The Generalized Wiener Polarity Index of Some Graph Operations

Yang Wu, Fuyi Weic and Zhen Jia
Department of Mathematics, South China Agricultural University, Guangzhou, P. R. China, 510642

(Received October 13, 2013; Accepted November 16, 2013)

Abstract

Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.

Keywords: Wiener index, Cartesian product, tensor product.

1. Introduction

Let G be a simple connected graph, with n vertices and m edges. The set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ denotes the vertex set of G while $E(G)=\left\{e_{1}, \ldots, e_{n}\right\}$ denotes it's edge set. When we mention $v_{i}=v_{j}$ it means the two vertices v_{i} and v_{j} are identical. The distance $d_{G}\left(v_{i}, v_{j}\right)$ between two vertices v_{i} and v_{j} in G is the length of a shortest path between the two vertices. The diameter of G is the greatest distance between two vertices of G, denoted by $D(G)$. The Wiener index $W(G)$ and the Wiener polarity index $W_{P}(G)$ are, respectively, defined as [1]

[^0]\[

$$
\begin{gathered}
W(G)=\sum_{\substack{1 \leq i<j \leq n \\
v_{i}, v_{j} \in V(G)}} d_{G}\left(v_{i}, v_{j}\right) \\
W_{P}(G)=\left|\left\{(u, v) \mid d_{G}(u, v)=3, u, v \in V(G)\right\}\right|
\end{gathered}
$$
\]

by H. Wiener in the mid-20th century. Later in 1988, H. Hosoya [2] introduced the Hosoya(or wiener) polynomial

$$
H(G, x)=\sum_{k \geq 1} d(G, k) x^{k}=\sum_{k=1}^{D(G)} d(G, k) x^{k}
$$

where $d(G, k)$ denotes the number of unordered pairs of vertices whose distance is equal to k. Actually, $H(G, x)$ provided a generalized way of studying the wiener index and the wiener polarity index for $d(G, 3)=W_{p}(G)$ and

$$
\left.\frac{d H(G, x)}{d x}\right|_{x=1}=W(G)
$$

Motivated by the definition of $W_{P}(G)$, Ilic [3] recently defined $d(G, k)$ to be the generalized Wiener polarity index $W_{k}(G)$ for its significance. As a matter of fact, Gutman [4] showed that $d(G, k)$ is closely related with the first and the second Zagreb index M_{1} and M_{2}. For example [4],

$$
d(G, 2)=\frac{1}{2} M_{1}-m-3 n
$$

and

$$
d(G, 3)=M_{2}-M_{1}+m-4 n^{2}
$$

where m is the number of edges, while $3 n_{\square}$ and $4 n_{\square}$ denotes the number of triangles and the number of quadrangles respectively. However, the relation between $d(G, k)$ and Zagreb indices has not yet been studied. The Cartesian product $G \times H$ of two graphs G and H is defined as:

$$
E(G \times H)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \mid u_{1} u_{2} \in E(G) \text { and } v_{1}=v_{2}\right] \text { or }\left[u_{1}=u_{2} \text { and } v_{1} v_{2} \in E(H)\right\}
$$

and the tensor product $G \otimes H$ of graphs G and H is defined as

$$
E(G \otimes H)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \mid u_{1} u_{2} \in E(G) \text { and } v_{1} v_{2} \in E(H)\right\} .
$$

More details about graph operations and generalized wiener polarity index can be found in articles [7, 8, 9].

This paper is organized as follows. In Section 2, we obtain some formulas for computing the generalized wiener polarity index of the cartesian product $G \times H$ of two simple connected graph G and H and of the tensor product of them in Section 3. Also, some corollaries of these formulas are given as applications in each section.

2. The Generalized Wiener Index of the Cartesian Product $\boldsymbol{G} \times \boldsymbol{H}$

Before we turn to our main theorem of this section, there is a lemma to introduce

Lemma 2.1. [5] Let G_{1} and G_{2} be two simple connected graphs, then

$$
H\left(G_{1}+G_{2}, x\right)=2 H\left(G_{1}, x\right) H\left(G_{2}, x\right)+\left|G_{1}\right| H\left(G_{2}, x\right)+\left|G_{2}\right| H\left(G_{1}, x\right) .
$$

Since $W_{k}(G)=0$ when $k>D(G)$, we only consider $k \leq D(G)$ in this paper. Now we are ready to present our main theorem of the section

Theorem 2.1. Let G_{1} and G_{2} be two simple connected graphs, then

$$
W_{k}\left(G_{1} \times G_{2}\right)=W_{k}\left(G_{1}\right)\left|V\left(G_{2}\right)\right|+W_{k}\left(G_{2}\right)\left|V\left(G_{1}\right)\right|+2 \sum_{i=1}^{k-1} W_{i}\left(G_{1}\right) W_{k-i}\left(G_{2}\right)
$$

Proof. According to Lemma 2.1 and direct computation, we have

$$
\begin{aligned}
W_{k}(G \times H) & =d\left(G_{1}+G_{2}, k\right) \\
& =2 \sum_{i=1}^{k-1} d\left(G_{1}, i\right) d\left(G_{2}, k-i\right)+\left|G_{1}\right| d\left(G_{2}, k\right)+\left|G_{2}\right| d\left(G_{1}, k\right) \\
& =W_{k}\left(G_{1}\right)\left|V\left(G_{2}\right)\right|+W_{k}\left(G_{2}\right)\left|V\left(G_{1}\right)\right|+2 \sum_{i=1}^{k-1} W_{i}\left(G_{1}\right) W_{k-i}\left(G_{2}\right)
\end{aligned}
$$

Thus the Theorem holds.

As a direct application to Theorem 2.1, it follows that
Corollary 2.1. Let G be a simple connected graph, then

$$
W_{k}(G \times G)=2 W_{k}(G)|V(G)|+2 \sum_{i=1}^{k-1} W_{i}(G) W_{k-i}(G)
$$

The graphs $U=P_{n} \times C_{m}$ and $O=C_{n} \times C_{m}$ are usually called C_{4}-nanotube and C_{4} nanotorus, where P_{n} denotes a path whose length is $n-1$ and C_{m} a cycle with m vertices. C_{4}-nanotube and C_{4}-nanotorus are studied widely in materialogy and quantum chemistry for their extraordinary thermal conductivity and mechanical and electrical properties. By applying Theorem 2.1 we obtain:

Corollary 2.2. Let $U=P_{n} \times C_{m}$ and $O=C_{n} \times C_{m}$, then

$$
\begin{aligned}
& W_{k}(U)=2 k m n-m k^{2}, k<\min \left\{n-1,\left\lfloor\frac{n}{2}\right\rfloor\right\} \\
& \left.W_{k}(O)=2 k m n, k<\min \left\{\frac{n}{2}\right\rfloor,\left\lfloor\frac{m}{2}\right\rfloor\right\}
\end{aligned}
$$

Proof. By Theorem 2.1 we have

$$
\begin{aligned}
W_{k}(U) & =W_{k}\left(P_{n}\right)\left|V\left(C_{m}\right)\right|+W_{k}\left(C_{m}\right)\left|V\left(P_{n}\right)\right|+2 \sum_{i=1}^{k-1} W_{i}\left(P_{n}\right) W_{k-i}\left(C_{m}\right) \\
& =(n-k) m+m n+2 \sum_{i=1}^{k-1}(n-i) m \\
& =(n-k) m+m n+(k-1)(2 n-k) m \\
& =2 k m n-m k^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
W_{k}(O) & =W_{k}\left(C_{n}\right)\left|V\left(C_{m}\right)\right|+W_{k}\left(C_{m}\right)\left|V\left(C_{n}\right)\right|+2 \sum_{i=1}^{k-1} W_{i}\left(C_{n}\right) W_{k-i}\left(C_{m}\right) \\
& =2 m n+2 \sum_{i=1}^{k-1} m n \\
& =2 m n+2(k-1) m n \\
& =2 k m n
\end{aligned}
$$

The result follows.

Though $W_{k}\left(P_{n} \times C_{m}\right)\left(\min \left\{n-1,\left\lfloor\frac{n}{2}\right\rfloor\right\} \leq k \leq \max \left\{n-1,\left\lfloor\frac{n}{2}\right\rfloor\right\}\right) \quad$ and $\quad W_{k}\left(C_{n} \times C_{m}\right)$ $\left(\min \left\{\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{m}{2}\right\rfloor\right\} \leq k \leq \max \left\{\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{m}{2}\right\rfloor\right\}\right)$ are not considered in Corollary 2.2, we can discussed them in a similar way by applying Theorem 2.1.

3. The Generalized Wiener Index of the Tensor Product $\boldsymbol{G} \otimes \boldsymbol{H}$

In this section, we compute the generalized Wiener polarity index of the tensor product of graphs. A prepare work shall be introduced at first.

Lemma 3.1.[6] Let G_{1} and G_{2} be two simple connected graphs, and $u=\left(u_{1}, v_{1}\right)$, $v=\left(u_{2}, v_{2}\right) \in V\left(G_{1}\right) \times V\left(G_{2}\right)$, then $d_{G_{1} \otimes G_{2}}(u, v)=\max \left\{d_{G_{1}}\left(u_{1}, u_{2}\right), d_{G_{2}}\left(v_{1}, v_{2}\right)\right\}$.

Now we are ready for
Theorem 3.1. Let G_{1} and G_{2} be two simple connected graphs, then

$$
\begin{aligned}
W_{k}\left(G_{1} \otimes G_{2}\right) & =W_{k}\left(G_{1}\right)\left|V\left(G_{2}\right)\right|+W_{k}\left(G_{2}\right)\left|V\left(G_{1}\right)\right|+2 W_{k}\left(G_{1}\right) \sum_{i=1}^{k-1} W_{i}\left(G_{2}\right) \\
& +2 W_{k}\left(G_{2}\right) \sum_{i=1}^{k} W_{i}\left(G_{1}\right)
\end{aligned}
$$

Proof. Let $u=\left(u_{1}, v_{1}\right), v=\left(u_{2}, v_{2}\right) \in V\left(G_{1}\right) \times V\left(G_{2}\right)$. According to Lemma 3.1, we have

$$
d(u, v)=k \text { if and only if }\left\{\begin{array}{l}
d\left(u_{1}, u_{2}\right)=k, d\left(v_{1}, v_{2}\right)=0 \\
d\left(u_{1}, u_{2}\right)=0, d\left(v_{1}, v_{2}\right)=k \\
d\left(u_{1}, u_{2}\right)=k, d\left(v_{1}, v_{2}\right)<k \\
d\left(v_{1}, v_{2}\right)=k, d\left(u_{1}, u_{2}\right)<k \\
d\left(v_{1}, v_{2}\right)=k, d\left(u_{1}, u_{2}\right)=k
\end{array}\right.
$$

By summing up the numbers of five types of pairs of vertices above, we have

$$
\begin{aligned}
W_{k}\left(G_{1} \times G_{2}\right) & =\left|\left\{(u, v) \mid d\left(u_{1}, u_{2}\right)=k, v_{1}=v_{2} \in V\left(G_{2}\right)\right\}\right| \\
& +\left|\left\{(u, v) \mid d\left(v_{1}, v_{2}\right)=k, u_{1}=u_{2} \in V\left(G_{1}\right)\right\}\right| \\
& +\sum_{i=1}^{k-1}\left|\left\{(u, v) \mid d\left(u_{1}, u_{2}\right)=k, d\left(v_{1}, v_{2}\right)=i\right\}\right| \\
& +\sum_{i=1}^{k}\left|\left\{(u, v) \mid d\left(v_{1}, v_{2}\right)=k, d\left(u_{1}, u_{2}\right)=i\right\}\right| \\
& =W_{k}\left(G_{1}\right)\left|V\left(G_{2}\right)\right|+W_{k}\left(G_{2}\right)\left|V\left(G_{1}\right)\right|+2 W_{k}\left(G_{1}\right) \sum_{i=1}^{k-1} W_{i}\left(G_{2}\right) \\
& +2 W_{k}\left(G_{2}\right) \sum_{i=1}^{k} W_{i}\left(G_{1}\right)
\end{aligned}
$$

Therefore, the theorem is established.

A direct deduction of Theorem 3.1 is

Corollary 3.1. Let G be a simple connected graph, then

$$
W_{k}(G \otimes G)=2 W_{k}(G)|V(G)|+4 W_{k}(G) \sum_{i=1}^{k-1} W_{i}(G)+2 W_{k}(G)^{2}
$$

And as an application of Theorem 3.1 we have:
Corollary 3.2. Let $U=P_{n} \otimes C_{m}$ and $O=C_{n} \otimes C_{m}$, then

$$
\begin{aligned}
& W_{k}(U)=4 k m n-3 m k^{2}, k<\min \left\{n-1,\left\lfloor\frac{n}{2}\right\rfloor\right\} \\
& W_{k}(O)=4 k m n, k<\min \left\{\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{m}{2}\right\rfloor\right\}
\end{aligned}
$$

Proof. By Theorem 3.1 we have

$$
\begin{aligned}
W_{k}(U)= & W_{k}\left(P_{n}\right)\left|V\left(C_{m}\right)\right|+W_{k}\left(C_{m}\right)\left|V\left(P_{n}\right)\right|+2 W_{k}\left(P_{n}\right) \sum_{i=1}^{k-1} W_{i}\left(C_{m}\right) \\
& +2 W_{k}\left(C_{m}\right) \sum_{i=1}^{k} W_{i}\left(P_{n}\right) \\
= & (n-k) m+m n+2(n-k) \sum_{i=1}^{k-1} m+2 m \sum_{i=1}^{k}(n-i) \\
= & (n-k) m+m n+2 m(n-k)(k-1)+m k(2 n-k-1) \\
= & 4 k m n-3 m k^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
W_{k}(O)= & W_{k}\left(C_{n}\right)\left|V\left(C_{m}\right)\right|+W_{k}\left(C_{m}\right)\left|V\left(C_{n}\right)\right|+2 W_{k}\left(C_{n}\right) \sum_{i=1}^{k-1} W_{i}\left(C_{m}\right) \\
& +2 W_{k}\left(C_{m}\right) \sum_{i=1}^{k} W_{i}\left(C_{n}\right) \\
& =2 m n+2 n \sum_{i=1}^{k-1} m+2 m \sum_{i=1}^{k} n \\
& =4 k m n
\end{aligned}
$$

The result follows.
Acknowledgement. The author would like to thank the National Natural Science Foundation of China (No.11201156) for supporting this research.

REFERENCES

1. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1) (1947), 17-20.
2. H. Hosoya, On some counting polynomials in chemistry, Discrete Appl. Math., 19 (1-3) (1988), 239-257.
3. A. Ilić, M. Ilić, Generalizations of Wiener polarity index and terminal Wiener index, Graphs Combin., 29 (5) (2013), 1403-1416.
4. I. Gutman, Y. Zhang, M. Dehmer, A. Ilić, Altenburg, Wiener, and Hosoya
polynomials, Distance in Molecular Graphs - Theory, Mathematical Chemistry Monograph 12 (2012), University of Kragujevac, 49-70.
5. D. Stevanović, Hosoya polynomial of composite graphs, Discrete Math., 235 (1-3) (2001), 237-244.
6. D. Stevannović, Distance regularity of compositions of graphs, Appl. Math. Lett., 17 (3) (2004), 337-343.
7. H. Khodashenas, M. J. Nadjafi-Arani, Distance-based topological indices of tensor product of graphs, Iranian J. Math. Chem., 3 (1) (2012), 45-53.
8. M. Faghani, A. R. Ashrafi, O. Ori, Remarks on The Wiener polarity index of some graph operations, J. Appl. Math. Informatics, 30 (3-4) (2012), 353-364.
9. Y. Wu, F. Wei, B. Liu, Z. Jia, The generalized (terminal) Wiener polarity index of generalized Bethe trees and coalescence of rooted trees, MATCH Commun. Math. Comput. Chem., 70 (2) (2013), 603-620.

[^0]: - Research supported by National Natural Science Foundation of China (No.11201156).

 Corresponding author (Email: weifuyi@scau.edu.cn (Fuyi Wei).

