Some Basic Properties of the Second Multiplicative Zagreb Eccentricity Index

Document Type : Research Paper

Author

Department of Mathematics‎, ‎Kazerun Branch‎, ‎Islamic Azad University‎, ‎P‎. ‎O‎. ‎Box‎: ‎73135-168‎, ‎Kazerun‎, ‎Iran‎

Abstract

‎The second multiplicative Zagreb eccentricity index $E^{*}_{2} ({G})$ of a simple connected‎ graph $G$ is expressed as the product of the weights‎ $\varepsilon_{G}(a)\varepsilon_{G}(b)$ over all edges $ab$ of $G$‎, where $\varepsilon_{G}(a)$ stands for the‎ eccentricity of the vertex $a$ in $G$‎. ‎In this‎ paper‎, ‎some extremal problems on the $E^{*}_{2}$ index over some special graph classes including‎ trees‎, ‎unicyclic graphs and bicyclic graphs are examined‎, ‎and‎ ‎the corresponding extremal graphs are characterized‎. ‎Besides‎, ‎the relationships between this vertex-eccentricity-based graph invariant and some well-known parameters of graphs and existing graph invariants such as the number of vertices‎, ‎number of edges‎, ‎minimum vertex degree‎, ‎maximum vertex degree‎, ‎eccentric connectivity index‎, ‎connective eccentricity index‎, ‎first multiplicative Zagreb eccentricity index and second multiplicative Zagreb index are investigated‎.

Keywords

Main Subjects


[1] N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.
[2] A. R. Ashrafi and M. V. Diudea, Distance, Symmetry, and Topology in Carbon Nanomaterials, Springer, Cham, Switzerland, 2016.
[3] V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: a novel highly discriminating topological descriptor for structure–property and structure–activity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273–282, https://doi.org/10.1021/ci960049h.
[4] A. R. Ashrafi, T. Došlic and M. Saheli, The eccentric connectivity index of TUC4C8(R) nanotubes, MATCH Commun. Math. Comput. Chem. 65 (2011) 221–230.
[5] A. R. Ashrafi, M. Saheli and M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, J. Comput. Appl. Math. 235 (2011) 4561–4566, https://doi.org/10.1016/j.cam.2010.03.001.
[6] T. Došlic, M. Saheli and D. Vukicevic, Eccentric connectivity index: extremal graphs and values, Iranian J. Math. Chem. 1 (2010) 45–56, https://doi.org/10.22052/IJMC.2010.5154.
[7] T. Došlic, A. Graovac and O. Ori, Eccentric connectivity indices of hexagonal belts and chains, MATCH Commun. Math. Comput. Chem. 65 (2011) 745–752.
[8] A. Ilic and I. Gutman, Eccentric connectivity index of chemical trees, MATCH Commun. Math. Comput. Chem. 65 (2011) 731–744.
[9] M. Tavakoli, F. Rahbarnia and A. R. Ashrafi, Tricyclic and tetracyclic graphs with maximum and minimum eccentric connectivity, Iran. J. Math. Sci. Inform 11 (2016) 137–143.
[10] Y. Nacaroˇglu and A. D. Maden, On the eccentric connectivity index of unicyclic graphs, Iranian J. Math. Chem. 9 (2018) 47–56, https://doi.org/10.22052/IJMC.2017.59425.1231.
[11] Y. Wu and Y. Chen, On the extremal eccentric connectivity index of graphs, Appl. Math. Comput. 331 (2018) 61–68, https://doi.org/10.1016/j.amc.2018.02.042.
[12] D. Vukicevic and A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Slov. 57 (2010) 524–528.
[13] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total - electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538, https://doi.org/10.1016/0009-2614(72)85099-1.
[14] I. Gutman, B. Rušcic, N. Trinajstic and C. F. Wilcox Jr, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405, https://doi.org/10.1063/1.430994.
[15] R. Xing, B. Zhou and N. Trinajstic, On Zagreb eccentricity indices, Croat. Chem. Acta 84 (2011) 493–497, https://doi.org/10.5562/cca1801.
[16] M. Ghorbani and M. A. Hosseinzadeh, A new version of Zagreb indices, Filomat, 26 (2012) 93–100, https://doi.org/10.2298/FIL1201093G.
[17] Z. Du, B. Zhou and N. Trinajstic, Extremal properties of the Zagreb eccentricity indices, Croat. Chem. Acta 85 (2012) 359–362, http://dx.doi.org/10.5562/cca2020.
[18] K. C. Das, D. W. Lee and A. Graovac, Some properties of the Zagreb eccentricity indices, Ars Math. Contemp. 6 (2013) 117–125, https://doi.org/10.26493/1855-3974.237.48a.
[19] M. Azari, A. Iranmanesh and M. V. Diudea, Vertex-eccentricity descriptors in dendrimers, Stud. Univ. Babes-Bolyai Chem. 62 (2017) 129–142, https://doi.org/10.24193/subbchem.2017.1.11.
[20] X. Qi and Z. Du, On Zagreb eccentricity indices of trees, MATCH Commun. Math. Comput. Chem. 78 (2017) 241–256.
[21] J. Li and J. Zhang, On the second Zagreb eccentricity indices of graphs, Appl. Math. Comput. 352 (2019) 180–187.
[22] M. Azari, Further results on Zagreb eccentricity coindices, Discrete Math. Algorithms Appl. 12 (2020) p. 2050075, https://doi.org/10.1142/S1793830920500755.
[23] N. De, On multiplicative Zagreb eccenticity indices, South Asian J. Math. 2 (2012) 570–577.
[24] Z. Luo and J. Wu, Multiplicative Zagreb eccentricity indices of some composite graphs, Trans. Comb. 3 (2014) 21–29.
[25] R. Todeschini and V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. 64 (2010) 359–372.
[26] S. Gupta, M. Singh and A. K. Madan, Connective eccentricity index: A novel topological descriptor for predicting biological activity, J. Mol. Graph. Model. 18 (2000) 18–25, https://doi.org/10.1016/S1093-3263(00)00027-9.
Volume 15, Issue 1
Special Issue Dedicated to the memory of Professor Ali Reza Ashrafi (University of Kashan, I.R. Iran), who was the creator and the Editor-in-Chief of IJMC for 14 years.
March 2024
Pages 17-25