1. Y . Alizadeh , M . Azari and T . Došlić , Computing the eccentricity-related invariants
of single-defect carbon nanocones , J . Comput . Theor . Nanosci. 10 (2013) 1297–
1300 .
2. M . Arockiaraj , J . Clement and N . Tratnik , Mostar indices of carbon nanostructures
and circumscribed donut benzenoid systems , Int . J . Quantum Chem. 119 (2019)
e26043
3. M . Arockiaraj , J . Clement , N . Tratnik , S . Mushtaq
and K . Balasubramanian , Weighted Mostar indices as measures of molecular
peripheral shapes with applications to graphene , graphyne and graphdiyne
nanoribbons , SAR QSAR Environ . Res. 31 (2020) 187–208 .
4. M . Arockiaraj , S . Klavţar , S . Mushtaq and K . Balasubramanian , Distance-based
topological indices of nanosheets , nanotubes and nanotori of , J . Math . Chem.
57 (2019) 343–369 .
5. H . Bian and F . Zhang , Tree-like polyphenyl systems with extremal Wiener
indices , MATCH Commun . Math . Comput . Chem. 61 (2009) 631–642 .
6. S . Brezovnik and N . Tratnik , General cut method for computing Szeged-like
topological indices with applications to molecular graphs , Int . J . Quantum Chem.
121 (2021) e26530 .
7. S . Brezovnik and N . Tratnik , New methods for calculating the degree distance and
the Gutman index , MATCH Commun . Math . Comput . Chem. 82 (2019) 111–132 .
8. B. Chazelle , Triangulating a simple polygon in linear time , Discrete
Comput . Geom. 6 (1991) 485–524 .
9. A . Chen , X . Xiong and F . Lin , Distance-based topological indices of the tree-like
polyphenyl systems , Appl . Math . Comput. 281 (2016) 233−242 .
10. V. Chepoi , On distances in benzenoid systems , J . Chem . Inf . Comput . Sci. 36 (1996)
1169–1172 .
11. V. Chepoi and S. Klavţar , Distances in benzenoid systems : Further developments ,
Discrete Math. 192 (1998) 27–39 .
12. M. Črepnjak and N. Tratnik , The Szeged index and the Wiener index of partial
cubes with applications to chemical graphs , Appl . Math . Comput. 309 (2017) 324–
333 .
13. K . Deng and S . Li , Extremal catacondensed benzenoids with respect to the Mostar
index, J . Math . Chem. 58 (2020) 1437–1465 .
14. K . Deng and S . Li , On the extremal values for the Mostar index of trees with given
degree sequence , Appl . Math . Comput. 390 (2021) 125598 .
15. A. A. Dobrynin , I. Gutman , S. Klavţar and P. Ţigert , Wiener index of hexagonal
systems , Acta Appl . Math. 72 (2002) 247–294 .
16. T . Došlić , I . Martinjak , R . Škrekovski , S . Tipurić Spuţević and I . Zubac , Mostar
index , J . Math . Chem. 56 (2018) 2995–3013 .
17. J . E . Graver and C . M . Graves , Fullerene patches I , Ars Math . Contemp. 3 (2010)
109–120 .
18. I . Gutman and S. J . Cyvin , Introduction to the Theory of Benzenoid
Hydrocarbons , Springer-Verlag , Berlin , 1989 .
19. I . Gutman and G . Dömötör , Wiener numbers of polyphenyls and
phenylenes , Z . Naturforsch. 49a (1994) 1040–1044 .
20. R . Hammack , W . Imrich and S . Klavţar , Handbook of Product Graphs , Second
Edition , CRC Press , Taylor & Francis Group , Boca Raton , 2011 .
21. S . Huang , S . Li and M . Zhang , On the extremal Mostar indices of hexagonal
chains , MATCH Commun . Math . Comput . Chem. 84 (2020) 249–271 .
22. S. Klavţar and M. J. Nadjafi-Arani , Cut method : update on recent developments
and equivalence of independent approaches , Curr . Org . Chem. 19 (2015) 348–358 .
23. S. Klavţar and M. J. Nadjafi-Arani , Wiener index in weighted graphs via
unification of
-classes , European J . Combin. 36 (2014) 71–76 .
24. X . Li and M . Zhang , A Note on the computation of revised (edge-)Szeged index in
terms of canonical isometric embedding , MATCH Commun . Math . Comput . Chem.
81 (2019) 149–162 .
25. A . Tepeh , Extremal bicyclic graphs with respect to Mostar
index , Appl . Math . Comput. 355 (2019) 319–324 .
26. N . Tratnik , Computing weighted Szeged and PI indices from quotient
graphs , Int . J . Quantum Chem. 119 (2019) e26006 .
27. N . Tratnik , The Graovac-Pisanski index of zig-zag tubulenes and the generalized
cut method , J . Math . Chem. 55 (2017) 1622–1637