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Let 퐺 be a simple connected graph and {푣 ,푣  ,푣 , … ,푣 } be the set of 
pendant (vertices of degree one) vertices of 퐺. The reduced distance 
matrix of 퐺 is a square matrix of order 푘 whose (푖, 푗)-entry is the 
topological distance between 푣  and 푣  of 퐺. A rooted tree is called a 
generalized Bethe tree if its vertices at the same level have equal degree. 
In this paper, we compute the spectrum of the reduced distance matrix of 
the generalized Bethe trees. 
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1. INTRODUCTION  

Let 퐺 be a simple connected graph with vertex set 푉(퐺) = {푣 ,푣  , 푣 , … ,푣  }. The 
distance between the vertices 푣  and 푣  of 퐺, is equal to the length (= number of edges) of 
each shortest path starting at 푣  and ending at 푣  (or vice versa) [2], and will be denoted by 
푑 (푣 , 푣 ). The distance matrix of 퐺 is defined as the 푛 × 푛 matrix 퐷(퐺) = [푑 ], where 
푑  is the distance between vertices 푣  and 푣  in 퐺. While the problem of computing the 
characteristic polynomial of adjacency matrix and its spectrum appears to be solved for 
many large graphs, the related distance polynomials have received much less attention. 
The distance matrix is more complex than the ordinary adjacency matrix of a graph since 
the distance matrix is a complete matrix while in the adjacency matrix most of entries are 
zero. Thus the computation of the characteristic polynomial of the distance matrix is 
computationally a much more intense problem and, in general, there are no simple 
analytical solutions except for a few trees [6]. For this reason, distance polynomials of 
only trees have been studied extensively in the mathematical literature [6, 7]. The distance 
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matrix of a graph and its spectrum has numerous applications to chemistry and other 
branches of science. The distance matrix, contains information on various walks and self-
avoiding walks of chemical graphs, is immensely useful in the computation of topological 
indices such as the Wiener index, is useful in the computation of thermodynamic 
properties such as pressure and temperature coefficients and it contains more structural 
information compared to a simple adjacency matrix [1]. 
 

 
 

Figure 1: A Generalized Bethe Tree with 5 Levels. 
 

 
In a number of recently published articles, the so-called reduced distance matrix 

[10] or terminal distance matrix [5, 8] of trees was considered. If an n-vertex graph G has 
푛  pendant vertices (= vertices of degree one), labeled by {푣 ,푣  , 푣 , … ,푣 }, then its 
reduced distance matrix is the square matrix of order 푛  whose (푖, 푗)-entry is 푑 (푣 ,푣 ) 
and will be denoted by 푅퐷(퐺). Reduced distance matrices were used for modeling of 
amino acid sequences of proteins and of the genetic code, and were proposed to serve as a 
source of novel molecular structure descriptors [5, 8]. 

Recall that a tree is a connected acyclic graph. In a tree, any vertex can be chosen 
as the root vertex. The level of a vertex on a tree is one more than its distance from the 
root vertex. Suppose T is an unweighted rooted tree such that its vertices at the same level 
have equal degrees. We agree that the root vertex is at level 1 and that 푇 has 푘 levels. In 
[9], Rojo and Robbiano, called such a tree with, generalized Bethe tree and denoted by 훽  
(see Figure 1). This class of trees has been much studied by mathematical chemists, for 
details see [3, 9]. 

In this paper we will compute the spectrum of the reduced distance matrix of the 
generalized Bethe trees by using methods of computation of eigenvalues of the tensor 
product of matrices. Recall that if 퐴 is a 푚 × 푛 matrix and 퐵 is a 푝 × 푞 matrix, then the 
tensor product 퐴⨂퐵 is the 푚푝 × 푛푞 block matrix as follows: 

 

퐴⨂퐵 =

푎 퐵 푎 퐵
푎 퐵 푎 퐵

… 푎 퐵
… 푎 퐵

⋮ ⋮
푎 퐵 푎 퐵

⋱ ⋮
… 푎 퐵

. 
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Figure 2: Simple Examples of 훽  and 훽 . 
 
Acyclic connected graphs or trees are wildly used in application of graph theory 

such as molecular graphs, telecommunication networks and the intellectual data analysis. 
Thus computation of numerical descriptors of trees has been studied in many recent 
papers [4−9]. The spectrum of the generalized Bethe trees can be used to obtain sharp 
bound for spectrum and some distance based topological indices of trees [9]. In this paper 
we will compute the spectrum of the reduced distance matrix of the generalized Bethe 
trees by exact formula in terms of its vertex degrees and the number of its levels. 
 
2. RESULTS AND DISCUSSION 

As we mentioned the computation of the characteristic polynomial and spectrum of the 
distance based matrices of a graph is computationally a much more intense problem and, 
in general, there are no simple analytical solutions except for graphs with simple structure. 
We will compute the spectrum of the reduced distance matrix of 훽  by rewrite this matrix 
as a special type of block matrices, which can be described by the tensor product of some 
simple matrices. For this purpose, we assume that 푑  denotes the degree of vertices 
on the 푗–th level of 훽  , for 푗 = 1,2, … , 푘. Put 
 

푒 =
푑 , 푗 = 푘, 1  

 푑 − 1, 1 < 푗 < 푘. 
 
Thus 푒  denotes the number of vertices on the (j+1)-th level which are adjacent with a 
vertex on the j-th level of 훽 , for 푗 = 1,2, … ,푘 − 1. If 푛  denotes the number of the 
pendant vertices of 훽 , then 푛 = ∏ 푒 . Suppose that 퐼  denotes the identity matrix of 
order 푛 and 퐽 = [퐽 ] denotes a square matrix of order 푛, where 

퐽 = 0     푖푓  푗 = 푖
1    푖푓  푗 ≠ 푖. 

Put 퐵 = 퐼 + 퐽 . So 퐵  is asquare matrix of order 푛 with all elements equal 
exactly 1. To obtain the reduced distance matrix of 훽  we note that 훽 , is a star of order 
푒 + 1, see Figure 2. This is because that degree of the non-pendant vertices of 훽  must be 
푒 . Thus the reduced distance matrix of 훽  is given as 푅퐷(훽 ) = 2퐽 . In what follows, we 
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will describe the reduced distance matrix of 훽 , which is obtained by making a new vertex 
adjacent to all central vertices of 푒  copy of 훽 , see Figure 2. For this purpose we shall use 
the tensor product of real matrices as follows:  

 

푅퐷(훽 ) =

⎣
⎢
⎢
⎢
⎢
⎡2퐽 4퐵
4퐵 2퐽

4퐵 … 4퐵
4퐵 … 4퐵

4퐵
⋮

4퐵
⋮

4퐵 4퐵

2퐽 …
⋮ ⋱

4퐵
⋮

4퐵 … 2퐽 ⎦
⎥
⎥
⎥
⎥
⎤

×

= 퐼 ⨂푅퐷(훽 ) + 퐽 ⨂4퐵 . 

 
Thus for j ≥ 2, the reduced distance matrix of 훽  can be obtained by a recursive 

formula in terms of the reduced distance matrix of 훽  by using the inductive method. Let 

푛 = 1 and 푛 = ∑ 푒  denote the number of the pendant vertices of 훽 , for 푗 =
2,3, … , 푘 − 1. Since 훽 , is obtained by making a new vertex adjacent to all central 
vertices of 푒  copy of 훽 , put 퐷 = 2퐽  (the reduced distance matrix of 훽 ) and 

퐷 = 퐼 ⨂퐷 + 퐽 ⨂2푗퐵  , 
for 푗 = 2,3, … ,푘 − 1. Then the reduced distance matrix of the generalized Bethe trees 
with 푘 levels is given by 푅퐷(훽 ) = 퐷 . Therefore to compute the spectrum of 푅퐷(훽 ) we 
must introduce a method to calculate the eigenvalues of the block matrix which is defined 
in (1). First we recall a classical theorem related to the tensor product of two square 
matrices [11]. 
 

Theorem A. Let {휆 } and {푥 }, 1 ≤ 푖 ≤ 푛, denote the eigenvalues and the corresponding 
eigenvectors for 푛-square matrix 퐴, respectively and 휇  and 푦 , 1 ≤ 푗 ≤ 푚, denote the 
eigenvalues and the corresponding eigenvectors for 푚-square matrix 퐵, respectively. Then 
the eigenvalues of 퐴⨂퐵 are 휆 ⨂휇  with corresponding eigenvectors 푥 ⨂푦 , where 
1 ≤ 푖 ≤ 푛 and 1 ≤ 푗 ≤ 푚. 
 

In what follows, we introduce a method for computation the spectrum of the block 
matrices, which are defined in (1). Recall that the spectrum of an 푛-square matrix with all 
entries equal 1, contains 푛 and 0 with multiplicity 푛 − 1.  
 
Lemma 1. Let 퐵  denote an 푛 -square matrix with all entries equal 1. If 푥 denotes an 
eigenvector of 퐷 , 푗 ≥ 2, then 퐵 푥 = 0 for all eigenvector of 퐷  except 푥 , one of the 
eigenvectors of 퐷  such that 퐵 푥 = 푛 푥 . 
 
Proof. We proceed by induction on 푗. For 푗 = 2, let 휆 be an eigenvalue of 퐷 = 2퐽  with 
corresponding  eigenvector 푥, then 
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퐵 x = 퐼 + 퐽 x = x +
휆
2 푥, 

since 푛 = 푒 . Obviously, 휆 = −2 or 휆 = 2(푒 − 1), so 퐵 x = 0 or 퐵 x = 푛 x. Thus 
the result is true for 푗 =  2. Now suppose that the lemma is true for all positive integers 
less than 푗. Since 푛 = 푒 푛 , if 휇 is an eigenvalue of 퐵  with associated eigenvector 푦, 
then  

퐵 (푥⨂푦) = 퐵 ⨂퐵 (푥⨂푦) = 퐵 푥⨂휇푦. 
By induction hypothesis, we have 퐵 푥 = 0 or 퐵 푥 =  푛 푥. Since 휇 = 0 or 

휇 = 푒 , 퐵 푥 = 0 or 퐵 푥 =  푛 푥. This completes the proof.                                              □ 
 
Now by using Lemma 1, the spectrum of square matrix 퐷 , which is defined in 

equation (1),  can be computed in terms of the eigenvalues of 퐷  for 푗 ≥ 2. 
 
Lemma 2. Let as above, 푥  be an eigenvector of 퐷  associated to the eigenvalue 휆  which 
퐵 푥 = 푛 푥  for 푗 ≥ 2. If 휆 ≠ 휆  is an eigenvalue of 퐷  with multiplicity 푘, then the 
spectrum of 퐷  contains 휆  with multiplicity 푒 푘, 휆 − 2푗푛  with multiplicity 푒 − 1 
and 휆 + 2푗푛 (푒 − 1) with multiplicity 1. 
 
Proof. Let 푥 be an eigenvector of 퐷  associated to 휆 and 푦 be an eigenvector of 퐽  
associated to 휇, then by use of (1) we have 
 

퐷 (푦⨂푥)=(퐼 ⨂퐷 + 퐽 ⨂2푗퐵 )( 푦⨂푥)= 푦⨂휆푥 + 휇푦⨂2푗퐵 푥. 
 

If 푥 ≠ 푥 , then by Lemma 1 we get 퐵 푥 = 0, thus 퐷 (푦⨂푥) = 푦⨂휆푥. Since 휆  is an 
eigenvalue of 퐷  with multiplicity 푘 and 퐽  is a square matrix of order 푒 , so 휆  is an 
eigenvalue of 퐷  with multiplicity 푘푒 . Now suppose that 푥 ≠ 푥 , by Lemma 1 we 
have 퐵 푥 = 푛 푥. Note that 휇 = −1 with multiplicity 푒 − 1 or 휇 = 푒 − 1 with 
multiplicity 1. If 휇 = −1, then 퐷 (푦⨂푥) = 휆 − 2푗푛 (푦⨂푥). Hence 휆 − 2푗푛  is an 
eigenvalue of 퐷  with multiplicity 푒 − 1. Otherwise if 휇 = 푒 − 1, then 

 

퐷 (푦⨂푥) = 휆 + 2푗푛 (푒 − 1) (푦⨂푥). 
 

Hence 휆 + 2푗푛 (푒 − 1) is an eigenvalue of 퐷  with multiplicity 1. Therefore the 
proof is complete.                                                                                                              □ 
 

Now we can compute the spectrum of the square block matrix 퐷  which is given in 
equation (1), using Lemma 2 and determine the elements of the spectrum of 훽 . 

 

Theorem 1. The spectrum of the reduced distance matrix of 훽 , the generalized Bethe tree 
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of level 푘, contains −2 with multiplicity (푒 − 1)∏ 푒 ,  ∑ 2푖(푒 − 1)푛 − 2푚푛  
with multiplicity (푒 − 1)∏ 푒  for 푚 = 2,3, … , 푘 − 1 and ∑ 2푖(푒 − 1)푛  
with multiplicity 1. 

 

Proof. We proceed by induction on 푘. If 푘 = 2, then the reduced distance matrix of 훽  is 
given by퐷 = 2퐽 . Hence the spectrum of 퐷  contains −2 with multiplicity 푒 − 1 and 
2(푒 − 1) with multiplicity 1. Thus the argument is true for 푘 = 2. We now assume that 
the theorem is true for all positive integers less than 푘. By using the assumption of 
induction, the spectrum of 푅퐷(훽 ) contains −2 with multiplicity (푒 − 1)∏ 푒 ,  
∑ 2푖(푒 − 1)푛 − 2푚푛  with multiplicity(푒 − 1)∏ 푒  for 푚 =
2,3, … , 푘 − 2 and ∑ 2푖(푒 − 1)푛  with multiplicity 1. By using Lemma 2, the 
spectrum of 푅퐷(훽 )  contains −2 with multiplicity 

푒 (푒 − 1)∏ 푒 = (푒 − 1)∏ 푒 . 
On the other hand, the spectrum of 푅퐷(훽 ) should contain the elements 

∑ 2푖(푒 − 1)푛 − 2푚푛  of the spectrum of 푅퐷(훽 ) for 푚 = 2,3, … ,푘 − 2,  with 
multiplicity 

 푒 (푒 − 1) 푒 = (푒 − 1) 푒 . 

Also corresponding to the elements ∑ 2푖(푒 − 1)푛  of the spectrum of 
푅퐷(훽 ), by using Lemma 2, ∑ 2푖(푒 − 1)푛 − 2(푘 − 1)푛  is an element of the 
spectrum of 푅퐷(훽 ). Hence the spectrum of 푅퐷(훽 ) contains ∑ 2푖(푒 − 1)푛 −
2푚푛  with multiplicity 푒 − 1 for 푚 = 푘 − 1. Finally, by using Lemma 2, the 
spectrum of 푅퐷(훽 ) should contain the following values with multiplicity 1: 

2푖(푒 − 1)푛 + 2(푘 − 1)푛 (푒 − 1) = 2푖(푒 − 1)푛 . 

Therefore the proof is completed.                                                                                □ 
 

By using Theorem 1, the spectrum of the reduced distance matrix of trees such that 
vertices on same level have equal degree can be computed. For example the reduced 
distance spectrum of the dendrimer trees, the caterpillar trees and the B-trees will be 
computed by using this method. 
 

Example 1. As an application of Theorem 1, we compute the spectrum of the reduced 
distance matrix of 푇, a generalized Bethe tree of order 63 which is shown in Figure 3. 
Notice that 푇 is a tree with 5 levels and 푒 = 2, 푒 = 3, 푒 = 3 and 푒 = 2. By using 
Theorem 1, the spectrum of 푅퐷(푇) contains −2 with multiplicity (푒 − 1)∏ 푒 = 18. 

Also the reduced distance matrix of 푇 contains the following integer numbers with 
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multiplicity (푒 − 1)∏ 푒  for 푚 = 2,3,4, 
∑ 2푖(푒 − 1)푛 − 2푚푛 . 

If 푚 = 2, then ∑ 2푖(푒 − 1)푛 − 2푚푛 = 2(1)− 2(2)(2) = −6. If 푚 = 3, 
then ∑ 2푖(푒 − 1)푛 − 2푚푛 = 2(1) + 4(2)(2)− 6(6) = −18 and if 푚 = 4, then 
∑ 2푖(푒 − 1)푛 − 2푚푛 = 2(1) + 4(2)(2) + 6(2)(3)(2)− 8(18) = −54. Hence, 
the spectrum of 푅퐷(푇) contains −6 with multiplicity 12, −18 with multiplicity 4 and 54 
with multiplicity 1. Finally, the last element of the spectrum of 푅퐷(푇) with multiplicity 1 
is computed as ∑ 2푖(푒 − 1)푛   =  2(1)(1)  +  4(2)(2) +  6(2)(6) +
 8(1)(18)  =  234. 
 

 
 
Figure 3: A Generalized Bethe Tree of Order 63. 
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