In theoretical chemistry, -modified Wiener index is a graph invariant topological index to analyze the chemical properties of molecular structure. In this note, we determine the minimum -modified Wiener index of graph with fixed connectivity or edge-connectivity. Our results also present the sufficient and necessary condition for reaching the lower bound.
Gao, W. and Gao, Y. (2015). A Note on Connectivity and Lambda-modified Wiener index. Iranian Journal of Mathematical Chemistry, 6(2), 137-143. doi: 10.22052/ijmc.2015.10429
MLA
Gao, W. , and Gao, Y. . "A Note on Connectivity and Lambda-modified Wiener index", Iranian Journal of Mathematical Chemistry, 6, 2, 2015, 137-143. doi: 10.22052/ijmc.2015.10429
HARVARD
Gao, W., Gao, Y. (2015). 'A Note on Connectivity and Lambda-modified Wiener index', Iranian Journal of Mathematical Chemistry, 6(2), pp. 137-143. doi: 10.22052/ijmc.2015.10429
CHICAGO
W. Gao and Y. Gao, "A Note on Connectivity and Lambda-modified Wiener index," Iranian Journal of Mathematical Chemistry, 6 2 (2015): 137-143, doi: 10.22052/ijmc.2015.10429
VANCOUVER
Gao, W., Gao, Y. A Note on Connectivity and Lambda-modified Wiener index. Iranian Journal of Mathematical Chemistry, 2015; 6(2): 137-143. doi: 10.22052/ijmc.2015.10429