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ABSTRACT 

Let G be a simple connected graph. The generalized polarity Wiener index of 

G is defined as the number of unordered pairs of vertices of G whose 

distance is k. Some formulas are obtained for computing the generalized 

polarity Wiener index of the Cartesian product and the tensor product of 

graphs in this article.  
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1. INTRODUCTION 

Let G  be a simple connected graph, with n  vertices and m  edges. The set 

1( ) { }nV G v v= ,...,  denotes the vertex set of G  while 1( ) { }nE G e e= ,...,  denotes it’s edge set. 

When we mention i jv v=  it means the two vertices iv  and jv  are identical. The distance 

( )G i jd v v,  between two vertices iv  and jv  in G  is the length of a shortest path between the 

two vertices. The diameter of G  is the greatest distance between two vertices of G , 

denoted by (D G ). The Wiener index ( )W G  and the Wiener polarity index ( )PW G  are, 

respectively, defined as [1]  
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by H. Wiener in the mid−20th century. Later in 1988, H. Hosoya [2] introduced the 

Hosoya(or wiener) polynomial  

  
( )

1 1

( ) ( ) ( )
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k k

k k

H G x d G k x d G k x
≥ =

, = , = ,∑ ∑  

where ( )d G k,  denotes the number of unordered pairs of vertices whose distance is equal to 

k . Actually, ( )H G x,  provided a generalized way of studying the wiener index and the 

wiener polarity index for ( 3) ( )pd G W G, =  and  

  

1

( )
( )x

dH G x
W G

dx
=

,
| = .  

Motivated by the definition of ( )PW G , Ilić [3] recently defined ( )d G k,  to be the 

generalized Wiener polarity index ( )kW G  for its significance. As a matter of fact, Gutman 

[4] showed that ( )d G k,  is closely related with the first and the second Zagreb index 1M  

and 2M . For example [4],  

3
2

1
)2,( 1 −−= mMGd n 

and  

d(G,3) = M2 − M1 + m − 4n 

where m  is the number of edges, while 3n and 4n denotes the number of triangles and 

the number of quadrangles respectively. However, the relation between ( )d G k,  and Zagreb 

indices has not yet been studied.  The Cartesian product G H×  of two graphs G  and H  is 

defined as:  

1 1 2 2 1 2 1 2 1 2 1 2( ) {( )( )| ( ) ] [ ( )}E G H u v u v u u E G and v v or u u and v v E H× = , , ∈ = = ∈  

and the tensor product G H⊗  of graphs G  and H  is defined as  

1 1 2 2 1 2 1 2( ) {( )( )| ( ) ( )}E G H u v u v u u E G and v v E H⊗ = , , ∈ ∈ .  

More details about graph operations and generalized wiener polarity index can be 

found in articles [7, 8, 9]. 

This paper is organized as follows. In Section 2, we obtain some formulas for 

computing the generalized wiener polarity index of the cartesian product G H×  of two 

simple connected graph G  and H  and of the tensor product of them in Section 3. Also, 

some corollaries of these formulas are given as applications in each section. 
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2. THE GENERALIZED WIENER INDEX OF THE CARTESIAN PRODUCT G××××H  

Before we turn to our main theorem of this section, there is a lemma to introduce  

 

Lemma 2.1. [5] Let 1G  and 2G  be two simple connected graphs, then  

  

1 2 1 2 1 2 2 1( ) 2 ( ) ( ) | | ( ) | | ( ).H G G x H G x H G x G H G x G H G x+ , = , , + , + ,  

 

Since ( ) 0kW G =  when ( )k D G> , we only consider ( )k D G≤  in this paper. Now 

we are ready to present our main theorem of the section  
 

Theorem 2.1.  Let 1G  and 2G  be two simple connected graphs, then  

1

1 2 1 2 2 1 1 2

1

( ) ( ) | ( ) | ( ) | ( ) | 2 ( ) ( )
k

k k k i k i
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−
=

× = + + ∑  

Proof. According to Lemma 2.1 and direct computation, we have  
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1

1 2 1 2 2 1

1
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Thus the Theorem holds.                                                                                                         

 

As a direct application to Theorem 2.1, it follows that  
 

Corollary 2.1.  Let G  be a simple connected graph, then  
1

1

( ) 2 ( ) | ( ) | 2 ( ) ( )
k

k k i k i

i

W G G W G V G W G W G
−

−
=

× = + ∑  

The graphs n mU P C= ×  and n mO C C= ×  are usually called 4C -nanotube and 4C -

nanotorus, where nP  denotes a path whose length is 1n −  and mC  a cycle with m  vertices. 

4C −nanotube and 4C −nanotorus are studied widely in materialogy and quantum chemistry 

for their extraordinary thermal conductivity and mechanical and electrical properties. By 

applying Theorem 2.1 we obtain: 

 

Corollary 2.2.  Let n mU P C= ×  and n mO C C= × , then  
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Proof. By Theorem 2.1 we have  
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The result follows.                                                     

 

Though ( )k n mW P C× ( )2 2
min{ 1 } max{ 1 }n nn k n− , ≤ ≤ − ,        and  ( )k n mW C C×  

( )2 2 2 2
min{ } max{ }n m n mk, ≤ ≤ ,                are not considered in Corollary 2.2, we can discussed 

them in a similar way by applying Theorem 2.1.   

 

3. THE GENERALIZED WIENER INDEX OF THE TENSOR PRODUCT G ⊗⊗⊗⊗ H 

In this section, we compute the generalized Wiener polarity index of the tensor product of 

graphs. A prepare work shall be introduced at first.  

 

Lemma 3.1.[6] Let 1G  and 2G  be two simple connected graphs, and 1 1( )u u v= , , 

2 2 1 2( ) ( ) ( )v u v V G V G= , ∈ × , then 
1 2 1 21 2 1 2( ) max{ ( ) ( )}G G G Gd u v d u u d v v⊗ , = , , , .

  

Now we are ready for  

 

Theorem 3.1.  Let 1G  and 2G  be two simple connected graphs, then  
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Proof. Let 1 1( )u u v= , , 2 2 1 2( ) ( ) ( )v u v V G V G= , ∈ × . According to Lemma 3.1, we have  
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1 2 1 2
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By summing up the numbers of five types of pairs of vertices above, we have  
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Therefore, the theorem is established.                                                                                     

 

A direct deduction of Theorem 3.1 is  

 

Corollary 3.1.  Let G  be a simple connected graph, then  
1

2
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And as an application of Theorem 3.1 we have:  

 

Corollary 3.2.  Let n mU P C= ⊗  and n mO C C= ⊗ , then  
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Proof. By Theorem 3.1 we have  
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The result follows.                                                                                                                   
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