Another Approach to a Conjecture about the Exponential Reduced Sombor Index of Molecular Trees

Document Type : Research Paper

Authors

Department of Applied Mathematics‎, ‎Faculty of Mathematical Sciences Ferdowsi University of Mashhad ‎ ‎P.O‎. ‎Box 1159‎, ‎Mashhad 91775‎, ‎Iran

Abstract

‎For a graph G‎, ‎the exponential reduced Sombor index (ERSI)‎, ‎denoted by eSored , ‎is ∑‎uv∈E(G) e√(dG(v)-1)^2+(dG(u)-1)^2), ‎where dG(v) is the degree of vertex v‎. ‎The authors in [On the reduced Sombor index and its applications‎, ‎MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem‎. ‎86 (2021) 729–753] conjectured that for each molecular tree T of order n‎,  eSored‎(T)≤(2/3) (n+1) e3 +(1/3) (n-5) e 3√2, where n≡2 (mod 3), eSored‎(T)≤(1/3) (2n+1) e3 +(1/3) (n-13) e3√2 + 3e√13 , where n≡1 (mod 3) and  eSored‎(T)≤(2/3) ne3 +(1/3) (n-9) e3√2 + 2e√10 , where n≡0 (mod 3). ‎Recently‎, ‎Hamza and Ali [On a conjecture regarding the exponential reduced Sombor index of chemical trees‎. ‎Discrete Math‎. ‎Lett‎. ‎9 (2022) 107–110] proved the modified version of this conjecture‎. ‎In this paper‎, ‎we adopt another method to prove it‎. 

Keywords


  1. A. Aashtab‎, ‎S‎. ‎Akbari‎, ‎S‎. ‎Madadinia‎, ‎M‎. ‎Noei‎ and ‎F‎. ‎Salehi‎, ‎On the graphs with minimum Sombor index‎, MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 88 (2022) 553–559‎.
  2. A‎. ‎Alidadi‎, ‎A‎. ‎Parsian‎ and ‎H‎. ‎Arianpoor‎, ‎The minimum Sombor index for unicyclic graphs with fixed diameter‎, MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 88 (2022) 561–572‎.
  3. S‎. ‎Alikhani‎ and ‎N‎. ‎Ghanbari‎, ‎Sombor index of polymers‎, ‎MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 86 (2021) 715–728‎.
  4. H‎. ‎Chen‎, ‎W‎. ‎Li‎ and ‎J‎. ‎Wang‎, ‎Extremal values on the Sombor index of trees‎, ‎MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 87 (2022) 23–49‎.
  5. R‎. ‎Cruz‎, ‎I‎. ‎Gutman‎ and ‎J‎. ‎Rada‎, ‎Sombor index of chemical graphs‎, ‎Appl‎. ‎Math‎. ‎Comput. 399 (2021) 126018‎.
  6. R‎. ‎Cruz‎ and ‎J‎. ‎Rada‎, ‎Extremal values of the Sombor index in unicyclic and bicyclic graphs‎, ‎J‎. ‎Math‎. ‎Chem. 59 (2021) 1098–1116‎.
  7. K‎. ‎C‎. ‎Das‎, ‎A‎. ‎Ghalavand ‎ and‎ A‎. ‎R‎. ‎Ashraf‎i, ‎On a conjecture about the Sombor index of graphs‎,‎ Symmetry 13 (2021) 1830‎.
  8. K‎. ‎C‎. ‎Das‎ and ‎I‎. ‎Gutman‎, ‎On Sombor index of trees‎, Appl‎. ‎Math‎. ‎Comput. 412 (2022) 126575‎.
  9. ‎H‎. ‎Deng‎, ‎Z‎. ‎Tang‎ and ‎R‎. ‎Wu‎, ‎Molecular trees with extremal values of Sombor indices‎, ‎Int‎. ‎J‎. ‎Quantum Chem. 121 (2021) e26622‎.
  10. X‎. ‎Fang‎, ‎L‎. ‎You‎ and ‎H‎. ‎Liu‎, ‎The expected values of Sombor indices in random hexagonal chains‎, ‎phenylene chains and Sombor indices of some chemical graphs‎, ‎Int‎. ‎J‎. ‎Quantum Chem. 121 (2021) e26740‎.
  11. ‎I‎. ‎Gutman‎, ‎Geometric approach to degree-based topological indices‎: ‎Sombor indices‎, MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 86 (2021) 11–16‎.
  12. ‎I‎. ‎Gutman‎, ‎Some basic properties of Sombor indices‎, ‎ Open J‎. ‎Discr‎. ‎Appl‎. ‎Math. 4‎ ‎(2021) 1–3‎.
  13. ‎A‎. ‎E‎. ‎Hamza‎ and ‎A‎. ‎Ali‎, ‎On a conjecture regarding the exponential reduced Sombor index of chemical trees‎, ‎Discrete Math‎. ‎Lett. 9 (2022) 107–110‎.
  14. B‎. ‎Horoldagva‎ and ‎C‎. ‎Xu‎, ‎On Sombor index of graphs‎, MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 86 (2021) 703–713‎.
  15. S‎. ‎Li‎, ‎Z‎. ‎Wang‎ and ‎M‎. ‎Zhang‎, ‎On the extremal Sombor index of trees with a given diameter‎, ‎Appl‎. ‎Math‎. ‎Comput. 416 (2022) 126731‎.
  16. ‎‎Z‎. ‎Lin‎, ‎On the spectral radius and energy of the Sombor matrix of graphs‎, ‎arXiv:2102.03960v‎.
  17. H‎. ‎Liu‎, ‎Extremal cacti with respect to Sombor index‎, Iranian J‎. ‎Math‎. ‎Chem. 12 (2021) 197–208‎.
  18. H‎. ‎Liu‎, ‎H‎. ‎Chen‎, ‎Q‎. ‎Xiao‎, ‎X‎. ‎Fang‎ and ‎Z‎. ‎Tang‎, ‎More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons‎, Int‎. ‎J‎. ‎Quantum Chem. 121 (2021) e26689‎.
  19. H‎. ‎Liu‎, ‎L‎. ‎You‎ and ‎Y‎. ‎Huang‎, ‎Ordering chemical graphs by Sombor indices and its applications‎,‎ MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 87 (2022) 5–22‎.
  20. H‎. ‎Liu‎, ‎L‎. ‎You‎ and ‎Y‎. ‎Huang‎, ‎Extremal Sombor indices of tetracyclic (chemical) graphs‎, ‎MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 88 (2022) 573–581‎.
  21. H‎. ‎Liu‎, ‎L‎. ‎You‎, ‎Y‎. ‎Huang ‎ and‎X‎. ‎Fang‎, ‎Spectral properties of p-Sombor matrices and beyond‎, MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 87 (2022) 59–87‎.
  22. H. Liu‎, ‎L. You‎, ‎Z. Tang‎ and ‎J. B. Liu‎, ‎On the reduced Sombor index and its‎ ‎applications‎, ‎MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 86 (2021) 729–753‎.
  23. ‎H‎. ‎Liu‎, ‎M‎. ‎Zeng‎, ‎H‎. ‎Deng‎ and ‎Z‎. ‎Tang‎, ‎Some indices in the random spiro chains‎, Iranian‎ ‎J‎. ‎Math‎. ‎Chem. 11 (2020) 249–264‎.
  24. I. Milovanović, ‎E. Milovanović and ‎M. Matejć‎, ‎On some mathematical properties of‎ ‎Sombor indices‎, ‎Bull‎. ‎Int‎. ‎Math‎. ‎Virtual Inst. 11 (2021) 341–353‎.
  25. J‎. ‎Rada‎, ‎J‎. ‎M‎. ‎Rodriguez‎ and ‎J‎. ‎M‎. ‎Sigarreta‎, ‎General properties on Sombor indices‎, ‎Discr‎. ‎Appl‎. ‎Math. 299 (2021) 87–97‎.
  26. B‎. ‎A‎. ‎Rather‎ and ‎M‎. ‎Imran‎, ‎Sharp bounds on the Sombor energy of graphs‎, ‎MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 88 (2022) 605–624‎.
  27. ‎I. Redžepović‎, ‎Chemical applicability of Sombor indices‎, ‎J‎. ‎Serb‎. ‎Chem‎. ‎Soc. 86 (2021) 445–457‎.
  28. I. Redžepović and ‎I‎. ‎Gutman‎, ‎Comparing energy and Sombor energy-an empirical study‎, MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 88 (2022) 133–140‎.
  29. T‎. ‎Réti‎, ‎T‎. ‎Došlić ‎ and‎ A‎. ‎Ali‎, ‎On the Sombor index of graphs‎, ‎Contrib‎. ‎Math. 3 (2021) 11–18‎.
  30. A‎. ‎ Ülker‎, ‎A‎. ‎Gürsoy‎ and ‎N‎. ‎K‎. ‎Gürsoy‎, ‎The energy and Sombor index of graphs‎, MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 87 (2022) 51–58‎.
  31. Z‎. ‎Wang‎, ‎Y‎. ‎Mao‎, ‎Y‎. ‎Li‎ and ‎B‎. ‎Furtula‎, ‎On relations between Sombor and other degree-based indices‎, J‎. ‎Appl‎. ‎Math‎. ‎Comput. 68 (2022) 1–17‎.
  32. F‎. ‎Wang‎ and ‎B‎. ‎Wu‎, ‎The proof of a conjecture on the reduced Sombor index‎, MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem. 88 (2022) 583–591‎.
  33. W‎. ‎Zhang‎, ‎L‎. ‎You‎, ‎H‎. ‎Liu‎ and ‎Y‎. ‎Huang‎, ‎The expected values and variances for Sombor indices in a general random chain‎, Appl‎. ‎Math‎. ‎Comput. 411 (2021) 126521‎.