On the Spectra of Reduced Distance Matrix of the Generalized Bethe Trees

Document Type : Research Paper

Author

Arak University of Technology

Abstract

Let G be a simple connected graph and {v_1,v_2,..., v_k} be the set of pendent (vertices of degree one) vertices of G. The reduced distance matrix of G is a square matrix whose (i,j)-entry is the topological distance between v_i and v_j of G. In this paper, we compute the spectrum of the reduced distance matrix of the generalized Bethe trees.

Keywords

Main Subjects


1. K. Balasubramanian, Computer generation of distance polynomials of graphs, J.
Comput. Chem. 11 (1990) 829−836.
2. F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Redwood, 1990.
3. A. Heydari, On the Wiener and terminal Wiener index of generalized Bethe trees,
MATCH Commun. Math. Comput. Chem. 69 (2013) 141−150.
4. A. Heydari, On the spectrum of reduced distance matrix of dendrimers, Trans. Comb.
2 (2) (2013) 41−46.
5. B. Horvat, T. Pisanski, M. Randić, Terminal polynomials and star-like graphs,
MATCH Commun. Math. Comput. Chem. 60 (2008) 493−512.
6. R. L. Graham, L. Lovasz, Distance matrix polynomials of trees, Adv. Math. 29 (1978)
60−88.
7. B. D. McKay, On the spectral characterization of trees, Ars Combin. 3 (1977)
219−232.
8. M. Randić, J. Zupan, D. Vikić-Topić, On representation of proteins by starlike graphs,
J. Mol. Graph. Model. 26 (2007) 290−305.
9. O. Rojo, M. Robbiano, An explicit formula for eigenvalues of Bethe trees and upper
bounds on the largest eigenvalue of any tree, Linear Algebra Appl. 427 (2007)
138−150.
10. E. A. Smolenskii, E. V. Shuvalova, L. K. Maslova, I. V.Chuvaeva, M. S. Molchanova,
Reduced matrix of topological distances with a minimum number of independent
parameters: distance vectors and molecular codes, J. Math. Chem. 45 (2009)
1004−1020.
11. F. Zhang, Matrix Theory, Basic Results and Techniques, Springer-Verlag New York
Inc, 1991.