In this paper we continue to study the chaotic properties of the following lattice dynamical system: bji+1= a1 g(bji)+ a2 g(bj-1i)+ a3 g(bj+1i), where i is discrete time index, j is lattice side index with system size L, g is a selfmap on [0, 1] and a1+a2+a3 ∊ [0, 1] with a1+a2+a3=1 are coupling constants. In particular, it is shown that if g is turbulent (resp. erratic) then so is the above system, and that if there exists a g-connected family G with respect to disjointed compact subsets D1, D2, …, Dm, then there is a compact invariant set K'⊆D' such that F |K' is semi-conjugate to m-shift for any coupling constants a1+a2+a3 ∊ [0, 1] with a1+a2+a3=1, where D' ⊆ IL is nonempty and compact. Moreover, an example and two problems are given.
T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly82 (10) (1975) 985-992.
L. S. Block and W.A. Coppel, Dynamics in One Dimension, Springer Monographs in Mathematics, Springer, Berlin, 1992.
R. L. Devaney, An Introduction to Chaotics Dynamical Systems, Benjamin/ Cummings, Menlo Park, CA, 1986.
J. -R. Chazottes and B. Fernandez (Eds.), Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, Lecture Notes in Physics Vol. 671, Springer Verlag, Heidelberg-Berlin, 2005.
J. L. García Guirao and M. Lampart, Chaos of a coupled lattice system related with Belousov−Zhabotinskii reaction, J. Math. Chem. 48 (2010) 159-164.
R. Li, F. Huang, Y. Zhao, Z. Chen and C. Huang, The principal measure and distributional (p, q)-chaos of a coupled lattice system with coupling constant ε = 1 related with Belousov−Zhabotinskii reaction, J. Math. Chem.51 (2013) 1712-1719.
R. Li, F. Huang and Y. Zhao, A note on Li−Yorke chaos in a coupled lattice system related with Belousov−Zhabotinskii reaction, J. Math. Chem. 51 (2013) 2173-2178.
J. Liu, T. Lu and R. Li, Topological entropy and P-chaos of a coupled lattice system with non-zero coupling constant related with Belousov−Zhabotinskii reaction, J. Math. Chem.53 (2015) 1220-1226.
R. Li and Y. Zhao, Remark on positive entropy of a coupled lattice system related with Belousov−Zhabotinskii reaction, J. Math. Chem. 53 (2015) 2115-2119.
R. Li, J. Wang, T. Lu and R. Jiang, Remark on topological entropy and P-chaos of a coupled lattice system with non-zero coupling constant related with Belousov−Zhabotinskii reaction, J. Math. Chem.54 (2016) 1110-1116.
R. Li, Y. Zhao, R. Jiang, H. Wang, Some remarks on chaos of a coupled lattice system related with the Belousov−Zhabotinskii reaction, J. Math. Chem. 54 (2016) 849-853.
T. Lu and R. Li, Some chaotic properties of a coupled lattice system related with Belousov−Zhabotinsky reaction, Qual. Theory Dyn. Syst. 16 (2017) 657-670.
X. X. Wu and P. Y. Zhu, Li−Yorke chaos in a coupled lattice system related with Belousov−Zhabotinskii reaction, J. Math. Chem.50 (2012) 1304-1308.
K. Kaneko, Globally coupled chaos violates law of large numbers, Phys. Rev. Lett.65 (1990) 1391-1394.
B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc.344 (1994) 737-754.
P. Oprocha and P. Wilczyński, Shift spaces and distributional chaos, Chaos Solitons Fract.31 (2007) 347-355.
J. Smítal and M. Stefánková, Distributional chaos for triangular maps, Chaos Solitons Fract.21 (2004) 1125-1128.
R. Pikula, On some notions of chaos in dimension zero, Colloq. Math. 107 (2007) 167-177.
X. X. Wu and P. Y. Zhu, A minimal DC1 system, Topol. Appl.159 (2012) 150-152.
X. X. Wu and P. Y. Zhu, The principal measure and distributional (p, q)-chaos of a coupled lattice system related with Belousov−Zhabotinskii reaction, J. Math. Chem.50 (2012) 2439-2445.
F. Balibrea, On problems of Topological Dynamics in non-autonomous discrete systems, Appl. Math. Nonlinear Sci.1 (2) (2016) 391-404.
D. L. Yuan and J. C. Xiong, Densities of trajectory approximation time sets (in Chinese), Sci. Sin. Math.40 (11) (2010) 1097-1114.
B. Schweizer, A. Sklar and J. Smítal, Distributional (and other) chaos and its measurement, Real Anal. Exch.21 (2001) 495-524.
H. Román-Flores, Y. Chalco-Cano, G. Silva and J. Kupka, On turbulent, erratic and other dynamical properties of Zadeh’s extensions, Chaos Solitons Fract.44 (11), (2011) 990-994
G. Chen and S. T. Liu, On spatial periodic orbits and spatial chaos, Int. J. Bifur. Chaos 13 (2003) 935-941.
X. Yang, Q. Li and S. Cheng, Horseshoe chaos and topological entropy estimate in a simple power system, Appl. Math. Comput. 211 (2009) 467-473.
X. Yang and Y. Tang, Horseshoes in piecewise continuous maps, Chaos Solitons Fract.19 (2004) 841-845.
R. Li, A note on the three versions of distributional chaos, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 1993-1997.
Zhao, Y. and Li, R. (2020). Turbulence, Erratic Property and Horseshoes in a Coupled Lattice System related with Belusov−Zhabotinsky Reaction. Iranian Journal of Mathematical Chemistry, 11(3), 133-140. doi: 10.22052/ijmc.2020.160449.1413
MLA
Zhao, Y. , and Li, R. . "Turbulence, Erratic Property and Horseshoes in a Coupled Lattice System related with Belusov−Zhabotinsky Reaction", Iranian Journal of Mathematical Chemistry, 11, 3, 2020, 133-140. doi: 10.22052/ijmc.2020.160449.1413
HARVARD
Zhao, Y., Li, R. (2020). 'Turbulence, Erratic Property and Horseshoes in a Coupled Lattice System related with Belusov−Zhabotinsky Reaction', Iranian Journal of Mathematical Chemistry, 11(3), pp. 133-140. doi: 10.22052/ijmc.2020.160449.1413
CHICAGO
Y. Zhao and R. Li, "Turbulence, Erratic Property and Horseshoes in a Coupled Lattice System related with Belusov−Zhabotinsky Reaction," Iranian Journal of Mathematical Chemistry, 11 3 (2020): 133-140, doi: 10.22052/ijmc.2020.160449.1413
VANCOUVER
Zhao, Y., Li, R. Turbulence, Erratic Property and Horseshoes in a Coupled Lattice System related with Belusov−Zhabotinsky Reaction. Iranian Journal of Mathematical Chemistry, 2020; 11(3): 133-140. doi: 10.22052/ijmc.2020.160449.1413