The leap eccentric connectivity index of $G$ is defined as $$L\xi^{C}(G)=\sum_{v\in V(G)}d_{2}(v|G)e(v|G)$$ where $d_{2}(v|G) $ be the second degree of the vertex $v$ and $e(v|G)$ be the eccentricity of the vertex $v$ in $G$. In this paper, we give some properties of the leap eccentric connectivity index of the graph $G$.
R. M. Damerell, On Moore graphs, Math. Proc. Cambridge Phil. Soc.74 (1973) 227-236.
J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, Springer, Berlin, 2008.
I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
B. Borovicanin, K. C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem.78 (2017) 17-100.
K. C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem.52 (2004) 103-112.
I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem.50 (2004) 83-92.
A. R. Ashrafi, T. Došlić and A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math. 158 (2010) 1571-1578.
I. Gutman, B. Furtula, Z. K. Vuki evi and G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5-16.
I. Gutman, A. M. Naji and N. D. Soner, On leap Zagreb indices of graphs, Comm. Comb. Optim.2 (2017) 99-117.
P. Dankelmann, W. Goddard and C. S. Swart, The average eccentricity of a graph and its subgraphs, Util. Math. 65 (2004) 41-52.
M. Ghorbani and M. A. Hosseinzadeh, A new version of Zagreb indices, Filomat26 (2012) 93-100.
V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273-282.
A. M. Naji, P. Shiladhar and N. D. Soner, On leap eccentric connectivity index of graphs, Iranian J. Math. Sci. Inf., under review.
N. D. Soner and A. M. Naji, The k-distance neighborhood polynomial of a graph, Int. J. Math. Comput. Sci. 3 (2016) 2359-2364.
S. Yamaguchi, Estimating the Zagreb indices and the spectral radius of triangle-and quadrangle-free connected graphs, Chem. Phys. Lett. 458 (2008) 396-398.
L. Zhang and B. Wu, The Nordhaus-Gaddum-type inequalities for some chemical indices, MATCH Commun. Math. Comput. Chem.54 (2005) 189-194.
T. Réti, A. Ali, P. Varga and E. Bitay, Some properties of the neighborhood first Zagreb index, Discrete Math. Lett. 2 (2019) 10-17.
R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley−VCH, Weinheim, (2000).
A. Ali and N. Trinajstić, A novel/old modification of the first Zagreb index, Mol. Inform.37 (2018) 1800008.
Song, L., Hechao, L., & Zikai, T. (2020). Some Properties of the Leap Eccentric Connectivity Index of Graphs. Iranian Journal of Mathematical Chemistry, 11(4), 227-237. doi: 10.22052/ijmc.2020.233343.1505
MLA
Ling Song; Liu Hechao; Tang Zikai. "Some Properties of the Leap Eccentric Connectivity Index of Graphs", Iranian Journal of Mathematical Chemistry, 11, 4, 2020, 227-237. doi: 10.22052/ijmc.2020.233343.1505
HARVARD
Song, L., Hechao, L., Zikai, T. (2020). 'Some Properties of the Leap Eccentric Connectivity Index of Graphs', Iranian Journal of Mathematical Chemistry, 11(4), pp. 227-237. doi: 10.22052/ijmc.2020.233343.1505
VANCOUVER
Song, L., Hechao, L., Zikai, T. Some Properties of the Leap Eccentric Connectivity Index of Graphs. Iranian Journal of Mathematical Chemistry, 2020; 11(4): 227-237. doi: 10.22052/ijmc.2020.233343.1505