The Gutman Index and Schultz Index in the Random Phenylene Chains

Document Type : Research Paper

Authors

1 School of Mathematical Sciences‎, ‎Xinjiang Normal University, Urumqi‎, ‎Xinjiang 830054‎, ‎P‎. ‎R‎. ‎China‎

2 College of Mathematics and System Sciences‎, ‎Xinjiang University,‎ Urumqi‎, ‎Xinjiang 830046‎, ‎P. R. China

Abstract

The Gutman index and Schultz index are two topological indices. In this paper, we first give exact formulae for the expected values of the Gutman index and Schultz index of random phenylene chains, and we will also get the average values of the Gutman index and Schultz index in phenylene chains.

Keywords


  1. M‎. ‎V‎. ‎Diudea‎, ‎I‎. ‎Gutman‎ and ‎L‎. ‎Jantschi‎, ‎Molecular Topology, Nova, Huntington, New York, 2001.
  2. H‎. ‎Wiener‎, ‎Structural determination of paraffin boiling points‎, ‎J. Amer. Chem. Soc. ‎69‎ (1947) ‎17-20.‎ ‎
  3. I‎. ‎Gutman‎, ‎Selected properties of the Schultz molecular topological index‎, ‎J. Chem. Info. Comput. Sci. 34‎ (1994) ‎1087-1089‎.  
  4. G‎. ‎Huang‎, ‎M‎. ‎Kuang‎ and ‎H‎. ‎Deng‎, ‎The expected values of Kirchhoff indices in the random polyphenyl and spiro chains‎, ‎Ars Math. Contemporanea9‎ (‎2014) ‎197-207.
  5. X‎. ‎Y‎. ‎Geng‎, ‎P‎. ‎Wang‎, ‎L‎. ‎Lei‎ and ‎S‎. ‎J‎. ‎Wang‎, ‎On the Kirchhoff indices and the number of spanning trees of Möbius phenylenes chain and cylinder phenylenes chain‎, ‎Polycyclic Aromatic Compounds, DOI:10.1080/10406638.2019.1693405‎. ‎‎ ‎
  6. Q‎. ‎Xiao‎, ‎M‎. ‎Zeng‎, ‎Z‎. ‎Tang‎ and ‎H‎. ‎Deng‎, ‎The hexagonal chains with the first three maximal Mostar indices‎, ‎submitted‎. ‎‎‎
  7. Q‎. ‎Xiao‎, ‎M‎. ‎Zeng‎, ‎Z‎. ‎Tang‎ and ‎H‎. ‎Deng‎, ‎The hexagonal chains with the first three minimal Mostar indices‎, ‎submitted‎ ‎
  8. H‎. ‎Chen‎ and ‎F‎. ‎Zhang‎, ‎Resistance distance and the normalized Laplacian spectrum‎, ‎Discrete Appl. Math. 155  (2017) ‎654-661.‎ ‎
  9. I‎. ‎Gutman‎, ‎L‎. ‎Feng‎ and ‎G‎. ‎Yu‎, ‎Degree resistance distance of unicyclic graphs‎, ‎Trans. Combin. ‎1‎ (2012) ‎27-40.‎ ‎
  10. W‎. ‎Yang and ‎F‎. ‎Zhang‎, ‎Wiener index in random polyphenyl chains‎, ‎MATCH Commun. Math. Comput. Chem. ‎68‎ (2012) ‎371-376.‎ ‎
  11. W‎. ‎Wei‎ and ‎S‎. ‎Li‎, ‎Extremal phenylene chains with respect to the coefficients sum of the permanental polynomial‎, ‎the spectral radius‎, ‎the Hosoya index and the Merrifield Simmons index‎, ‎Discrete Appl. Math. 271 (2019) ‎205-217.‎ ‎
  12. Y‎. ‎Zuo‎, ‎Y‎. ‎Tang‎ and ‎H‎. ‎Deng‎, ‎The extremal graphs for (sum-) Balaban index of spiro and polyphenyl hexagonal chains, Iranian J. Math. Chem. ‎9‎ (2018) ‎241-254.‎ ‎
  13. L‎. ‎Zhang‎, ‎Q‎. ‎Li‎, ‎S‎. ‎Li and ‎M‎. ‎Zhang‎, ‎The expected values for the Schultz index‎, ‎Gutman index‎, ‎multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain‎, Discrete Appl. Math. 282 (2020) 243-256.