Some Indices in the Random Spiro Chains

Document Type : Research Paper


School of Mathematics and Statistics, Hunan Normal University


The Gutman index, Schultz index, multiplicative degree-Kirchhoff index, additive degree-Kirchhoff index are four well-studied topological indices, which are useful tools in QSPR and QSAR investigations. Spiro compounds are an important class of cycloalkanes in organic chemistry. In this paper, we determine the expected values of these indices in the random spiro chains, and the extremal values among all spiro chains with n hexagons.



    1. J. Bondy and U. S. R. Murty, Graph Theory, in: Graduate Texts in Mathematics, vol. 244, Springer−Verlag, New York, 2008.
    2. M. V. Diudea, I. Gutman and L. Jäntschi, Molecular Topology, Nova, Huntington, New York, 2001.
    3. T. Došlić, I. Martinjak, R. Škrekovski, S. Tipurić Spužević and I. Zubac, Mostar index, J. Math. Chem. 56 (2018) 2995-3013.
    4. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. 69 (1947) 17-20.
    5. I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087-1089.
    6. H. Chen and F. Zhang, Resistance distance and the normalized Laplacian spectrum, Discrete Appl. Math. 155 (2017) 654-661.
    7. I. Gutman, L. Feng and G. Yu, Degree resistance distance of unicyclic graphs, Trans. Combin. 1 (2012) 27-40.
    8. G. Huang, M. Kuang and H. Deng, The expected values of Kirchhoff indices in the random polyphenyl and spiro chains, Ars Math. Contemp. 9 (2014) 197-207.
    9. X. Y. Geng, P. Wang, L. Lei and S. J. Wang, On the Kirchhoff indices and the number of spanning trees of Möbius phenylenes chain and cylinder phenylenes chain, Polycyclic Aromat. Compd. (2019). DOI: 10.1080/10406638.2019.1693405  
    10. Q. Xiao, M. Zeng, Z. Tang and H. Deng, Hexagonal chains with first three minimal Mostar indices, MATCH Commun. Math. Comput. Chem. 85 (2021) 47-61.
    11. Q. Xiao, M. Zeng, Z. Tang, H. Hua and H. Deng, The hexagonal chains with the first three maximal Mostar indices, Discrete Appl. Math. 288 (2021) 180-191.
    12. W. Yang and F. Zhang, Wiener index in random polyphenyl chains, MATCH Commun. Math. Comput. Chem. 68 (2012) 371-376.
    13. T. Došlić and F. Måløy, Chain hexagonal cacti: Matchings and independent sets, Discrete Math. 310 (2010) 1676-1690.
    14. T. Došlić and M. S. Litz, Matchings and independent sets in polyphenylene chains, MATCH Commun. Math. Comput. Chem. 67 (2012) 313-330.
    15. W. Wei and S. Li, Extremal phenylene chains with respect to the coefficients sum of the permanental polynomial, the spectral radius, the Hosoya index and the Merrifield-Simmons index, Discrete Appl. Math. 271 (2019) 205-217.
    16. Y. Zuo, Y. Tang and H. Deng, The extremal graphs for (Sum-) Balaban index of spiro and polyphenyl hexagonal chains, Iranian J. Math. Chem. 9 (2018) 241-254.
    17. L. Zhang, Q. Li, S. Li and M. Zhang, The expected values for the Schultz index, Gutman index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain, Discrete Appl. Math. 282 (2020) 243-256.
    18. 18. S. Li, W. Sun and S. Wang, Multiplicative degree-Kirchhoff index and number of spanning trees of a zigzag polyhex nanotube TUHC [2n, 2], Int. J. Quantum. Chem. 119 (2019) e25969.