Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.
WU, Y., WEI, F., & JIA, Z. (2013). The Generalized Wiener Polarity Index of some Graph Operations. Iranian Journal of Mathematical Chemistry, 4(2), 177-183. doi: 10.22052/ijmc.2013.5291
MLA
Y. WU; F. WEI; Z. JIA. "The Generalized Wiener Polarity Index of some Graph Operations", Iranian Journal of Mathematical Chemistry, 4, 2, 2013, 177-183. doi: 10.22052/ijmc.2013.5291
HARVARD
WU, Y., WEI, F., JIA, Z. (2013). 'The Generalized Wiener Polarity Index of some Graph Operations', Iranian Journal of Mathematical Chemistry, 4(2), pp. 177-183. doi: 10.22052/ijmc.2013.5291
VANCOUVER
WU, Y., WEI, F., JIA, Z. The Generalized Wiener Polarity Index of some Graph Operations. Iranian Journal of Mathematical Chemistry, 2013; 4(2): 177-183. doi: 10.22052/ijmc.2013.5291