An Upper Bound on the First Zagreb Index in Trees

R. RASI ${ }^{1}$, S. M. SHEIKHOLESLAMI ${ }^{1, \bullet}$ AND A. BEHMARAM ${ }^{2}$
${ }^{1}$ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I. R. Iran
${ }^{2}$ Faculty of Mathematical Sciences, University of Tabriz, Tabriz, I. R. Iran

ARTICLE INFO

Article History:
Received: 1 March, 2016
Accepted: 10 June 2016
Published online 6 February 2017
Academic Editor: Tomislav Došlić
Keywords:
first Zagreb index
first Zagreb coindex tree
Chemical tree

Abstract

The first Zagreb index $M_{I}(G)$ is equal to the sum of squares of the degrees of the vertices and the first Zagreb coindex $\overline{M_{1}}(G)$ is equal to the sum of sums of vertex degrees of the pairs of non-adjacent vertices. Kovijanić Vukićević and G. Popivoda (Iran. J. Math. Chem. 5 (2014) 19-29) proved that for any chemical tree of order $n, n \geq 5$,

$$
M_{1}(T) \leq \begin{cases}6 n-12 & n \equiv 0,1(\bmod 3) \\ 6 n-10 & \text { otherwise }\end{cases}
$$

In this paper, we generalize the aforementioned bound for all trees in terms of their order and maximum degree. Moreover, we give a lower bound on the first Zagreb coindex of trees.
© 2017 University of Kashan Press. All rights reserved

1. Introduction

In this paper, G is a simple connected graph with vertex set $V=V(G)$ and edge set $E=$ $E(G)$. The order $|V|$ of G is denoted by $n=n(G)$. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V(G) \mid u v \in E(G)\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $d_{v}=|N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. Trees with the property $\Delta \leq 4$ are called chemical trees.

The Zagreb indices have been introduced more than thirty years ago by Gutman and Trinajestić in [6]. They are important molecular descriptors and have been closely correlated with many chemical properties [6, 7]. Thus, it attracted more and more attention from chemists and mathematicians $[2,3,4,8,10,11]$.

The first Zagreb index $M_{1}(G)$ is defined as follows:

[^0]$$
M_{1}(G)=\sum_{v \in V} d_{v}^{2}
$$

The first Zagreb index can be also expressed as the sum of vertex degree over edges of G, that is, $M_{1}(G)=\sum_{u v \in E(G)}\left(d_{u}+d_{v}\right)$. Došlić in [5] introduced a new graph invariant called the first Zagreb coindex, as $\bar{M}_{1}(G)=\sum_{u v \notin E(G)}\left(d_{u}+d_{v}\right)$. Next we introduce a family of trees. For $n=(\Delta-1) k+p(k \geq 2)$, let T_{n} be the family of trees of order n with maximum degree Δ such that:

- If $p=0, k-1$ vertices have degree $\Delta, 1$ vertex has degree $\Delta-2$ and remaining vertices are pendant.
- If $p=1, k-1$ vertices have degree $\Delta, 1$ vertex has degree $\Delta-1$ and remaining vertices are pendant.
- If $p=2, k$ vertices have degree Δ and remaining vertices are pendant.
- If $p \geq 3, k$ vertices have degree $\Delta, 1$ vertex has degree $p-1$, and $n-k-1$ remaining vertices are pendant.

Kovijanić Vukićević and Popivoda [9] proved the following upper bound on the first Zagreb index of chemical trees and characterized all extreme chemical trees.

Theorem 1. Let T be a chemical tree with $n \geq 5$ vertices. Then

$$
M_{1}(T) \leq \begin{cases}6 n-12 & n \equiv 0,1(\bmod 3) \\ 6 n-10 & \text { otherwise },\end{cases}
$$

with equality if and only if $G \in \mathrm{~T}_{n}$.

In this paper, we establish an upper bound on the first Zagreb index of trees in terms of the order and maximum degree, as a generalization of aforementioned bound. As a consequence, we obtain a lower bound on the first Zagreb coindex for trees.

2. Main Results

In this section, we prove the following result:

Theorem 2. Let T be a tree of order n and maximum degree Δ. If $n \equiv p(\bmod \Delta-1)$, then

$$
M_{1}(T) \leq \begin{cases}(\Delta+2) n-4 \Delta+4 & p=0 \\ (\Delta+2) n-3 \Delta & p=1 \\ (\Delta+2) n-2 \Delta-2 & p=2 \\ (\Delta+2) n-2 \Delta-3+p(p-2) & p \geq 3\end{cases}
$$

with equality if and only if $G \in \mathrm{~T}_{n}$.

To prove Theorem 2, we proceed with some definitions and lemmas. If n is a positive integer, then an integer partition of n is a non-increasing sequence of positive integers $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ whose sum is n. If $1 \leq a_{1} \leq a_{2} \leq \ldots \leq a_{t} \leq a$, then $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ is called an integer partition of n on $N_{a}=\{1,2, \ldots, a\}$. An integer partition $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ of n on N_{a} is called an integer a-partition if the number of a in this partition is as large as possible. In other words, if $n=k a$, then (a, \ldots, a) is the integer a-partition and if $n=k a+b$ where $0<b<a$ then (b, a, \ldots, a) is the integer a-partition. The proof of the next result is straightforward and therefore omitted.

Lemma 3. For positive integers n, t and $a_{i}(1 \leq i \leq t)$, we have
a) If $n=a_{1}+a_{2}+\ldots+a_{t}$ and $t>1$, then $n^{2}>a_{1}^{2}+a_{2}^{2}+\cdots+a_{t}^{2}$.
b) If $a_{i} \leq a_{j}$, then $\left(a_{i}-1\right)^{2}+\left(a_{j}+1\right)^{2} \geq a_{i}^{2}+a_{j}^{2}+2$.

Lemma 4. If $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ is an integer partition of $n=k a+b(0 \leq b<a)$ on N_{a}, then

$$
\sum_{i=1}^{t} a_{i}^{2}<k a^{2}+b^{2}
$$

Proof. Let $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ be an partition of n on N_{a}. If $a_{i} \leq a_{j}<a$ for some $1 \leq i \neq j \leq t$, then by switching $\left(a_{i}, a_{j}\right)$ to $\left(a_{i}-1, a_{j}+1\right)$, we get a new integer partition of n on N_{a}. Note that if $a_{i}-1=0$, then we will remove $a_{i}-1$ from the new partition. Applying Lemma 3 (a), we obtain

$$
\sum_{i=1}^{t} a_{i}^{2}<a_{1}^{2}+\cdots+\left(a_{i}-1\right)^{2}+\cdots+\left(a_{j}+1\right)^{2}+\cdots+a_{t}^{2}
$$

By repeating this process, we arrive at an integer a-partition of n on N_{a}. It follows from Lemma 2 that $\sum_{i=1}^{t} a_{i}^{2}<k a^{2}+b^{2}$ and the proof is complete.

Lemma 5. Let $n=k a+b$ where $0 \leq b<a$ and let $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ be an integer partition of n on N_{a} which is not a-partition. Then the following statements holds:
a. If $b>0$, then $\sum_{i=1}^{t}\left(a_{i}+1\right)^{2}<k(a+1)^{2}+(b+1)^{2}$.
b. If $b=0$, then $\sum_{i=1}^{t}\left(a_{i}+1\right)^{2}<k(a+1)^{2}$.

Proof. (a) Since $n=a_{1}+\cdots+a_{t}=b+\underbrace{a+\cdots+a}_{\mathrm{k}}=k a+b$, we have $t \geq k+1$. First let $t=k+1$. Then we have

$$
\begin{aligned}
\left(a_{1}+1\right)^{2}+\cdots+\left(a_{t}+1\right)^{2} & =\left(a_{1}^{2}+\cdots+a_{t}^{2}\right)+t+2(k a+b) \\
& <\left(k a^{2}+b^{2}\right)+t+2(k a+b) \quad \text { (by Lemma3) } \\
& =k(a+1)^{2}+(b+1)^{2}+t-(k+1) \\
& =k(a+1)^{2}+(b+1)^{2},
\end{aligned}
$$

as desired. Now let $t>k+1$. Repeating the switching process described in the proof of Lemma 4, i.e. for any pair $\left(a_{i}, a_{j}\right)$ where $1 \leq a_{i}<a_{j}<a$ and using the fact that $a_{i}^{2}+a_{j}^{2} \leq\left(a_{i}-1\right)^{2}+\left(a_{j}+1\right)^{2}-2$, we get $a_{i}=0$ or $a_{j}=a$. To achieving an integer a_{-} partition, we need to apply the switching process at least $t-(k+1)$ times. This implies that

$$
\begin{equation*}
a_{1}^{2}+\cdots+a_{t}^{2} \leq k a^{2}+b^{2}-2(t-(k+1)) \tag{1}
\end{equation*}
$$

Thus

$$
\begin{aligned}
\left(a_{1}+1\right)^{2}+\ldots+\left(a_{t}+1\right)^{2} & =\left(a_{1}^{2}+\ldots+a_{t}^{2}\right)+t+2(k a+b) \\
& \left.\leq k a^{2}+b^{2}-2(t-(k+1))+t+2(k a+b) \quad \text { (by inequality }(1)\right) \\
& =k(a+1)^{2}+(b+1)^{2}-(t-(k+1)) \\
& <k(a+1)^{2}+(b+1)^{2}
\end{aligned}
$$

(b) If $b=0$,then $n=a_{1}+\cdots+a_{t}=\underbrace{a+\cdots+a}_{\mathrm{k}}=k a$. Since $\left(a_{1}, \ldots, a_{t}\right)$ is not a-partition, we have $t>k$. Applying (1), we obtain

$$
\begin{aligned}
\left(a_{1}+1\right)^{2}+\cdots+\left(a_{t}+1\right)^{2} & =\left(a_{1}^{2}+\cdots+a_{t}^{2}\right)+t+2 k a \\
& \leq k a^{2}-2(t-k)+t+2 k a \\
& =k(a+1)^{2}+k-t \\
& <k(a+1)^{2} .
\end{aligned}
$$

This completes the proof.

Remark 6. Let T be a tree of order n and maximum degree Δ. For each $i \in\{1,2, \ldots, \Delta\}$, let n_{i} denote the number of vertices of degree i. Then

$$
\begin{equation*}
n_{1}+n_{2}+\ldots+n_{\Delta}=n \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{1}+2 n_{2}+\ldots+\Delta n_{\Delta}=2 n-2 . \tag{3}
\end{equation*}
$$

Subtracting (2) from (3), yields

$$
\begin{equation*}
n_{2}+2 n_{3}+\ldots+(\Delta-1) n_{\Delta}=n-2 \tag{4}
\end{equation*}
$$

By (4), we obtain the following integer partition

$$
\begin{equation*}
(\underbrace{1, \ldots, 1}_{n_{2}}, \underbrace{2, \ldots, 2}_{n_{3}}, \ldots, \underbrace{\Delta-1, \ldots, \Delta-1}_{n_{\Delta}}), \tag{5}
\end{equation*}
$$

of $n-2$ on $N_{\Delta-1}=\{1,2, \ldots, \Delta-1\}$. It follows from Lemma 4 that $2^{2} n_{2}+3^{2} n_{3}+\ldots+\Delta^{2} n_{\Delta}$ is maximum if and only if the partition (5) obtained from (4), is an ($\Delta-1$)-partition of $n-2$ on $N_{\Delta-1}$. In that case, n_{1} (the number of leaves) will be maximum.

Next result is an immediate consequence of above discussion.

Corollary 7. For any tree T of order n with maximum degree Δ, the first Zagreb index $M_{1}(T)=n_{1}+2^{2} n_{2}+\cdots+\Delta^{2} n_{\Delta}$ is maximum if and only if the integer partition (5) is an ($\Delta-1$) -partition of $n-2$ on $N_{\Delta-1}$. In that case, the integer partition $\left(n_{1}, n_{2}, \ldots, n_{\Delta}\right)$ is called an optimal solution of (4).

Theorem 8. Let T be a tree of order n and maximum degree Δ with $n \equiv 0(\bmod \Delta-1)$. Then $M_{1}(T) \leq(\Delta+2) n-4 \Delta+4$, with equality if and only if $T \in \mathrm{~T}_{n}$.

Proof. Assume that $n=(\Delta-1) k$. By (4),

$$
n_{\Delta}=k-\left(\frac{n_{2}+2 n_{3}+\cdots+(\Delta-2) n_{\Delta-1}+2}{\Delta-1}\right)=k-r,
$$

where $\quad r=\frac{n_{2}+2 n_{3}+\cdots+(\Delta-2) n_{\Delta-1}+2}{\Delta-1}$. Then $1 \leq r \leq k-1$ and $1 \leq n_{\Delta} \leq k-1$. We consider three cases as follows:

Case 1. $r=1$. Then clearly $n_{\Delta}=k-1$. It follows that

$$
n_{2}+2 n_{3}+\cdots+(\Delta-2) n_{\Delta-1}+(\Delta-1)(k-1)=(\Delta-1) k-2
$$

and so

$$
n_{2}+2 n_{3}+\ldots+(\Delta-2) n_{\Delta-1}=\Delta-3 .
$$

Thus $n_{\Delta-1}=0$ and so

$$
\begin{equation*}
n_{2}+2 n_{3}+\cdots+(\Delta-3) n_{\Delta-2}=\Delta-3 . \tag{6}
\end{equation*}
$$

According to Corollary 6, the optimal solution of (6) is $n_{2}=n_{3}=\cdots=n_{\Delta-3}=0$ and $n_{\Delta-2}=1$. Since $n_{1}+n_{2}+\cdots+n_{\Delta}=n$, we conclude that $n_{1}=(\Delta-2) k$. By Corollary 7,

$$
\left(n_{1}, n_{2}, \ldots, n_{\Delta-3}, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}\right)=((\Delta-2) k, 0, \ldots, 0,1,0, k-1)
$$

is the optimal solution and so $M_{1}(T)$ is maximum. Therefore,

$$
\begin{aligned}
M_{1}(T) & \leq n_{1}+2^{2} n_{2}+\ldots+(\Delta-2)^{2} \cdot n_{\Delta-2}+(\Delta-1)^{2} \cdot n_{\Delta-1}+\Delta^{2} \cdot n_{\Delta} \\
& =(\Delta-2) k+(\Delta-2)^{2}+\Delta^{2}(k-1) \\
& =(\Delta+2)(\Delta-1) k-4 \Delta+4 \\
& =(\Delta+2) n-4 \Delta+4 .
\end{aligned}
$$

Case 2. $2 \leq r<\Delta$. Then $n_{2}+2 n_{3}+\ldots+(\Delta-2) n_{\Delta-1}=(\Delta-2) r+(r-2)$. Since $r-2<\Delta-2$, it follows from Corollary 7 that

$$
\left(n_{1}, n_{2}, \ldots, n_{r-2}, n_{r-1}, n_{r}, \ldots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}\right)=((\Delta-2) k-1,0, \ldots, 0,1,0, \ldots, 0, r, k-r)
$$

is an optimal solution in this case. Since $2 \leq r<\Delta$ and $4 \leq \Delta$, we have $r(r-2 \Delta-1)<-4 \Delta+4$ and so

$$
\begin{aligned}
M_{1}(T) & \leq(\Delta-2) k-1+(r-1)^{2}+(\Delta-1)^{2} r+\Delta^{2}(k-r) \\
& =(\Delta+2)(\Delta-1) k+r(r-2 \Delta-1) \\
& <(\Delta+2) n-4 \Delta+4 .
\end{aligned}
$$

Case 3. $\Delta \leq r \leq k-1$. Then $n_{2}+2 n_{3}+\ldots+(\Delta-2) n_{\Delta-1}=(\Delta-2) r+(r-2)$. There are non-negative integers t, s such that $(r-2)=t(\Delta-2)+s$ and $0 \leq s<\Delta-2$. Hence $n_{2}+2 n_{3}+\ldots+(\Delta-2) n_{\Delta-1}=(\Delta-2)(r+t)+s$. If $0<s<\Delta-2$, then $\left(n_{1}, n_{2}, \ldots, n_{s}, n_{s+1}, n_{s+2}, \ldots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}\right)=((\Delta-2) k-(t+1), 0, \ldots, 0,1,0, \ldots, 0, r+t, k-r)$
is the optimal solution and since $(s-\Delta)<0$ and $4 \leq \Delta \leq r$, we obtain

$$
\begin{aligned}
M_{1}(T) & \leq(\Delta-2) k-(t+1)+(s+1)^{2}+(\Delta-1)^{2}(r+t)+\Delta^{2}(k-r) \\
& =(\Delta+2)(\Delta-1) k+s(s+2)+r(1-2 \Delta)+t \Delta(\Delta-2) \\
& =(\Delta+2) n+(s-\Delta)(s+2)-r \Delta+r \\
& <(\Delta+2) n+(s-\Delta)(s+2)-r \Delta+r \\
& <(\Delta+2) n-4 \Delta+4 .
\end{aligned}
$$

If $s=0$, then the optimal solution is

$$
\left(n_{1}, n_{2}, \ldots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}\right)=((\Delta-2) k-t, 0, \ldots, 0, r+t, k-r)
$$

Since $t(\Delta-2)=r-2-s,(s+2)>0$ and $4 \leq \Delta \leq r$, we conclude that

$$
\begin{aligned}
M_{1}(T) & \leq n_{1}+4 n_{2}+9 n_{3}+\ldots+\Delta^{2} . n_{\Delta} \\
& =((\Delta-2) k-t)+(\Delta-1)^{2}(r+t)+\Delta^{2}(k-r) \\
& =\Delta k-2 k-t+\Delta^{2} r-2 \Delta r+r+\Delta^{2} t-2 \Delta t+t+\Delta^{2} k-\Delta^{2} r \\
& =(\Delta+2) n-(s+2)-r \Delta+r \\
& <(\Delta+2) n-r \Delta+r \\
& <(\Delta+2) n-4 \Delta+4 .
\end{aligned}
$$

Therefore, in all cases $M_{1}(T) \leq(\Delta+2) n-4 \Delta+4$. If $T \in \mathrm{~T}_{n}$, then clearly $M_{1}(T)=(\Delta+2) n-4 \Delta+4$. Conversely, let T be a tree of order n with $n \equiv 0(\bmod \Delta-1)$ and $M_{1}(T)=(\Delta+2) n-4 \Delta+4$. This occurs only in Case 1 , that is, T has $k-1=\frac{n-\Delta+1}{\Delta-1}$ vertices of degree Δ, one vertex of degree $\Delta-2$ and $(\Delta-2) k$ leaves. Hence $T \in T_{n}$ and the proof is complete.

Theorem 9. Let T be a tree of order n with maximum degree Δ and $n \equiv 1(\bmod \Delta-1)$. Then $M_{1}(T) \leq(\Delta+2) n-3 \Delta$, with equality if and only if $T \in \mathrm{~T}_{n}$.

Proof. Let $n=(\Delta-1) k+1$. Set $r=\frac{n_{2}+2 n_{3}+\ldots+(\Delta-2) n_{\Delta-1}+1}{\Delta-1}$. By (4),

$$
n_{\Delta}=k-\left(\frac{n_{2}+2 n_{3}+\ldots+(\Delta-2) n_{\Delta-1}+1}{\Delta-1}\right)=k-r .
$$

Then clearly $1 \leq r \leq k-1$ and $1 \leq n_{\Delta} \leq k-1$. We consider three cases.

Case 1. $r=1$. Since $n_{\Delta}=k-1$, it follows from (4) that $n_{2}+\ldots+(\Delta-2) \cdot n_{\Delta-1}=(\Delta-2)$ and by Corollary 7

$$
\left(n_{1}, n_{2}, \ldots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}\right)=((\Delta-2) k+1,0, \ldots, 0,1, k-1)
$$

is the optimal solution. Thus

$$
\begin{aligned}
M_{1}(T) & \leq n_{1}+2^{2} n_{2}+\ldots+(\Delta-2)^{2} \cdot n_{\Delta-2}+(\Delta-1)^{2} \cdot n_{\Delta-1}+\Delta^{2} \cdot n_{\Delta} \\
& =((\Delta-2) k+1)+(\Delta-1)^{2}(1)+\Delta^{2}(k-1) \\
& =(\Delta+2) n-3 \Delta .
\end{aligned}
$$

Case 2. $2 \leq r<\Delta-1$. As above, $n_{2}+\ldots+(\Delta-2) . n_{\Delta-1}=(\Delta-2) r+(r-1)$. Since $r-1<\Delta-2$, it follows from Corollary 7 that

$$
\left(n_{1}, n_{2}, \ldots, n_{r-1}, n_{r}, n_{r+1}, \ldots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}\right)=((\Delta-2) k, 0, \ldots, 0,1,0, \ldots, 0, r, k-r)
$$

is the optimal soloution. Since $2 \leq r<\Delta-1$, it is easy to see that $2 \Delta(1-r)+\left(r^{2}+r-2\right)<0$ and we have

$$
\begin{aligned}
M_{1}(T) & =n_{1}+4 n_{2}+\ldots+(\Delta-2)^{2} \cdot n_{\Delta-2}+(\Delta-1)^{2} \cdot n_{\Delta-1}+\Delta^{2} \cdot n_{\Delta} \\
& =(\Delta-2) k+r^{2}(1)+(\Delta-1)^{2} r+\Delta^{2}(k-r) \\
& =(\Delta+2)(\Delta-1) k+r^{2}+r-2 r \Delta \\
& =(\Delta+2) n-3 \Delta+2 \Delta(1-r)+\left(r^{2}+r-2\right) \\
& <(\Delta+2) n-3 \Delta .
\end{aligned}
$$

Case 3. $\Delta-1 \leq r \leq k-1$. There are non-negative integers t, s such that $r-1=t(\Delta-2)+s, \quad t \geq 1$ and $s<\Delta-1$. By substituting in (4), we have $n_{2}+2 n_{3}+\ldots+(\Delta-2) n_{\Delta-1}=(\Delta-2)(r+t)+s$. First let $0<s$. Since $s \leq \Delta-2$, it follows from Corollary 7 that

$$
\left(n_{1}, n_{2}, \ldots, n_{s}, n_{s+1}, n_{s+2}, \ldots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}\right)=((\Delta-2) k-t, 0, \ldots, 0,1,0, \ldots, 0,0, r+t, k-r)
$$

is the optimal solution. Thus

$$
\begin{aligned}
M_{1}(T) & \leq(\Delta-2) k-t+(s+1)^{2}+(\Delta-1)^{2}(r+t)+\Delta^{2}(k-r) \\
& =(\Delta+2)(\Delta-1) k+(s+1)^{2}+r(1-2 \Delta)+t \Delta(\Delta-2) \\
& =(\Delta+2) n-3 \Delta-s(\Delta-s-2)-(r-1)(\Delta-1) \\
& <(\Delta+2) n-3 \Delta .
\end{aligned}
$$

Now let $s=0$. Then the optimal solution is

$$
\left(n_{1}, n_{2}, \ldots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}\right)=((\Delta-2) k-t+1,0, \ldots, 0, r+t, k-r)
$$

and we have

$$
\begin{aligned}
M_{1}(T) & \leq(\Delta-2) k-t+1+(\Delta-1)^{2}(r+t)+\Delta^{2}(k-r) \\
& =(\Delta+2)(\Delta-1) k-r(2 \Delta-1)+1+t \Delta(\Delta-2) \\
& =(\Delta+2) n-3 \Delta-(\Delta-1)(r-1) \\
& <(\Delta+2) n-3 \Delta .
\end{aligned}
$$

As in the proof of Theorem 8 we can see that $M_{1}(T)=(\Delta+2) n-3 \Delta$ if and only if $T \in \mathrm{~T}_{n}$.

Theorem 10. Let T be a tree of order n with maximum degree Δ and $n \equiv p(\bmod \Delta-1)$ where $2 \leq p \leq \Delta-2$. Then

$$
M_{1}(T) \leq \begin{cases}(\Delta+2) n-2 \Delta-2 & p=2 \\ (\Delta+2) n-2 \Delta-3+p(p-2) & p \geq 3,\end{cases}
$$

with equality if and only if $T \in \mathrm{~T}_{n}$.

Proof. Let $n=(\Delta-1) k+p$. Suppose that $r=\frac{n_{2}+2 n_{3}+\ldots+(\Delta-2) n_{\Delta-1}+(2-p)}{\Delta-1}$. By (4), we have

$$
n_{\Delta}=k-\left(\frac{n_{2}+2 n_{3}+\ldots+(\Delta-2) n_{\Delta-1}+(2-p)}{\Delta-1}\right)=k-r .
$$

Then clearly $0 \leq r \leq k-1$ and $1 \leq n_{\Delta} \leq k$. We consider four cases.
Case 1. $r=0$. Then $n_{\Delta}=k$ and by (4) we have

$$
n_{2}+2 n_{3}+\cdots+(\Delta-2) n_{\Delta-1}=(n-2)-\left((\Delta-1) n_{\Delta}\right)=((\Delta-1) k+p-2)-(\Delta-1) k=p-2 .
$$

If $p=2$, then $n_{2}+2 n_{3}+\ldots(\Delta-2) n_{\Delta-1}=0$. This implies that $n_{2}=n_{3}=\ldots=n_{\Delta-1}=0$ and $n_{1}=n-k$ by (2). Thus

$$
\begin{aligned}
M_{1}(T) & \leq n_{1}+2^{2} n_{2}+\cdots+(\Delta-1)^{2} \cdot n_{\Delta-1}+\Delta^{2} \cdot n_{\Delta} \\
& =(n-k)+\Delta^{2} k \\
& =n+(\Delta+1)(\Delta-1) k \\
& =n+(\Delta+1)(n-2) \\
& =(\Delta+2) n-2 \Delta-2 .
\end{aligned}
$$

Now let $2<p \leq \Delta-2$. Since $1 \leq p-2 \leq \Delta-4$ and $n_{2}+2 n_{3}+\ldots(\Delta-2) n_{\Delta-1}=p-2$, it follows from Corollary 7 that

$$
\left(n_{1}, n_{2}, \ldots, n_{p-2}, n_{p-1} n_{p}, \ldots, n_{\Delta-1}, n_{\Delta}\right)=(n-k-1,0, \ldots, 0,1,0, \ldots, 0, k)
$$

is the optimal solution and so

$$
\begin{aligned}
M_{1_{m a x}}(T) & \leq n_{1}+4 n_{2}+\ldots+(\Delta-1)^{2} \cdot n_{\Delta-1}+\Delta^{2} \cdot n_{\Delta} \\
& =(n-k-1)+(p-1)^{2}(1)+\Delta^{2}(k) \\
& =(\Delta+1)(\Delta-1) k+n+p^{2}-2 p \\
& =(\Delta+1)(n-p)+n+p^{2}-2 p \\
& =(\Delta+2) n-p \Delta+p^{2}-3 p .
\end{aligned}
$$

Case 2. $r=1$. Then $n_{\Delta}=k-1$ and

$$
\left(n_{1}, n_{2}, \ldots, n_{p-1}, n_{p}, n_{p+1}, \ldots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}\right)=((\Delta-2) k+p-1,0, \ldots, 0,1,0, \ldots, 0,1, k-1)
$$

is the optimal solution and since $p \leq \Delta-2$ we have

$$
\begin{aligned}
M_{1}(T) & =n_{1}+4 n_{2}+\ldots+(\Delta-1)^{2} \cdot n_{\Delta-1}+\Delta^{2} \cdot n_{\Delta} \\
& =(\Delta-2) k+p-1+p^{2}+(\Delta-1)^{2}+\Delta^{2}(k-1) \\
& =\Delta k-2 k+p-1+p^{2}+\Delta^{2}-2 \Delta+1+\Delta^{2} k-\Delta^{2} \\
& =(\Delta+2)(\Delta-1) k+p+p^{2}-2 \Delta \\
& =(\Delta+2)(n-p)+p+p^{2}-2 \Delta \\
& <(\Delta+2) n-p \Delta+p^{2}-3 p .
\end{aligned}
$$

Case 3. $2 \leq r<\Delta-p$. By (4), we have $n_{2}+2 n_{3}+\ldots+(\Delta-2) n_{\Delta-1}$ $=(\Delta-2) r+(p+r-2)$. Since $r-2<\Delta-2$, it follows from Corollary 7 that $\left(n_{1}, n_{2}, \ldots, n_{p+r-2}, n_{p+r-1}, n_{p+r}, \ldots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}\right)=((\Delta-2) k+p-1,0, \ldots, 0,1,0, \ldots, 0, r, k-r)$ is the optimal solution. On the other hand, we deduce from $p \leq \Delta-2$ and $r<\Delta-p$ that $r-1+2(p-\Delta)<\Delta-p-1+2(p-\Delta)=p-\Delta-1<0$ and so $r(r-1+2(p-\Delta))<0$. Thus

$$
\begin{aligned}
M_{1}(T) & \leq n_{1}+4 n_{2}+\ldots+(\Delta-1)^{2} \cdot n_{\Delta-1}+\Delta^{2} \cdot n_{\Delta} \\
& =((\Delta-2) k+p-1)+(p+r-1)^{2}(1)+(\Delta-1)^{2}(r)+\Delta^{2}(k-r) \\
& =\Delta k-2 k+p-1+p^{2}+r^{2}+1+2 r p-2 p-2 r+r \Delta^{2}-2 \Delta r+r+\Delta^{2} k-r \Delta^{2} \\
& =(\Delta+2)(\Delta-1) k+p^{2}-p-2 \Delta r+r(r+2 p-1) \\
& =(\Delta+2)(n-p)+p^{2}-p-2 \Delta r+r(r+2 p-1) \\
& =(\Delta+2) n-p \Delta+p^{2}-3 p+r(r-1+2(p-\Delta)) \\
& <(\Delta+2) n-p \Delta+p^{2}-3 p=M_{1_{\max }}(T) .
\end{aligned}
$$

Case 4. $\Delta-p \leq r \leq k-1$. Let $p+r-2=t(\Delta-2)+s$. By substituting in (4), we have $n_{2}+2 n_{3}+\ldots+(\Delta-2) n_{\Delta-1}=(\Delta-2)(r+t)+s$. If $s=0$ then by Corollary 7 ,

$$
\left(n_{1}, n_{2}, \ldots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}\right)=((\Delta-2) k+p-t, 0, \ldots, 0, r+t, k-r)
$$

is the optimal solution. Since $\Delta-p \leq r$ and $p \leq \Delta-2$, we have

$$
\begin{aligned}
\left(2 p-p^{2}+p \Delta-\Delta r-2 \Delta+r\right) & =p(\Delta-p+2)-\Delta r-2 \Delta+r \\
& \leq p(r+2)-\Delta r-2 \Delta+r \\
& =(p-\Delta)(r+2)+r \\
& <(p-\Delta)(r+2)+(r+2) \\
& =(p-\Delta+1)(r+2)<0 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
M_{1}(T) & =n_{1}+4 n_{2}+\ldots+(\Delta-1)^{2} \cdot n_{\Delta-1}+\Delta^{2} \cdot n_{\Delta} \\
& =((\Delta-2) k+p-t)+(\Delta-1)^{2}(r+t)+\Delta^{2}(k-r) \\
& =\left(\Delta^{2} k+\Delta k-2 k\right)+\Delta t(\Delta-2)+p-2 \Delta r+r \\
& =(\Delta+2)(n-p)+\Delta t(\Delta-2)+p-2 \Delta r+r \\
& =(\Delta+2) n-p \Delta-2 p+p \Delta+\Delta r+p-2 \Delta-2 \Delta r+r \\
& =(\Delta+2) n-p \Delta+p^{2}-3 p+\left(2 p-p^{2}+p \Delta-\Delta r-2 \Delta+r\right) \\
& <(\Delta+2) n-p \Delta+p^{2}-3 p .
\end{aligned}
$$

Now let $0<s$. Since $s<\Delta-2$, it follows from Corollary 7 that

$$
\left(n_{1}, n_{2}, \ldots, n_{s}, n_{s+1}, n_{s+2}, \ldots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}\right)=((\Delta-2) k+p-(t+1), 0, \ldots, 0,1,0, \ldots, 0,0, r+t, k-r)
$$

is the optimal solution. Since $2 \leq p \leq \Delta-2$ and $0<s \leq \Delta-3$, it is straightforward to verify that $p \Delta-p^{2}+2 p+s^{2}+2 s-\Delta r+r-2 \Delta-\Delta s<0$. Thus

$$
\begin{aligned}
M_{1}(T) & =n_{1}+4 n_{2}+\cdots+(\Delta-1)^{2} \cdot n_{\Delta-1}+\Delta^{2} \cdot n_{\Delta} \\
& =(\Delta-2) k+p-(t+1)+(s+1)^{2}+(\Delta-1)^{2}(r+t)+\Delta^{2}(k-r) \\
& =\left(\Delta^{2} k+\Delta k-2 k\right)+p+s^{2}+2 s-2 \Delta r+r+\Delta^{2} t-2 \Delta t \\
& =(\Delta+2)(\Delta-1) k+p+s^{2}+2 s-2 \Delta r+r+\Delta t(\Delta-2) \\
& =(\Delta+2)(n-p)+p+s^{2}+2 s-2 \Delta r+r+\Delta(p+r-2-s) \\
& =(\Delta+2) n-p+s^{2}+2 s-\Delta r+r-2 \Delta-\Delta s \\
& =(\Delta+2) n-p \Delta+p^{2}-3 p+\left(p \Delta-p^{2}+2 p+s^{2}+2 s-\Delta r+r-2 \Delta-\Delta s\right) \\
& <(\Delta+2) n-p \Delta+p^{2}-3 p .
\end{aligned}
$$

Therefore, in all cases $\left.M_{1}(T) \leq \Delta+2\right) n-p \Delta+p^{2}-3 p$. As in the proof of Theorem 8, we can see that

$$
M_{1}(T)= \begin{cases}(\Delta+2) n-2 \Delta-2 & p=2 \\ (\Delta+2) n-2 \Delta-3+p(p-2) & p \geq 3\end{cases}
$$

if and only if $T \in \mathrm{~T}_{n}$. This completes the proof.

We now present a lower bound on the first Zagreb coindex among all trees. Ashrafi et al. [1] proved that for any conneted graph G of order n and size m

$$
\bar{M}_{1}(G)=2 m(n-1)-M_{1}(G) .
$$

Next result is an immediate consequence of this equality and Theorem 1.

Corollary 11. Let T be a tree of order n with maximum degree Δ. If $n \equiv p(\bmod \Delta-1)$, then

$$
\bar{M}_{1}(T) \leq \begin{cases}-(\Delta+6) n+2 n^{2}+4 \Delta-2 & p=0 \\ -(\Delta+6) n+2 n^{2}+3 \Delta+2 & p=1 \\ -(\Delta+6) n+2 n^{2}+2 \Delta+4 & p=2 \\ -(\Delta+6) n+2 n^{2}+p \Delta+2-p(p-3) & p \geq 3 .\end{cases}
$$

References

[1] A. R. Ashrafi, T. Došlić, A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math. 158 (2010), 1571-1578.
[2] K. C. Das, Sharp bounds for the sum of the squares of the degrees of a graph, Kragujevac J. Math. 25 (2003), 31-49.
[3] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285 (2004), 57-66.
[4] D. de Caen, An upper bound on the sum of squares in a graph, Discrete Math. 185 (1998), 245-248.
[5] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars. Math. Contemp. 1 (2008), 66-80.
[6] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
[7] X. L. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Mathematical Chemistry Monograph 1, University of Kragujevac, 2006.
[8] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), 113-124.
[9] Ž. Kovijanić Vukićević, G. Popivoda, Chemical trees with extreme values of Zagreb indices and coindices, Iranian. J. Math. Chem. 5 (2014) 19-29.
[10] S. Zhang, W. Wang, T. C. E. Cheng, Bicyclic graphs with the first three smallest and largest values of the first general Zagreb index, MATCH Commun. Math. Comput. Chem. 56 (2006), 579-592.
[11] B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett. 394 (2004), 93-95.

[^0]: - Corresponding Author: (Email address: (m.sheikholeslami@azaruniv.edu)

 DOI: 10.22052/ijmc. 2017.42995

