For the edge e = uv of a graph G, let nu = n(u|G) be the number of vertices of G lying closer to the vertex u than to the vertex v and nv= n(v|G) can be defined simailarly. Then the ABCGG index of G is defined as ABCGG =\sum_{e=uv} \sqrt{f(u,v)}, where f(u,v)= (nu+nv-2)/nunvThe aim of this paper is to give some new results on this graph invariant. We also calculate the ABCGG of an infinite family of fullerenes.
D. Dimitrov, B. Ikica and R. Škrekovski, Remarks on the Graovac-Ghorbani index of bipartite graphs, arXiv:1609.01406v1.
E. Estrada, L. Torres, L. Rodríguez and I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849−855.
E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett. 463 (2008) 422−425.
B. Furtula, I. Gutman and K. C. Das, On atom-bond molecule structure descriptors, J. Serb. Chem. Soc. 80 (2015) 1−7.
B. Furtula and I. Gutman, in: I. Gutman, B. Furtula (Eds.) Novel Molecular Structure Descriptors − Theory and Applications, Vol. I, University of Kragujevac, Kragujevac, 2010, pp. 137−172.
B. Furtula, Atom-bond connectivity index versus Graovac-Ghorbani analog, MATCH Commun. Math. Comput. Chem. 75 (2016) 233−242.
M. Ghorbani, Enumeration of heterofullerenes: A survey, MATCH Commun. Math. Comput. Chem. 68 (2012) 381−414.
M. Ghorbani and Sh. Rahmani, Study of Mostar index of fullerene graphs, Iranian J. Math. Sci. Inf., in press.
A. Graovac and M. Ghorbani, A new version of the atom-bond connectivity index, Acta Chim. Slov. 57 (2010) 609−612.
I. Gutman and A. A. Dobrynin, The Szeged index − a success story, Graph Theory Notes New York34 (1998) 37−44.
M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, Discrete Appl. Math. 156 (2008) 1780−1789.
H. W. Kroto, R. J. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, C60: Buckminsterfullerene, Nature318 (1985) 162−163.
H. W. Kroto, J. E. Fichier and D. E. Cox, The Fulerene, Pergamon Press, New York, 1993.
R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
N. Trinajstić, Chemical Graph Theory, 2nd revised edn, CRC Press, Boca Raton, FL, 1992.
N. Trinajstić and I. Gutman, Mathematical Chemistry, Croat. Chem. Acta. 75 (2002) 329 – 356.
H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17−20.
Ghorbani, M. , Rahmani, S. and Ori, O. (2019). On the Graovac-Ghorbani Index. Iranian Journal of Mathematical Chemistry, 10(4), 295-305. doi: 10.22052/ijmc.2019.169508.1420
MLA
Ghorbani, M. , , Rahmani, S. , and Ori, O. . "On the Graovac-Ghorbani Index", Iranian Journal of Mathematical Chemistry, 10, 4, 2019, 295-305. doi: 10.22052/ijmc.2019.169508.1420
HARVARD
Ghorbani, M., Rahmani, S., Ori, O. (2019). 'On the Graovac-Ghorbani Index', Iranian Journal of Mathematical Chemistry, 10(4), pp. 295-305. doi: 10.22052/ijmc.2019.169508.1420
CHICAGO
M. Ghorbani , S. Rahmani and O. Ori, "On the Graovac-Ghorbani Index," Iranian Journal of Mathematical Chemistry, 10 4 (2019): 295-305, doi: 10.22052/ijmc.2019.169508.1420
VANCOUVER
Ghorbani, M., Rahmani, S., Ori, O. On the Graovac-Ghorbani Index. Iranian Journal of Mathematical Chemistry, 2019; 10(4): 295-305. doi: 10.22052/ijmc.2019.169508.1420