[1] A. R. Ashrafi, T. Došlić, A. Hamzeh, The Zagreb coindices of graph operations,
Discrete Appl. Math. 158 (2010), 1571–1578.
[2] K. C. Das, Sharp bounds for the sum of the squares of the degrees of a graph,
Kragujevac J. Math. 25 (2003), 31–49.
[3] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math.
285 (2004), 57–66.
[4] D. de Caen, An upper bound on the sum of squares in a graph, Discrete Math. 185
(1998), 245–248.
[5] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars. Math.
Contemp. 1 (2008), 66–80.
[6] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total -electron energy
of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538.
[7] X. L. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure
Descriptors, Mathematical Chemistry Monograph 1, University of Kragujevac, 2006.
[8] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after,
Croat. Chem. Acta 76 (2003), 113–124.
[9] Ž. Kovijanić Vukićević, G. Popivoda, Chemical trees with extreme values of Zagreb
indices and coindices, Iranian. J. Math. Chem. 5 (2014) 19–29.
[10] S. Zhang, W. Wang, T. C. E. Cheng, Bicyclic graphs with the first three smallest and
largest values of the first general Zagreb index, MATCH Commun. Math. Comput. Chem.
56 (2006), 579–592.
[11] B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices,
Chem. Phys. Lett. 394 (2004), 93–95.