On the Minimal Unicyclic and Bicyclic Graphs with Respect to the Neighborhood First Zagreb Index

Document Type : Research Paper

Authors

1 Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore Campus, B-Block, Faisal Town, Lahore, PakistanCES, Lahore, Pakistan

2 Department of Mathematics, University of Gujrat, Gujrat, Pakistan

3 Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore Campus, B-Block, Faisal Town, Lahore, Pakistan

Abstract

The neighborhood first Zagreb index has recently been introduced for characterizing the topological structure of molecular graphs. In the present study, we characterize the graphs having minimum neighborhood first Zagreb index in the class of unicyclic/bicyclic graphs on vertices for every fixed integer n ≥ 5.

Keywords


  1. Abdo, D. Dimitrov, T. Réti and D. Stevanović, Estimation of the spectral radius of graph by the second Zagreb index, MATCH Commun. Math. Comput. Chem. 72 (3) (2014) 741–751.
  2. Ali, I. Gutman, E. Milovanović and I. Milovanović, Sum of powers of the degrees of graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (1) (2018) 5–84.
  3. Ali, Z. Raza and A. A. Bhatti, Bond incident degree (BID) indices of polyomino chains: a unified approach, Appl. Math. Comput. 287 (2016) 28–37.
  4. Ali, L. Zhong and I. Gutman, Harmonic index and its generalizations: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 81 (2) (2019) 249–311.
  5. Bonchev and L. B. Kier, Topological atomic indices and the electronic changes in alkanes, J. Math. Chem. 9 (1992) 75–85.
  6. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (1) (2017) 17–100.
  7. C. Das, Maximizing the sum of the squares of the degrees, Discrete Math. 285 (2004) 57–66.
  8. C. Das, K. Xu and J. Nam, Zagreb indices of graphs, Front. Math. China 10 (3) (2015) 567–582.
  9. Došlic and T. Réti, Novel degree-based molecular descriptors with increased discriminating power, Acta Polytech. Hung. 9 (2012) 17–30.
  10. Fajtlowicz, On conjectures of Graffiti. II, Congr. Numer. 60 (1987) 187–197.
  11. Ghorbani and M. A. Hosseinzadeh, Computing ABC4 index of nanostar den- drimers, Optoelectron. Adv. Mater. Rapid Commun. 4 (9) (2010) 1419–1422.
  12. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.
  13. Graovac, M. Ghorbani and M. A. Hosseinzadeh, Computing fifth geometric-arithmetic index for nanostar dendrimers, J. Math. Nanosci. 1 (1) (2011) 33–42.
  14. L. Gross and J. Yellen, Graph Theory and Its Applications, 1st Ed. CRC Press, Boca Raton, Florida, 1998.
  15. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (4) (2013) 351–361.
  16. Gutman and K. C. Das, The first Zagreb indices 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
  17. Gutman, E. Milovanović and I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graph. Comb. 17 (1) (2020) 74–85.
  18. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405.
  19. Gutman and J. Tošović, Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices, J. Serb. Chem. Soc. 78 (6) (2013) 805–810.
  20. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
  21. M. Hagos, Some results on graph spectra, Linear Algebra Appl. 356 (2002) 103–111.
  22. Harary, Graph Theory, Addison-Wesley Publishing Company, New York, 1969.
  23. Liu and Z. You, A survey on comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 65 (3) (2011) 581–593.
  24. Ž. Milovanović, V. M. Ćirić, I. Z. Milentijević and E. I. Milovanović. On some spectral, vertex and edge degree-based graph invariants, MATCH Commun. Math. Comput. Chem. 77 (1) (2017) 177–188.
  25. Mondal, N. De and A. Pal, On neighbourhood Zagreb index of product graphs, arXiv:1805.05273v1[math.CO] (2018).
  26. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2) (2003) 113–124.
  27. Réti, A. Ali, P. Vargal and E. Bitay, Some properties of the neighborhood first Zagreb index, Discrete Math. Lett. 2 (2019) 10–17.
  28. Réti, I. Gutman and D. Vukičević, On Zagreb indices of pseudo-regular graphs, J. Math. Nanosci.1 (1) (2011) 1–12.
  29. Stevanović, Spectral Radius of Graphs, Elsevier Academic Press, Amsterdam, 2015.
  30. A. Toropov, A. P. Toropova, T. T. Ismailov, N. L. Voropaeva and I. N. Ruban, Extended molecular connectivity: predication of boiling points of alkanes, J. Struct. Chem. 38 (1997) 965–969.
  31. Wang and B. Zhou, On the first extended zeroth-order connectivity index of trees, Iran. J. Sci. Tech. A 38 (A3) 2014) 213–219.
  32. Yu, M. Lu and F. Tian, On the spectral radius of graphs, Linear Algebra Appl. 387 (1) (2004) 41–49.
  33. Zhou and N. Trinajstić,On extended connectivity indices, J. Math. Chem. 46 (4) (2009) 1172–1180.