We present explicit formulas for the Laplacian Szeged eigenvalues of paths, grids, $C_4$-nanotubes and of Cartesian products of paths with some other simple graphs. A number of open problems is listed.
I. Gutman, A formula for the Wiener number of trees and its extension to the graphs containing cycles, Graph Theory Notes of New YorkXVII (1994) 9–15.
I. Gutman, A. A. Dobrynin, The Szeged index-a success story, Graph Theory Notes New York 34 (1998) 37–44.
J. Schwinger, On Angular Momentum, Unpublished Report, Harvard University, Nuclear Development Associates, Inc., United States Department of Energy (through predecessor agency the Atomic Energy Commission), Report Number NYO-3071 (January 26, 1952).
N. J. A. Sloane, (ed.), The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org.
Doslic, T. (2020). On the Laplacian Szeged Spectrum of Paths. Iranian Journal of Mathematical Chemistry, 11(1), 57-63. doi: 10.22052/ijmc.2020.215860.1480
MLA
Doslic, T. . "On the Laplacian Szeged Spectrum of Paths", Iranian Journal of Mathematical Chemistry, 11, 1, 2020, 57-63. doi: 10.22052/ijmc.2020.215860.1480
HARVARD
Doslic, T. (2020). 'On the Laplacian Szeged Spectrum of Paths', Iranian Journal of Mathematical Chemistry, 11(1), pp. 57-63. doi: 10.22052/ijmc.2020.215860.1480
CHICAGO
T. Doslic, "On the Laplacian Szeged Spectrum of Paths," Iranian Journal of Mathematical Chemistry, 11 1 (2020): 57-63, doi: 10.22052/ijmc.2020.215860.1480
VANCOUVER
Doslic, T. On the Laplacian Szeged Spectrum of Paths. Iranian Journal of Mathematical Chemistry, 2020; 11(1): 57-63. doi: 10.22052/ijmc.2020.215860.1480