

Original Scientific Paper

On the Minimal Unicyclic and Bicyclic Graphs with respect to the Neighborhood First Zagreb Index

SHAMAILA YOUSAF ^{1,2,•}AND AKHLAQ AHMAD BHATTI¹

¹ Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore Campus, B-Block, Faisal Town, Lahore, Pakistan ² Department of Mathematics, University of Gujrat, Gujrat, Pakistan

ARTICLE INFO

ABSTRACT

Article History:	The neighborhood first Zagreb index has recently been introduced
Received: 4 July 2021	for characterizing the topological structure of molecular graphs. In
Accepted: 9 May 2022	the present study, we characterize the graphs having minimum
Published online: 30 June 2022	neighborhood first Zagreb index in the class of unicyclic/bicyclic
Academic Editor: Boris Furtula	graphs on <i>n</i> vertices for every fixed integer $n \ge 5$.
Keywords:	
Chemical graph theory	
First Zagreb index	
Neighborhood topological indices	
Neighborhood first Zagreb index	
Unicyclic graphs	
Bicyclic graphs	
	\odot 2022 University of Kashan Press. All fights reserved

1. INTRODUCTION

All the graphs discussed here are simple, connected, finite and undirected. For further basic notions of graph theory, we refer the reader to some relevant books [12, 14, 29].

The first Zagreb index M_1 (appeared within a formula derived in [20]) and the second Zagreb index M_2 (introduced in [18]) for a graph H can be defined as: $M_1(H) = \sum_{v_1 \in V(H)} d(v_1)^2 = \sum_{v_1 v_2 \in E(H)} (d(v_1) + d(v_2))$ and $M_2(H) = \sum_{v_1 v_2 \in E(H)} d(v_1) d(v_2)$.

[•]Corresponding author (Email: shumaila.yousaf@uog.edu.pk).

DOI: 10.22052/IJMC.2022.242939.1571

The theory of Zagreb indices is deep rooted; for example, see the papers [1, 2, 8, 15, 16, 19, 20, 23, 24, 26, 28], recent surveys [3, 4, 6, 17] and related references listed therein.

For a vertex $w \in V(H)$, different researchers use different notations for representing the sum of degrees of the adjacent to w in literature, however, we use the notations $S_H(w)$ or Simply S(w) or S_w , due to the simple reason, as S used for sum. The average-degree [32](also known as dual degree [10]) of a vertex $w \in V(H)$ is the number $\frac{s(w)}{d(w)}$ and we denote it by a(w). Consider the following general graph invariants

 $\Gamma_1(H) = \sum_{w \in V(H)} g_1(S(w)) \text{ and } \Gamma_2(H) = \sum_{v \in E(H)} g_2(S(v), S(w)).$

Most of the cases of the above invariants Γ_1 and Γ_2 have already been presented in mathematical chemistry. For example, if we take $g_1(S(u)) = S(u)$ or $1/\sqrt{S(u)}$ then Γ_1 gives the first Zagreb index $M_1[7]$ or first extended zeroth-order connectivity index [5, 30, 31,33], respectively and if we take $g_2(S(v), S(w)) = S(v) + S(w)$ or $1/\sqrt{S(v)} S(w)$ then Γ_2 gives M_2 (see Lemma 2.6 in [7]), the first extended first-order connectivity index [5], fourth atom-bond connectivity index [11] or fifth geometric-arithmetic index [13], respectively. On the same lines, it is natural to consider [27] the following revised version of the first and second Zagreb indices:

 $\operatorname{NM}_1(H) = \sum_{v \in V(H)} (s(v))^2$ and $\operatorname{NM}_2(H) = \sum_{v \in V(H)} s(u)s(v)$.

The invariant NM₁ and NM₂ was referred [27] to as the neighborhood first Zagreb index and neighborhood second Zagreb index. In this current paper, we are concerned with the neighborhood first Zagreb index NM₁, which was initially presented in Refs. [9, 25] and referred to as the neighborhood first Zagreb index [25].Clearly, the invariant NM₁ can rewritten [9] as NM₁(*H*) = $\sum_{v \in V(H)} (d(v)a(v))^2$.

The main objective of the present study is to establish extremal results regarding the unicyclic graphs and bicyclic graph of order n with respect to NM₁. In Section 2, we define some transformations which will decrease then neighborhood first Zagreb index. Throughout this paper, graph under discussion is either a unicycle graph or a bicyclic graph on n vertices for every fixed integer $n \ge 5$.

2. MINIMUM NEIGHBORHOOD FIRST ZAGREB INDEX OF UNICYCLIC AND BI-CYCLIC GRAPHS

We provide two transformations which will reduce the neighborhood first Zagreb index as follows:

Transformation 2.1. Let G be a simple, connected graph and select $u \in V(G)$. G^* is created from G by identifying u along with the vertex v'_j of a simple path $v'_1, v'_2, ..., v'_n, 1 < j < n$. G^{**} is created from G^* by removing $v'_{j-1}v'_j$ and adding $v'_{j-1}v'_n$.

Figure 1: Graphs G^* and G^{**} (used within the Transformation 2.1).

Lemma 2.1. Suppose G^{**} and G^* be the graphs as in Transformation 2.1. Then $NM_1(G^*) > NM_1(G^{**})$.

Proof. Choose $u(=v'_j) \in V(G)$, $d(u) \ge 4$ and $N_G(u) = \{u_1, u_2\}$ and $N_{G^*}(u) \setminus N_G(u) = \{v'_{j-1}, v'_{j+1}\}$. There will be four cases regarding the length of the path.

Case I: If j = 2 and n = 3, $NM_1(G^*) - NM_1(G^{**}) = I = \left[\left(\sum_{\Re \in N_G(u_i)} d(\Re) \right)^2 - \left(\sum_{\Re \in N_G(u_i)} d(\Re) - 1 \right)^2 \right] + d(u)^2 - 4 > 0.$ Since $d(u)^2 - 4 \ge 12$ for $d_G(u) \ge 4$.

Case II: If j = 2 and n > 3.

Sub-Case II(a): If j = 2 and n = 4,

$$\begin{split} \mathsf{NM}_1(\mathsf{G}^*) - \ \mathsf{NM}_1(\mathsf{G}^{**}) &= \ \mathsf{I} \\ &= \left[\left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \right)^2 - \left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) - 1 \right)^2 - 4 \right] \\ &+ \left[\left(\sum_{\Re \in N_G(u_i)} d(\Re) \right)^2 - \left(\sum_{\Re \in N_G(u_i)} d(\Re) - 1 \right)^2 \right] \\ &+ d(u)^2 - 9 > 0. \end{split}$$

Since $d_G(u) \ge 4$.

Sub-Case II(b): If j = 2 and $n \ge 5$,

$$NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$$

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} \right]$$

$$+ \left[\left(\sum_{\Re \in N_{G}(u_{i})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G}(u_{i})} d(\Re) - 1 \right)^{2} \right]$$

$$+ (d(u) + 2)^{2} - (d(u) + 1)^{2} + d(u)^{2} - 16 > 0.$$

Since $d_G(u) \ge 4$.

Case III: If j > 2 and n = j + 1.

Sub-Case III(a): If j = 3 and n = j + 1,

$$\begin{split} \mathsf{NM}_1(G^*) - \mathsf{NM}_1(G^{**}) &= \mathsf{I} \\ &= \left[\left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \right)^2 - \left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) - 1 \right)^2 \right] \\ &+ \left[\left(\sum_{\Re \in N_G(u_i)} d(\Re) \right)^2 - \left(\sum_{\Re \in N_G(u_i)} d(\Re) - 1 \right)^2 \right] \\ &+ d(u)^2 - 9 > 0. \end{split}$$

Since $d_G(u) \ge 4$.

Sub-Case III(b): If $j \ge 4$ and n = j + 1,

$$NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$$

= $\left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} \right]$
+ $\left[\left(\sum_{\Re \in N_{G}(u_{i})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G}(u_{i})} d(\Re) - 1 \right)^{2} \right]$
+ $(d(u) + 2)^{2} - (d(u) + 1)^{2} + d(u)^{2} - 16 > 0.$

Since $d_G(u) \ge 4$.

Case IV: If j > 2 and n > j + 1.

Sub-case IV(a): If
$$j = 3$$
 and $n = j + 2$,

$$NM_1(G^*) - NM_1(G^{**}) = I$$

$$= \left[\left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \right)^2 - \left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) - 2 \right)^2 \right]$$

$$+ \left[\left(\sum_{\Re \in N_G(ui)} d(\Re) \right)^2 - \left(\sum_{(\Re \in N_G(ui))} d(\Re) - 1 \right)^2 \right]$$

$$+ (d(u) + 1)^2 - 21 > 0.$$

Since $d_G(u) \ge 4$.

Sub-case IV(b): If
$$j = 3$$
 and $n = j + 3$,

$$NM_1(G^*) - NM_1(G^{**}) = 1$$

$$= \left[\left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \right)^2 - \left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) - 2 \right)^2 \right]$$

$$+ \left[\left(\sum_{\Re \in N_G(ui)} d(\Re) \right)^2 - \left(\sum_{(\Re \in N_G(ui))} d(\Re) - 1 \right)^2 \right]$$

$$+ (d(u) + 2)^2 - 28 > 0.$$

Since $d_G(u) \ge 4$.

Sub-case IV(c): If j = 4 and n = j + 2, $M_1(G^*) - NM_1(G^{**}) = I$

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} \right] \\ + \left[\left(\sum_{\Re \in N_{G}(ui)} d(\Re) \right)^{2} - \left(\sum_{\left(\Re \in N_{G}(ui)\right)} d(\Re) - 1 \right)^{2} \right] \\ + (d(u) + 2)^{2} - 28 > 0.$$

Since $d_G(u) \ge 4$.

Sub-case IV(d): If
$$j \ge 4$$
 and $n \ge j + 3$,
 $NM_1(G^*) - NM_1(G^{**}) = I$
 $= \left[\left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \right)^2 - \left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) - 2 \right)^2 \right]$
 $+ \left[\left(\sum_{\Re \in N_G(ui)} d(\Re) \right)^2 - \left(\sum_{(\Re \in N_G(ui))} d(\Re) - 1 \right)^2 \right]$
 $+ (d(u) + 2)^2 - (d(u) + 1)^2 + (d(u) + 2)^2 - 35 > 0.$
Since $d_G(u) \ge 4$.

Transformation 2.2. Let $u, v \in V(G)$. G^* is constructed from G by attaching paths $u'_o u'_1 u'_2 \dots u'_i$ and $v'_o v'_1 v'_2 \dots v'_j$ with the vertex $u(=u'_o)$ and the vertex $v(=v'_o)$, respectively. Construct $G^{**} = G^* - uu'_1 + v'_j u'_1$.

Figure 2: Graphs G^* and G^{**} (used within the Transformation 2.2).

Lemma 2.2. G^{**} and G^* be the graphs as appear in Transformation 2.2. If $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$, $i \ge 1$ and $j \ge 1$, then $NM_1(G^*) > NM_1(G^{**})$.

Proof. Bearing in mind the assumption that j > 0 and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$, there will be five cases regarding the position (location) of u and v.

Case I: If $uv \in E(G^*)$ and $N_{G^*}(u) \cap N_{G^*}(v) = \varphi$.

Sub-Case I(a): If i = 1 and j = 1, NM₁(G^*) - NM₁(G^{**}) = I

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} - 4 \right] \\ + \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) - 1 \right)^{2} \right] \\ + d(u)^{2} + d(v)^{2} - (d(v) + 1)^{2} > 0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 6$, $d(u)^2 + d(v)^2 \ge 2d(v)^2 \ge (d(v) + 1)^2$, and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$.

Sub-Case I(b): If i = 1 and j > 1. When i = 1 and j = 2, $NM_1(G^*) - NM_1(G^{**}) = I$ $= \left[\left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \right)^2 - \left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) - 1 \right)^2 - 9 \right]$

$$+\left[\left(\sum_{\gamma'_{\alpha}\in N_{G^{*}}(v)}d(\gamma'_{\alpha})\right)^{2}-\left(\sum_{\gamma'_{\alpha}\in N_{G^{*}}(u)}d(\gamma'_{\alpha})-1\right)^{2}\right]$$
$$+\left[\left(\sum_{\Re\in N_{G^{*}}(\gamma_{\alpha}\setminus\{v,\dot{u}_{1}\})}d(\Re)\right)^{2}-\left(\sum_{\Re\in N_{G^{*}}(\gamma_{\alpha}\setminus\{v,\dot{u}_{1}\})}d(\Re)-1\right)^{2}\right]$$
$$+d(u)^{2}+(d(v)+1)^{2}-(d(v)+2)^{2}>0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 6$, $d(u)^{2} + (d(v) + 1)^{2} \ge d(v)^{2} + (d(v) + 1)^{2} \ge (d(v) + 2)^{2}$ and $d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3$. When i = 1 and $j \ge 3$, $NM_{1}(G^{*}) - NM_{1}(G^{**}) = 1$

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} - 8 \right] \\ + \left[\left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(v)} d(\gamma_{\alpha}') \right)^{2} - \left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(u)} d(\gamma_{\alpha}') - 1 \right)^{2} \right] \\ + \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) - 1 \right)^{2} \right] \\ + d(u)^{2} - 8 > 0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 6$ and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$.

Sub-Case I(c): If i > 1 and j = 1. When i = 2 and j = 1, NM₁(G^*) - NM₁(G^{**}) = 1

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \right)^2 - \left(\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) - 2 \right)^2 - 9 \right] \\ + \left[\left(\sum_{\Re \in N_{G^*}(\gamma_{\alpha} \setminus \{v, \dot{u}_1\})} d(\Re) \right)^2 - \left(\sum_{\Re \in N_{G^*}(\gamma_{\alpha} \setminus \{v, \dot{u}_1\})} d(\Re) - 1 \right)^2 \right] \\ + d(v)^2 + (d(u) + 1)^2 - (d(v) + 2)^2 > 0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 7$, $d(v)^{2} + (d(u) + 1)^{2} \ge d(v)^{2} + (d(v) + 1)^{2} \ge (d(v) + 2)^{2}$ and $d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3$. When $i \ge 3$ and j = 1, $NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 16 \right]$ $+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \hat{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \hat{u}_{1}\})} d(\Re) - 1 \right)^{2} \right]$ $+ d(v)^{2} + (d(u) + 2)^{2} - (d(v) + 2)^{2} > 0.$ Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 7$ and $s d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3.$

$$\begin{aligned} & \text{Sub-Case I(d): If } i > 1 \text{ and } j > 1. \text{ When } i = 2 \text{ and } j = 2, \\ & \text{NM}_1(G^*) - \text{NM}_1(G^{**}) = I \\ & = \left[\left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \right)^2 - \left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) - 2 \right)^2 - 21 \right] \\ & + \left[\left(\sum_{\gamma'_\alpha \in N_G^*(v)} d(\gamma'_\alpha) \right)^2 - \left(\sum_{\gamma'_\alpha \in N_G^*(v)} d(\gamma'_\alpha) - 1 \right)^2 \right] \\ & + \left[\left(\sum_{\Re \in N_G^*(\gamma_\alpha \setminus \{v, u'_1\})} d\Re \right)^2 - \left(\sum_{\Re \in N_G^*(\gamma_\alpha \setminus \{v, u'_1\})} d\Re - 1 \right)^2 \right] \\ & + (d(u) + 1)^2 + (d(v) + 1)^2 - (d(v) + 2)^2 > 0 \end{aligned}$$
Since $\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \ge 7, (d(u) + 1)^2 + (d(v) + 1)^2 \ge d(v)^2 + (d(v) + 1)^2 \ge (d(v) + 2)^2 \text{ and } d_{G^*}(u) \ge d_{G^*}(v) \ge 3. \end{aligned}$
When $i \ge 3$ and $j = 2,$
 $& \text{NM}_1(G^*) - \text{NM}_1(G^{**}) = I \\ & = \left[\left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \right)^2 - \left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) - 2 \right)^2 - 16 \right] \\ & + \left[\left(\sum_{\gamma'_\alpha \in N_G^*(v)} d(\gamma'_\alpha) \right)^2 - \left(\sum_{\gamma'_\alpha \in N_G^*(v)} d(\gamma'_\alpha) - 1 \right)^2 \right] \\ & + \left[\left(\sum_{\Re \in N_G^*(\gamma_\alpha \setminus \{v, u'_1\})} d\Re \right)^2 - \left(\sum_{\Re \in N_G^*(\gamma_\alpha \setminus \{v, u'_1\})} d\Re - 1 \right)^2 \right] \\ & + (d(u) + 2)^2 - (d(v) + 2)^2 + (d(v) + 1)^2 - 12 > 0. \end{aligned}$

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 7$ and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$. When i = 2 and $j \ge 3$, $NM_1(G^*) - NM_1(G^{**}) = I$

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 12 \right] \\ + \left[\left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(v)} d(\gamma_{\alpha}') \right)^{2} - \left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(v)} d(\gamma_{\alpha}') - 1 \right)^{2} \right] \\ + \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, u_{1}\})} d\Re \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, u_{1}\})} d\Re - 1 \right)^{2} \right] \\ + (d(u) + 1)^{2} - 16 > 0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 7$ and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$. When $i \ge 3$ and $j \ge 3$, $NM_1(G^*) - NM_1(G^{**}) = I$

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 19 \right] \\ + \left[\left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(v)} d(\gamma_{\alpha}') \right)^{2} - \left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(v)} d(\gamma_{\alpha}') - 1 \right)^{2} \right] \\ + \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, u_{1}\})} d\Re \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, u_{1}\})} d\Re - 1 \right)^{2} \right] \\ + (d(u) + 2)^{2} - 16 > 0 \\ \text{Since } \sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 7 \text{ and } d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3.$$

Case II: If $uv \in E(G^*)$ and $|N_{G^*}(u) \cap N_{G^*}(v)| = 1$.

Sub-Case II(a): If
$$i = 1$$
 and $j = 1$,
 $NM_1(G^*) - NM_1(G^{**}) = I$
 $= \left[\left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \right)^2 - \left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) - 1 \right)^2 - 4 \right]$

$$\begin{split} + \left[\left(\sum_{\Re \in N_{G^*}(\gamma_{\alpha} \setminus \{v, \, \dot{u}_1\})} d(\Re) \right)^2 - \left(\sum_{\Re \in N_{G^*}(\gamma_{\alpha} \setminus \{v, \, \dot{u}_1\})} d(\Re) - 1 \right)^2 \right] \\ + d(u)^2 + d(v)^2 - (d(v) + 1)^2 > 0. \\ \text{Since} \quad \sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 6, \quad d(u)^2 + d(v)^2 \ge 2d(v)^2 \ge (d(v) + 1)^2 \quad \text{and} \\ d_{G^*}(u) \ge d_{G^*}(v) \ge 3. \end{split}$$

Sub-Case II(b): If i = 1 and j > 1. When i = 1 and j = 2, NM₁(G^*) - NM₁(G^{**}) = I

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} - 9 \right] \\ + \left[\left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(v)} d(\gamma_{\alpha}') \right)^{2} - \left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(u)} d(\gamma_{\alpha}') - 1 \right)^{2} \right] \\ + \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) - 1 \right)^{2} \right] \\ + d(u)^{2} + (d(v) + 1)^{2} - (d(v) + 2)^{2} > 0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 6$, $d(u)^{2} + (d(v) + 1)^{2} \ge d(v)^{2} + (d(v) + 1)^{2} \ge (d(v) + 2)^{2}$ and $d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3$. When i = 1 and $j \ge 3$, $NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} - 8 \right]$ $+ \left[\left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(v)} d(\gamma'_{\alpha}) \right)^{2} - \left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(v)} d(\gamma'_{\alpha}) - 1 \right)^{2} \right]$ $+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \hat{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \hat{u}_{1}\})} d(\Re) - 1 \right)^{2} \right]$

 $+d(u)^2 - 8 > 0.$ Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 6$ and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3.$

Sub-Case II (c): If i > 1 and j = 1. When i = 2 and j = 1, $NM_1(G^*) - NM_1(G^{**}) = I$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_G^*(u)} d(\gamma_{\alpha}) \right)^2 - \left(\sum_{\gamma_{\alpha} \in N_G^*(u)} d(\gamma_{\alpha}) - 2 \right)^2 - 9 \right]$ $+ \left[\left(\sum_{\Re \in N_G^*(\gamma_{\alpha} \setminus \{v, u'_1\})} d(\Re) \right)^2 - \left(\sum_{\Re \in N_G^*(\gamma_{\alpha} \setminus \{v, u'_1\})} d(\Re) - 1 \right)^2 \right]$ $+ (d(u) + 1)^2 + d(v)^2 - (d(v) + 2)^2 > 0.$ Since $\sum_{i=1}^{n} d(u_i) > 7 \cdot (d(v_i) + 1)^2 + d(v_i)^2 > d(v_i)^2 (d(v_i) + 1)^2 > 0.$

Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \geq 7$, $(d(u) + 1)^{2} + d(v)^{2} \geq d(v)^{2}(d(u) + 1)^{2} \geq (d(v) + 2)^{2}$ and $d_{G^{*}}(u) \geq d_{G^{*}}(v) \geq 3$. When $i \geq 3$ and j = 1, $NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 16 \right]$ $+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, u_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, u_{1}\})} d(\Re) - 1 \right)^{2} \right]$ $+ (d(u) + 2)^{2} + d(v)^{2} - (d(v) + 2)^{2} > 0.$ Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \geq 7$ and $d_{G^{*}}(u) \geq d_{G^{*}}(v) \geq 3$.

$$\begin{aligned} & \text{Sub-Case II (d): If } i > 1 \text{ and } j > 1. \text{ When } i = 3 \text{ and } j = 2, \\ & NM_1(G^*) - NM_1(G^{**}) = 1 \\ & = \left[\left(\sum_{Y_{\alpha} \in N_G^*(u)} d(y_{\alpha}) \right)^2 - \left(\sum_{Y_{\alpha} \in N_G^*(u)} d(y_{\alpha}) - 2 \right)^2 - 21 \right] \\ & + \left[\left(\sum_{Y_{\alpha}' \in N_G^*(v)} d(y'_{\alpha}) \right)^2 - \left(\sum_{Y_{\alpha}' \in N_G^*(u)} d(y'_{\alpha}) - 1 \right)^2 \right] \\ & + \left[\left(\sum_{\Re \in N_G^*(Y_{\alpha} \setminus \{v, \dot{u}_1\})} d(\Re) \right)^2 - \left(\sum_{\Re \in N_G^*(Y_{\alpha} \setminus \{v, \dot{u}_1\})} d(\Re) - 1 \right)^2 \right] \\ & + \left[(d(u) + 1)^2 + (d(v) + 1)^2 - (d(v) + 2)^2 > 0. \right] \\ & \text{Since } \sum_{Y_{\alpha} \in N_G^*(u)} d(y_{\alpha}) \ge 7, \quad (d(u) + 1)^2 + (d(v) + 1)^2 \ge 2(d(v) + 2)^2 \ge 2(d(v) + 1)^2 \ge 2(d(v) + 2)^2 \ge 2(d(v$$

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 19 \right] \\ + \left[\left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(v)} d(\gamma_{\alpha}') \right)^{2} - \left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(u)} d(\gamma_{\alpha}') - 1 \right)^{2} \right] \\ + \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) - 1 \right)^{2} \right] \\ + (d(u) + 2)^{2} - 16 > 0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 7$ and $d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3.$

Case III: If $uv \notin E(G^*)$ and $N_{G^*}(u) \cap N_{G^*}(v) = \varphi$.

Sub-Case III(a): If
$$i = 1$$
 and $j = 1$,
 $NM_1(G^*) - NM_1(G^{**}) = I$
 $= \left[\left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \right)^2 - \left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) - 1 \right)^2 - 4 \right]$

$$+ \left[\left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(v)} d(\gamma'_{\alpha}) \right)^{2} - \left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(u)} d(\gamma'_{\alpha}) + 1 \right)^{2} \right] \\ + \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) - 1 \right)^{2} \right] \\ + d(u)^{2} + d(v)^{2} - (d(v) + 1)^{2} > 0.$$
Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 5$, $d(u)^{2} + d(v)^{2} \ge 2d(v)^{2} \ge (d(v) + 1)^{2}$
and $d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3$. $\left[\left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(v)} d(\gamma'_{\alpha}) \right)^{2} - \left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(u)} d(\gamma'_{\alpha}) + 1 \right)^{2} \right] + \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) - 1 \right)^{2} \right] > 0.$

Sub-Case III(b): If i = 1 and j > 1. When i = 1 and j = 2, $NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} - 9 \right]$ $+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) - 1 \right)^{2} \right]$ $+ d(u)^{2} + (d(v) + 1)^{2} - (d(v) + 2)^{2} > 0.$ Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 5, \ d(u)^{2} + (d(v) + 1)^{2} \ge d(v)^{2} + (d(v) + 1)^{2} \ge$ $(d(v) + 2)^{2} \text{ and } d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3.$ When i = 1 and $j \ge 3$, $NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} - 8 \right]$

$$+\left[\left(\sum_{\Re\in N_{G^*}(\gamma_{\alpha}\setminus\{v,\dot{u}_1\})}d(\Re)\right)^2 - \left(\sum_{\Re\in N_{G^*}(\gamma_{\alpha}\setminus\{v,\dot{u}_1\})}d(\Re) - 1\right)^2\right]$$
$$+d(u)^2 - 8 > 0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 5$ and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$.

Sub-Case III(c): If i > 1 and j = 1. When i = 2 and j = 1, NM₁(G^*) - NM₁(G^{**}) = I

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 9 \right] \\ + \left[\left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(v)} d(\gamma_{\alpha}') \right)^{2} - \left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(u)} d(\gamma_{\alpha}') + 1 \right)^{2} \right] \\ + \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) - 1 \right)^{2} \right] \\ + (d(u) + 1)^{2} + d(v)^{2} - (d(v) + 2)^{2} > 0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 6$, $(d(u) + 1)^{2} + d(v)^{2} \ge d(v)^{2} + (d(v) + 1)^{2} \ge (d(v) + 2)^{2}$ and $d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3$. $\left[\left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(v)} d(\gamma'_{\alpha}) \right)^{2} - \left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(u)} d(\gamma'_{\alpha}) + 1 \right)^{2} \right] + \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) - 1 \right)^{2} \right] > 0$. When $i \ge 3$ and j = 1, $NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 16 \right]$

$$+ \left[\left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(v)} d(\gamma'_{\alpha}) \right)^{2} - \left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(u)} d(\gamma'_{\alpha}) + 1 \right)^{2} \right]$$

$$+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) - 1 \right)^{2} \right]$$

$$+ (d(u) + 2)^{2} + d(v)^{2} - (d(v) + 2)^{2} > 0.$$
Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 6$ and $d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3.$

$$\left[\left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(v)} d(\gamma'_{\alpha}) \right)^{2} - \left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(u)} d(\gamma'_{\alpha}) + 1 \right)^{2} \right] + \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) - 1 \right)^{2} \right] > 0.$$

Sub-Case III(d): If i > 1 and j > 1. When i = 2 and j = 2, $NM_1(G^*) - NM_1(G^{**}) = I$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \right)^2 - \left(\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) - 2 \right)^2 - 20 \right]$ + $\left[\left(\sum_{\Re \in N_{G^*}(\gamma_{\alpha}\{\acute{u}_1\})} d\Re \right)^2 - \left(\sum_{\Re \in N_{G^*}(\gamma_{\alpha}\{\acute{u}_1\})} d\Re - 1 \right)^2 \right]$ $+(d(u) + 1)^{2} + (d(v) + 1)^{2} - (d(v) + 2)^{2} - 1 > 0.$ $\sum_{\gamma_{\alpha} \in N_{G^{*}(u)}} d(\gamma_{\alpha}) \geq 6, (d(u) + 1)^{2} + (d(v) + 1)^{2} \geq 2(d(v) +$ Since $(d(v) + 2)^2$ and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$. When $i \ge 3$ and j = 2 $NM_1(G^*) - NM_1(G^{**}) = I$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_{C^*}(u)} d(\gamma_{\alpha}) \right)^2 - \left(\sum_{\gamma_{\alpha} \in N_{C^*}(u)} d(\gamma_{\alpha}) - 2 \right)^2 - 16 \right]$ + $\left[\left(\sum_{\Re \in N_{G^*}(\gamma_{\alpha}\{\dot{u}_1\})} d\Re \right)^2 - \left(\sum_{\Re \in N_{G^*}(\gamma_{\alpha}\{\dot{u}_1\})} d\Re - 1 \right)^2 \right]$ $+(d(u) + 2)^{2} - (d(v) + 2)^{2} + (d(v) + 1)^{2} - 12 > 0.$ Since $\sum_{\gamma_{\alpha} \in N_{G^*(u)}} d(\gamma_{\alpha}) \ge 6$ and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$. When i = 2 and $j \ge 3$, $NM_1(G^*) - NM_1(G^{**}) = I$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \right)^2 - \left(\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) - 2 \right)^2 - 16 \right]$ + $\left[\left(\sum_{\Re \in N_{G^*}(\gamma_{\alpha}\{\dot{u}_1\})} d\Re\right)^2 - \left(\sum_{\Re \in N_{G^*}(\gamma_{\alpha}\{\dot{u}_1\})} d\Re - 1\right)^2\right]$ $+(d(u) + 1)^2 - 12 > 0.$ Since $\sum_{\gamma_{\alpha} \in N_{G^*(u)}} d(\gamma_{\alpha}) \ge 6$ and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$. When $i \ge 3$ and $j \ge 3$, $NM_1(G^*) - NM_1(G^{**}) = I$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_{C^*}(u)} d(\gamma_{\alpha}) \right)^2 - \left(\sum_{\gamma_{\alpha} \in N_{C^*}(u)} d(\gamma_{\alpha}) - 2 \right)^2 - 19 \right]$ + $\left[\left(\sum_{\Re \in N_{C^*}(\gamma_{\alpha} \{ \dot{u}_1 \})} d\Re \right)^2 - \left(\sum_{\Re \in N_{C^*}(\gamma_{\alpha} \{ \dot{u}_1 \})} d\Re - 1 \right)^2 \right]$ $+(d(u) + 2)^2 - 16 > 0.$

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 6$ and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$.

Case IV: If $uv \notin E(G^*)$ and $|N_{G^*}(u) \cap N_{G^*}(v)|=1$. **Sub-case IV(a):** If i = 1 and j = 1,

$$\begin{split} \mathrm{NM}_{1}(G^{*}) - \mathrm{NM}_{1}(G^{**}) &= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} - 4 \right] \\ &+ \left[\left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(u)} d(\gamma_{\alpha}') \right)^{2} - \left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(u)} d(\gamma_{\alpha}') + 1 \right)^{2} \right] \left[\left(\sum_{\Re \in \mathbb{N}_{G^{*}}(\gamma_{\alpha}\{\dot{u}_{1}\})} d\Re \right)^{2} - \left(\sum_{\Re \in \mathbb{N}_{G^{*}}(\gamma_{\alpha}\{\dot{u}_{1}\})} d\Re - 1 \right)^{2} \right] + d(u)^{2} + d(v)^{2} - (d(v+1))^{2} > 0. \\ \mathrm{Since} \qquad \sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 5, d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3 \text{ and } d(u)^{2} + d(v)^{2} \ge 2d(v)^{2} \ge (d(v) + 1)^{2}. \\ \left[\left(\sum_{\Re \in \mathbb{N}_{G^{*}}(\gamma_{\alpha}\{\dot{u}_{1}\})} d\Re \right)^{2} - \left(\sum_{\Re \in \mathbb{N}_{G^{*}}(\gamma_{\alpha}\{\dot{u}_{1}\})} d\Re - 1 \right)^{2} \right] + \left[\left(\sum_{\gamma_{\alpha} \in \mathbb{N}_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in \mathbb{N}_{G^{*}}(u)} d(\gamma_{\alpha}) + 1 \right)^{2} \right] > 0. \end{split}$$

Sub-Case IV(b): If
$$i = 1$$
 and $j > 1$. When $i = 1$ and $j = 2$,

$$NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$$

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} - 9 \right]$$

$$+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha}\{\dot{u}_{1}\})} d\Re \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha}\{\dot{u}_{1}\})} d\Re - 1 \right)^{2} \right]$$

$$+ d(u)^{2} + (d(v) + 1)^{2} - (d(v) + 2)^{2} > 0.$$
Since $\sum_{i=1}^{N} d(v_{i}) \ge \sum_{i=1}^{N} d(v_{i})^{2} + (d(v_{i}) + 1)^{2} \ge d(v_{i})^{2} + (d(v_{i}) + 1)^{2} \le d(v_{i})^{2} + (d(v_{i}) + 1)^{2} \ge d(v_{i})^{2} + (d(v_{i}) + 1)^{2} = d(v_{i}$

Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 5$, $d(u)^{2} + (d(v) + 1)^{2} \ge d(v)^{2} + (d(v) + 1)^{2} \ge (d(v) + 2)^{2}$ and $d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3$. When i = 1 and $j \ge 3$, $NM_{1}(G^{*}) - NM_{1}(G^{**}) = 1$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} - 8 \right]$ $+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) - 1 \right)^{2} \right]$ $+ d(u)^{2} - 8 > 0.$

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 5$ and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$.

$$\begin{aligned} & \text{Sub-Case IV}(\mathbf{c}): \text{ If } i > 1 \text{ and } j = 1. \text{ When } i = 2 \text{ and } j = 1, \\ & \text{NM}_1(G^*) - \text{NM}_1(G^{**}) = 1 \\ & = \left[\left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \right)^2 - \left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) - 2 \right)^2 - 9 \right] \\ & + \left[\left(\sum_{\gamma'_\alpha \in N_G^*(v)} d(\gamma'_\alpha) \right)^2 - \left(\sum_{\gamma'_\alpha \in N_G^*(u)} d(\gamma'_\alpha) + 1 \right)^2 \right] \\ & + \left[\left(\sum_{\Re \in N_G^*(\gamma_\alpha \setminus \{v, \dot{u}_1\})} d(\Re) \right)^2 - \left(\sum_{\Re \in N_G^*(\gamma_\alpha \setminus \{v, \dot{u}_1\})} d(\Re) - 1 \right)^2 \right] \\ & + (d(u) + 1)^2 + d(v)^2 - (d(v) + 2)^2 > 0. \end{aligned}$$

Since $\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \ge 6, \quad (d(u) + 1)^2 + d(v)^2 \ge d(v)^2 + (d(v) + 1)^2 \ge (d(v) + 2)^2 \text{ and } d_G^*(u) \ge d_G^*(v) \ge 3. \\ & \left[\left(\sum_{\gamma'_\alpha \in N_G^*(v)} d(\gamma'_\alpha) \right)^2 - \left(\sum_{\gamma'_\alpha \in N_G^*(u)} d(\gamma'_\alpha) + 1 \right)^2 \right] + \left[\left(\sum_{\Re \in N_G^*(\gamma_\alpha \setminus \{v, \dot{u}_1\})} d(\Re) \right)^2 - \left(\sum_{\Re \in N_G^*(\gamma_\alpha \setminus \{v, \dot{u}_1\})} d(\Re) - 1 \right)^2 \right] > 0. \end{aligned}$

When
$$i \geq 3$$
 and $j = 1$,

$$\begin{split} \mathsf{NM}_1(G^*) - \mathsf{NM}_1(G^{**}) &= \mathsf{I} \\ &= \left[\left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) \right)^2 - \left(\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma_\alpha) - 2 \right)^2 - 16 \right] \\ &+ \left[\left(\sum_{\gamma'_\alpha \in N_G^*(v)} d(\gamma'_\alpha) \right)^2 - \left(\sum_{\gamma'_\alpha \in N_G^*(u)} d(\gamma'_\alpha) + 1 \right)^2 \right] \\ &+ \left[\left(\sum_{\Re \in N_G^*(\gamma_\alpha \setminus \{v, \dot{u}_1\})} d(\Re) \right)^2 - \left(\sum_{\Re \in N_G^*(\gamma_\alpha \setminus \{v, \dot{u}_1\})} d(\Re) - 1 \right)^2 \right] \\ &+ (d(u) + 2)^2 + d(v)^2 - (d(v) + 2)^2 > 0. \end{split}$$
Since $\sum_{\gamma_\alpha \in N_G^*(u)} d(\gamma'_\alpha) \geq 6$ and $d_{G^*}(u) \geq d_{G^*}(v) \geq 3.$

$$\left[\left(\sum_{\gamma'_\alpha \in N_G^*(v)} d(\gamma'_\alpha) \right)^2 - \left(\sum_{\gamma'_\alpha \in N_G^*(u)} d(\gamma'_\alpha) + 1 \right)^2 \right] + \left[\left(\sum_{\Re \in N_G^*(\gamma_\alpha \setminus \{v, \dot{u}_1\})} d(\Re) \right)^2 - \left(\sum_{\Re \in N_G^*(\gamma_\alpha \setminus \{v, \dot{u}_1\})} d(\Re) - 1 \right)^2 \right] > 0. \end{split}$$

Sub-case IV(d): if i > 1 and j > 1. When i = 2 and j = 2 $NM_1(G^*) - NM_1(G^{**}) = I$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 20 \right]$ $+\left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha}(u'_{1}))} d(\Re)\right)^{2} - \left(\sum_{\left(\Re \in N_{G^{*}}(\gamma_{\alpha}(u'_{1}))\right)} d(\Re) - 1\right)^{2}\right]$ $+(d(u) + 1)^{2} + (d(v) + 1)^{2} - (d(v) + 2)^{2} - 1 > 0.$ $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 6, d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3 \text{ and } (d(u) + 1)^{2} + 1$

Since

 $(d(v) + 1)^2 \ge 2(d(v) + 1)^2 \ge (d(v) + 2)^2$. When $i \ge 3$ and j = 2, $\mathrm{NM}_1(G^*) - \mathrm{NM}_1(G^{**}) = \mathrm{I}$ \sim^2 <u>2</u>1

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 16 \right] \\ + \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \{u'_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\left(\Re \in N_{G^{*}}(\gamma_{\alpha} \{u'_{1}\})\right)} d(\Re) - 1 \right)^{2} \right] \\ + (d(u) + 2)^{2} - (d(v) + 2)^{2} + (d(v) + 1)^{2} - 12 > 0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 6$ and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$. When i = 2 and $j \ge 3$, $NM_1(G^*) - NM_1(G^{**}) = I$

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \right)^2 - \left(\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) - 2 \right)^2 - 16 \right] \\ + \left[\left(\sum_{\Re \in N_{G^*}(\gamma_{\alpha} \{u'_1\})} d(\Re) \right)^2 - \left(\sum_{\left(\Re \in N_{G^*}(\gamma_{\alpha} \{u'_1\})\right)} d(\Re) - 1 \right)^2 \right] \\ + (d(u) + 1)^2 - 12 > 0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 6$, and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$. When $i \ge 3$ and $j \ge 3$, $NM_1(G^*) - NM_1(G^{**}) = I$

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 19 \right] \\ + \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha}\{\dot{u}_{1}\})} d\Re \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha}\{\dot{u}_{1}\})} d\Re - 1 \right)^{2} \right]$$

$$+(d(u)+2)^2 - 16 > 0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 6$ and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3.$

Case V: If $uv \notin E(G^*)$ and $N_{G^*}(u) \cap N_{G^*}(v) = 2$. Let $t_1, t_2 \in N_{G^*}(u) \cap N_{G^*}(v)$.

Sub-Case V (a): If i = 1 and j = 1,

$$\begin{split} \mathsf{NM}_{1}(G^{*}) - \mathsf{NM}_{1}(G^{**}) &= \mathsf{I} \\ &= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} - 4 \right] \\ &+ \left[\left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(v)} d(\gamma_{\alpha}') \right)^{2} - \left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(u)} d(\gamma_{\alpha}') + 1 \right)^{2} \right] \\ &+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{\dot{u}_{1}, t_{i}\}_{i}^{2} = 1\} d\Re \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{\dot{u}_{1}, t_{i}\}_{i}^{2} = 1\} d\Re - 1 \right)^{2} \right] \\ &+ \left[\left(\sum_{\frac{\gamma_{\alpha}' \in N_{G^{*}}(t_{i})_{i}^{2} = 1} d\Re'' \right)^{2} - \left(\sum_{\frac{\gamma_{\alpha}' \in N_{G^{*}}(t_{i})_{i}^{2} = 1} d\Re'' - 1 \right)^{2} \right] \end{split}$$

 $+d(u)^{2} + d(v)^{2} - (d(v) + 1)^{2} > 0.$ Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 5$, $\sum_{\Re \in N_{G^{*}}} (t_{i}) \Big|_{i=1}^{2} d\Re'' > \sum_{\gamma'_{\alpha} \in N_{G^{*}}(v)} d(\gamma'_{\alpha}), d_{G^{*}}(u) \ge d_{G^{*}(v)} \ge 3$ and $d(u)^{2} + d(v)^{2} \ge 2d(v)^{2} \ge (d(u) + 1)^{2}.$

Sub-Case V (b): If
$$i = 1$$
 and $j > 1$. When $i = 1$ and $j = 2$,

$$NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$$

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} - 9 \right]$$

$$+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{ \dot{u}_{1}, t_{i}\}^{2}_{i=1} \} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{ \dot{u}_{1}, t_{i}\}^{2}_{i=1} \} d(\Re) - 1 \right)^{2} \right]$$

$$+ \left[\left(\sum_{\Re'' \in N_{G^{*}}(t_{i})^{2}_{i=1}} d(\Re'') \right)^{2} - \left(\sum_{\Re'' \in N_{G^{*}}(t_{i})^{2}_{i=1}} d(\Re'') - 1 \right)^{2} \right] + d(u)^{2}$$

$$+ (d(v) + 1)^{2} - (d(v) + 2)^{2} > 0$$

Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 5$, $d(u)^{2} + (d(v) + 1)^{2} \ge d(v)^{2} + (d(v) + 1)^{2} \ge d(v)^{2} + (d(v) + 1)^{2} \ge (d(v) + 2)^{2}$ and $d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3$. When i = 1 and $j \ge 3$, $NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$ $= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 1 \right)^{2} - 8 \right]$ $+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{\dot{u}_{1}, t_{i}\}^{2}_{i=1})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{\dot{u}_{1}, t_{i}\}^{2}_{i=1})} d(\Re) - 1 \right)^{2} \right]$ $+ \left[\left(\sum_{\Re'' \in N_{G^{*}}(t_{i})^{2}_{i=1}} d(\Re'') \right)^{2} - \left(\sum_{\Re'' \in N_{G^{*}}(t_{i})^{2}_{i=1}} d(\Re'') - 1 \right)^{2} \right]$

$$+d(u)^2 - 8 > 0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 5$, and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$.

Sub-Case V (c): If
$$i > 1$$
 and $j = 1$. When $i = 2$ and $j = 1$,

$$NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$$

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 9 \right]$$

$$+ \left[\left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(u)} d(\gamma'_{\alpha}) \right)^{2} - \left(\sum_{\gamma'_{\alpha} \in N_{G^{*}}(v)} d(\gamma'_{\alpha}) + 1 \right)^{2} \right]$$

$$+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{ \dot{u}_{1}, t_{i}\}^{2}_{i=1} \} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(t_{i})^{2}_{i=1}} d(\Re) - 1 \right)^{2} \right]$$

$$+ \left[\left(\sum_{\Re'' \in N_{G^{*}}(t_{i})^{2}_{i=1}} d(\Re'') \right)^{2} - \left(\sum_{\Re'' \in N_{G^{*}}(t_{i})^{2}_{i=1}} d(\Re'') - 1 \right)^{2} \right]$$

$$+ (d(u) + 1)^{2} + d(v)^{2} - (d(v) + 2)^{2} > 0.$$

Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 6$, $\sum_{\Re'' \in N_{G^{*}}(t_{i})^{2}_{i=1}} d(\Re'') > \sum_{\gamma'_{\alpha} \in N_{G^{*}}(u)} d(\gamma'_{\alpha})$, $d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3$ and $d(u)^{2} + (d(u) + 1)^{2} + d(v)^{2} \ge d(v)^{2} + (d(v) + 2)^{2}$. When $i \ge 3$ and j = 1,

$$\begin{split} \mathsf{NM}_{1}(G^{*}) &- \mathsf{NM}_{1}(G^{**}) = 1 \\ &= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 16 \right] \\ &+ \left[\left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(u)} d(\gamma_{\alpha}') \right)^{2} - \left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(v)} d(\gamma_{\alpha}') + 1 \right)^{2} \right] \\ &+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{ \dot{u}_{1}, t_{i}\}^{2}_{i=1} \} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{ \dot{u}_{1}, t_{i}\}^{2}_{i=1} \} d(\Re) - 1 \right)^{2} \right] \\ &+ \left[\left(\sum_{\Re'' \in N_{G^{*}}(t_{i})^{2}_{i=1}} d(\Re'') \right)^{2} - \left(\sum_{\Re'' \in N_{G^{*}}(t_{i})^{2}_{i=1}} d(\Re'') - 1 \right)^{2} \right] \\ &+ \left[(d(u) + 2)^{2} + d(v)^{2} - (d(v) + 2)^{2} > 0. \end{split}$$
Since $\sum_{n \in \mathcal{N}} \langle v_{n} \rangle d(\gamma_{n}) \geq 6 \sum_{m'' \in \mathcal{N}} \langle v_{n} \rangle d(\Re'') \geq \sum_{n \in \mathcal{N}} \langle v_{n} \rangle d(\gamma_{n}') d_{n^{*}}(u) \geq 0. \end{split}$

Since $\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 6$, $\sum_{\Re'' \in N_{G^{*}}(t_{i})_{i=1}^{2}} d(\Re'') > \sum_{\gamma_{\alpha}' \in N_{G^{*}}(v)} d(\gamma_{\alpha}')$, $d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3$ and $(d(u) + 1)^{2} + d(v)^{2} \ge d(v)^{2} + (d(v) + 1)^{2} \ge (d(v) + 2)^{2}$.

Sub-Case V (d): If i > 1 and j > 1, When i = 2 and j = 2,

$$\begin{split} \mathsf{NM}_{1}(G^{*}) - \mathsf{NM}_{1}(G^{**}) &= \mathsf{I} \\ &= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 20 \right] \\ &+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{ \ \dot{u}_{1}, t_{i} \})_{i=1}^{2}} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{ \ \dot{u}_{1}, t_{i} \})_{i=1}^{2}} d(\Re) - 1 \right)^{2} \right] \\ &+ \left[\left(\sum_{\Re'' \in N_{G^{*}}(t_{i})^{2}_{i=1}} d(\Re'') \right)^{2} - \left(\sum_{\Re'' \in N_{G^{*}}(t_{i})^{2}_{i=1}} d(\Re'') - 1 \right)^{2} \right] \\ &+ (d(u) + 1)^{2} + (d(v) + 1)^{2} - (d(v) + 2)^{2} - 1 > 0. \end{split}$$

Since
$$\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \ge 6$$
, $(d(u) + 1)^{2} + (d(v) + 1)^{2} \ge 2(d(v) + 1)^{2} \ge (d(v) + 2)^{2}$, and $d_{G^{*}}(u) \ge d_{G^{*}}(v) \ge 3$. When $i \ge 3$ and $j = 2$,
 $NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$
 $= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 16 \right]$
 $+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{ \dot{u}_{1}, t_{i} \})_{i=1}^{2} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{ \dot{u}_{1}, t_{i} \})_{i=1}^{2} d(\Re) - 1 \right)^{2} \right]$
 $+ \left[\left(\sum_{\Re'' \in N_{G^{*}}(, t_{i})_{i=1}^{2} d(\Re'') \right)^{2} - \left(\sum_{\Re'' \in N_{G^{*}}(, t_{i})_{i=1}^{2} d(\Re'') - 1 \right)^{2} \right]$
 $+ (d(u) + 2)^{2} - (d(v) + 2)^{2} + (d(v) + 1)^{2} - 12 > 0.$
Since $\sum_{\alpha} u_{\alpha} \in Ad(v_{\alpha}) \ge 6$, and $d_{\alpha}(u) \ge d_{\alpha}(v) \ge 3$. When $i = 2$ and $i \ge 3$.

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 6$, and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$. When i = 2 and $j \ge 3$,

$$\begin{split} \mathsf{NM}_{1}(G^{*}) - \mathsf{NM}_{1}(G^{**}) &= \mathsf{I} \\ &= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 16 \right] \\ &+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{ \ \dot{u}_{1}, t_{i} \})_{i=1}^{2}} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{ \ \dot{u}_{1}, t_{i} \})_{i=1}^{2}} d(\Re) - 1 \right)^{2} \right] \\ &+ \left[\left(\sum_{\Re'' \in N_{G^{*}}(t_{i})_{i=1}^{2}} d(\Re'') \right)^{2} - \left(\sum_{\Re'' \in N_{G^{*}}(t_{i})_{i=1}^{2}} d(\Re'') - 1 \right)^{2} \right] \\ &+ (d(u) + 1)^{2} - 12 > 0. \end{split}$$

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 6$, and $d_{G^*}(u) \ge d_{G^*}(v) \ge 3$. When $i \ge 3$ and $j \ge 3$,

$$\begin{split} \mathsf{NM}_{1}(G^{*}) - \mathsf{NM}_{1}(G^{**}) &= \mathsf{I} \\ &= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 19 \right] \\ &+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{ \dot{u}_{1}, t_{i} \})^{2} i = 1} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{ \dot{u}_{1}, t_{i} \})^{2} i = 1} d(\Re) - 1 \right)^{2} \right] \\ &+ \left[\left(\sum_{\Re'' \in N_{G^{*}}(t_{i}) 2_{i = 1}} d(\Re'') \right)^{2} - \left(\sum_{\Re'' \in N_{G^{*}}(t_{i}) 2_{i = 1}} d(\Re'') - 1 \right)^{2} \right] \\ &+ (d(u) + 2)^{2} - 16 > 0. \\ \\ \mathsf{Since} \sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \geq 6 \text{ and } d_{G^{*}}(u) \geq d_{G^{*}}(v) \geq 3. \end{split}$$

Lemma 2.3. Suppose there exists a path $u'_1, u'_2, ..., u'_i$, $i \ge 1$ attached to the vertex $u \in G^*$, where u is identified with the vertex u'_1 and $u'_1 v \in E(G^*)$. Construct $G^{**} = G^* - u'_1 v + u'_i v$, then $NM_1(G^*) > NM_1(G^{**})$.

Figure 3: Graphs G^* and G^{**} (used within Lemma 2.3).

Proof. Since $d(u) \ge 3$, there will be three cases regarding the length of the path.

Case I: If
$$i = 1$$
,
 $NM_1(G^*) - NM_1(G^{**}) = I$
 $= (\sum_{\gamma_{\alpha} \in N_G^*(u)} d(\gamma_{\alpha}))^2 - (\sum_{\gamma_{\alpha} \in N_G^*(u)} d(\gamma_{\alpha}) - 1)^2$
 $+ (\sum_{\gamma'_{\alpha} \in N_G^*(v)} d(\gamma'_{\alpha}))^2 - (\sum_{\gamma'_{\alpha} \in N_G^*(v)} d(\gamma'_{\alpha}) - d(u) + 2)^2$
 $+ (\sum_{\Re \in N_G^*(\gamma_{\alpha} \{v, u'_2\}} d(\Re))^2 - (\sum_{\Re \in N_G^*(\gamma_{\alpha} \{v, u'_2\}} d(\Re) - 1)^2$
 $+ d(u)^2 - (d(u) + 1)^2 > 0.$

Since
$$\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge d(u) + 1$$
, implies that

$$\left[\left(\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \right)^2 - \left(\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) - 1 \right)^2 - 1 \right] > (d(u) + 1)^2 - d(u)^2.$$

Case II: If i = 2,

$$\begin{split} \mathsf{NM}_{1}(\mathsf{G}^{*}) - \mathsf{NM}_{1}(\mathsf{G}^{**}) &= \mathsf{I} \\ &= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} - 12 \right] \\ &+ \left[\left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(u)} d(\gamma_{\alpha}') \right)^{2} - \left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(u)} d(\gamma_{\alpha}') - d(u) + 2 \right)^{2} \right] \\ &+ \left[\left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) \right)^{2} - \left(\sum_{\Re \in N_{G^{*}}(\gamma_{\alpha} \setminus \{v, \dot{u}_{1}\})} d(\Re) - 1 \right)^{2} \right] > 0. \end{split}$$

Since $\sum_{\gamma_{\alpha} \in N_{G^*}(u)} d(\gamma_{\alpha}) \ge 6.$

Case III: If i > 2.

$$NM_{1}(G^{*}) - NM_{1}(G^{**}) = I$$

$$= \left[\left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) \right)^{2} - \left(\sum_{\gamma_{\alpha} \in N_{G^{*}}(u)} d(\gamma_{\alpha}) - 2 \right)^{2} \right]$$

$$+ \left[\left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(u)} d(\gamma_{\alpha}') \right)^{2} - \left(\sum_{\gamma_{\alpha}' \in N_{G^{*}}(u)} d(\gamma_{\alpha}') - d(u) + 2 \right)^{2} - 19 \right]$$

+
$$\left[\left(\sum_{\Re \in N_{G^*}(\gamma_{\alpha} \setminus \{v, \dot{u}_1\})} d(\Re) \right)^2 - \left(\sum_{\Re \in N_{G^*}(\gamma_{\alpha} \setminus \{v, \dot{u}_1\})} d(\Re) - 1 \right)^2 \right]$$

+ $(d(u) + 2)^2 - (d(u) + 1)^2 > 0.$

Let U_n^i be the unicyclic graph collection derived by joining a path of length n - i to the cycle C_i of length *i*. From Lemmas 2.1 and 2.2, we have

Theorem 2.1. Let G^* be an unicyclic graph of order n and girth i. If $G^* \notin U_n^i$, then $NM_1(G^*) > NM_1(U_n^i)$.

Figure 4: Graphs D_1 , D_2 and D_3 (used in Theorem 2.2).

Theorem 2.2. Let C_n be the optimal (minimal) unicyclic graph from the collection of U_n with minimum neighborhood first Zegrab index.

Let D_1 , D_2 and D_3 be the n-vertex bicyclic graphs showed in figure 4. From Lemmas 2.2 and 2.3, it is obvious that bicyclic graph with the minimum neighborhood first Zagreb index is one of the graphs D_1 , D_2 and D_3 . NM₁(D_1) = 16n + 128, NM₁(D_2) = NM₁(D_3) = $\begin{cases} 16n + 96 & if uv \notin E(D_2) or uv \notin E(D_3) and |N(u) \cap N(v)N(u) \cap N(v)| = 1; \\ 16n + 96 & if uv \notin E(D_2) or uv \notin E(D_3) and N(u) \cap N(v) = \phi, \end{cases}$

So, the above findings brings closer to our extremal result that is stated below.

Theorem 2.3. The optimal (minimal) bicyclic graphs of order n with minimum neighborhood first Zagreb index are the graphs D_2 and D_3 , in which non-adjacent vertices of degree three exists without any common neighbor.

ACKNOWLEDGEMENT. The authors are grateful to the anonymous referee for his/her valuable comments, which have considerably improved the presentation of this paper.

REFERENCES

- H. Abdo, D. Dimitrov, T. Réti and D. Stevanović, Estimation of the spectral radius of graph by the second Zagreb index, *MATCH Commun. Math. Comput. Chem.* 72 (3) (2014) 741–751.
- A. Ali, I. Gutman, E. Milovanović and I. Milovanović, Sum of powers of the degrees of graphs: extremal results and bounds, *MATCH Commun. Math. Comput. Chem.* 80 (1) (2018) 5–84.
- 3. A. Ali, Z. Raza and A. A. Bhatti, Bond incident degree (BID) indices of polyomino chains: a unified approach, *Appl. Math. Comput.* **287** (2016) 28–37.
- A. Ali, L. Zhong and I. Gutman, Harmonic index and its generalizations: Extremal results and bounds, *MATCH Commun. Math. Comput. Chem.* 81 (2) (2019) 249– 311.
- 5. D. Bonchev and L. B. Kier, Topological atomic indices and the electronic changes in alkanes, *J. Math. Chem.* **9** (1992) 75–85.
- 6. B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, *MATCH Commun. Math. Comput. Chem.* **78** (1) (2017) 17–100.
- 7. K. C. Das, Maximizing the sum of the squares of the degrees, *Discrete Math.* **285** (2004) 57–66.
- 8. K. C. Das, K. Xu and J. Nam, Zagreb indices of graphs, *Front. Math. China* **10** (3) (2015) 567–582.
- 9. T. Došlic and T. Réti, Novel degree-based molecular descriptors with increased discriminating power, *Acta Polytech. Hung.* **9** (2012) 17–30.
- 10. S. Fajtlowicz, On conjectures of Graffiti. II, Congr. Numer. 60 (1987) 187-197.
- 11. M. Ghorbani and M. A. Hosseinzadeh, Computing ABC4 index of nanostar dendrimers, *Optoelectron. Adv. Mater. Rapid Commun.* **4** (9) (2010) 1419–1422.
- 12. C. Godsil and G. Royle, *Algebraic Graph Theory*, Springer-Verlag, New York, 2001.
- 13. A. Graovac, M. Ghorbani and M. A. Hosseinzadeh, Computing fifth geometricarithmetic index for nanostar dendrimers, *J. Math. Nanosci.* **1** (1) (2011) 33–42.
- 14. J. L. Gross and J. Yellen, *Graph Theory and Its Applications*, 1st Ed. CRC Press, Boca Raton, Florida, 1998.
- 15. I. Gutman, Degree-based topological indices, *Croat. Chem. Acta* **86** (4) (2013) 351–361.
- 16. I. Gutman and K. C. Das, The first Zagreb indices 30 years after, *MATCH Commun. Math. Comput. Chem.* **50** (2004) 83–92.
- 17. I. Gutman, E. Milovanović and I. Milovanović, Beyond the Zagreb indices, *AKCE Int. J. Graph. Comb.* **17** (1) (2020) 74–85.

- I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, *J. Chem. Phys.* 62 (1975) 3399–3405.
- I. Gutman and J. Tošović, Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices, J. Serb. Chem. Soc. 78 (6) (2013) 805– 810.
- 20. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972) 535–538.
- 21. E. M. Hagos, Some results on graph spectra, *Linear Algebra Appl.* **356** (2002) 103–111.
- 22. F. Harary, *Graph Theory*, Addison-Wesley Publishing Company, New York, 1969.
- 23. B. Liu and Z. You, A survey on comparing Zagreb indices, *MATCH Commun. Math. Comput. Chem.* **65** (3) (2011) 581–593.
- Z. Milovanović, V. M. Ćirić, I. Z. Milentijević and E. I. Milovanović. On some spectral, vertex and edge degree-based graph invariants, *MATCH Commun. Math. Comput. Chem.* 77 (1) (2017) 177–188.
- 25. S. Mondal, N. De and A. Pal, On neighbourhood Zagreb index of product graphs, arXiv:1805.05273v1[math.CO] (2018).
- 26. S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, *Croat. Chem. Acta* **76** (2) (2003) 113–124.
- 27. T. Réti, A. Ali, P. Vargal and E. Bitay, Some properties of the neighborhood first Zagreb index, *Discrete Math. Lett.* **2** (2019) 10–17.
- 28. T. Réti, I. Gutman and D. Vukičević, On Zagreb indices of pseudo-regular graphs, *J. Math. Nanosci.***1** (1) (2011) 1–12.
- 29. D. Stevanović, *Spectral Radius of Graphs*, Elsevier Academic Press, Amsterdam, 2015.
- A. A. Toropov, A. P. Toropova, T. T. Ismailov, N. L. Voropaeva and I. N. Ruban, Extended molecular connectivity: predication of boiling points of alkanes, *J. Struct. Chem.* 38 (1997) 965–969.
- 31. S. Wang and B. Zhou, On the first extended zeroth-order connectivity index of trees, *Iran. J. Sci. Tech. A* **38** (A3) 2014) 213–219.
- 32. A. Yu, M. Lu and F. Tian, On the spectral radius of graphs, *Linear Algebra Appl.* **387** (1) (2004) 41–49.
- 33. B. Zhou and N. Trinajstić, On extended connectivity indices, *J. Math. Chem.* **46** (4) (2009) 1172–1180.