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1. INTRODUCTION  

All the graphs discussed here are simple, connected, finite and undirected. For further basic 

notions of graph theory, we refer the reader to some relevant books ,        -. 

The first Zagreb index    (appeared within a formula derived in ,  -) and the 

second Zagreb index    (introduced in ,  -) for a graph   can be defined as:   ( )   

∑  (  ) 
    ( )   ∑ ( (  )    (  ))      ( )    and    ( )    ∑  (  ) (  )      ( )   
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The theory of Zagreb indices is deep rooted; for example, see the papers [1, 2, 8, 15, 16, 19, 

20, 23, 24, 26, 28], recent surveys [3, 4, 6, 17] and related references listed therein. 

For a vertex     ( )  different researchers use different notations for representing 

the sum of degrees of the adjacent to   in literature, however, we use the notations   ( ) 

or Simply  ( ) or   , due to the simple reason, as   used for sum. The average-degree 

,  -(also known as dual degree ,  -) of a vertex    ( ) is the number 
 ( )

 ( )
 and we 

denote it by a( ). Consider the following general graph invariants  

  ( )   ∑   ( ( ))     ( )  and    ( )   ∑       ( ) ( ( )   ( ))  

Most of the cases of the above invariants           have already been presented in 

mathematical chemistry. For example, if we take   ( ( ))    ( )      √ ( ) then    

gives the first Zagreb index    , - or first extended zeroth order connectivity index [5, 30, 

31,33], respectively and if we take   ( ( )   ( ))   ( )    ( ) or   √ ( )  ( ) 

then    gives     (see Lemma 2.6 in [7]), the first extended first-order connectivity index 

[5], fourth atom-bond connectivity index [11] or fifth geometric-arithmetic index [13], 

respectively. On the same lines, it is natural to consider [27] the following revised version 

of the first and second Zagreb indices: 

                         ( )   ∑ ( ( )) 
   ( )  and    ( )   ∑  ( ) ( )    ( )  

The invariant     and     was referred [27] to as the neighborhood first Zagreb 

index and neighborhood second Zagreb index. In this current paper, we are concerned with 

the neighborhood first Zagreb index    , which was initially presented in Refs ,    - and 

referred to as the neighborhood first Zagreb index ,  - Clearly, the invariant     can 

rewritten , - as    ( )  ∑ ( ( ) ( )) 
   ( ) . 

The main objective of the present study is to establish extremal results regarding the 

unicyclic graphs and bicyclic graph of order   with respect to    . In Section  , we define 

some transformations which will decrease then neighborhood first Zagreb index. 

Throughout this paper, graph under discussion is either a unicycle graph or a bicyclic graph 

on   vertices for every fixed integer    . 

 

2. MINIMUM NEIGHBORHOOD FIRST ZAGREB INDEX OF UNICYCLIC AND 

BI-CYCLIC GRAPHS 

We provide two transformations which will reduce the neighborhood first Zagreb index as 

follows: 

Transformation 2.1. Let   be a simple, connected graph and select       ( ).    is 

created from   by identifying   along with the vertex     of a simple path 

                   .     is created from    by removing          and adding 

        . 
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Figure 1: Graphs   and     (used within the Transformation 2.1). 

 

Lemma 2.1. Suppose     and    be the graphs as in Transformation 2.1. Then    (  )  

    (   )  

 

Proof. Choose  (     )    ( )  ( )     and   ( )   *     + and    ( ) 

   ( )   {           }  There will be four cases regarding the length of the path. 

Case I: If     and    , 

    (  )     (   )     0(∑  ( )    (  ) )
 

 (∑  ( )    (  )   )
 
1   ( )       

Since   ( )              ( )     

Case II: If     and       

Sub-Case II(a): If     and    , 

   (  )      (   )     

                                       0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                                       0(∑  ( )    (  )
)

 
 (∑  ( )    (  )

  )
 
1 

                                           ( )       

Since   ( )       

Sub-Case II(b): If     and    , 

    (  )      (   )      

                                        0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 
1 

                                        0(∑  ( )    (  )
)

 
 (∑  ( )    (  )

  )
 
1 

                                       ( ( )   )  ( ( )   )   ( )        
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Since   ( )       

Case III: If     and      . 

Sub-Case III(a): If     and      , 

   (  )      (   )     

                                           0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 
1 

                                          0(∑  ( )    (  )
)

 
 (∑  ( )    (  )

  )
 
1 

                                           ( )       

Since   ( )       

Sub-Case III(b): If     and      , 

   (  )      (   )     

                                          0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 
1 

                                          0(∑  ( )    (  )
)

 
 (∑  ( )    (  )

  )
 
1 

                                          ( ( )   )  ( ( )   )   ( )        

Since   ( )       

Case IV: If     and n       

Sub-case IV(a): If     and      , 

   (  )      (   )     

                                           0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 
1 

                                           [(∑  ( )    (  ) )
 

 .∑  ( )(    (  ))   /
 

] 

                                           ( ( )   )        

Since   ( )     

Sub-case IV(b): If     and      , 

   (  )      (   )     

                                          0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 
1 

                                          [(∑  ( )    (  ) )
 

 .∑  ( )(    (  ))   /
 

] 

                                          ( ( )   )        

Since   ( )     

Sub-case IV(c): If     and      , 

  (  )      (   )     
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                                       0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 
1 

                                       [(∑  ( )    (  ) )
 

 .∑  ( )(    (  ))   /
 

] 

                                       ( ( )   )        

Since   ( )     

 

Sub-case IV(d): If     and      , 

   (  )      (   )     

                                           0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 
1 

                                           [(∑  ( )    (  ) )
 

 .∑  ( )(    (  ))   /
 

] 

                                           ( ( )   )  ( ( )   )  ( ( )   )        

Since   ( )     

           ■ 

 

Transformation 2.2. Let       ( )      is constructed from   by attaching paths 

  
   

   
    

  and   
   

   
    

  with the vertex  (   
 ) and the vertex  (   

 )  

respectively. Construct           
    

   
   

 

 
Figure 2: Graphs   and     (used within the Transformation 2.2). 

 

Lemma 2.2.     and    be the graphs as appear in Transformation 2.2. If    ( )  

   ( )         and      then    (  )     (   )  

 

Proof. Bearing in mind the assumption that     and    ( )     ( )      there will be 

five cases regarding the position (location) of   and    

 

Case I: If     (  ) and    ( )     ( )      

Sub-Case I(a): If     and    , 

   (  )     (   )     
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                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )     (   *    ́ +)   )
 
1 

                                     ( )   ( )  ( ( )   )     

Since ∑  (  )      ( )       ( )   ( )    ( )  ( ( )   )      and 

    ( )       ( )       

Sub-Case I(b): If     and    . When     and      

   (  )     (   )     

                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                                    [.∑  (  
 )  

     ( ) /
 

 .∑  (  
 )  

     ( )   /
 

] 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )        (   *    ́ +) )
 
1 

                                     ( )  ( ( )   )   ( ( )   )     

Since ∑  (  )      ( )        ( )  ( ( )   )   ( )  ( ( )   )   

( ( )   )   and    ( )       ( )      When     and      

   (  )     (   )     

                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )        (   *    ́ +) )
 
1 

                                     ( )       

Since ∑  (  )      ( )            ( )       ( )       

Sub-Case I(c): If       and      . When     and      

   (  )     (   )     

                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )        (   *    ́ +) )
 
1 

                                     ( )  ( ( )   )   ( ( )   )     

Since ∑  (  )      ( )     ( )  ( ( )   )   ( )  ( ( )   )   

( ( )   )   and    ( )     ( )      When     and      

   (  )     (   )     

                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )        (   *    ́ +) )
 
1 

                                     ( )  ( ( )   )   ( ( )   )     

Since  ∑  (  )      ( )              ( )       ( )       
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Sub-Case I(d): If     and    . When     and      

   (  )     (   )    

                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑        (   *    ́+) )
 

 (∑        (   *    ́+)   )
 
1 

                                    ( ( )   )  ( ( )   )  ( ( )   )    

Since ∑  (  )      ( )    ( ( )   )  ( ( )   )   ( )  ( ( )  

 )  ( ( )   )  and    ( )     ( )   .When     and      

   (  )     (   )    

                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑        (   *    ́+) )
 

 (∑        (   *    ́+)   )
 
1 

                                    ( ( )   )  ( ( )   )  ( ( )   )        

Since ∑  (  )      ( )    and    ( )     ( )   . When     and      

   (  )     (   )    

                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1   

                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑        (   *    ́+) )
 

 (∑        (   *    ́+)   )
 
1 

                                    ( ( )   )        

Since ∑  (  )      ( )    and    ( )     ( )   . When     and      

   (  )     (   )    

                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑        (   *    ́+) )
 

 (∑        (   *    ́+)   )
 
1 

                                    ( ( )   )       

Since ∑  (  )      ( )     and    ( )     ( )   . 

 

Case II: If       (  ) and |   ( )     ( )|     

Sub-Case II(a): If     and    , 

   (  )      (   )     

                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 
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                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )     (   *    ́ +)   )
 
1 

                                     ( )   ( )  ( ( )   )     

Since ∑  (  )      ( )       ( )   ( )    ( )  ( ( )   )   and 

    ( )      ( )      

 

Sub-Case II(b): If     and    . When     and      

   (  )      (   )     

                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )        (   *    ́ +) )
 
1 

                                     ( )  ( ( )   )   ( ( )   )     

Since ∑  (  )      ( )     ( )  ( ( )   )   ( )  ( ( )   )   

( ( )   )   and    ( )       ( )     When     and      

   (  )      (   )     

                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )        (   *    ́ +) )
 
1 

                                     ( )       

Since ∑  (  )      ( )     and     ( )      ( )       

 

Sub-Case II (c): If               When     and       

   (  )     (   )    

                                     0(∑  (  )      ( ) )
 

 (∑  (  )         ( ) )
 

  1   

                                    0(∑  ( )     (   *    ́+) )
 

 (∑  ( )        (   *    ́+) )
 
1 

                                    ( ( )   )   ( )  ( ( )   )     

Since ∑  (  )      ( )    ( ( )   )   ( )   ( ) ( ( )   )  

 ( ( )   )    and     ( )       ( )      When     and       

   (  )     (   )    

                                     0(∑  (  )      ( ) )
 

 (∑  (  )         ( ) )
 

   1  

                                    0(∑  ( )     (   *    ́+) )
 

 (∑  ( )        (   *    ́+) )
 
1 

                                    ( ( )   )   ( )  ( ( )   )     

Since ∑  (  )      ( )    and    ( )       ( )       
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Sub-Case II (d): If               When               

   (  )     (   )    

                                     0(∑  (  )      ( ) )
 

 (∑  (  )         ( ) )
 

   1 

                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )        (   *    ́ +) )
 
1 

                                    ( ( )   )  ( ( )   )  ( ( )   )     

Since ∑  (        ( ) )      ( ( )   )  ( ( )   )     ( ( )   )  

 ( ( )   )   and     ( )     ( )     When      and     , 

   (  )     (   )    

                                    0(∑  (  )      ( ) )
 

 (∑  (  )         ( ) )
 

   1 

                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )        (   *    ́ +) )
 
1 

                                    ( ( )   )   ( ( )   )  ( ( )   )        

Since ∑  (       ( ) )             ( )     ( )     When      and     , 

   (  )     (   )    

                                    0(∑  (  )      ( ) )
 

 (∑  (  )         ( ) )
 

   1 

                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )        (   *    ́ +) )
 
1 

                                    ( ( )   )        

Since ∑  (        ( ) )     and    ( )     ( )    When      and     , 

   (  )     (   )     

                                     0(∑  (  )      ( ) )
 

 (∑  (  )         ( ) )
 

   1 

                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )        (   *    ́ +) )
 
1 

                                    ( ( )   )        

Since ∑  (        ( ) )     and     ( )     ( )     

 

Case III: If       (  ) and    ( )       ( )       

Sub-Case III(a): If     and    , 

   (  )      (   )     

                                     0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 
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                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )     (   *    ́ +)   )
 
1 

                                     ( )   ( )  ( ( )   )     

Since ∑  (  )      ( )       ( )   ( )    ( )  ( ( )   )    

and    ( )       ( )       0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1  

0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )     (   *    ́ +)   )
 
1     

Sub-Case III(b): If     and    . When     and      

   (  )      (   )     

                                     0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )        (   *    ́ +) )
 
1 

                                     ( )  ( ( )   )   ( ( )   )     

Since ∑  (  )      ( )     ( )  ( ( )   )   ( )  ( ( )   )   

( ( )   )   and    ( )       ( )     When     and      

   (  )      (   )     

                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )        (   *    ́ +) )
 
1 

                                      ( )       

Since ∑  (  )      ( )    and    ( )       ( )     

Sub-Case III(c): If      and     . When     and      

   (  )      (   )     

                                    0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )     (   *    ́ +)   )
 
1 

                                    ( ( )   )   ( )  ( ( )   )     

 Since ∑  (  )      ( )      ( ( )   )   ( )   ( )  ( ( )   )  

( ( )   )   and     ( )     ( )      

 0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1  0(∑  ( )     (   *    ́ +) )

 
 

(∑  ( )     (   *    ́ +)   )
 
1     When     and      

   (  )      (   )     

                                     0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 
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                                    0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )     (   *    ́ +)   )
 
1 

                                     ( ( )   )   ( )  ( ( )   )     

Since ∑  (  )      ( )      and     ( )       ( )       

 0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1  0(∑  ( )     (   *    ́ +) )

 
 

(∑  ( )     (   *    ́ +)   )
 
1     

 

Sub-Case III(d): If              When     and    , 

   (  )     (   )    

                                       0(∑  (  )      ( ) )
 

 (∑  (        ( ) )   )
 

   1 

                                       0(∑        (  * ́ +) )
 

 (∑        (  * ́ +)   )
 
1 

                                       ( ( )   )  ( ( )   )  ( ( )   )       

Since ∑  (        ( )
)     ( ( )   )  ( ( )   )   ( ( )   )  

( ( )   )  and     ( )     ( )     When      and      

   (  )     (   )    

                                      0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                                      0(∑        (  * ́ +) )
 

 (∑        (  * ́ +)   )
 
1 

                                      ( ( )   )  ( ( )   )  ( ( )   )        

Since ∑  (        ( )
)            ( )     ( )     When       and       

   (  )     (   )    

                                       0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                                       0(∑        (  * ́ +) )
 

 (∑        (  * ́ +)   )
 
1 

                                       ( ( )   )        

Since ∑  (        ( )
)            ( )     ( )     When               

   (  )     (   )    

                                      0(∑  (        ( ) ))
 

 (∑  (  )      ( )   )
 

   1 

                                      0(∑        (  * ́ +) )
 

 (∑        (  * ́ +)   )
 
1 

                                      ( ( )   )        

Since ∑  (  )         ( )  and    ( )     ( )   . 

 

Case IV: If       (  ) and |   ( )     ( )|=1. 

Sub-case IV(a): If     and    , 
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     (  )     (   )  0(∑  (  )      ( ) )
 

 (∑  (  )         ( ) )
 

  1  

   0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )     

     ( ) )
 
1 0(∑        (  *  +) )

 
 

(∑        (  *  +)   )
 
1   ( )   ( )  ( (   ))     

 Since ∑  (  )       ( )     ( )         ( )   ( )        ( )

  ( )  ( ( )   )   

 0(∑    )  (∑          (  *  +)     (  *  +) )
 
1  ,(∑  (  )      ( ) )

 
 

(∑  (  )         ( ) )
 
-   . 

  

Sub-Case IV(b): If     and    . When     and    , 

   (  )     (   )    

                                          0(∑  (  )      ( ) )
 

 (∑  (  )         ( ) )
 

  1 

                                          0(∑        (  *  +) )
 

 (∑        (  *  +)   )
 
1 

                                            ( )   ( ( )   )  ( ( )   )     

Since ∑  (  )      ( )     ( )  ( ( )   )   ( )  ( ( )   )   

( ( )   )   and    ( )       ( )      When     and      

   (  )      (   )     

                                   0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                                  0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )        (   *    ́ +) )
 
1 

                                    ( )       

Since ∑  (  )      ( )       nd    ( )       ( )       

 

Sub-Case IV(c): If       and      . When     and      

   (  )      (   )     

                                   0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                                   0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                   0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )     (   *    ́ +)   )
 
1 

                                   ( ( )   )   ( )  ( ( )   )     

Since ∑  (  )      ( )      ( ( )   )   ( )   ( )  ( ( )   )  

( ( )   )         ( )     ( )       

0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1  0(∑  ( )     (   *    ́ +) )

 
 

(∑  ( )     (   *    ́ +)   )
 
1     
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When     and      

   (  )     (   )    

                                   0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                                   0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                                    0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )     (   *    ́ +)   )
 
1 

                                   ( ( )   )   ( )  ( ( )   )     

Since ∑  (  )      ( )            ( )     ( )     

 0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1  0(∑  ( )     (   *    ́ +) )

 
 

(∑  ( )     (   *    ́ +)   )
 
1     

 

Sub-case IV(d): if      and      When     and     

   (  )     (   )    

                                   0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                                   [(∑  ( )     (   *   +) )
 

 (∑  ( )
.     (   *   +)/

  )
 

] 

                                   ( ( )   )  ( ( )   )  ( ( )   )       

Since ∑  (  )      ( )       ( )       ( )         ( ( )   )  

( ( )   )   ( ( )   )  ( ( )   )    When              

   (  )     (   )     

                                   0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                                   [(∑  ( )     (   *   +) )
 

 (∑  ( )
.     (   *   +)/

  )
 

] 

                                   ( ( )   )  ( ( )   )  ( ( )   )        

Since ∑  (  )      ( )           ( )       ( )       When              

   (  )     (   )     

                                   0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                                   [(∑  ( )     (   *   +) )
 

 (∑  ( )
.     (   *   +)/

  )
 

] 

                                   ( ( )   )        

Since ∑  (  )      ( )           ( )       ( )       When              

   (  )     (   )     

                                           0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

    0(∑        (  * ́ +) )
 

 (∑          (  * ́ +) )
 
1 
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                                           ( ( )   )        

Since  ∑  (  )      ( )            ( )      ( )       

 

Case V: If        (  ) and    ( )       ( )|                    ( )     ( )  

 

Sub-Case V (a): If   1 and      

   (  )     (   )    

                                0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                             0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                             [.∑        (   { ́    }    
 ) /

 

 .∑          (   { ́    }    
 ) /

 

] 

                 [.∑     
  

     (  )
 
    /

 

 .∑         
     (  )

 
    /

 

] 

                   ( )   ( )  ( ( )   )     

Since∑  (  )      ( )    ∑ (  )
 

   
        ∑  (  

 )  
     ( )  

 ́́    
   ( )  

   ( )     and   ( )   ( )    ( )  ( ( )   )                                                                                                                                                                

 

Sub-Case V (b):                  When               

   (  )      (   )     

                     0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                     [.∑  ( )     (   *  ́    +
 

   ) /
 

 .∑  ( )     (   *  ́    +
 

   )   /
 

] 

                   [.∑  (   )       (  )
 

   
/

 

 .∑  (   )       (  )
 

   
  /

 

]   ( )  

                     ( ( )   )  ( ( )   )    

Since ∑  (  )      ( )       ( )  ( ( )   )   ( )  ( ( )   )  

( ( )   )        ( )     ( )      When      and       

   (  )     (   )    

                      0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                     [.∑  ( )     (   *  ́    +
 

   ) /
 

 .∑  ( )     (   *  ́    +
 

   )   /
 

] 

                     [.∑  (   )       (  )
 

   
/

 

 .∑  (   )       (  )
 

   
  /

 

] 
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                      ( )     . 

Since ∑  (  )      ( )             ( )     ( )       

 

Sub-Case V (c): If     and     . When     and     , 

   (  )      (   )     

                     0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1 

                     0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                     [.∑  ( )     (   *  ́    +
 

   ) /
 

 .∑  ( )     (   *  ́    +
 

   )   /
 

] 

                     [.∑  (   )       (  )
 

   
/

 

 .∑  (   )       (  )
 

   
  /

 

] 

                     ( ( )   )   ( )  ( ( )   )     

Since ∑  (  )      ( )      ∑  (   )       (  )
 

   
 ∑  (  

 
)  

     ( )     

   ( )       ( )      and   ( )  ( ( )   )   ( )   ( )  ( ( )  

 )   When            , 

   (  )      (   )     

                     0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                     0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   )
 
1 

                     [.∑  ( )     (   *  ́    +
 

   ) /
 

 .∑  ( )     (   *  ́    +
 

   )   /
 

] 

                     [.∑  (   )       (  )
 

   
/

 

 .∑  (   )       (  )
 

   
  /

 

] 

                     ( ( )   )   ( )  ( ( )   )     

Since ∑  (  )      ( )    ∑  (   )       (   )   
   ∑  (  

 )  
     ( )      ( )  

   ( )      and ( ( )   )   ( )   ( )  ( ( )   )   ( ( )   )   

 

Sub-Case V (d): If                When      and       

   (  )     (   )    

                      0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                      [.∑  ( )     (   *   ́    +)   
 /

 

 .∑  ( )        (   *   ́    +)   
 /

 

] 

                      [.∑  (   )       (  )
 

   
/

 

 .∑  (   )       (  )
 

   
  /

 

] 

                      ( ( )   )   ( ( )   )  ( ( )   )       
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Since ∑  (  )      ( )      ( ( )   )  ( ( )   )    ( ( )   )  

( ( )   )         ( )       ( )      When       and       

   (  )     (   )    

                      0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                      [.∑  ( )     (   *   ́    +)   
 /

 

 .∑  ( )        (   *   ́    +)   
 /

 

] 

                      [.∑  (   )       (   )   
 /

 

 .∑  (   )       (   )   
    /

 

] 

                      ( ( )   )  ( ( )   )  ( ( )   )        

Since ∑  (  )      ( )           ( )       ( )      When                 

   (  )     (   )    

                      0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                      [.∑  ( )     (   *   ́    +)   
 /

 

 .∑  ( )        (   *   ́    +)   
 /

 

] 

                      [.∑  (   )       (   )   
 /

 

 .∑  (   )       (   )   
    /

 

] 

                       ( ( )     )            

Since ∑  (  )      ( )      and    ( )       ( )      When               

   (  )     (   )    

                   0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                   [.∑  ( )     (   *  ́    +)
     /

 

 .∑  ( )     (   *  ́    +)
       /

 

] 

                   [(∑  (   )       (  )    
)

 
 (∑  (   )     

  (  )    
  )

 

] 

                   ( ( )   )        

Since ∑  (  )      ( )             ( )       ( )      

■ 

Lemma 2.3. Suppose there exists a path                      attached to the vertex 

        where   is identified with the vertex    and       (  )  Construct         

           , then    (   )     (   ).  
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                         Figure 3: Graphs   and     (used within Lemma 2.3).  

 

Proof. Since  ( )   , there will be three cases regarding the length of the path. 

 

Case I: If        

   (  )      (   )     

                                        (∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 
 

                                       (∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   ( )   )
 
 

                                       (∑  ( )     (  *     + )
 
  .∑  ( )   

  (  *     +
  /

 

 

                                        ( )  ( ( )   )     

 

Since ∑  (  )      ( )   ( )   , implies that 

          0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

  1  ( ( )   )   ( )   

 

Case II: If      

   (  )     (   )    

                                     0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 

   1 

                                     0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   ( )   )
 
1 

                                     0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )     (   *    ́ +)   )
 
1     

Since ∑  (  )      ( )     

 

Case III: If       

   (  )     (   )    

                                           0(∑  (  )      ( ) )
 

 (∑  (  )      ( )   )
 
1 

                                           0(∑  (  
 )  

     ( ) )
 

 (∑  (  
 )  

     ( )   ( )   )
 

   1 
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                                           0(∑  ( )     (   *    ́ +) )
 

 (∑  ( )     (   *    ́ +)   )
 
1 

                                           ( ( )   )  ( ( )   )     

                                                                                              ■ 

 

Let   
  be the unicyclic graph collection derived by joining a path of length     

to the cycle    of length  . From Lemmas 2.1 and 2.2, we have 

  

Theorem 2.1. Let    be an unicyclic graph of order   and girth  . If      
 , then 

   (  )      (  
 )  

 

Figure 4: Graphs        and    (used in Theorem 2.2). 

 

Theorem 2.2. Let    be the optimal (minimal) unicyclic graph from the collection of     

with minimum neighborhood first Zegrab index.   

 

Let        and     be the n-vertex bicyclic graphs showed in figure 4. From 

Lemmas 2.2 and 2.3, it is obvious that bicyclic graph with the minimum neighborhood first 

Zagreb index is one of the graphs        and     

   (  )           

   (  )     (  ) 

                      {

                (  )

                      (  )           (  )       | ( )   ( ) ( )   ( )|     

                      (   )           (   )        ( )   ( )    

 

So, the above findings brings closer to our extremal result that is stated below. 

 

Theorem      The optimal (minimal) bicyclic graphs of order   with minimum 

neighborhood first Zagreb index are the graphs    and   , in which non-adjacent vertices 

of degree three exists without any common neighbor. 
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