The Wiener index W and the edge-Wiener index W_e of G are defined as the sum of distances between all pairs of vertices in G and the sum of distances between all pairs of edges in G, respectively. In this paper, we identify the four trees, with the first through fourth greatest Wiener and edge-Wiener index among all trees of order n ≥ 10.
Y. Alizadeh, A. Iranmanesh, T. Doŝlić, M. Azari, The edge Wiener index of suspensions, bottlenecks, and thorny graphs, Glas. Mat. Ser. III 49 (69) (2014) 1−12.
M. Azari, A. Iranmanesh, A. Tehranian, A method for calculating an edge version of the Wiener number of a graph operation, Util. Math.87 (2012) 151−164.
F. Buckley, Mean distance in line graphs, Congr. Numer.32 (1981) 153−162.
A. Chen, X. Xiong, F. Lin, Explicit relation between the Wiener index and the edge-Wiener index of the catacondensed hexagonal systems, Appl. Math. Comput.273 (2016) 1100−1106.
P. Dankelmann, I. Gutman, S. Mukwembi, H. C. Swart, The edge–Wiener index of a graph, Discrete Math. 309 (2009) 3452−3457.
Y. Dou, H. Bian, H. Gao, H. Yu, The polyphenyl chains with extremal edge–Wiener indices, MATCH Commun. Math. Comput. Chem.64 (2010) 757−766.
J. Devillers, A.T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach Science Publishers, 1999.
H.-Y. Deng, The trees on vertices with the first to seventeenth greatest Wiener indices are chemical trees, MATCH Commun. Math. Comput. Chem.57 (2007) 393−402.
A. Iranmanesh, M. Azari, Edge–Wiener descriptors in chemical graph theory: a survey, Curr. Org. Chem.19 (2015) 219−239.
A. Iranmanesh, I. Gutman, O. Khormali, A. Mahmiani, The edge versions of Wiener index, MATCH Commun. Math. Comput. Chem.61 (2009) 663−672.
M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley, New York, 2000.
M. Knor, P. Potočnik, R. Škrekovski, Relationship between the edge-Wiener index and the Gutman index of a graph, Discrete Appl. Math.167 (2014) 197−201.
M. H. Khalifeh, H. Yousefi Azari, A. R. Ashrafi, S. G. Wagner, Some new results on distance–based graph invariants, European J. Comb. 30 (2009) 1149−1163.
A. Kelenc, S. Klavžar, N. Tratnik, The Edge–Wiener index of benzenoid systems in linear time, MATCH Commun. Math. Comput. Chem.74 (2015) 521−532.
M. Liu, B. Liu, Q. Li, Erratum to: The trees on vertices with the first to seventeenth greatest Wiener indices are chemical trees, MATCH Commun. Math. Comput. Chem.64 (2010) 743−756.
M. J. Nadjafi–Arani, H. Khodashenas, A. R. Ashrafi, Relationship between edge Szeged and edge Wiener indices of graphs, Glas. Mat. Ser. III 47 (67) (2012) 21−29.
N. Tratnik, P. Žigert Pleteršek, Relationship between the Hosoya polynomial and the edge-Hosoya polynomial of trees, MATCH Commun. Math. Comput. Chem. 78 (2017) 181−187.
H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17−20.
H. Yousefi–Azari, M. H. Khalifeh, A. R. Ashrafi, Calculating the edge Wiener and edge Szeged indices of graphs, J. Comput. Appl. Math.235 (2011) 4866−4870.
Ghalavand, A. (2019). Trees with the Greatest Wiener and Edge-Wiener Index. Iranian Journal of Mathematical Chemistry, 10(2), 151-159. doi: 10.22052/ijmc.2017.81498.1279
MLA
Ali Ghalavand. "Trees with the Greatest Wiener and Edge-Wiener Index", Iranian Journal of Mathematical Chemistry, 10, 2, 2019, 151-159. doi: 10.22052/ijmc.2017.81498.1279
HARVARD
Ghalavand, A. (2019). 'Trees with the Greatest Wiener and Edge-Wiener Index', Iranian Journal of Mathematical Chemistry, 10(2), pp. 151-159. doi: 10.22052/ijmc.2017.81498.1279
VANCOUVER
Ghalavand, A. Trees with the Greatest Wiener and Edge-Wiener Index. Iranian Journal of Mathematical Chemistry, 2019; 10(2): 151-159. doi: 10.22052/ijmc.2017.81498.1279