Iranian Journal of Mathematical Chemistry

Journal homepage: ijmc.kashanu.ac.ir

An Upper Bound on the First Zagreb Index in Trees

R. RASI¹, S. M. SHEIKHOLESLAMI^{1,•} AND A. BEHMARAM²

¹Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I. R. Iran

ARTICLE INFO

Article History:

Received: 1 March, 2016 Accepted: 10 June 2016 Published online 6 February 2017 Academic Editor: Tomislav Došlić

Keywords:

first Zagreb index first Zagreb coindex tree Chemical tree

ABSTRACT

The first Zagreb index $\overline{M_1}(G)$ is equal to the sum of squares of the degrees of the vertices and the first Zagreb coindex $\overline{M_1}(G)$ is equal to the sum of sums of vertex degrees of the pairs of non-adjacent vertices. Kovijanić Vukićević and G. Popivoda (Iran. J. Math. Chem. 5 (2014) 19–29) proved that for any chemical tree of order $n, n \ge 5$,

$$M_1(T) \leq \begin{cases} 6n-12 & n \equiv 0,1 \, (\text{mod } 3) \\ 6n-10 & otherwise. \end{cases}$$

In this paper, we generalize the aforementioned bound for all trees in terms of their order and maximum degree. Moreover, we give a lower bound on the first Zagreb coindex of trees.

© 2017 University of Kashan Press. All rights reserved

1. Introduction

In this paper, G is a simple connected graph with vertex set V = V(G) and edge set E = E(G). The order |V| of G is denoted by n = n(G). For every vertex $v \in V$, the *open neighborhood* N(v) is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the *closed neighborhood* of V is the set $N[v] = N(v) \cup \{v\}$. The *degree* of a vertex $v \in V$ is $d_v = |N(v)|$. The *minimum* and *maximum degree* of a graph G are denoted by S = S(G) and S = S(G), respectively. Trees with the property S = S(G) are called chemical trees.

The Zagreb indices have been introduced more than thirty years ago by Gutman and Trinajestić in [6]. They are important molecular descriptors and have been closely correlated with many chemical properties [6, 7]. Thus, it attracted more and more attention from chemists and mathematicians [2, 3, 4, 8, 10, 11].

The first Zagreb index $M_1(G)$ is defined as follows:

DOI: 10.22052/ijmc.2017.42995

² Faculty of Mathematical Sciences, University of Tabriz, Tabriz, I. R. Iran

 $[\]hbox{$^{\bullet}$ Corresponding Author: (Email address: (m.sheikholeslami@azaruniv.edu)}\\$

$$M_1(G) = \sum_{v \in V} d_v^2.$$

The first Zagreb index can be also expressed as the sum of vertex degree over edges of G, that is, $M_1(G) = \sum_{uv \in E(G)} (d_u + d_v)$. Došlić in [5] introduced a new graph invariant called the *first Zagreb coindex*, as $\overline{M}_1(G) = \sum_{uv \notin E(G)} (d_u + d_v)$. Next we introduce a family of trees. For $n = (\Delta - 1)k + p$ ($k \ge 2$), let T_n be the family of trees of order n with maximum degree Δ such that:

- If p = 0, k-1 vertices have degree Δ , 1 vertex has degree $\Delta 2$ and remaining vertices are pendant.
- If p=1, k-1 vertices have degree Δ , 1 vertex has degree $\Delta-1$ and remaining vertices are pendant.
- If p = 2, k vertices have degree Δ and remaining vertices are pendant.
- If $p \ge 3$, k vertices have degree Δ , 1 vertex has degree p-1, and n-k-1 remaining vertices are pendant.

Kovijanić Vukićević and Popivoda [9] proved the following upper bound on the first Zagreb index of chemical trees and characterized all extreme chemical trees.

Theorem 1. Let T be a chemical tree with $n \ge 5$ vertices. Then

$$M_1(T) \le \begin{cases} 6n - 12 & n \equiv 0, 1 \pmod{3} \\ 6n - 10 & otherwise, \end{cases}$$

with equality if and only if $G \in T_n$.

In this paper, we establish an upper bound on the first Zagreb index of trees in terms of the order and maximum degree, as a generalization of aforementioned bound. As a consequence, we obtain a lower bound on the first Zagreb coindex for trees.

2. MAIN RESULTS

In this section, we prove the following result:

Theorem 2. Let T be a tree of order n and maximum degree Δ . If $n \equiv p \pmod{\Delta - 1}$, then

$$M_1(T) \leq \begin{cases} (\Delta + 2)n - 4\Delta + 4 & p = 0 \\ (\Delta + 2)n - 3\Delta & p = 1 \\ (\Delta + 2)n - 2\Delta - 2 & p = 2 \\ (\Delta + 2)n - 2\Delta - 3 + p(p - 2) & p \geq 3, \end{cases}$$

with equality if and only if $G \in T_n$.

To prove Theorem 2, we proceed with some definitions and lemmas. If n is a positive integer, then an integer partition of n is a non-increasing sequence of positive integers $(a_1,a_2,...,a_t)$ whose sum is n. If $1 \le a_1 \le a_2 \le ... \le a_t \le a$, then $(a_1,a_2,...,a_t)$ is called an integer partition of n on $N_a = \{1,2,...,a\}$. An integer partition $(a_1,a_2,...,a_t)$ of n on N_a is called an integer a-partition if the number of a in this partition is as large as possible. In other words, if n = ka, then $(a_1,...,a)$ is the integer a-partition and if n = ka + b where 0 < b < a then $(b_1,a_1,...,a)$ is the integer a-partition. The proof of the next result is straightforward and therefore omitted.

Lemma 3. For positive integers $n_i t$ and a_i $(1 \le i \le t)$, we have

- a) If $n = a_1 + a_2 + ... + a_t$ and t > 1, then $n^2 > a_1^2 + a_2^2 + ... + a_t^2$.
- b) If $a_i \le a_i$, then $(a_i 1)^2 + (a_i + 1)^2 \ge a_i^2 + a_i^2 + 2$.

Lemma 4. If $(a_1, a_2, ..., a_t)$ is an integer partition of n = ka + b $(0 \le b < a)$ on N_a , then

$$\sum_{i=1}^{t} a_i^2 < ka^2 + b^2.$$

Proof. Let $(a_1, a_2, ..., a_t)$ be an partition of n on N_a . If $a_i \le a_j < a$ for some $1 \le i \ne j \le t$, then by switching (a_i, a_j) to $(a_i - 1, a_j + 1)$, we get a new integer partition of n on N_a . Note that if $a_i - 1 = 0$, then we will remove $a_i - 1$ from the new partition. Applying Lemma 3 (a), we obtain

$$\sum_{i=1}^{t} a_i^2 < a_1^2 + \dots + (a_i - 1)^2 + \dots + (a_j + 1)^2 + \dots + a_t^2.$$

By repeating this process, we arrive at an integer a-partition of n on N_a . It follows from Lemma 2 that $\sum_{i=1}^{t} a_i^2 < ka^2 + b^2$ and the proof is complete.

Lemma 5. Let n = ka + b where $0 \le b < a$ and let $(a_1, a_2, ..., a_t)$ be an integer partition of n on N_a which is not a-partition. Then the following statements holds:

a. If
$$b > 0$$
, then $\sum_{i=1}^{t} (a_i + 1)^2 < k(a+1)^2 + (b+1)^2$.

b. If
$$b = 0$$
, then $\sum_{i=1}^{t} (a_i + 1)^2 < k(a+1)^2$.

Proof. (a) Since $n = a_1 + \dots + a_t = b + \underbrace{a + \dots + a}_k = ka + b$, we have $t \ge k + 1$. First let t = k + 1. Then we have

$$(a_1 + 1)^2 + \dots + (a_t + 1)^2 = (a_1^2 + \dots + a_t^2) + t + 2(ka + b)$$

$$< (ka^2 + b^2) + t + 2(ka + b)$$
 (by Lemma3)
$$= k(a+1)^2 + (b+1)^2 + t - (k+1)$$

$$= k(a+1)^2 + (b+1)^2,$$

as desired. Now let t > k+1. Repeating the switching process described in the proof of Lemma 4, i.e. for any pair (a_i, a_j) where $1 \le a_i < a_j < a$ and using the fact that $a_i^2 + a_j^2 \le (a_i - 1)^2 + (a_j + 1)^2 - 2$, we get $a_i = 0$ or $a_j = a$. To achieving an integer a-partition, we need to apply the switching process at least t - (k+1) times. This implies that

$$a_1^2 + \dots + a_t^2 \le ka^2 + b^2 - 2(t - (k+1)).$$
 (1)

Thus

$$(a_{1}+1)^{2} + \dots + (a_{t}+1)^{2} = (a_{1}^{2} + \dots + a_{t}^{2}) + t + 2(ka+b)$$

$$\leq ka^{2} + b^{2} - 2(t - (k+1)) + t + 2(ka+b) \text{ (by inequality (1))}$$

$$= k(a+1)^{2} + (b+1)^{2} - (t - (k+1))$$

$$< k(a+1)^{2} + (b+1)^{2}.$$

(b) If b=0, then $n=a_1+\cdots+a_t=\underbrace{a+\cdots+a}_k=ka$. Since (a_1,\ldots,a_t) is not a-partition, we have t>k. Applying (1), we obtain

$$(a_1+1)^2 + \dots + (a_t+1)^2 = (a_1^2 + \dots + a_t^2) + t + 2ka$$

$$\leq ka^2 - 2(t-k) + t + 2ka$$

$$= k(a+1)^2 + k - t$$

$$< k(a+1)^2.$$

This completes the proof.

Remark 6. Let T be a tree of order n and maximum degree Δ . For each $i \in \{1,2,...,\Delta\}$, let n_i denote the number of vertices of degree i. Then

$$n_1 + n_2 + \ldots + n_{\Lambda} = n \tag{2}$$

and

$$n_1 + 2n_2 + \ldots + \Delta n_{\Lambda} = 2n - 2.$$
 (3)

Subtracting (2) from (3), yields

$$n_2 + 2n_3 + \ldots + (\Delta - 1)n_{\Lambda} = n - 2.$$
 (4)

By (4), we obtain the following integer partition

$$(\underbrace{1,\ldots,1}_{n_2},\underbrace{2,\ldots,2}_{n_3},\ldots,\underbrace{\Delta-1,\ldots,\Delta-1}_{n_{\Lambda}}),\tag{5}$$

of n-2 on $N_{\Delta-1}=\{1,2,\ldots,\Delta-1\}$. It follows from Lemma 4 that $2^2n_2+3^2n_3+\ldots+\Delta^2n_\Delta$ is maximum if and only if the partition (5) obtained from (4), is an $(\Delta-1)$ -partition of n-2 on $N_{\Delta-1}$. In that case, n_1 (the number of leaves) will be maximum.

Next result is an immediate consequence of above discussion.

Corollary 7. For any tree T of order n with maximum degree Δ , the first Zagreb index $M_1(T) = n_1 + 2^2 n_2 + \dots + \Delta^2 n_{\Delta}$ is maximum if and only if the integer partition (5) is an $(\Delta - 1)$ -partition of n - 2 on $N_{\Delta - 1}$. In that case, the integer partition $(n_1, n_2, \dots, n_{\Delta})$ is called an optimal solution of (4).

Theorem 8. Let T be a tree of order n and maximum degree Δ with $n \equiv 0 \pmod{\Delta - 1}$. Then $M_1(T) \leq (\Delta + 2)n - 4\Delta + 4$, with equality if and only if $T \in T_n$.

Proof. Assume that $n = (\Delta - 1)k$. By (4),

$$n_{\Delta} = k - (\frac{n_2 + 2n_3 + \dots + (\Delta - 2)n_{\Delta - 1} + 2}{\Delta - 1}) = k - r,$$

where $r = \frac{n_2 + 2n_3 + \dots + (\Delta - 2)n_{\Delta - 1} + 2}{\Delta - 1}$. Then $1 \le r \le k - 1$ and $1 \le n_{\Delta} \le k - 1$. We

consider three cases as follows:

Case 1. r = 1. Then clearly $n_{\Delta} = k - 1$. It follows that

$$n_2 + 2n_3 + \dots + (\Delta - 2)n_{\Delta - 1} + (\Delta - 1)(k - 1) = (\Delta - 1)k - 2$$

and so

$$n_2 + 2n_3 + ... + (\Delta - 2)n_{\Delta - 1} = \Delta - 3.$$

Thus $n_{\Lambda-1} = 0$ and so

$$n_2 + 2n_3 + \dots + (\Delta - 3)n_{\Delta - 2} = \Delta - 3.$$
 (6)

According to Corollary 6, the optimal solution of (6) is $n_2 = n_3 = \dots = n_{\Delta-3} = 0$ and $n_{\Delta-2} = 1$. Since $n_1 + n_2 + \dots + n_{\Delta} = n$, we conclude that $n_1 = (\Delta - 2)k$. By Corollary 7,

$$(n_1, n_2, \dots, n_{\Delta-3}, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}) = ((\Delta - 2)k, 0, \dots, 0, 1, 0, k - 1)$$

is the optimal solution and so $M_1(T)$ is maximum. Therefore,

$$M_{1}(T) \leq n_{1} + 2^{2}n_{2} + \dots + (\Delta - 2)^{2}.n_{\Delta - 2} + (\Delta - 1)^{2}.n_{\Delta - 1} + \Delta^{2}.n_{\Delta}$$

$$= (\Delta - 2)k + (\Delta - 2)^{2} + \Delta^{2}(k - 1)$$

$$= (\Delta + 2)(\Delta - 1)k - 4\Delta + 4$$

$$= (\Delta + 2)n - 4\Delta + 4.$$

Case 2. $2 \le r < \Delta$. Then $n_2 + 2n_3 + ... + (\Delta - 2)n_{\Delta - 1} = (\Delta - 2)r + (r - 2)$. Since $r - 2 < \Delta - 2$, it follows from Corollary 7 that

 $(n_1, n_2, \dots, n_{r-2}, n_{r-1}, n_r, \dots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}) = ((\Delta-2)k-1, 0, \dots, 0, 1, 0, \dots, 0, r, k-r)$ is an optimal solution in this case. Since $2 \le r < \Delta$ and $4 \le \Delta$, we have $r(r-2\Delta-1) < -4\Delta+4$ and so

$$M_1(T) \leq (\Delta - 2)k - 1 + (r - 1)^2 + (\Delta - 1)^2 r + \Delta^2 (k - r)$$

= $(\Delta + 2)(\Delta - 1)k + r(r - 2\Delta - 1)$
< $(\Delta + 2)n - 4\Delta + 4$.

Case 3. $\Delta \le r \le k-1$. Then $n_2 + 2n_3 + \ldots + (\Delta - 2)n_{\Delta - 1} = (\Delta - 2)r + (r-2)$. There are non-negative integers t, s such that $(r-2) = t(\Delta - 2) + s$ and $0 \le s < \Delta - 2$. Hence $n_2 + 2n_3 + \ldots + (\Delta - 2)n_{\Delta - 1} = (\Delta - 2)(r + t) + s$. If $0 < s < \Delta - 2$, then $(n_1, n_2, \ldots, n_s, n_{s+1}, n_{s+2}, \ldots, n_{\Delta - 2}, n_{\Delta - 1}, n_{\Delta}) = ((\Delta - 2)k - (t+1), 0, \ldots, 0, 1, 0, \ldots, 0, r + t, k - r)$ is the optimal solution and since $(s - \Delta) < 0$ and $4 \le \Delta \le r$, we obtain

$$\begin{split} M_1(T) &\leq (\Delta-2)k - (t+1) + (s+1)^2 + (\Delta-1)^2(r+t) + \Delta^2(k-r) \\ &= (\Delta+2)(\Delta-1)k + s(s+2) + r(1-2\Delta) + t\Delta(\Delta-2) \\ &= (\Delta+2)n + (s-\Delta)(s+2) - r\Delta + r \\ &< (\Delta+2)n + (s-\Delta)(s+2) - r\Delta + r \\ &< (\Delta+2)n - 4\Delta + 4. \end{split}$$

If s = 0, then the optimal solution is

$$(n_1, n_2, ..., n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}) = ((\Delta-2)k - t, 0, ..., 0, r + t, k - r).$$

Since $t(\Delta - 2) = r - 2 - s$, (s + 2) > 0 and $4 \le \Delta \le r$, we conclude that

$$\begin{split} M_1(T) &\leq n_1 + 4n_2 + 9n_3 + \ldots + \Delta^2 . n_{\Delta} \\ &= ((\Delta - 2)k - t) + (\Delta - 1)^2 (r + t) + \Delta^2 (k - r) \\ &= \Delta k - 2k - t + \Delta^2 r - 2\Delta r + r + \Delta^2 t - 2\Delta t + t + \Delta^2 k - \Delta^2 r \\ &= (\Delta + 2)n - (s + 2) - r\Delta + r \\ &< (\Delta + 2)n - r\Delta + r \\ &< (\Delta + 2)n - 4\Delta + 4. \end{split}$$

Therefore, in all cases $M_1(T) \leq (\Delta+2)n-4\Delta+4$. If $T \in \mathsf{T}_n$, then clearly $M_1(T) = (\Delta+2)n-4\Delta+4$. Conversely, let T be a tree of order n with $n \equiv 0 \pmod{\Delta-1}$ and $M_1(T) = (\Delta+2)n-4\Delta+4$. This occurs only in Case 1, that is, T has $k-1 = \frac{n-\Delta+1}{\Delta-1}$ vertices of degree Δ , one vertex of degree $\Delta-2$ and $(\Delta-2)k$ leaves. Hence $T \in \mathsf{T}_n$ and the proof is complete.

Theorem 9. Let T be a tree of order n with maximum degree Δ and $n \equiv 1 \pmod{\Delta - 1}$. Then $M_1(T) \leq (\Delta + 2)n - 3\Delta$, with equality if and only if $T \in T_n$.

Proof. Let
$$n = (\Delta - 1)k + 1$$
. Set $r = \frac{n_2 + 2n_3 + ... + (\Delta - 2)n_{\Delta - 1} + 1}{\Delta - 1}$. By (4), $n_{\Delta} = k - (\frac{n_2 + 2n_3 + ... + (\Delta - 2)n_{\Delta - 1} + 1}{\Delta - 1}) = k - r$.

Then clearly $1 \le r \le k-1$ and $1 \le n_{\Lambda} \le k-1$. We consider three cases.

Case 1. r=1. Since $n_{\Delta}=k-1$, it follows from (4) that $n_2+\ldots+(\Delta-2)n_{\Delta-1}=(\Delta-2)$ and by Corollary 7

$$(n_1, n_2, \dots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}) = ((\Delta - 2)k + 1, 0, \dots, 0, 1, k - 1)$$

is the optimal solution. Thus

$$M_{1}(T) \leq n_{1} + 2^{2}n_{2} + \dots + (\Delta - 2)^{2}.n_{\Delta - 2} + (\Delta - 1)^{2}.n_{\Delta - 1} + \Delta^{2}.n_{\Delta}$$
$$= ((\Delta - 2)k + 1) + (\Delta - 1)^{2}(1) + \Delta^{2}(k - 1)$$
$$= (\Delta + 2)n - 3\Delta.$$

Case 2. $2 \le r < \Delta - 1$. As above, $n_2 + \ldots + (\Delta - 2).n_{\Delta - 1} = (\Delta - 2)r + (r - 1)$. Since $r - 1 < \Delta - 2$, it follows from Corollary 7 that

 $(n_1, n_2, ..., n_{r-1}, n_r, n_{r+1}, ..., n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}) = ((\Delta-2)k, 0, ..., 0, 1, 0, ..., 0, r, k-r)$ is the optimal soloution. Since $2 \le r < \Delta - 1$, it is easy to see that $2\Delta(1-r) + (r^2 + r - 2) < 0$ and we have

$$\begin{split} M_1(T) &= n_1 + 4n_2 + \ldots + (\Delta - 2)^2 . n_{\Delta - 2} + (\Delta - 1)^2 . n_{\Delta - 1} + \Delta^2 . n_{\Delta} \\ &= (\Delta - 2)k + r^2 (1) + (\Delta - 1)^2 r + \Delta^2 (k - r) \\ &= (\Delta + 2)(\Delta - 1)k + r^2 + r - 2r\Delta \\ &= (\Delta + 2)n - 3\Delta + 2\Delta(1 - r) + (r^2 + r - 2) \\ &< (\Delta + 2)n - 3\Delta. \end{split}$$

Case 3. $\Delta - 1 \le r \le k - 1$. There are non-negative integers t, s such that $r - 1 = t(\Delta - 2) + s$, $t \ge 1$ and $s < \Delta - 1$. By substituting in (4), we have $n_2 + 2n_3 + \ldots + (\Delta - 2)n_{\Delta - 1} = (\Delta - 2)(r + t) + s$. First let 0 < s. Since $s \le \Delta - 2$, it follows from Corollary 7 that

 $(n_1, n_2, ..., n_s, n_{s+1}, n_{s+2}, ..., n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}) = ((\Delta-2)k - t, 0, ..., 0, 1, 0, ..., 0, 0, r + t, k - r)$ is the optimal solution. Thus

$$\begin{split} M_1(T) &\leq (\Delta-2)k - t + (s+1)^2 + (\Delta-1)^2(r+t) + \Delta^2(k-r) \\ &= (\Delta+2)(\Delta-1)k + (s+1)^2 + r(1-2\Delta) + t\Delta(\Delta-2) \\ &= (\Delta+2)n - 3\Delta - s(\Delta-s-2) - (r-1)(\Delta-1) \\ &< (\Delta+2)n - 3\Delta. \end{split}$$

Now let s = 0. Then the optimal solution is

$$(n_1, n_2, \dots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}) = ((\Delta - 2)k - t + 1, 0, \dots, 0, r + t, k - r)$$

and we have

$$\begin{split} M_1(T) & \leq (\Delta-2)k - t + 1 + (\Delta-1)^2(r+t) + \Delta^2(k-r) \\ & = (\Delta+2)(\Delta-1)k - r(2\Delta-1) + 1 + t\Delta(\Delta-2) \\ & = (\Delta+2)n - 3\Delta - (\Delta-1)(r-1) \\ & < (\Delta+2)n - 3\Delta. \end{split}$$

As in the proof of Theorem 8 we can see that $M_1(T) = (\Delta + 2)n - 3\Delta$ if and only if $T \in T_n$.

Theorem 10. Let T be a tree of order n with maximum degree Δ and $n \equiv p \pmod{\Delta - 1}$ where $2 \le p \le \Delta - 2$. Then

$$M_1(T) \leq \begin{cases} (\Delta+2)n-2\Delta-2 & p=2\\ (\Delta+2)n-2\Delta-3+p(p-2) & p\geq 3, \end{cases}$$

with equality if and only if $T \in T_n$.

Proof. Let $n = (\Delta - 1)k + p$. Suppose that $r = \frac{n_2 + 2n_3 + ... + (\Delta - 2)n_{\Delta - 1} + (2 - p)}{\Delta - 1}$. By (4),

we have

$$n_{\Delta} = k - (\frac{n_2 + 2n_3 + \dots + (\Delta - 2)n_{\Delta - 1} + (2 - p)}{\Delta - 1}) = k - r.$$

Then clearly $0 \le r \le k-1$ and $1 \le n_\Delta \le k$. We consider four cases.

Case 1. r = 0. Then $n_{\Lambda} = k$ and by (4) we have

$$n_2 + 2n_3 + \dots + (\Delta - 2)n_{\Delta - 1} = (n - 2) - ((\Delta - 1)n_{\Delta}) = ((\Delta - 1)k + p - 2) - (\Delta - 1)k = p - 2.$$

If p = 2, then $n_2 + 2n_3 + ... (\Delta - 2) n_{\Delta - 1} = 0$. This implies that $n_2 = n_3 = ... = n_{\Delta - 1} = 0$ and $n_1 = n - k$ by (2). Thus

$$M_{1}(T) \leq n_{1} + 2^{2}n_{2} + \dots + (\Delta - 1)^{2}.n_{\Delta - 1} + \Delta^{2}.n_{\Delta}$$

$$= (n - k) + \Delta^{2}k$$

$$= n + (\Delta + 1)(\Delta - 1)k$$

$$= n + (\Delta + 1)(n - 2)$$

$$= (\Delta + 2)n - 2\Delta - 2.$$

Now let $2 . Since <math>1 \le p - 2 \le \Delta - 4$ and

 $n_2 + 2n_3 + ...(\Delta - 2)n_{\Delta - 1} = p - 2$, it follows from Corollary 7 that

$$(n_1, n_2, ..., n_{p-2}, n_{p-1}, n_p, ..., n_{\Delta-1}, n_{\Delta}) = (n-k-1, 0, ..., 0, 1, 0, ..., 0, k)$$

is the optimal solution and so

$$M_{1_{max}}(T) \leq n_1 + 4n_2 + \dots + (\Delta - 1)^2 \cdot n_{\Delta - 1} + \Delta^2 \cdot n_{\Delta}$$

$$= (n - k - 1) + (p - 1)^2 (1) + \Delta^2 (k)$$

$$= (\Delta + 1)(\Delta - 1)k + n + p^2 - 2p$$

$$= (\Delta + 1)(n - p) + n + p^2 - 2p$$

$$= (\Delta + 2)n - p\Delta + p^2 - 3p.$$

Case 2. r = 1. Then $n_{\Delta} = k - 1$ and

 $(n_1, n_2, \dots, n_{p-1}, n_p, n_{p+1}, \dots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}) = ((\Delta - 2)k + p - 1, 0, \dots, 0, 1, 0, \dots, 0, 1, k - 1)$

is the optimal solution and since $p \le \Delta - 2$ we have

$$M_{1}(T) = n_{1} + 4n_{2} + \dots + (\Delta - 1)^{2} \cdot n_{\Delta - 1} + \Delta^{2} \cdot n_{\Delta}$$

$$= (\Delta - 2)k + p - 1 + p^{2} + (\Delta - 1)^{2} + \Delta^{2}(k - 1)$$

$$= \Delta k - 2k + p - 1 + p^{2} + \Delta^{2} - 2\Delta + 1 + \Delta^{2}k - \Delta^{2}$$

$$= (\Delta + 2)(\Delta - 1)k + p + p^{2} - 2\Delta$$

$$= (\Delta + 2)(n - p) + p + p^{2} - 2\Delta$$

$$< (\Delta + 2)n - p\Delta + p^{2} - 3p.$$

Case 3. $2 \le r < \Delta - p$. By (4), we have $n_2 + 2n_3 + ... + (\Delta - 2)n_{\Delta - 1} = (\Delta - 2)r + (p + r - 2)$. Since $r - 2 < \Delta - 2$, it follows from Corollary 7 that $(n_1, n_2, ..., n_{p+r-2}, n_{p+r-1}, n_{p+r}, ..., n_{\Delta - 2}, n_{\Delta - 1}, n_{\Delta}) = ((\Delta - 2)k + p - 1, 0, ..., 0, 1, 0, ..., 0, r, k - r)$ is the optimal solution. On the other hand, we deduce from $p \le \Delta - 2$ and $r < \Delta - p$ that $r - 1 + 2(p - \Delta) < \Delta - p - 1 + 2(p - \Delta) = p - \Delta - 1 < 0$ and so $r(r - 1 + 2(p - \Delta)) < 0$. Thus

$$\begin{split} M_{1}(T) &\leq n_{1} + 4n_{2} + \dots + (\Delta - 1)^{2} \cdot n_{\Delta - 1} + \Delta^{2} \cdot n_{\Delta} \\ &= ((\Delta - 2)k + p - 1) + (p + r - 1)^{2} (1) + (\Delta - 1)^{2} (r) + \Delta^{2} (k - r) \\ &= \Delta k - 2k + p - 1 + p^{2} + r^{2} + 1 + 2rp - 2p - 2r + r\Delta^{2} - 2\Delta r + r + \Delta^{2} k - r\Delta^{2} \\ &= (\Delta + 2)(\Delta - 1)k + p^{2} - p - 2\Delta r + r(r + 2p - 1) \\ &= (\Delta + 2)(n - p) + p^{2} - p - 2\Delta r + r(r + 2p - 1) \\ &= (\Delta + 2)n - p\Delta + p^{2} - 3p + r(r - 1 + 2(p - \Delta)) \\ &< (\Delta + 2)n - p\Delta + p^{2} - 3p = M_{1_{max}}(T). \end{split}$$

Case 4. $\Delta - p \le r \le k - 1$. Let $p + r - 2 = t(\Delta - 2) + s$. By substituting in (4), we have $n_2 + 2n_3 + \ldots + (\Delta - 2)n_{\Delta - 1} = (\Delta - 2)(r + t) + s$. If s = 0 then by Corollary 7, $(n_1, n_2, \ldots, n_{\Delta - 2}, n_{\Delta - 1}, n_{\Delta}) = ((\Delta - 2)k + p - t, 0, \ldots, 0, r + t, k - r)$

is the optimal solution. Since $\Delta - p \le r$ and $p \le \Delta - 2$, we have

$$(2p - p^{2} + p\Delta - \Delta r - 2\Delta + r) = p(\Delta - p + 2) - \Delta r - 2\Delta + r$$

$$\leq p(r + 2) - \Delta r - 2\Delta + r$$

$$= (p - \Delta)(r + 2) + r$$

$$< (p - \Delta)(r + 2) + (r + 2)$$

$$= (p - \Delta + 1)(r + 2) < 0.$$

Thus

$$\begin{split} M_{1}(T) &= n_{1} + 4n_{2} + \dots + (\Delta - 1)^{2} \cdot n_{\Delta - 1} + \Delta^{2} \cdot n_{\Delta} \\ &= ((\Delta - 2)k + p - t) + (\Delta - 1)^{2} (r + t) + \Delta^{2} (k - r) \\ &= (\Delta^{2}k + \Delta k - 2k) + \Delta t(\Delta - 2) + p - 2\Delta r + r \\ &= (\Delta + 2)(n - p) + \Delta t(\Delta - 2) + p - 2\Delta r + r \\ &= (\Delta + 2)n - p\Delta - 2p + p\Delta + \Delta r + p - 2\Delta - 2\Delta r + r \\ &= (\Delta + 2)n - p\Delta + p^{2} - 3p + (2p - p^{2} + p\Delta - \Delta r - 2\Delta + r) \\ &< (\Delta + 2)n - p\Delta + p^{2} - 3p. \end{split}$$

Now let 0 < s. Since $s < \Delta - 2$, it follows from Corollary 7 that $(n_1, n_2, \ldots, n_s, n_{s+1}, n_{s+2}, \ldots, n_{\Delta-2}, n_{\Delta-1}, n_{\Delta}) = ((\Delta - 2)k + p - (t+1), 0, \ldots, 0, 1, 0, \ldots, 0, 0, r+t, k-r)$ is the optimal solution. Since $2 \le p \le \Delta - 2$ and $0 < s \le \Delta - 3$, it is straightforward to verify

that
$$p\Delta - p^2 + 2p + s^2 + 2s - \Delta r + r - 2\Delta - \Delta s < 0$$
. Thus

$$M_{1}(T) = n_{1} + 4n_{2} + \dots + (\Delta - 1)^{2} \cdot n_{\Delta - 1} + \Delta^{2} \cdot n_{\Delta}$$

$$= (\Delta - 2)k + p - (t + 1) + (s + 1)^{2} + (\Delta - 1)^{2} (r + t) + \Delta^{2} (k - r)$$

$$= (\Delta^{2}k + \Delta k - 2k) + p + s^{2} + 2s - 2\Delta r + r + \Delta^{2}t - 2\Delta t$$

$$= (\Delta + 2)(\Delta - 1)k + p + s^{2} + 2s - 2\Delta r + r + \Delta t(\Delta - 2)$$

$$= (\Delta + 2)(n - p) + p + s^{2} + 2s - 2\Delta r + r + \Delta (p + r - 2 - s)$$

$$= (\Delta + 2)n - p + s^{2} + 2s - \Delta r + r - 2\Delta - \Delta s$$

$$= (\Delta + 2)n - p\Delta + p^{2} - 3p + (p\Delta - p^{2} + 2p + s^{2} + 2s - \Delta r + r - 2\Delta - \Delta s)$$

$$< (\Delta + 2)n - p\Delta + p^{2} - 3p.$$

Therefore, in all cases $M_1(T) \le \Delta + 2)n - p\Delta + p^2 - 3p$. As in the proof of Theorem 8, we can see that

$$M_1(T) = \begin{cases} (\Delta+2)n - 2\Delta - 2 & p=2\\ (\Delta+2)n - 2\Delta - 3 + p(p-2) & p \ge 3, \end{cases}$$

if and only if $T \in \mathsf{T}_n$. This completes the proof.

We now present a lower bound on the first Zagreb coindex among all trees. Ashrafi et al. [1] proved that for any conneted graph G of order n and size m

$$\overline{M}_1(G) = 2m(n-1) - M_1(G).$$

Next result is an immediate consequence of this equality and Theorem 1.

Corollary 11. Let T be a tree of order n with maximum degree Δ . If $n \equiv p \pmod{\Delta - 1}$, then

$$\overline{M}_{1}(T) \leq \begin{cases} -(\Delta+6)n+2n^{2}+4\Delta-2 & p=0\\ -(\Delta+6)n+2n^{2}+3\Delta+2 & p=1\\ -(\Delta+6)n+2n^{2}+2\Delta+4 & p=2.\\ -(\Delta+6)n+2n^{2}+p\Delta+2-p(p-3) & p\geq 3. \end{cases}$$

REFERENCES

- [1] A. R. Ashrafi, T. Došlić, A. Hamzeh, The Zagreb coindices of graph operations, *Discrete Appl. Math.* **158** (2010), 1571–1578.
- [2] K. C. Das, Sharp bounds for the sum of the squares of the degrees of a graph, *Kragujevac J. Math.* **25** (2003), 31–49.
- [3] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, *Discrete Math.* **285** (2004), 57–66.
- [4] D. de Caen, An upper bound on the sum of squares in a graph, *Discrete Math.* **185** (1998), 245–248.
- [5] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, *Ars. Math. Contemp.* **1** (2008), 66–80.
- [6] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972), 535–538.
- [7] X. L. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Mathematical Chemistry Monograph 1, University of Kragujevac, 2006.
- [8] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after, *Croat. Chem. Acta* **76** (2003), 113–124.
- [9] Ž. Kovijanić Vukićević, G. Popivoda, Chemical trees with extreme values of Zagreb indices and coindices, *Iranian. J. Math. Chem.* **5** (2014) 19–29.
- [10] S. Zhang, W. Wang, T. C. E. Cheng, Bicyclic graphs with the first three smallest and largest values of the first general Zagreb index, *MATCH Commun. Math. Comput. Chem.* **56** (2006), 579–592.
- [11] B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, *Chem. Phys. Lett.* **394** (2004), 93–95.