Trees with the Greatest Wiener and Edge-Wiener Index

Ali Ghalavand ${ }^{\bullet}$
Department of Pure Mathematics, Faculty of Mathematical Science, University of Kashan, Kashan 87317-53153, I. R. Iran

ARTICLE INFO

Article History:
Received: 7 April 2017
Accepted: 12 July 2017
Published online 12 July 2017
Academic Editor: Sandi Klavžar

Keywords:

Tree
r indexWiene Edge-Wiener index
Graph operation

> ABSTRACT
> The Wiener index W and the edge-Wiener index W_{e} of G are defined as the sum of distances between all pairs of vertices in G and the sum of distances between all pairs of edges in G, respectively. In this paper, we identify the four trees, with the first through fourth greatest Wiener and edge-Wiener index among all trees of order $n \geq 10$.

© 2019 University of Kashan Press. All rights reserved

1. Introduction

Throughout this paper we consider undirected graphs without loops and multiple edges. Let G be such a graph with vertex and edge sets $V(G)$ and $E(G)$, respectively. The distance between two vertices u and v in G, denoted by $d(u, v \mid G)$, is defined as the length of a shortest path between u and v. Let $f=x y$ and $g=u v$ be two edges of G. The distance between f and g is denoted by $d_{e}(f, g \mid G)$ and defined as the distance between the vertices of f and g in the line graph of G. The degree of a vertex v in $G, d_{G}(v)$, is the number of edges incident to v and $N[v, G]$ denotes the set of vertices adjacent to v. A pendent vertex is a vertex with degree one. We use the notations $\Delta=\Delta(G)$ and $n_{i}=n_{i}(G)$ to denote the maximum degree and the number of vertices of degree i in G, respectively. Obviously, $\sum_{i=1}^{\Delta(G)} n_{i}=|V(G)|$. Let $S \subseteq V(G)$ be any subset of vertices of G. Then the induced subgraph $G[S]$ is the graph whose vertex set is S and whose edge set consists of all of the

[^0]edges in $E(G)$ that have both endpoints in S. If W is a subset of $V(G)$ then $G-W$ will be the subgraph of G obtained by deleting the vertices of W and similarly, for a subset F of $E(G)$, the subgraph obtained by deleting all edges in F is denoted by $G-F$. In the case that $W=\{v\}$ or $F=\{x y\}$, the subgraphs $G-W$ and $G-F$ will shortly be written as $G-v$ or $G-x y$, respectively. For any two nonadjacent vertices x and y in G, let $G+x y$ be the graph obtained from G by adding an edge $x y$.

If G is acyclic and connected graph, then G is a tree. Any tree with at least two vertices has at least two pendent vertices. The set of all n-vertex trees is denoted by $\tau(n)$. In chemical graph theory, a topological index is a number invariant under graph automorphisms. These numbers play a significant role in mathematical chemistry especially in the QSPR/QSAR investigations, see [7,11].

Harold Wiener in [18], introduced Wiener index defined as

$$
W(G)=\sum_{\{v, u\} \subseteq V(G)} d(u, v \mid G)
$$

which is the sum of distances between all pairs of vertices of G. The edge-Wiener index of G, denoted by $W_{e}(G)$, is defined as

$$
W_{e}(G)=\sum_{\{f, g\} \subseteq E(G)} d_{e}(f, g \mid G),
$$

which is the sum of distances between all pairs of edges of G. This invariant was independently introduced in $[10,13]$. Edge-Wiener index is one of the most interesting topological indices. Dankelmann et al. [5], recalled that, $W_{e}(G) \leq \frac{2^{5}}{5^{5}} n^{5}+O\left(n^{\frac{9}{2}}\right)$, for graphs of order n. Dou et al. [6], characterized the polyphenyl chains with minimum and maximum edge-Wiener indices among all the polyphenyl chains with h hexagons. They also characterized the explicit formulas for the edge-Wiener indices of extremal polyphenyl chains. Yousefi-Azari et al. [19], proved that for every tree T, $S z_{e}(T)=W_{e}(T)$, $S z_{e}(T)$ denotes the edge Szeged index of T. Nadjafi-Arani et al. [16], showed that for every connected graph $G, S z_{e}(G) \geq W_{e}(G)$ with equality if and only if G is a tree. Alizadeh et al. [1], characterized the edge-Wiener index of suspensions, bottlenecks, and thorny graphs. Knor et al. [12], proved that $W_{e}(G) \geq \frac{\delta^{2}-1}{4} W(G)$ where δ denotes the minimum degree in G. Kelenc et al. [14], characterized an algorithm developed that, for a given benzenoid system G with m edges, computes the edge-Wiener index of G in $O(m)$ time. Chen et al. [4], studied explicit relation between the Wiener index and the edgeWiener index of the catacondensed hexagonal systems. We refer the reader to [2,9] for more information on the edge-Wiener index. Buckley in [3] and Tratnik et al. in [17], for a tree T with n vertices proved that:

$$
\begin{equation*}
W_{e}(T)=W(T)-\frac{n(n-1)}{2} . \tag{1}
\end{equation*}
$$

Deng [8], the trees with the greatest Wiener index were investigated, where the trees on n vertices ($n \geq 9$) with the first to seventeenth greatest Wiener index were found. However, it turned out that the results in [8] were not correct and therefore, paper [15] was published. In that paper, the trees on n vertices $(n \geq 28)$ with the first to fifteenth greatest Wiener index were found. Hence by Equation (1), the trees on n vertices ($n \geq 28$) with the first to fifteenth greatest Wiener index in [15] are the trees on n vertices ($n \geq 28$) with the first to fifteenth greatest edge-Wiener index. In this paper, we identify the four trees, with the first through fourth greatest Wiener and edge-Wiener index among all trees of order $n \geq 10$.

2. Main Results

In this section, some graph transformations are presented by which we can increase the edge-Wiener index of trees. By applying these graph operations, we identify the four trees, with the first through fourth greatest edge-Wiener index among all trees of order $n \geq 10$.

Figure 1. The graphs P, Q, G, G_{1} and G_{2} in Transformation A.
Transformation A. Suppose w is a vertex in a connected graph G with at least two vertices and $N[w, G]=\left\{x_{1}, x_{2}, \ldots, x_{d_{G}(w)}\right\}$. In addition, we assume that $P: u_{k} u_{k-1} \ldots u_{2} u_{1}$ and $Q: v_{l} v_{l-1} \ldots v_{2} v_{1}$, are two new paths of lengths $k, l(k \geq l \geq 1)$, respectively. Let G_{1} be the graph obtained from G, P and Q by attaching edges $v_{l} w, w u_{k}$, and $G_{2}=G_{1}-$ $\left\{w x_{i}: x_{i} \in N[w, G]\right\}+\left\{v_{l} x_{i}: x_{i} \in N[w, G]\right\}$. Such graphs have been illustrated in Figure 1.

Lemma 2. 1. Let G_{1} and G_{2} be two graphs as shown in Figure 1. Then we have

$$
W_{e}\left(G_{1}\right)<W_{e}\left(G_{2}\right)
$$

Proof. Let $E^{*}(G)=E(G) \backslash\{x w \mid x \in N[w, G]\}$ and $\bar{E}(G)=E^{*}(G) \cup\left\{x v_{l} \mid x \in N[w, G]\right\}$. From definition,

$$
\begin{aligned}
W_{e}\left(G_{1}\right)-W_{e}\left(G_{2}\right) & =\sum_{i=1}^{l-1} \sum_{f \in E(G)} d_{e}\left(f, v_{i} v_{i+1} \mid G_{1}\right)+\sum_{i=1}^{k-1} \sum_{f \in E(G)} d_{e}\left(f, u_{i} u_{i+1} \mid G_{1}\right) \\
& +\sum_{f \in E(G)} d_{e}\left(f, w u_{k} \mid G_{1}\right) \\
& -\left[\sum_{i=1}^{l-1} \sum_{f \in \bar{E}(G)} d_{e}\left(f, v_{i} v_{i+1} \mid G_{2}\right)+\sum_{i=1}^{k-1} \sum_{f \in \bar{E}(G)} d_{e}\left(f, u_{i} u_{i+1} \mid G_{2}\right)\right. \\
& \left.+\sum_{f \in \bar{E}(G)} d_{e}\left(f, w u_{k} \mid G_{2}\right)\right] \\
& =\sum_{i=1}^{l-1} \sum_{f \in E(G)} d_{e}\left(f, v_{i} v_{i+1} \mid G_{1}\right)+\sum_{i=1}^{k-1} \sum_{f \in E(G)} d_{e}\left(f, u_{i} u_{i+1} \mid G_{1}\right) \\
& +\sum_{f \in E(G)} d_{e}\left(f, w u_{k} \mid G_{1}\right) \\
& -\left[\sum_{i=1}^{l-1} \sum_{f \in E(G)}\left(d_{e}\left(f, v_{i} v_{i+1} \mid G_{1}\right)-1\right)\right. \\
& +\sum_{i=1}^{k-1} \sum_{f \in E(G)}\left(d_{e}\left(f, u_{i} u_{i+1} \mid G_{1}\right)+1\right) \\
& \left.+\sum_{f \in E(G)}\left(d_{e}\left(f, w u_{k} \mid G_{1}\right)+1\right)\right] \\
& =\sum_{i=1}^{1-1} \sum_{f \in E(G)} 1-\sum_{i=1}^{k-1} \sum_{f \in E(G)} 1-\sum_{f \in E(G)} 1<0 \text { as } k \geq 1 \geq 1
\end{aligned}
$$

which completes the proof.

Figure 2. The graphs G_{1}, G_{2}, P, T_{1} and T_{2} in Transformation B
Transformation B. Suppose G_{1} and G_{2} are two trivial graphs with vertices w_{1} and w_{2}, respectively. In addition, we assume that $P: v_{1} v_{2} \ldots v_{k-1} v_{k}$ is a path of length $k(k \geq 5)$. Let T_{1} be the graph obtained from G_{1}, G_{2} and P by attaching edges $w_{1} v_{i}, w_{2} v_{j}$, and $T_{2}=T_{1}-\left\{w_{1} v_{i}, w_{2} v_{j}\right\}+\left\{w_{1} v_{2}, w_{2} v_{k-1}\right\}$, such that at least one of the two $i \neq 2, j \neq k-$ 1 is true and $1<i<j<k$. Such graphs have been illustrated in Figure 2.

Lemma 2.2. Let T_{1} and T_{2} be two graphs as shown in Figure 2. Then we have

$$
W_{e}\left(T_{1}\right)<W_{e}\left(T_{2}\right)
$$

Proof. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{i}, v_{i+1}, w_{1}\right\}$ and $R=\left\{v_{j-1}, v_{j}, \ldots, v_{k-1}, v_{k}, w_{2}\right\}$. Then from definition $T_{1}[S] \cong T_{2}[S]$ and $T_{1}[R] \cong T_{2}[R]$. Therefore, we have,

$$
\begin{aligned}
W_{e}\left(T_{1}\right)-W_{e}\left(T_{2}\right)= & \sum_{h=i+1}^{k-1} d_{e}\left(w_{1} v_{i}, v_{h} v_{h+1} \mid T_{1}\right)+\sum_{h=1}^{j-2} d_{e}\left(w_{2} v_{j}, v_{h} v_{h+1} \mid T_{1}\right) \\
& +d_{e}\left(w_{1} v_{i}, w_{2} v_{j} \mid T_{1}\right) \\
& -\left[\sum_{h=i+1}^{k-1} d_{e}\left(w_{1} v_{2}, v_{h} v_{h+1} \mid T_{2}\right)+\sum_{h=1}^{j-2} d_{e}\left(w_{2} v_{k-1}, v_{h} v_{h+1} \mid T_{2}\right)\right. \\
& \left.+d_{e}\left(w_{1} v_{2}, w_{2} v_{k-1} \mid T_{2}\right)\right] \\
& =\sum_{h=i+1}^{k-1} d_{e}\left(w_{1} v_{i}, v_{h} v_{h+1} \mid T_{1}\right)+\sum_{h=1}^{j-2} d_{e}\left(w_{2} v_{j}, v_{h} v_{h+1} \mid T_{1}\right) \\
& +d_{e}\left(w_{1} v_{i}, w_{2} v_{j} \mid T_{1}\right) \\
& -\left[\sum_{h=i+1}^{k-1}\left(d_{e}\left(w_{1} v_{i}, v_{h} v_{h+1} \mid T_{1}\right)+i-2\right)\right. \\
& +\sum_{h=1}^{j-2}\left(d_{e}\left(w_{2} v_{j}, v_{h} v_{h+1} \mid T_{1}\right)+\mathrm{k}-\mathrm{j}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(d_{e}\left(w_{1} v_{i}, w_{2} v_{j} \mid T_{1}\right)+k+i-j-3\right)\right] \\
& =-\left[\sum_{h=i+1}^{\mathrm{k}-1}(i-2)+\sum_{h=1}^{j-2}(k-j-1)+(k+i-j-3)\right] .
\end{aligned}
$$

Now, suppose that $i \neq 2$. So,

$$
\begin{aligned}
W_{e}\left(T_{1}\right)-W_{e}\left(T_{2}\right) & =-\left[\sum_{h=i+1}^{k-1}(i-2)+\sum_{h=1}^{j-2}(k-j-1)+(k+i-j-3)\right] \\
& \leq-\left[\sum_{h=i+1}^{k-1}(3-2)+\sum_{h=1}^{j-2}[(k-(k-1)-1)+1]<0\right.
\end{aligned}
$$

If $j \neq k-1$, then we have,

$$
\begin{aligned}
W_{e}\left(T_{1}\right)-W_{e}\left(T_{2}\right) & =-\left[\sum_{h=i+1}^{k-1}(i-2)+\sum_{h=1}^{j-2}[(k-j-1)+(k+i-j-3)]\right] \\
& \leq-\left[\sum_{\substack{k-1 \\
=i+1}}(2-2)+\sum_{=1}^{j-2}[(k-(k-2)-1)+(\mathrm{k}+2-(\mathrm{k}-2)-3)]<0,\right.
\end{aligned}
$$

which completes the proof.
Let the vertices of the path P_{n-1} be numbered consecutively by $1,2, \ldots, n-1$. Construct the graph $P_{n-1}(j)$ by attaching a pendent vertex at position j of the $(n-$ 1) - vertex path. For positive integers x_{1}, \ldots, x_{m}, and y_{1}, \ldots, y_{m}, let $T\left(y_{1}{ }^{x_{1}}, \ldots, y_{m}{ }^{x_{m}}\right)$ be the class of trees with x_{i} vertices of degree $y_{i}, i=1, \ldots, m$. For some values of x_{1}, \ldots, x_{m}, and y_{1}, \ldots, y_{m}, the class $T\left(y_{1}{ }^{x_{1}}, \ldots, y_{m}{ }^{x_{m}}\right)$ may be empty.

Lemma 2.3. Let $P_{n-1}(2), P_{n-1}(3), P_{n-1}(4), T_{1}, T_{2}$ and T_{3} be six trees with $n(\geq 10)$ vertices as shown in Figure 3. Then we have $W_{e}\left(P_{n}\right)>W_{e}\left(P_{n-1}(2)\right)>W_{e}\left(P_{n-1}(3)\right)>W_{e}\left(T_{1}\right)>\max \left\{W_{e}\left(P_{n-1}(4)\right), W_{e}\left(T_{2}\right), W_{e}\left(T_{3}\right)\right\}$.

Proof. By Lemma 2.1, we have $W_{e}\left(P_{n}\right)>W_{e}\left(P_{n-1}(2)\right)>W_{e}\left(P_{n-1}(3)\right)$. Now, it is easy to see, $P_{n-1}(3)[\{1,2, \ldots, n-2\}] \cong P_{n-1}(4)[\{1,2, \ldots, n-2\}] \cong T_{1}\left[\left\{v_{1}, v_{2}, \ldots, v_{n-2}\right\}\right]$, and $\sum_{i=2}^{n-3} d_{e}\left((n-1)(n-2),(i)(i+1) \mid P_{n-1}(3)\right)=\sum_{\mathrm{i}=2}^{\mathrm{n}-3} d_{e}((\mathrm{n}-1)(\mathrm{n}-2),(\mathrm{i})(\mathrm{i}+1) \mid$ $\left.P_{n-1}(4)\right)=\sum_{i=1}^{n-4} d_{e}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{\mathrm{n}-3}, \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid T_{1}\right)$. Then for $n \geq 10$, we have

$$
W_{e}\left(P_{n-1}(3)\right)-W_{e}\left(T_{1}\right)=1+2+n-3+\sum_{i=1}^{n-4} i-\left[1+1+n-4+\sum_{i=1}^{n-4} i\right]>0
$$

and

$$
W_{e}\left(T_{1}\right)-W_{e}\left(P_{n-1}(4)\right)=1+1+n-4+\sum_{i=1}^{n-4} i+-\left[1+2+n-3+\sum_{i=1}^{n-5} i\right]
$$

Figure 3. The trees in Lemma $2.3\left(T_{1} \in T\left(3^{2}, 2^{n-6}, 1^{4}\right), T_{2} \in T\left(3^{1}, 2^{n-4}, 1^{3}\right), T_{3} \in\right.$ $T\left(4^{1}, 2^{n-5}, 1^{4}\right)$).

In addition, $\quad T_{1}\left[\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}-2}\right\}\right] \cong T_{2}\left[\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}-2}\right\}\right], \quad \sum_{i=2}^{n-3} d_{e}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{2}, \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{T}_{1}\right)=$ $\sum_{i=3}^{n-3} d_{e}\left(\mathrm{u}_{\mathrm{n}} \mathrm{u}_{\mathrm{n}-1}, \mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} \mid \mathrm{T}_{2}\right)+d_{e}\left(\mathrm{u}_{\mathrm{n}} \mathrm{u}_{\mathrm{n}-1}, \mathrm{u}_{\mathrm{n}-1} \mathrm{u}_{3} \mid \mathrm{T}_{2}\right)$ and $\sum_{i=2}^{n-4} d_{e}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{\mathrm{n}-3}, \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{T}_{1}\right)$ $=\sum_{i=3}^{n-3} d_{e}\left(\mathrm{u}_{\mathrm{n}-1} \mathrm{u}_{3}, \mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} \mid \mathrm{T}_{2}\right)$. Then we have

$$
W_{e}\left(T_{1}\right)-W_{e}\left(T_{2}\right)=1+1+n-4+n-4-(2+3+1+2)>0 \text { as } n \geq 10
$$

Finally,

$$
\begin{aligned}
T_{1}\left[\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}-2}\right\}\right] & \cong T_{3}\left[\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}-2}\right\}\right], \\
\sum_{i=2}^{n-3} d_{e}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{2}, \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{T}_{1}\right) & =\sum_{i=2}^{n-3} d_{e}\left(\mathrm{x}_{\mathrm{n}-1} \mathrm{x}_{2}, \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+1} \mid \mathrm{T}_{3}\right), \\
\sum_{i=1}^{n-4} d_{e}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{\mathrm{n}-3}, \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{T}_{1}\right) & =\sum_{i=2}^{n-3} d_{e}\left(\mathrm{x}_{\mathrm{n}} \mathrm{x}_{2}, \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+1} \mid \mathrm{T}_{3}\right) .
\end{aligned}
$$

Then we have,

$$
W_{e}\left(T_{1}\right)-W_{e}\left(T_{3}\right)=n-4-(1+1+1)>0 \text { as } n \geq 10 .
$$

which completes the proof.

Theorem 2.4. Let $P_{n-1}(2), P_{n-1}(3)$ and T_{1} be trees with n vertices as shown in Figure 3. If $n \geq 10$ and $T \in \tau(n) \backslash\left\{P_{n}, P_{n-1}(2), P_{n-1}(3)\right.$, $\left.T_{1}\right\}$, then

$$
W_{e}\left(P_{n}\right)>W_{e}\left(P_{n-1}(2)\right)>W_{e}\left(P_{n-1}(3)\right)>W_{e}\left(T_{1}\right)>W_{e}(\mathrm{~T}) .
$$

Proof. From Lemma 2.3, $W_{e}\left(P_{n}\right)>W_{e}\left(P_{n-1}(2)\right)>W_{e}\left(P_{n-1}(3)\right)>W_{e}\left(T_{1}\right)$. Now, suppose that $\Delta(T)=3$ and $n_{3}(T)=1$. In this case, if $T \in\left\{P_{n-1}(i): i=4,5, \ldots,\left[\frac{n}{2}\right]\right\}$ then by Lemma 2.1 and Lemma 2.3, $W_{e}\left(T_{1}\right)>W_{e}\left(P_{n-1}(4)\right) \geq W_{e}(\mathrm{~T})$. Otherwise, by Lemma 2.1 and Lemma 2.3, $W_{e}\left(T_{1}\right)>W_{e}\left(T_{2}\right) \geq W_{e}(\mathrm{~T})$. For the case of $\Delta(T)=3$ and $n_{3}(T) \geq$ 2, by Lemma 2.1 and Lemma 2.2, $W_{e}\left(T_{1}\right)>W_{e}(\mathrm{~T})$. If $\Delta(T) \geq 4$, then by Lemma 2.1 and Lemma 2.3, $W_{e}\left(T_{1}\right)>W_{e}\left(T_{3}\right) \geq W_{e}(\mathrm{~T})$. Otherwise, $T \in\left\{P_{n}, P_{n-1}(2), P_{n-1}(3), T_{1}\right\}$. This proves our theorem.

Corollary 2.5. Among all trees with $n(\geq 10)$ vertices, $P_{n}, P_{n-1}(2), P_{n-1}(3)$ and T_{1} have the maximum values of first through fourth Wiener index, respectively.

Proof. Equation (1) and Theorem 2.4 give us the result.

REFERENCES

1. Y. Alizadeh, A. Iranmanesh, T. Doŝlić, M. Azari, The edge Wiener index of suspensions, bottlenecks, and thorny graphs, Glas. Mat. Ser. III 49 (69) (2014) 1-12.
2. M. Azari, A. Iranmanesh, A. Tehranian, A method for calculating an edge version of the Wiener number of a graph operation, Util. Math. 87 (2012) 151-164.
3. F. Buckley, Mean distance in line graphs, Congr. Numer. 32 (1981) 153-162.
4. A. Chen, X. Xiong, F. Lin, Explicit relation between the Wiener index and the edgeWiener index of the catacondensed hexagonal systems, Appl. Math. Comput. 273 (2016) 1100-1106.
5. P. Dankelmann, I. Gutman, S. Mukwembi, H. C. Swart, The edge-Wiener index of a graph, Discrete Math. 309 (2009) 3452-3457.
6. Y. Dou, H. Bian, H. Gao, H. Yu, The polyphenyl chains with extremal edge-Wiener indices, MATCH Commun. Math. Comput. Chem. 64 (2010) 757-766.
7. J. Devillers, A.T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach Science Publishers, 1999.
8. H.-Y. Deng, The trees on $n \geq 9$ vertices with the first to seventeenth greatest Wiener indices are chemical trees, MATCH Commun. Math. Comput. Chem. 57 (2007) 393-402.
9. A. Iranmanesh, M. Azari, Edge-Wiener descriptors in chemical graph theory: a survey, Curr. Org. Chem. 19 (2015) 219-239.
10. A. Iranmanesh, I. Gutman, O. Khormali, A. Mahmiani, The edge versions of Wiener index, MATCH Commun. Math. Comput. Chem. 61 (2009) 663-672.
11. M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley, New York, 2000.
12. M. Knor, P. Potočnik, R. Škrekovski, Relationship between the edge-Wiener index and the Gutman index of a graph, Discrete Appl. Math. 167 (2014) 197-201.
13. M. H. Khalifeh, H. Yousefi Azari, A. R. Ashrafi, S. G. Wagner, Some new results on distance-based graph invariants, European J. Comb. 30 (2009) 1149-1163.
14. A. Kelenc, S. Klavžar, N. Tratnik, The Edge-Wiener index of benzenoid systems in linear time, MATCH Commun. Math. Comput. Chem. 74 (2015) 521-532.
15. M. Liu, B. Liu, Q. Li, Erratum to: The trees on $n \geq 9$ vertices with the first to seventeenth greatest Wiener indices are chemical trees, MATCH Commun. Math. Comput. Chem. 64 (2010) 743-756.
16. M. J. Nadjafi-Arani, H. Khodashenas, A. R. Ashrafi, Relationship between edge Szeged and edge Wiener indices of graphs, Glas. Mat. Ser. III 47 (67) (2012) 21-29.
17. N. Tratnik, P. Žigert Pleteršek, Relationship between the Hosoya polynomial and the edge-Hosoya polynomial of trees, MATCH Commun. Math. Comput. Chem. 78 (2017) 181-187.
18. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
19. H. Yousefi-Azari, M. H. Khalifeh, A. R. Ashrafi, Calculating the edge Wiener and edge Szeged indices of graphs, J. Comput. Appl. Math. 235 (2011) 4866-4870.

[^0]: ${ }^{\bullet}$ Corresponding Author (Email address: Ali.ghalavand.kh@gmail.com)
 DOI: 10.22052/ijmc.2017.81498.1279

