Rhombellane-related crystal networks

Document Type: Research Paper

Authors

1 University of Politehnica, Timisoara, Romania

2 Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran

3 Babes-Bolyai University, Cluj, Romania

10.22052/ijmc.2020.144902.1384

Abstract

Rhombellanes are mathematical structures existing in various environments, in crystal or quasicrystal networks, or even in their homeomorphs, further possible becoming real molecules. Rhombellanes originate in the K2.3 complete bipartite graph, a tile found in the linear polymeric staffanes. In close analogy, a rod-like polymer derived from hexahydroxy-cyclohexane, HHCH, was imagined. Further, the idea of linear polymer synthesized from dehydro-adamantane, DHAda, was extended in the design of a three-dimensional crystal network, called here Ada-Ada, of which tile is a hyper-adamantane (an adamantane of which vertices are just adamantanes). It was suggested that Ada-Ada would be synthesized starting from the real molecule tetrabromo-adamantane, by dehydrogenation and polymerization. The crystal structures herein proposed were characterized by connectivity and ring sequences and also by the Omega polynomial.

Keywords

Main Subjects


 

  1. M. V. Diudea, Rhombellanesa new class of nanostructures, Int. Conf. “Bio-Nano-Math-Chem”, Cluj, Romania, 2017.
  2. K. B. Wiberg and F. H. Walker, [1.1.1]Propellane, J. Am. Chem. Soc. 104 (19) (1982) 5239–5240.
  3. H. A. Favre and W. H. Powell (eds.), Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book), Cambridge: The Royal Society of Chemistry, (2014) p. 169. DOI:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.
  4. P. Kazynsky and J. Michl, [n]Staffanes: a molecular-size tinkertoy construction set for nanotechnology. Preparation of end-functionalized telomers and a polymer of [1.1.1]propellane, J. Am. Chem. Soc. 110 (15) (1988) 5225–5226
  5. A. Dilmaç, E. Spuling, A. de Meijere and S. Bräse, Propellanes—from a chemical curiosity to “explosive” materials and natural products, Angew. Chem. Int. Ed. 56 (2017) 5684-5718. DOI: 10.1002/ange.201603951.
  6. M. V. Diudea, Hypercube related polytopes, Iranian J. Math. Chem. 9 (1) (2018) 1-8.
  7. M. V. Diudea, Rhombellanic crystals and quasicrystals, Iranian J. Math. Chem. 9 (3) (2018) 167-178.
  8. B. Szefler, P. Czeleń and M.V. Diudea, Docking of indolizine derivatives on cube rhombellane functionalized homeomorphs, Studia Univ.Babes-Bolyai”, Chemia 63 (2) (2018) 7-18.
  9. M. V. Diudea, Rhombellanes – a new class of structures, Int. J. Chem. Model. 9 (2-3) (2018) 91-96.
  10. M. V. Diudea, Cube-Rhombellane: from graph to molecule, Int. J. Chem. Model. 9 (2-3) (2018) 97-103.
11. S. Landa, V. Machácek and Sur l’adamantane, nouvel hydrocarbure extrait de naphte, Collect. Czech. Chem. Commun. 5 (1933) 1–5. DOI:10.1135/cccc19330001.

12. P. von R. Schleyer, A simple preparation of adamantine, J. Am. Chem. Soc. 79 (12) (1957) 3292–3292.

  1. R. Takagi, Y. Miwa, S. Matsumura and K. Ohkata, One-pot synthesis of adamantane derivatives by domino Michael reactions from ethyl 2,4-dioxocyclohexanecarboxylate, J. Org. Chem .70 (21) (2005) 8587-8589.
  2. J. C. Garcia, J. F. Justo, W. V. M. Machado and L. V. C. Assali, Functionalized adamantane: building blocks for nanostructure self-assembly, Phys. Rev. B. 80 (12) (2009) 125421. DOI: 10.1103/PhysRevB.80.125421.
  3. P. J. Steinhardt, Quasi-Crystals- A new form of matter, Endeavour 14 (1990) 112-116
  4. V. A. Blatov, O. Delgado-Friedrichs, M. O’Keeffe and D. M. Proserpio, Three-periodic nets and tilings: natural tilings for nets, Acta Crystallogr. A 63 (2007) 418-425.
  5. M. Goldberg, A class of multi-symmetric polyhedral, Tôhoku Math. J. 43 (1937) 104–108.
  6. M. V. Diudea, Molecular Topology. 16. Layer Matrixes in Molecular Graphs, J. Chem. Inf. Comput. Sci. 34 (1994) 1064-1071.
  7. M. V. Diudea, M. Topan, A. Graovac, Molecular topology. 17. Layer matrixes of walk degrees, J. Chem. Inf. Comput. Sci. 34 (1994) 1072-1078.
  8. M. V. Diudea and O. Ursu, Layer matrices and distance property descriptors, Indian J. Chem. A 42 (6) (2003) 1283-1294.
  9. C. L. Nagy and M. V. Diudea, Ring signature index, MATCH Commun. Math. Comput. Chem. 77 (2) (2017) 479-492.
  10. M. V. Diudea and C. L. Nagy, Rhombellane space filling, J. Math. Chem. 57 (2018) 473–483
  11. M. V. Diudea, Omega polynomial, Carpath. J. Math. 22 (2006) 43-47.
  12. M. V. Diudea and S Klavžar, Omega polynomial revisited, Acta Chim. Slov. 57 (2010) 565-570.
  13. A. E. Vizitiu, S. Cigher, M. V. Diudea and M. S. Florescu, Omega polynomial in ((4, 8) 3) tubular nanostructures, MATCH Commun. Math. Comput. Chem. 57 (2) 457-462.
  14. P. E. John, A. E. Vizitiu, S. Cigher and M. V. Diudea, CI index in tubular nanostructures, MATCH Commun. Math. Comput. Chem. 57 (2007) 479-484.
  15. C. L. Nagy and M. V. Diudea, Nano-Studio software, Babes-Bolyai University, Cluj, 2009.
  16. M. V. Diudea, A. Pîrvan-Moldovan, R. Pop and M. Medeleanu, Energy of graphs and remote graphs, in hypercubes, rhombellanes and fullerenes, MATCH Commun. Math. Comput. Chem. 80 (2018) 835-852.
  17. M. V. Diudea, C. N. Lungu and C. L. Nagy, Cube-rhombellane related bioactive structures, Molecules 23 (10) (2018) 2533. DOI:10.3390/molecules23102533.
  18. M. V. Diudea, Multi-shell polyhedral clusters, Springer, New York, NY, 2018.