Degree-Based Function Index of Graphs with Given Connectivity

Document Type : Research Paper

Author

Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South Africa

Abstract

‎We investigate the‎~ ‎index $I_{f} (G) = \sum_{vw \in E(G)} f(d_G (v),d_G (w))$ of a graph $G$‎, ‎where $f$ is a symmetric function of two variables satisfying certain conditions‎, ‎$E(G)$ is the edge set of $G$‎, ‎and $d_G (v)$ and $d_G (w)$ are the degrees of vertices $v$ and $w$ in $G$‎, ‎respectively‎. ‎Those conditions are satisfied by functions that can be used to define the general sum-connectivity index $\chi_{a}$‎, ‎general Randi'{c} index $R_{a}$‎, ‎general reduced second Zagreb index $GRM_a$ for some $a \in \mathbb{R}$‎, ‎general Sombor index $SO_{a,b}$‎, ‎general augmented Zagreb index $AZI_{a,b}$ and by one other generalization $M_{a,b}$ for some $a‎, ‎b \in \mathbb{R}$‎. ‎The general augmented Zagreb index is a new index defined in this paper‎.
 
‎We obtain a sharp upper bound on $I_f$ for graphs with given order and connectivity‎, ‎and a sharp lower bound on $I_f$ for $2$-connected graphs with given order‎. ‎Our upper bound holds for $M_{a,b}$ and $SO_{a,b}$ where $a‎, ‎b \ge 1$; $\chi_a$ and $R_a$ where $a \ge 1$; and $GRM_{a}$ where $a >‎ -1$. ‎Our lower bound holds for $M_{a,b}$ where $a \ge 0$ and $b \ge‎ -‎a$; $SO_{a,b}$ where $a‎, ‎b \ge 0$ or $a‎, ‎b \le 0$; $AZI_{a,b}$ where $a \ge‎ -‎2$ and $b \ge 0$; $\chi_a$ and $R_a$ where $a \ge 0$; and $GRM_{a}$ where $a >‎ -‎2$.

Keywords

Main Subjects


[1] B. Zhou and N. Trinajstic, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210–218, https://doi.org/10.1007/s10910-009-9542-4.
[2] B. Bollobás and P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998) 225-233.
[3] I. Gutman, E. Milovanovic and I. Milovanovic, Beyond the Zagreb indices, AKCE Int. J. Graphs Combin. 17 (1) (2020) 74–85, https://doi.org/10.1016/j.akcej.2018.05.002.
[4] V. R. Kulli, The Gourava indices and coindices of graphs, Ann. Pure Appl. Math. 14 (1) (2017) 33–38, https://doi.org/10.22457/apam.v14n1a4.
[5] V. R. Kulli, On hyper Gourava indices and coindices, Int. J. Math. Arch. 8 (12) (2017) 116–120.
[6] J. C. Hernández, J. M. Rodríguez, O. Rosario and J. M. Sigarreta, Extremal problems on the general Sombor index of a graph, AIMS Math. 7 (5) (2022) 8330–8343, https://doi.org/10.3934/math.2022464.
[7] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.
[8] B. Horoldagva, L. Buyantogtokh, K. C. Das and S.-G. Lee, On general reduced
second Zagreb index of graphs, Hacet. J. Math. Stat. 48 (4) (2019) 1046–1056, https://doi.org/10.15672/HJMS.2019.660.
[9] Z. Hu, L. Li, X. Li and D. Peng, Extremal graphs for topological index defined by a degreebased edge-weight function, MATCH Commun. Math. Comput. Chem. 88 (3) (2022) 505– 520, https://doi.org/10.46793/match.88-3.505H.
[10] A. Ali and D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, Discrete Appl. Math. 238 (2018) 32–40, https://doi.org/10.1016/j.dam.2017.12.007.
[11] A. Ali, I. Gutman, H. Saber and A. M. Alanazi, On bond incident degree indices of (n;m)-graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 89–96, https://doi.org/10.46793/match.87-1.089A.
[12] J. B. Liu, A. Q. Baig, M. Imran, W. Khalid, M. Saeed and M. R. Farahani, Computation of bond incident degree (BID) indices of complex structures in drugs, Eurasian Chem. Commun. 2 (6) (2020) 672–679.
[13] J. Ye, M. Liu, Y. Yao and K. C. Das, Extremal polygonal cacti for bond incident degree indices, Discrete Appl. Math. 257 (2019) 289–298, https://doi.org/10.1016/j.dam.2018.10.035.
[14] W. Zhou, S. Pang, M. Liu and A. Ali, On bond incident degree indices of connected graphs with fixed order and number of pendent vertices, MATCH Commun. Math. Comput. Chem. 88 (3) (2022) 625–642, https://doi.org/10.46793/match.88-3.625Z.
[15] R. Cruz and J. Rada, The path and the star as extremal values of vertex-degree-based topological indices among trees, MATCH Commun. Math. Comput. Chem. 82 (2019) 715–732.
[16] D. He, Z. Ji, C. Yang and K. C. Das, Extremal graphs to vertex degree function index for convex functions, Axioms 12 (1) (2022) p. 31, https://doi.org/10.3390/axioms12010031.
[17] Z. Hu, X. Li and D. Peng, Graphs with minimum vertex-degree function-index for convex functions, MATCH Commun. Math. Comput. Chem. 88 (3) (2022) 521–533, https://doi.org/10.46793/match.88-3.521H.
[18] I. Tomescu, Extremal vertex-degree function index for trees and unicyclic graphs with given independence number, Discrete Appl. Math. 306 (2022) 83–88, https://doi.org/10.1016/j.dam.2021.09.028.
[19] I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (1) (2022) 109–114, https://doi.org/10.46793/match.87-1.109T.
[20] T. Vetrík, Degree-based function index for graphs with given diameter, Discrete Appl. Math. 333 (2023) 59–70, https://doi.org/10.1016/j.dam.2023.02.018.
[21] T. Vetrík, General approach for obtaining extremal results on degree-based indices illustrated on the general sum-connectivity index, Electron. J. Graph Theory Appl. 11 (1) (2023) 125–133, http://doi.org/10.5614/ejgta.2023.11.1.10.
[22] M. Azari and A. Iranmanesh, Generalized Zagreb index of graphs, Stud. Univ. Babes-Bolyai Chem. 56 (3) (2011) 59–70.
[23] M. Aghel, A. Erfanian and T. Dehghan-Zadeh, Upper and lower bounds for the first and second Zagreb indices of quasi bicyclic graphs, Iranian J. Math. Chem. 12 (2) (2021) 79–88, https://doi.org/10.22052/IJMC.2021.202592.1466.
[24] S. Salimi and A. Iranmanesh, Topological indices of a kind of altans, Iranian J. Math. Chem. 12 (4) (2021) 217–224, https://doi.org/10.22052/IJMC.2021.242983.1577.
[25] H. Chen and Q. Guo, On maximum Zagreb indices of bipartite graphs with a given connectivity, Asian-Eur. J. Math. 16 (3) (2023) p. 2350038, https://doi.org/10.1142/S1793557123500389.
[26] I. Tomescu, M. Arshad and M. K. Jamil, Extremal topological indices for graphs of given connectivity, Filomat 29 (7) (2015) 1639–1643.
[27] H. Whitney, Congruent graphs and the connectivity of graphs, Am. J. Math. 54 (1) (1932) 150–168, https://doi.org/10.2307/2371086.