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The Wiener index 푊 and the edge-Wiener index 푊   of 퐺 are defined 
as the sum of distances between all pairs of vertices in 퐺 and the sum 
of distances between all pairs of edges in 퐺, respectively.  In this 
paper, we identify the four trees, with the first through fourth greatest 
Wiener and edge−Wiener index among all trees of order 푛 ≥  10. 
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1. INTRODUCTION  

Throughout this paper we consider undirected graphs without loops and multiple edges. Let 
퐺 be such a graph with vertex and edge sets 푉 (퐺) and 퐸(퐺), respectively. The distance 
between two vertices 푢 and 푣 in 퐺, denoted by 푑(푢, 푣|퐺), is defined as the length of a 
shortest path between 푢 and 푣. Let 푓 =  푥푦 and 푔 =  푢푣 be two edges of 퐺. The distance 
between f and g is denoted by 푑 (푓,푔|퐺) and defined as the distance between the vertices 
of 푓 and 푔 in the line graph of 퐺. The degree of a vertex 푣 in 퐺, 푑 (푣), is the number of 
edges incident to 푣 and 푁[푣,퐺] denotes the set of vertices adjacent to 푣. A pendent vertex 
is a vertex with degree one. We use the notations ∆ =  ∆(퐺) and 푛 = 푛 (퐺) to denote the 
maximum degree and the number of vertices of degree 푖 in 퐺, respectively. Obviously, 
∑ 푛 = |푉(퐺)|∆( ) . Let 푆 ⊆  푉 (퐺) be any subset of vertices of 퐺. Then the induced 
subgraph 퐺[푆] is the graph whose vertex set is 푆 and whose edge set consists of all of the 
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edges in 퐸(퐺) that have both endpoints in 푆. If 푊 is a subset of 푉 (퐺) then 퐺 −  푊 will be 
the subgraph of 퐺 obtained by deleting the vertices of 푊 and similarly, for a subset 퐹 of 
퐸(퐺), the subgraph obtained by deleting all edges in 퐹 is denoted by 퐺 −  퐹 . In the case 
that 푊 =  {푣} or 퐹 =  {푥푦}, the subgraphs 퐺 −  푊 and 퐺 –  퐹 will shortly be written as 
퐺 −  푣 or 퐺 −  푥푦, respectively. For any two nonadjacent vertices 푥 and 푦 in 퐺, let 
퐺 +  푥푦 be the graph obtained from 퐺 by adding an edge 푥푦. 

If 퐺 is acyclic and connected graph, then 퐺 is a tree. Any tree with at least two 
vertices has at least two pendent vertices. The set of all 푛 −vertex trees is denoted by 휏(푛). 
In chemical graph theory, a topological index is a number invariant under graph 
automorphisms. These numbers play a significant role in mathematical chemistry 
especially in the QSPR/QSAR investigations, see [7, 11]. 

Harold Wiener in [18], introduced Wiener index defined as 

푊(퐺) = 푑(푢, 푣|퐺),
{ , }⊆ ( )

 

which is the sum of distances between all pairs of vertices of 퐺. The edge−Wiener index of 
퐺, denoted by 푊 (퐺), is defined as 

푊 (퐺) = 푑 (푓,푔|퐺),
{ , }⊆ ( )

 

which is the sum of distances between all pairs of edges of 퐺. This invariant was 
independently introduced in [10, 13]. Edge-Wiener index is one of the most interesting 

topological indices. Dankelmann et al. [5], recalled that, 푊 (퐺) ≤ 푛 + 푂 푛 , for 
graphs of order 푛. Dou et al. [6], characterized the polyphenyl chains with minimum and 
maximum edge-Wiener indices among all the polyphenyl chains with ℎ hexagons. They 
also characterized the explicit formulas for the edge-Wiener indices of extremal polyphenyl 
chains. Yousefi–Azari et al. [19], proved that for every tree T, 푆푧 (푇) = 푊 (푇), 
푆푧 (푇) denotes the edge Szeged index of 푇. Nadjafi–Arani et al. [16], showed that for 
every connected graph G, 푆푧 (퐺) ≥ 푊 (퐺) with equality if and only if G is a tree. 
Alizadeh et al. [1], characterized the edge-Wiener index of suspensions, bottlenecks, and 

thorny graphs.  Knor et al. [12], proved that 푊 (퐺) ≥ 푊(퐺)  where 훿 denotes the 
minimum degree in 퐺. Kelenc et al. [14], characterized an algorithm developed that, for a 
given benzenoid system 퐺 with 푚 edges, computes the edge-Wiener index of G in 푂(푚) 
time.  Chen et al. [4], studied explicit relation between the Wiener index and the edge-
Wiener index of the catacondensed hexagonal systems. We refer the reader to [2, 9] for 
more information on the edge-Wiener index. Buckley in [3] and Tratnik  et al. in  [17], for a 
tree 푇 with 푛 vertices proved that: 

푊 (푇) =  푊(푇) −
푛(푛 − 1)

2 .                                              (1) 
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Deng  [8], the trees with the greatest Wiener index were investigated, where the trees on 푛 
vertices (푛 ≥ 9) with the first to seventeenth greatest Wiener index were found. However, 
it turned out that the results in [8] were not correct and therefore, paper [15] was published. 
In that paper, the trees on 푛 vertices (푛 ≥ 28) with the first to fifteenth greatest Wiener 
index were found. Hence by Equation (1), the trees on 푛 vertices (푛 ≥ 28) with the first to 
fifteenth greatest Wiener index in  [15] are  the trees on 푛 vertices (푛 ≥ 28) with the first 
to fifteenth greatest edge-Wiener index. In this paper, we identify the four trees, with the 
first through fourth greatest Wiener and edge-Wiener index among all trees of order 
푛 ≥  10. 

 

2. MAIN RESULTS  

In this section, some graph transformations are presented by which we can increase the 
edge-Wiener index of trees. By applying these graph operations, we identify the four trees, 
with the first through fourth greatest edge-Wiener index among all trees of order 푛 ≥  10.     

 
       Figure 1. The graphs 푃, 푄, 퐺, 퐺  and 퐺  in Transformation 퐴. 

 
Transformation 퐴. Suppose 푤 is a vertex in a connected graph 퐺 with at least two vertices 
and 푁[푤,퐺]  = {푥 ,푥 , … , 푥 ( )}. In addition, we assume that 푃 ∶  푢 푢 …푢 푢  and 
푄 ∶ 푣 푣 … 푣 푣 , are two new paths of lengths 푘, 푙 (푘 ≥  푙 ≥  1), respectively. Let 퐺  be 
the graph obtained from 퐺,푃 and 푄 by attaching edges 푣 푤, 푤푢 , and 퐺 = 퐺 −
{푤푥 :푥 ∈ 푁[푤,퐺]} + {푣 푥 : 푥 ∈ 푁[푤,퐺]}. Such graphs have been illustrated in Figure 1. 
  
Lemma ퟐ.ퟏ. Let 퐺  and 퐺  be two graphs as shown in Figure 1. Then we have 

  푊 (퐺 ) < 푊 (퐺 ). 
Proof. Let 퐸∗(퐺) = 퐸(퐺)\{푥푤|푥 ∈ 푁[푤,퐺]} and 퐸(퐺) = 퐸∗(퐺) ∪ {푥푣 |푥 ∈ 푁[푤,퐺]}. 
From definition, 
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푊 (퐺 ) −푊 (퐺 ) = 푑 (푓, 푣 푣 |퐺 )
∈ ( )

+ 푑 (푓, 푢 푢 |퐺 )
∈ ( )

 

+ 푑 (푓,푤푢 |퐺 )
∈ ( )

 

    − 푑 (푓,푣 푣 |퐺 )
∈ ( )

+ 푑 (푓,푢 푢 |퐺 )
∈ ( )

 

  + 푑 (푓,푤푢 |퐺 )
∈ ( )

 

                                 = 푑 (푓, 푣 푣 |퐺 )
∈ ( )

+ 푑 (푓, 푢 푢 |퐺 )
∈ ( )

 

+ 푑 (푓,푤푢 |퐺 )
∈ ( )

 

        − (푑 (푓, 푣 푣 |퐺 ) − 1)
∈ ( )

 

                     + (푑 (푓, 푢 푢 |퐺 ) + 1)
∈ ( )

 

            + (푑 (푓,푤푢 |퐺 ) + 1)
∈ ( )

 

                              = 1
∈ ( )

− 1
∈ ( )

− 1
∈ ( )

< 0 푎푠 푘 ≥ l ≥ 1. 

which completes the proof.                                                                                                     □ 
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                Figure ퟐ. The graphs 퐺 , 퐺 , 푃 , 푇  and 푇  in Transformation 퐵 
 
Transformation 퐵. Suppose 퐺  and 퐺  are two trivial graphs with vertices 푤  and 푤 , 
respectively. In addition, we assume that 푃 ∶ 푣 푣 …푣 푣  is a path of length 푘 (푘 ≥  5). 
Let 푇  be the graph obtained from 퐺 , 퐺  and 푃 by attaching edges 푤 푣 , 푤 푣 , and  
푇  =  푇 − 푤 푣 ,푤 푣 + {푤 푣 , 푤 푣 }, such that at least one of the two 푖≠ 2, 푗 ≠  푘 −
 1 is true and 1 <  푖 <  푗 <  푘. Such graphs have been illustrated in Figure 2. 
 
Lemma ퟐ.ퟐ. Let 푇   and 푇   be two graphs as shown in Figure 2. Then we have 

푊 (푇 ) < 푊 (푇 ). 
Proof. Let  푆 = {푣 ,푣 , … , 푣 , 푣 ,푤 } and 푅 = {푣 , 푣 , … ,푣 , 푣 ,푤 }. Then from 
definition  푇 [푆] ≅ 푇 [푆] and 푇 [푅] ≅ 푇 [푅]. Therefore, we have, 

푊 (푇 )−푊 (푇 )  = 푑 (푤 푣 ,푣 푣 |푇 ) + 푑 푤 푣 , 푣 푣 푇  

 +푑 푤 푣 ,푤 푣 푇  

        − 푑 (푤 푣 , 푣 푣 |푇 ) + 푑 (푤 푣 , 푣 푣 |푇 ) 

       +푑 (푤 푣 ,푤 푣 |푇 )] 

                                   = 푑 (푤 푣 , 푣 푣 |푇 ) + 푑 푤 푣 ,푣 푣 푇  

 +푑 푤 푣 ,푤 푣 푇  

         − (푑 (푤 푣 , 푣 푣 |푇 ) + 푖 − 2) 

         + (푑 푤 푣 ,푣 푣 푇 + k − j − 1) 
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                                   + (푑 푤 푣 ,푤 푣 푇 + 푘 + 푖 − 푗 − 3)  

                                 = − (푖 − 2) + (푘 − 푗 − 1) + (푘 + 푖 − 푗 − 3) . 

Now, suppose that i ≠  2 . So, 

푊 (푇 ) −푊 (푇 )  = − (푖 − 2) + (푘 − 푗 − 1) + (푘 + 푖 − 푗 − 3)  

                                ≤ − (3 − 2) + [(푘 − (푘 − 1)− 1) + 1 < 0. 

 
If 푗 ≠  푘 −  1, then we have, 

푊 (푇 ) −푊 (푇 )  = − (푖 − 2) + [(푘 − 푗 − 1) + (푘 + 푖 − 푗 − 3)]  

                            ≤ − ∑ (2− 2) + ∑ [(푘 − (푘 − 2) − 1) + (k + 2 − (k − 2) − 3)] < 0, 
 
which completes the proof.                                                                                                     □ 
 

Let the vertices of the path  푃  be numbered consecutively by 1, 2, . . ., 푛 −  1. 
Construct the graph 푃 (푗) by attaching a pendent vertex at position 푗 of the (푛 −
 1) −vertex path. For positive integers 푥 , … , 푥 , and 푦 , … , 푦 ,  let 푇(푦 , … , 푦 ) be 
the class of trees with 푥  vertices of degree 푦 , 푖 =  1, . . . ,푚. For some values of 푥 , … , 푥 , 
and 푦 , … , 푦 , the class 푇(푦 , … , 푦 ) may be empty. 
 
Lemma 2.3. Let  푃 (2), 푃 (3), 푃 (4), 푇 , 푇  and 푇  be six trees with 푛(≥  10) 
vertices as shown in Figure 3. Then we have 
푊 (푃 ) > 푊 푃 (2) > 푊 푃 (3) > 푊 (푇 ) > max 푊 푃 (4) ,푊 (푇 ),푊 (푇 ) . 
 
Proof. By Lemma 2.1, we have 푊 (푃 ) > 푊 푃 (2) > 푊 푃 (3) .  Now, it is easy 
to see, 푃 (3)[{1,2, … , 푛 − 2}] ≅ 푃 (4)[{1,2, … , 푛 − 2}] ≅ 푇 [{v , v , … , v }], and 
∑ 푑 (푛 − 1)(푛 − 2), (푖)(푖 + 1) 푃 (3) = ∑ 푑 ((n− 1)(n− 2), (i)(i + 1)| 
푃 (4)) = ∑ 푑 (v v , v v |푇 ).  Then for n  10, we have 

푊 푃 (3) −푊 (푇 )  = 1 + 2 + 푛 − 3 + 푖 − [1 + 1 + 푛 − 4 + 푖] > 0 

and 

푊 (푇 ) −푊 푃 (4)  = 1 + 1 + 푛 − 4 + 푖 + − 1 + 2 + 푛 − 3 + 푖 . 
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Figure ퟑ. The trees in Lemma 2.3 (푇 ∈ 푇(3 , 2 , 1 ), 푇 ∈ 푇(3 , 2 , 1 ), 푇 ∈
푇(4 , 2 , 1 )). 
 
In addition, 푇 [{v , v , … , v }] ≅ 푇 [{u , u , … , u }], ∑ 푑 (v v , v v |T ) = 
∑ 푑 (u u , u u |T ) + 푑 (u u , u u |T ) and  ∑ 푑 (v v , v v |T )  
= ∑ 푑 (u u , u u |T ). Then we have 
 

푊 (푇 ) −푊 (푇 )  = 1 + 1 + 푛 − 4 + 푛 − 4 − (2 + 3 + 1 + 2) > 0 푎푠 푛 ≥ 10. 
 

Finally,  
        푇 [{v , v , … , v }] ≅ 푇 [{x , x , … , x }],  
∑ 푑 (v v , v v |T ) = ∑ 푑 (x x , x x |T ),  

    ∑ 푑 (v v , v v |T )  = ∑ 푑 (x x , x x |T ).  
Then we have, 

푊 (푇 ) −푊 (푇 )  = 푛 − 4 − (1 + 1 + 1) > 0 푎푠 푛 ≥ 10. 
which completes the proof.                                                                                                     □ 
 
Theorem 2.4. Let 푃 (2), 푃 (3) and 푇  be trees with 푛 vertices as shown in Figure 3. 
If 푛 ≥  10 and  푇 ∈  휏(푛)\{푃 ,푃 (2), 푃 (3), 푇 }, then 

 푊 (푃 ) > 푊 푃 (2) > 푊 푃 (3) > 푊 (푇 ) > 푊 (T). 
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Proof.  From Lemma 2.3,  푊 (푃 ) > 푊 푃 (2) > 푊 푃 (3) > 푊 (푇 ). Now, 

suppose that ∆(푇)  =  3 and 푛 (푇) = 1. In this case, if  푇 ∊ 푃 (푖): 푖 = 4,5, … ,  then 
by Lemma 2.1 and Lemma 2.3, 푊 (푇 ) > 푊 (푃 (4) ) ≥ 푊 (T). Otherwise, by Lemma 
2.1 and Lemma 2.3, 푊 (푇 ) > 푊 (푇 ) ≥ 푊 (T). For the case of ∆(푇)  =  3 and  푛 (푇) ≥
2,  by Lemma 2.1 and Lemma 2.2, 푊 (푇 ) > 푊 (T).  If ∆(푇)  ≥  4, then by Lemma 2.1 
and Lemma 2.3, 푊 (푇 ) > 푊 (푇 ) ≥ 푊 (T).  Otherwise, 푇 ∈ {푃 ,푃 (2), 푃 (3), 푇 }.  
This proves our theorem.                                                                                                     □ 
 

Corollary 2.5. Among all trees with n(≥ 10) vertices, 푃 ,  푃 (2), 푃 (3) and 푇  have  
the  maximum values of  first through fourth Wiener index, respectively. 
 
Proof. Equation (1) and Theorem 2.4 give us the result.                                                      □ 
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