusion systems, Proc. Nati. Acad. Sci. USA 89 (9) (1992) 3977-3979.
24.    S. Xu, C. Lao, B. Weintraub and Z. L. Wang, Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces, J. Material. Res. 23 (8) (2008) 2072-2077.
25.     C. Chicone, A module on chemical kinetics for the University of Missouri Mathematics in Life Science program, Math. Model. Chem. Kinetics 8 (2010) 6-13.
26.    J. E. Marsden and M. McCracken, The Hopf Bifurcation and its Applications, Springer-Verlag, New York (1976) pp. 63-84.