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Abstract

The second multiplicative Zagreb eccentricity index E∗2 (G)
of a simple connected graph G is expressed as the product of
the weights εG(a)εG(b) over all edges ab of G, where εG(a)
stands for the eccentricity of the vertex a in G. In this paper,
some extremal problems on the E∗2 index over some special
graph classes including trees, unicyclic graphs and bicyclic
graphs are examined, and the corresponding extremal graphs
are characterized. Besides, the relationships between this
vertex-eccentricity-based graph invariant and some well-known
parameters of graphs and existing graph invariants such as the
number of vertices, number of edges, minimum vertex degree,
maximum vertex degree, eccentric connectivity index, connec-
tive eccentricity index, first multiplicative Zagreb eccentricity
index and second multiplicative Zagreb index are investigated.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction
In this paper, our focus is on graphs that are finite, simple, and connected. For a given graph
G, the symbols V (G) and E(G) show the vertex set and the edge set of G, respectively. The
degree dG(a) of a ∈ V (G) is the number of vertices joined to a with an edge. By δ and ∆, we
mean the minimum degree and maximum degree of G, respectively. A vertex a ∈ V (G) is said
pendant if dG(a) = 1. If dG(a) = dG(b) for all a, b ∈ V (G), then G is said to be regular. If,
in addition, ∆ = r, then G is called r-regular. For positive integers r1, r2, r1 6= r2, we call G
is (r1, r2)-semi-regular if the set V (G) can be partitioned to the nonempty subsets V1 and V2,
where Vi = {a ∈ V (G) : dG(a) = ri}, i ∈ {1, 2}. The distance dG(a, b) between a, b ∈ V (G)
is the length of any shortest a − b path in G. The eccentricity εG(a) of a ∈ V (G) is defined
as εG(a) = max{dG(b, a) : b ∈ V (G)}. The diameter d(G) and the radius r(G) are defined to
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be the sets d(G) = max{εG(a) : a ∈ V (G)} and r(G) = min{εG(a) : a ∈ V (G)}. The total
eccentricity of G is ζ(G) =

∑
a∈V (G) εG(a). A non-isolated vertex a ∈ V (G) is called universal

if εG(a) = 1. If εG(a) = εG(b) for all a, b ∈ V (G), then G is said to be self-centered. If, in
addition, d(G) = s, then G is called s-self-centered.

A topological index is a real-valued parameter that describes the topology of a graph and
remains invariant by any isomorphism of a graph. Topological indices are used in organic
chemistry as effective tools in QSAR1 , QSPR2 and QSTR3 investigations [1, 2].

The best-known topological index which is dependent on the eccentricity and degree of
vertices in graph is the eccentric connectivity index. This invariant was suggested by Sharma
et al. [3] in 1997 and formulated by

ξc(G) =
∑

a∈V (G)

dG(a)εG(a) =
∑

ab∈E(G)

(εG(a) + εG(b)).

The ξc index has been successfully applied to mathematical models of biological activities of
different natures. For its basic and general properties and applications, refer to [4–11].

After the introduction of the ξc index, several modifications of this index have been put
forward in the literature. The foremost ones are the first and second Zagreb eccentricity indices
which have been considered by Vukičević and Graovac [12] in 2010. They are formulated for
graph G as

E1(G) =
∑

a∈V (G)

εG(a)
2

and E2(G) =
∑

ab∈E(G)

εG(a)εG(b).

These indices are considered as the eccentricity version of the well-known first and second
Zagreb indices [13, 14]. Further results on them can be seen in [15–22].
The multiplicative version of E1 and E2 indices were proposed by De [23] in 2012 as:

E∗1 (G) =
∏

a∈V (G)

εG(a)
2

and E∗2 (G) =
∏

ab∈E(G)

εG(a)εG(b).

The second one, E∗2 , can also be formulated by

E∗2 (G) =
∏

a∈V (G)

εG(a)dG(a).

De [23] obtained several bounds on E∗1 and E∗2 indices in terms of certain graph parameters. Luo
and Wu [24] studied these graph invariants for some families of product graphs. In this paper,
our focus is on some basic mathematical properties of the E∗2 index. At first, we compute the
values of E∗2 index for some specific graphs. Then, we solve some extremal problems concerning
to E∗2 index over some collections of graphs like trees, unicyclic graphs and bicyclic graphs.
In addition, we give several new and sharp bounds (upper and lower) on the E∗2 index which
clarify its connection to some previously-introduced indices.

2 Extremal properties
In this section, we study some extremal problems on the E∗2 index over certain graph classes
including trees, unicyclic graphs and bicyclic graphs and characterize the extremal graphs.

1Quantitative Structure-Activity Relationship
2Quantitative Structure-Property Relationship
3Quantitative Structure-Toxicity Relationship
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In the rest of the paper, Tn, Un, Bn, Gn, Gm and Gn,m, stand for the set of trees on n
vertices, the set of unicyclic graphs on n vertices, the set of bicyclic graphs on n vertices, the
set of connected graphs on n vertices, the set of connected graphs on m edges, and the set of
connected graphs on n vertices and m edges, respectively.

The values of the E∗2 index for cycle, star, and complete graph on n vertices were given in
[23] as follows:

E∗2 (Cn) = bn
2
c2n, E∗2 (Sn) = 2n−1, E∗2 (Kn) = 1.

In the following lemma, we give the values of this invariant for a path on n vertices and the
complete bipartite graph on r + s vertices. The results can be deduced straightforwardly from
the definition and their proofs are hence not given.

Lemma 2.1. The following relations hold.

(i) E∗2 (Pn) =

 (n− 1)2
∏n

2−1
i=1 (n− (i+ 1))4 2 | n,

1
4

∏n−1
2

i=1 (n− i)4 2 - n;

(ii) E∗2 (Kr,s) = 4rs.

Theorem 2.2. Let T ∈ Tn and n ≥ 3. Then

E∗2 (T ) ≥ E∗2 (Sn), (1)

with equality if and only if T ∼= Sn.

Proof. Note that T has no edge ab with εT (a) = εT (b) = 1, as T contains no cycle and n ≥ 3.
Hence for each ab ∈ E(T ), εT (a)εT (b) ≥ 2 and we arrive at

E∗2 (T ) =
∏

ab∈E(T )

εT (a)εT (b) ≥
∏

ab∈E(T )

2 = 2n−1 = E∗2 (Sn),

and (1) follows. The equality occurs in (1) if and only if for each ab ∈ E(T ), εT (a) = 1 and
εT (b) = 2, which implies that T ∼= Sn. �

Theorem 2.3. For each T ∈ Tn,

E∗2 (T ) ≤ E∗2 (Pn), (2)

with equality if and only if T ∼= Pn.

Proof. Let V (T ) = {b1, b2, ..., bn} and d is the diameter of T . If T ∼= Pn, then there is not
anything to prove. Hence, suppose that T � Pn. Then n ≥ 4, d ≤ n− 2, and T contains more
than two pendant vertices. Let Pd+1 : b1b2...bd+1 be a path of length d in T . Let εi denote the
eccentricity of vertex bi in T , 1 ≤ i ≤ n. Thus εi = max{dT (bi, b1), dT (bi, bd+1)}. As T is a
tree, vertices b1 and bd+1 must be pendant. Let bk (k 6= 1, d+ 1) be a pendant vertex incident
with bl in T . Let T ′ ∈ Tn be derived from T by removing the edge bkbl and joining the vertices
bd+1 and bk by an edge. So V (T ′) = V (T ) and E(T ′) = (E(T ) \ {bkbl}) ∪ {bkbd+1}. Thus the
path Pd+2 : b1b2...bd+1bk whose length is d+ 1 has the maximum length in T ′. Let ε′i = εT ′(bi),
1 ≤ i ≤ n. Then for each 1 ≤ i ≤ n, i 6= k, we have

ε′i = max{dT ′(bi, b1), dT ′(bi, bk)} = max{dT (bi, b1), dT (bi, bd+1) + 1}
≥max{dT (bi, b1), dT (bi, bd+1)} = εi,
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and ε′k = d + 1 > d ≥ εk. This implies that, for each brbs ∈ E(T ) \ {bkbl}, ε′rε′s ≥ εrεs, and
ε′kε
′
d+1 = (d+ 1)d > d2 ≥ εkεl. Now the definition of the E∗2 index implies,

E∗2 (T ′) =
∏

brbs∈(E(T )\{bkbl})∪{bkbd+1}

ε′rε
′
s = ε′kε

′
d+1 ×

∏
brbs∈E(T )\{bkbl}

ε′rε
′
s

>εkεl ×
∏

brbs∈E(T )\{bkbl}

εrεs =
∏

brbs∈E(T )

εrεs = E∗2 (T ).

So E∗2 (T ′) > E∗2 (T ). Based on the aforementioned construction, the amount of E∗2 (T ) has been
increased. If T ′ ∼= Pn, then E∗2 (T ) < E∗2 (T ′) = E∗2 (Pn), and (2) holds. If T ′ � Pn, then by
repetition of the process as many as necessary, we reach a tree whose maximum degree equals
2, which is Pn. �

Theorem 2.4. Let G ∈ Gn,m and k indicate the number of universal vertices of G. Then

E∗2 (G) ≥ 22m−k(n−1), (3)

with equality if and only if G has a diameter at most 2.

Proof. From the definition of the E∗2 index,

E∗2 (G) =
∏

a∈V (G)

εG(a)dG(a) =
∏

a∈V (G):
εG(a)=1

1n−1 ×
∏

a∈V (G):
εG(a)≥2

εG(a)dG(a)

≥
∏

a∈V (G):
εG(a)≥2

2dG(a) = 2

∑
a∈V (G):
εG(a)≥2

dG(a)

= 2

2m−
∑
a∈V (G):
εG(a)=1

dG(a)

=22m−k(n−1),

from that (3) follows. The equality happens in (3) if and only if vertices of G have eccentricity
1 or 2 which implies that G has diameter at most two. �

As a result of Theorem 2.4, we obtain:

Corollary 2.5. Let G ∈ Gm have a radius of at least 2. Then

E∗2 (G) ≥ 4m,

with equality if and only if G is a 2-self-centered graph.

Now we apply Corollary 2.5 to get a Nordhaus-Gaddum result for the E∗2 index.

Theorem 2.6. Let G ∈ Gn with n ≥ 4 and connected complement G. Then

E∗2 (G)E∗2 (G) ≥ 2n(n−1), (4)

with equality if and only if both G and G are 2-self-centered.

Proof. Let G have m edges. Since G and G are connected graphs, both of them have a radius
of at least 2. Now by Corollary 2.5, we have

E∗2 (G)E∗2 (G) ≥ 4m × 4(n2)−m = 2n(n−1),

from that the inequality (4) follows. Based on Corollary 2.5, the equality holds in (4) if and
only if G and G both are 2-self centered. �
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It is obvious that, for any G ∈ Gn, E∗2 (G) ≥ E∗2 (Kn), with equality if and only if G ∼= Kn.
Hence, among the members of Gn, Kn is the unique graph having the minimum amount of the
E∗2 index.

Theorem 2.7. Let G ∈ Un and n ≥ 4. Then

E∗2 (G) ≥ 2n+1,

and the equality occurs if and only if G is derived from Sn by adding an edge between two
pendant vertices.

Proof. The unique member of Un with n ≥ 4 vertices and radius 1 is the graph derived from
Sn by adding an edge between two pendant vertices for which we have:

E∗2 (G) = (2× 2)(1× 2)n−1 = 2n+1.

If r(G) ≥ 2, then by Corollary 2.5 we have

E∗2 (G) ≥ 4n = 22n > 2n+1,

from which the result holds. �

Theorem 2.8. Let G ∈ Bn and n ≥ 5. Then

E∗2 (G) ≥ 2n+3,

with equality if and only if G is the graph derived from Sn by adding two edges.

Proof. The unique member of Bn with n ≥ 5 vertices and radius 1 is the graph derived by
adding two edges to Sn for which we have:

E∗2 (G) = (2× 2)2(1× 2)n−1 = 2n+3.

If r(G) ≥ 2, then Corollary 2.5 implies,

E∗2 (G) ≥ 4n+1 = 22n+2 > 2n+3,

and the proof is completed. �

3 Relations with other invariants

In this section, some new and sharp bounds on the E∗2 index are given. These bounds will
reveal the connection between E∗2 and a number of previously-introduced indices.

Theorem 3.1. For each connected graph G,

E∗1 (G)
δ
2 ≤ E∗2 (G) ≤ E∗1 (G)

∆
2 . (5)

The equality holds on both sides of (5) if and only if G is regular.
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Proof. Considering the fact that for each vertex a ∈ V (G), δ ≤ dG(a) ≤ ∆, we get

E∗2 (G) =
∏

a∈V (G)

εG(a)dG(a) ≤
∏

a∈V (G)

εG(a)
∆

=
∏

a∈V (G)

(
εG(a)

2
)∆

2

= E∗1 (G)
∆
2 ,

E∗2 (G) ≥
∏

a∈V (G)

εG(a)
δ

=
∏

a∈V (G)

(
εG(a)

2
) δ

2

= E∗1 (G)
δ
2 .

The equality holds in (5) if and only if for each a ∈ V (G), dG(a) = ∆ = δ, that is G is
regular. �

Theorem 3.2. For any nontrivial graph G ∈ Gn,

E∗2 (G) ≤ E∗1 (G)
n−2

2 , (6)

with equality if and only if G ∼= Kn or G is (n− 2)-regular or (n− 1, n− 2)-semi-regular.

Proof. By definition of the E∗2 index,

E∗2 (G) =
∏

a∈V (G)

εG(a)dG(a)

=
∏

a∈V (G):
εG(a)=1

1n−1 ×
∏

a∈V (G):
εG(a)≥2

εG(a)dG(a)

≤
∏

a∈V (G):
εG(a)≥2

εG(a)n−2 =
∏

a∈V (G):
εG(a)≥2

(
εG(a)2

)n−2
2

= E∗1 (G)
n−2

2 ,

and the inequality (6) is deduced. The equality holds in (6) if and only if for each vertex
a ∈ V (G), with εG(a) ≥ 2, dG(a) = n − 2. This happens if and only if the degrees of vertices
of G are either n− 1 or n− 2, from which we deduce that, G ∼= Kn or G is (n− 2)-regular or
(n− 1, n− 2)-semi-regular. �

It is interesting to note that, for graphs with radius at least 2, the upper bound presented
in (5) is stronger than the one given in (6), while for non-complete graphs with radius 1, the
bound in (6) is better than the one in (5).

Theorem 3.3. For a nontrivial graph G ∈ Gm,

E∗2 (G) ≤
(ξc(G)

2m

)2m
, (7)

with equality if and only if G is self-centered.

Proof. Applying the arithmetic-geometric mean inequality gives

E∗2 (G) =
∏

a∈V (G)

εG(a)
dG(a)

≤
(∑

a∈V (G) dG(a)εG(a)∑
a∈V (G) dG(a)

)∑a∈V (G) dG(a)

=
(ξc(G)

2m

)2m
,

and (7) holds. The equality holds in (7) if and only if for each a ∈ V (G), εG(a) is constant.
This happens if and only if G is self-centered. �
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The second multiplicative Zagreb index was put forward by Todeschini and Consonni [25] in
2010 and formulated for graph G as:

Π2(G) =
∏

ab∈E(G)

dG(a)dG(b) =
∏

a∈V (G)

dG(a)
dG(a)

.

The subsequent theorem provides an upper bound on E∗2 (G) in terms of Π2(G).

Theorem 3.4. For any G ∈ Gm,

E∗2 (G) ≤ Π2(G)
(ζ(G)

2m

)2m
, (8)

with equality if and only if for any a ∈ V (G), εG(a)
dG(a) is constant.

Proof. Application of arithmetic-geometric mean inequality gives,

E∗2 (G)

Π2(G)
=

∏
a∈V (G) εG(a)dG(a)∏
a∈V (G) dG(a)dG(a)

=
∏

a∈V (G)

( εG(a)

dG(a)

)dG(a)

≤
(∑

a∈V (G) dG(a)× εG(a)
dG(a)∑

a∈V (G) dG(a)

)∑
a∈V (G) dG(a)

=
(ζ(G)

2m

)2m
.

Then inequality in (8) is concluded. The equality holds in (8) if and only if for any a ∈ V (G),
εG(a)
dG(a) is constant. �

The connective eccentricity index of G was formulated by Gupta et al. [26] in 2000 by

ξce(G) =
∑

a∈V (G)

dG(a)

εG(a)
=

∑
ab∈E(G)

( 1

εG(a)
+

1

εG(b)

)
.

The theorem below contains a lower bound on E∗2 (G) based on ξce(G).

Theorem 3.5. For any nontrivial graph G ∈ Gm,

E∗2 (G) ≥
( 2m

ξce(G)

)2m
, (9)

with equality if and only if G is self-centered.

Proof. Application of the geometric-harmonic mean inequality implies,

2m

√
E∗2 (G) = 2m

√ ∏
a∈V (G)

εG(a)
dG(a) ≥ 2m∑

a∈V (G)
dG(a)
εG(a)

=
2m

ξce(G)
,

from which the inequality (9) holds with equality if and only if G is self-centered. �
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