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The leap eccentric connectivity index of 퐺  is defined as 퐿휉 (퐺) =
∑ 푑 (푣|퐺)푒(푣|퐺)∈ ( ) , where 푑 (푣|퐺) be the second degree of the 
vertex 푣 and 푒(푣|퐺) be the eccentricity of the vertex 푣 in 퐺. In this 
paper, we give some properties of the leap eccentric connectivity 
index of the graph 퐺. 
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1. INTRODUCTION  

In this paper, we only consider simple, undirected, finite graphs. Let 퐺 denote a graph with 
푛 vertices and 푚 edge sets. Denoted by 푑 (푢,푣) the shortest path of length connecting 푢 
and 푣  in 퐺 , for vertices 푢 , 푣 ∈  푉(퐺) . For a vertex 푣  and a positive integer 푘 , we let 
푁 (푣|퐺) denote the open 푘-neighborhood of vertex 푣 in 퐺 and defined as 푁 (푣|퐺) = {푢 ∈
 푉(퐺)|푑 (푢, 푣) = 푘}. Let 푑 (푣|퐺) denote the 푘 degree of the vertex in 퐺, expressed as the 
number of vertices in the open 푘 -neighborhood of vertex 푣  in 퐺 , that is, 푑 (푣|퐺) =
|푁 (푣|퐺)| . We can see that for any vertex 푣  in 퐺  there are 푑 (푣|퐺) = |푁 (푣|퐺)|  and 
푑 (푣|퐺) = |푁 (푣|퐺)| . The graph invariant 푑 (푣|퐺)  is also known as the connection 
number of 푣 [19]. 

The eccentricity is defined as 푒(푣|퐺), for a vertex 푣  in 퐺 , which represents the 
maximum distance from vertex 푣  to other vertices in the graph, that is, 푒(푣|퐺) =
푚푎푥{푑 (푢,푣)|푢 ∈  푉(퐺)} . For any vertex in the graph, we define the maximum 
eccentricity value as the diameter 푑푖푎푚(퐺)  and the minimum eccentricity value as the 
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radius  푟푎푑(퐺). If the eccentricity of a vertex is equal to the radius of graph 퐺, we call this 
vertex the center. If the eccentricity of all vertices in graph 퐺 is equal to the radius, we call 
퐺 a self-centered graph. We let 푉 (퐺) ⊆  푉(퐺) denote the set of vertices in 퐺 where the 
eccentricity is equal to α, where 훼 = 1,2, … ,푑푖푎푚(퐺), obviously 푉 (퐺) represents the set 
of vertices in 퐺 that have a eccentricity of 1 to other vertices, the degree of these vertices is 
푛 − 1, we call these vertices full vertices. 

Let 퐻 ⊆ 푉(퐺) denote any subset of vertices of 퐺, then the induced subgraph 〈H〉 of 
퐺 is the graph that the vertex set is  퐻, and the edge set is the edge in graph 퐺 with the 
vertex in 퐻 as the endpoint. If there are no graphs isomorphic to graph 퐹 in all induced 
subgraphs of graph 퐺, we call graph 퐺 the 퐹-free graph. In [1], the Moore graph with a 
diameter of 2 is a pentagon, a Petresen graph, a Huffman-Singleton graph, or a 57 regular 
graph with 57 + 1 vertices. For other terms and symbols that are not defined here, please 
refer to [2]. 

Structure descriptors based on molecular graphs are often called topological indices 
and have very important meanings. In 1972, Gutman and Trinajestic [3] introduced the 
classical topological indices, namely the first and second Zagreb indices, and elaborated 
them in [4]. The definition is 푀 (퐺) = ∑ 푑 (푣|퐺)∈ ( ) and 푀 (퐺) = 
∑ 푑∈ ( ) (푢|퐺)푑 (푣|퐺). For the properties of these two indices, please refer to [5−7]. In 
recent years, some new invariants about Zagreb index have been proposed, such as Zagreb 
coindices [8−9], leap Zagreb index [10] and so on. The leap Zagreb indices are defined as 
퐿푀 (퐺) = ∑ 푑 (푣|퐺)∈ ( )  and 퐿푀 (퐺) = ∑ 푑 (푢|퐺)푑 (푣|퐺)∈ ( ) , and these indices 
were also studied independently under the name Zagreb connection indices [20]. 

In addition to above mentioned degree-based topological indexes, some distance-
based topological indexes have also caused extensive research. In 2004, Dankelmann 
introduced the eccentricity sum index [11], defined as 휃(퐺) = ∑ 푒(푣|퐺)∈ ( ) . 

In 2012, Ghorbani proposed the Zagreb eccentricity index [12], defined as 퐸 (퐺) =
∑ 푒 (푣|퐺)∈ ( ) , 퐸 (퐺) = ∑ 푒∈ ( ) (푢|퐺)푒(푣|퐺) . Sharma proposed the eccentric 
connectivity index [13], defined as 휉 (퐺) = ∑ 푑 (푣|퐺)푒(푣|퐺)∈ ( ) . Recently, Naji 
proposed the leap eccentric connectivity index [14], defined as 퐿휉 (퐺) 
= ∑ 푑 (푣|퐺)푒(푣|퐺)∈ ( )  

In this paper, we investigate the leap eccentric connectivity index and give some 
properties of the leap eccentric connectivity index of graph 퐺. 
 
2. PRELIMINARY  

 In this section, we introduce some lemmas that will be useful in later proofs of this article. 
Firstly we introduce some properties of the second degree. 
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Lemma 2.1. [16] Let 퐺 be a connected graph with 푛 vertices and 푚 edges, then 
                                   푑 (푣|퐺) ≤ ∑ 푑 (푢|퐺) − 푑 (푣|퐺),∈ ( | )                                        (1) 
with equality if and only if 퐺 is a {퐶 ,퐶 }-free graph. 

Note that ∑ ∑ 푑 (푢|퐺) = 푀∈ ( | )∈ ( ) (퐺), see [18]. Thus, Lemma 2.1 has the 
following corollary. 

 
Corollary 2.2. [15] Let 퐺 be a connected graph with 푛 vertices and 푚 edges, then 
                                       ∑ 푑 (푣|퐺)∈ ( ) ≤ 푀 (퐺)− 2푚,                                                  (2) 
with equality if and only if 퐺 is a {퐶 ,퐶 }-free graph. 
 
Lemma 2.3. [16] Let 퐺 be a connected graph and |푉(퐺)| = 푛, then for any vertex 푣 in 퐺   
                                       푑 (푣|퐺) ≤ 푛 + 1− 푑 (푣|퐺) − 푒(푣|퐺).                                        (3) 

 
Lemma 2.4. [10] Let 퐺 be a connected graph and |푉(퐺)| = 푛, then for any vertex 푣 in 퐺    
                                       푑 (푣|퐺) ≤ 푑 (푣|퐺̅) = 푛 − 1 − 푑 (푣|퐺),                                      (4) 
with equality if and only if the diameter of 퐺 is at most 2. 
 

Next we introduce some properties on graph 퐺 and its complement 퐺̅. 
 
Lemma 2.5. [17] Let 퐺 and the complement 퐺̅ be connected, then                               

i. If 푑푖푎푚(퐺) > 3, then 푑푖푎푚(퐺̅) = 2 ; 
ii. If 푑푖푎푚(퐺) = 3, then 퐺̅ has a induced subgraph as a double star graph. 

 
Lemma 2.6. [10] Let 퐺 be a connected graph of 푛 vertices, then for any vertex 푣 in the 
complement 퐺̅ of  퐺                         

  푑 (푣|퐺̅) = 푑 (푣|퐺),                                                        (5) 
with equality if and only if the diameter of the complement  퐺̅ of 퐺 is at most 2 or the 
diameter of 퐺 is at least 4 or 퐺 is a regular graph with a diameter of at least 2 or 퐺 = 퐾 . 

Finally, we introduce some properties of the bound of 푀 (퐺). 
 

Lemma 2.7. [5] Let 퐺  be a connected graph with n ≥ 2  vertices and 푚  edges, then 

푀 (퐺) ≥  and with equality if and only if 퐺 is a regular graph.                       
Proof. In the Cauchy-Schwartz inequality    

 (∑ 푎 푏 ) ≤ (∑ 푎 )(∑ 푏 ). 
We set 푎 = 푑 (푣 |퐺), b = 1, then  

푀 (퐺)푛 = 푑 (푣 |퐺) + 푑 (푣 |퐺) + ⋯+ 푑 (푣 |퐺) (1 + 1 + ⋯+ 1 ) 
                            ≥ (푑 (푣 |퐺) ⋅ 1 + 푑 (푣 |퐺) ⋅ 1 + ⋯+ 푑 (푣 |퐺) ⋅ 1) 
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                            = (2푚) = 4푚 . 

Therefore,  푀 (퐺) ≥  , with equality if and only if  푑 (푣 |퐺) = 푑 (푣 |퐺) = ⋯ =
푑 (푣 |퐺) that is 퐺 is a regular graph.                                                                                    ∎ 

 
3. SOME PROPERTIES OF LEAP ECCENTRIC CONNECTIVITY INDEX 

Firstly we give the upper bound of  the leap eccentric connectivity index. 
 

Theorem 3.1. Let 퐺 be a connected graph with 푛 vertices and 푚 edges, then  
                                         퐿휉 (퐺) ≤ (푛 − 1)휃(퐺)− 휉 (퐺),                                                (6) 
with equality if and only if the diameter of 퐺 is at most 2. 
 
Proof. According to Lemma 2.4 and the definition of  퐿휉 (퐺), we can get 

퐿휉 (퐺) = 푑 (푣|퐺)푒(푣|퐺)
∈ ( )

 

                                                            ≤ ∑ [푛 − 1− 푑 (푣|퐺)]푒(푣|퐺)∈ ( )  
  ≤ ∑ (푛 − 1)푒(푣|퐺) −∑ 푑 (푣|퐺)푒(푣|퐺)∈ ( )∈ ( )  

                                                    = (푛 − 1)휃(퐺)− 휉 (퐺). 
Assuming that the diameter of  퐺 is at most 2, we need to explain the following two cases: 

Case 1. If 푑푖푎푚(퐺) = 1, and because 퐺 is a connected graph, it means that for every 
vertex 푣 in 퐺 there is 푒(푣|퐺) = 1 , so for each vertex 푣 is connected to other vertices, we 
can get 푑 (푣|퐺) = 0, 푑 (푣|퐺) = 푛 − 1.  Then, 

휃(퐺) = ∑ 푒(푣|퐺)∈ ( ) = 푛, 휉 (퐺) = ∑ 푑 (푣|퐺)푒(푣|퐺) = 푛(푛 − 1)∈ ( ) . 
So, 퐿휉 (퐺) = (푛 − 1)휃(퐺) − 휉 (퐺) = (푛 − 1)푛 − 푛(푛 − 1) = 0. 

Case 2. If  푑푖푎푚(퐺) = 2, we can get from Lemma 2.4 
푑 (푣|퐺) ≤ 푑 (푣|퐺̅) = 푛 − 1 − 푑 (푣|퐺), 

for any vertex 푣 in 퐺. Then, 

퐿휉 (퐺) = 푑 (푣|퐺)푒(푣|퐺)
∈ ( )

= [푛 − 1 − 푑 (푣|퐺)]푒(푣|퐺)
∈ ( )

 

                                = ∑ (푛 − 1)푒(푣|퐺)∈ ( ) −∑ 푑 (푣|퐺)푒(푣|퐺)∈ ( )  
                        = (푛 − 1)휃(퐺)− 휉 (퐺). 

In the following we assume 푑푖푎푚(퐺) ≥  3. 
If 푑푖푎푚(퐺) ≥  3, there is at least a vertex 푣 in 퐺 that satisfies 푒(푣|퐺) ≥  3. 

Therefore, for the  vertex 푣, we have 
푑 (푣|퐺) < 푑 (푣|퐺̅) = 푛 − 1 − 푑 (푣|퐺). 

Then, 휉 (퐺) < (푛 − 1)휃(퐺)− 휉 (퐺) .   
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This completes the proof.                                                                                               ∎ 
 

Theorem 3.2. Let 퐺 be a connected graph with 푛 vertices and 푚 edges, and ≥ 3 , then  
                                        퐿휉 (퐺) ≤ 푛휃(퐺)− 퐸 (퐺)− 푛 + 1,                                             (7) 
with equality if and only if  퐺 ≅ 푆 . 
 
Proof. Let v ∈ V(G), we have that  

푛 − 1 = 푑 (푣|퐺) + 푑 (푣|퐺) + ⋯+ 푑 ( | )(푣|퐺) 
                                             ≥ 1 + 푑 (푣|퐺) + 푒(푣|퐺) − 2 

                                     = 푑 (푣|퐺) + 푒(푣|퐺) − 1. 
Then 푑 (푣|퐺) ≤ 푛 − 푒(푣|퐺), with equality if and only if 푒(푣|퐺) = 2 and 푑 (푣|퐺) = 1 or 
푒(푣|퐺) ≥  3  and 푑 (푣|퐺) = 푑 (푣|퐺) = ⋯ = 푑 ( | )(푣|퐺) = 1 . Then we will prove the 
two cases when the equality holds. 

Case 1. When 푒(푣|퐺) = 2 and 푑 (푣|퐺) = 1 . Assuming that all vertices  푣  in 퐺  have a 
eccentricity of 2 and a degree of 1 holds, then  푑 (푣|퐺) = 푛 − 2. Let  푁(푣|퐺) = {푢}, then 
푑 (푢|퐺) = 푛 − 1, contradict. Therefore, we can only have a eccentricity of 2 and a degree 
of 1 for some vertices in 퐺. According to the above analysis, we can get |푉 (퐺)| ≥ 1. Then, 

퐿휉 (퐺) = ∑ 푑∈ ( ) (푣|퐺)푒(푣|퐺)  
             = ∑ 푑∈ ( ) (푣|퐺)푒(푣|퐺) + ∑ 푑∉ ( ) (푣|퐺)푒(푣|퐺) 

                       = ∑ 푑∉ ( ) (푣|퐺)푒(푣|퐺) = ∑ (푛 − 푒(푣|퐺))∉ ( ) 푒(푣|퐺) 
                       = ∑ 푛∉ ( ) 푒(푣|퐺) −∑ 푒 (푣|퐺)∉ ( )  

          = 푛 ∑ 푒(푣|퐺) −∑ 푒(푣|퐺)∈ ( )∈ ( ) − (∑ 푒∈ ( ) (푣|퐺) 
          −∑ 푒 (푣|퐺))∈ ( )  

              = 푛휃(퐺)− 퐸 (퐺) − 푛|푉 (퐺)| + |푉 (퐺)| 
              = 푛휃(퐺)− 퐸 (퐺) + |푉 (퐺)|(1− 푛) ≤ 푛휃(퐺) − 퐸 (퐺)− 푛 + 1, 

with equality if and only if |푉 (퐺)| = 1, then there is only a vertex 푢 in 퐺, which satisfies 
푑 (푢|퐺) = 푛 − 1, and all other vertices 푣 satisfy 푒(푣|퐺) = 2 and 푑 (푣|퐺) = 1. Obviously, 
퐺 ≅ 푆 . 

Case 2. When all vertices in 퐺  have 푒(푣|퐺)  ≥ 3  and  푑 (푣|퐺) = 푑 (푣|퐺) = ⋯ =
푑 ( | )(푣|퐺) = 1, we assume 푑푖푎푚(퐺) = 푟  and let 푃(퐺) = 푢 푢 …푢   be a diameter path 
in 퐺 . We found that 푑 (푢 |퐺) = 2 > 1, contradiction. Therefore, there is no connected 
graph 퐺 satisfying such a condition. 

The following assumes that when 푑 (푣|퐺) ≤ 푛 − 푒(푣|퐺) is not equal, we compare 
the bound of the leap eccentric connectivity index obtained at this time is smaller than the 
bound when equal. Set  Lξ∗ (퐺) = 푛휃(퐺)− 퐸 (퐺) − 푛 + 1. We still discuss it in two cases. 
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Case A. When 푒(푣|퐺) = 2  and  푑 (푣|퐺) ≥ 2 ,  푛 − 1 = 푑 (푣|퐺) + 푑 (푣|퐺) ≥ 2 +
푑 (푣|퐺),  then 푑 (푣|퐺) ≤ 푛 − 3, so, ∑ 푑∈ ( ) (푣|퐺)푒(푣|퐺) ≤ ∑ (푛 − 3)푒(푣|퐺) =∈ ( )

(푛 − 3)휃(퐺) = 퐿휉 (퐺), after making a difference: 
Lξ∗ (퐺)− 퐿휉 (퐺) = 푛휃(퐺) − 퐸 (퐺)− 푛 + 1 − (푛 − 3)휃(퐺) 

                                            = 3휃(퐺)− 퐸 (퐺) − 푛 + 1 
                                            = 3∑ 푒(푣|퐺)∈ ( ) −∑ 푒∈ ( ) (푣|퐺) − 푛 + 1. 
                                            ≥ 푛 + 1 > 0 

Case B. When 푒(푣|퐺) ≥ 3 and at least one of 푑 (푣|퐺),푑 (푣|퐺), … , 푑 ( | )(푣|퐺) is greater 
than 1, and the others are 1, we have 

푛 − 1 = 푑 (푣|퐺) + 푑 (푣|퐺) + ⋯+ 푑 ( | )(푣|퐺) 
                                             ≥ 1 + 푑 (푣|퐺) + 푒(푣|퐺) − 1 = 푑 (푣|퐺) + 푒(푣|퐺). 
At this time,  푑 (푣|퐺) ≤ 푛 − 1 − 푒(푣|퐺). Then, 

              ∑ 푑∈ ( ) (푣|퐺)푒(푣|퐺) ≤ ∑ 푛 − 1− 푒(푣|퐺) 푒(푣|퐺)∈ ( )  
                                                       = (푛 − 1)휃(퐺)− 퐸 (퐺) = 퐿휉 (퐺). 

The difference between Lξ∗ (퐺) and 퐿휉 (퐺) can be obtained, 
Lξ∗ (퐺) − 퐿휉 (퐺) = 푛휃(퐺)− 퐸 (퐺)− 푛 + 1 − (푛 − 1)휃(퐺) + 퐸 (퐺) 

                                     = 휃(퐺) − 푛 + 1 = ∑ 푒(푣|퐺)∈ ( ) − 푛 + 1 
                                     ≥ 푛 − 푛 + 1 = 1 > 0. 

The proof is completed.                                                                                                         ∎ 
 
Theorem 3.3. Let 퐺 be a connected graph and |푉(퐺)| = 푛,  |퐸(퐺)| = 푚, then 
                                                     퐿휉 (퐺) ≤ 퐿푀 (퐺)퐸 (퐺),                                              (8) 
with equality if one of the following conditions is satisfied: 

i. 퐺 is a regular graph and 푑푖푎푚(퐺)  ≤ 2, 
ii. 퐺 is a {퐶 ,퐶 }-free regular self-centered graph. 

 
Proof. In the Cauchy-Schwartz inequality (∑ 푎 푏 ) ≤ (∑ 푎 )(∑ 푏 ) , we set 
푎 = 푑 (푣|퐺) and 푏 = 푒(푣|퐺). Then  

 ∑ 푑∈ ( ) (푣|퐺)푒(푣|퐺) ≤ ∑ 푑 (푣|퐺)∈ ( ) ∑ 푒 (푣|퐺)∈ ( ) , 

We can get,  

 퐿휉 (퐺) = ∑ 푑∈ ( ) (푣|퐺)푒(푣|퐺) ≤ ∑ 푑 (푣|퐺)∈ ( ) ∑ 푒 (푣|퐺)∈ ( )  

                                 = 퐿푀 (퐺)퐸 (퐺). 
In the following, we assume that 퐺 is a 푘-regular graph and 푑푖푎푚(퐺) = 푟 ≤ 2. 

We will discuss the following cases. 
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Case 1. When 푑푖푎푚(퐺) = 푟 ≤ 1, 퐺 is a complete graph, so for each vertex 푣 of 퐺 there 
are 푑 (푣|퐺) = 0  and 푒(푣|퐺) = 1 . Then 퐿휉 (퐺) = 0 ,  퐿푀 (퐺) = 0 , and equation 
퐿휉 (퐺) = 퐿푀 (퐺)퐸 (퐺)  holds. 

Case 2. When 푑푖푎푚(퐺) = 푟 = 2, 푑 (푣|퐺) = 푛 − 1 − 푑 (푣|퐺) . For the vertex 푣  of 퐺 , 
푒(푣|퐺) = 1 or 푒(푣|퐺) = 2 .  If 푒(푣|퐺) = 1 , then 푑 (푣|퐺) = 푛 − 1 , and 퐺  is a regular 
graph, then the degrees of other vertices should be 푛 − 1, which contradicts 푑푖푎푚(퐺) = 2. 
So for all vertices of 퐺 there is 푒(푣|퐺) = 2, then 퐿휉 (퐺) = 2푛(푛 − 1 − 푘),  퐿푀 (퐺) =
푛(푛 − 1 − 푘) , 퐸 (퐺) = 4푛, then the equation 퐿휉 (퐺) = 퐿푀 (퐺)퐸 (퐺) holds. 

Now suppose 퐺 is a {퐶 ,퐶 }-free 푘-regular graph. For each vertex of 퐺 , there is 
푑 (푣|퐺) = 푘(푘 − 1),  then 퐿휉 (퐺) = 푘(푘 − 1)∑ 푒(푣|퐺)∈ ( ) , 퐿푀 (퐺) = 푛푘 (푘 − 1) , 
퐸 (퐺) = ∑ 푒 (푣|퐺)∈ ( ) . 

According to the Cauchy-Schwartz  inequality,  
 (∑ 푒(푣|퐺)∈ ( ) ) ≤ ∑ 1∈ ( ) ∑ 푒 (푣|퐺)∈ ( ) . 

Then ∑ 푒(푣|퐺)∈ ( ) ≤ 푛∑ 푒 (푣|퐺)∈ ( ) ,  with equality if and only if the eccentricity is 

equal for each vertex 푣. 
At this time equation 퐿휉 (퐺) = 퐿푀 (퐺)퐸 (퐺)  holds. Therefore, when 퐺  is a 

{퐶 ,퐶 } -free regular graph and the eccentricity of each vertex of graph 퐺  is equal, 
inequality (8) takes equal. When the eccentricity of each vertex of 퐺  is equal, the 
eccentricity of all vertices of 퐺 is equal to the radius of graph 퐺, then these vertices are the 
center, then 퐺 is a self-centered graph, so when 퐺 is a {퐶 ,퐶 }-free regular self-centered 
graph, the inequality (8) is equal. 

The proof is completed.                                                                                              ∎ 

In general, Theorem 3.3 is not true in reverse. For example, in Figure 1, we can see 
that the equation 퐿휉 (퐺) = 퐿푀 (퐺)퐸 (퐺) in Figure 1 is true, because for each vertex 푣, 
there is 푑 (푣|퐺) = 푒(푣|퐺) = 4, but it does not satisfy any of the conditions (i) and (ii) in 
Theorem 3.3. 

 
Next we give the lower bound on the leap eccentric connectivity index. 
 

Theorem 3.4. Let 퐺  be a {퐶 ,퐶 }-free graph with 푛  vertices, 푚  edges, and a radius of 
푟푎푑(퐺) , and satisfy 푑 (푣 |퐺) ≥ 푑 (푣 |퐺) ≥ ⋯ ≥ 푑 (푣 |퐺)  and 푒(푣 |퐺) ≥ 푒(푣 |퐺) ≥
⋯ ≥ 푒(푣 |퐺), then                                                   

   퐿휉 (퐺) ≥ 푟푎푑(퐺)(2푚− 푛).                                              (9) 
The bound attains on {퐶 ,퐶 }-free regular self-centered graph.  
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Proof. In Chebyshev sum inequality, if 푎 ≥ 푎 ≥ ⋯ ≥ 푎 , 푏 ≥ 푏 ≥ ⋯ ≥ 푏 , then 
 푛∑ 푎 푏 ≥ (∑ 푎 )(∑ 푏 ). 

By Corollary 2.2, if 퐺 is a {퐶 ,퐶 }-free graph, then ∑ 푑 (푣|퐺)∈ ( ) ≤ 푀 (퐺) − 2푚. And 

according to Lemma 2.7, 푀 (퐺) ≥  and with equality if and only if 퐺 is a regular graph. 
Then 

                  푛퐿휉 (퐺) = 푛∑ 푑∈ ( ) (푣|퐺)푒(푣|퐺) ≥ ∑ 푑∈ ( ) (푣|퐺) (∑ 푒∈ ( ) (푣|퐺)) 
                = (푀 (퐺)− 2푚)(∑ 푒∈ ( ) (푣|퐺)) ≥ (푀 (퐺)− 2푚)푛 ∙ 푟푎푑(퐺) 

                ≥ − 2푚 푛 ∙ 푟푎푑(퐺) = 4푚 푟푎푑(퐺)− 2푚푛 ∙ 푟푎푑(퐺) 

                = 2푚 ∙ 푟푎푑(퐺)(2푚− 푛). 
So, we have 퐿휉 (퐺) ≥ 푟푎푑(퐺)(2푚− 푛). 

When inequality (9) is equal,  퐺 is required to be a {퐶 ,퐶 }-free regular graph, and 
for each vertex 푣 of 퐺, the eccentricity is equal to the radius. When the eccentricity of all 
vertices of 퐺 is equal to the radius, graph 퐺 is a self-centered graph. Thus, we can get that 
when 퐺 is a {퐶 ,퐶 }-free regular self-centered graph, the inequality (9) is equal. 

The proof is completed.                                                                                              ∎ 
 

 

 
 

Figure 1. A graph for which 퐿휉 (퐺) = 퐿푀 (퐺)퐸 (퐺). 
 
 

Next, we will prove some bounds of graph 퐺 and its complements 퐺̅. 
 

Theorem 3.5.  Let 퐺 be a connected graph of 푛 vertices and 푚 edges, the complement of 
퐺 is 퐺̅ and   |퐸(퐺̅)| = 푚, then                                                 

   퐿휉 (퐺) ≤ 2푚 푑푖푎푚(퐺),                                                (10) 
with equality if and only if the diameter of 퐺 is at most 2. 
 
Proof.  From Lemma 2.4,  we have 
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  퐿휉 (퐺) = ∑ 푑∈ ( ) (푣|퐺)푒(푣|퐺) 
               = ∑ 푑∈ ( ) (푣|퐺)푒(푣|퐺) + ∑ 푑∉ ( ) (푣|퐺)푒(푣|퐺) 

                 = 0 + ∑ 푑∉ ( ) (푣|퐺)푒(푣|퐺) ≤ ∑ 푑 (푣|퐺̅)∈ ( ) 푑푖푎푚(퐺) 
                 = 푑푖푎푚(퐺)∑ 푑 (푣|퐺̅)∈ ( ̅)  
                 = 2푚 푑푖푎푚(퐺). 

with equality if and only if the diameter of 퐺 is at most 2. 
Conversely, when the diameter of 퐺  is at most 2, it can also be proved that 

inequality (10) will be changed to equality. The proof is completed.                                    ■ 
  

Corollary 3.6. Let 퐺 be a connected graph of 푛 vertices and 푚 edges, the number of edges 
in the complement 퐺̅  of 퐺 is 푚,  and  |푉 (퐺)| = 0,  then 

푛 ∙ 푟푎푑(퐺) ≤ 퐿휉 (퐺) ≤ 2푚 푑푖푎푚(퐺) 
 
Theorem 3.7. Let 퐺 be a connected graph of 푛 vertices and 푚 edges and 푑푖푎푚(퐺) ≥ 4, 
the complement 퐺̅ of 퐺 is also connected, then  퐿휉 (퐺̅) = 4푚. 
 
Proof. When 푑푖푎푚(퐺) ≥ 4, and both 퐺  and 퐺̅  are connected, according to Lemma 2.5, 
푑푖푎푚(퐺̅) = 2. So in 퐺̅, for each vertex 푣, 푒(푣|퐺̅) = 2, and 푑 (푣|퐺̅) = 푑 (푣|퐺), so we can 
get, 퐿휉 (퐺̅) = ∑ 푑∈ ( ̅) (푣|퐺̅)푒(푣|퐺̅) = 2∑ 푑 (푣|퐺) = 4푚,∈ ( )  as desired.                ∎ 
 

According to Lemma 2.6, Theorem 3.5 and 3.7, we have the following results. 
 

Corollary 3.8.  Let 퐺 be a connected graph of 푛 vertices and 푚 edges and the complement 
퐺̅ of 퐺 is also connected, then                                               

    퐿휉 (퐺̅) ≤ 2푚 푑푖푎푚(퐺̅),                                               (11) 
with equality if and only if the diameter of 퐺 is at least 4 or 퐺 is a regular graph with a 
diameter of at least 2 or 퐺 = 퐾 . 
 
Theorem 3.9. Let 퐺 be a connected graph of 푛 vertices and 푚 edges, and the complement 
퐺̅ of 퐺 is also connected, where |푉(퐺̅)| = 푛, |퐸(퐺̅)| = 푚, then 퐿휉 (퐺) ≤ 2푛푚 − 퐿푀 (퐺). 

Proof. In the proof of Theorem 3.2, we have 푑 (푣|퐺) ≤ 푛 − 푒(푣|퐺), that is, 푒(푣|퐺) ≤ 푛 −
푑 (푣|퐺) , with equality if and only if 푒(푣|퐺) = 2  and 푑 (푣|퐺) = 1  or 푒(푣|퐺) ≥ 3  and 
푑 (푣|퐺) = 푑 (푣|퐺) = 푑 (푣|퐺) = ⋯ = 푑 ( | )(푣|퐺) = 1. Then we have 

퐿휉 (퐺) = 푑
∈ ( )

(푣|퐺)푒(푣|퐺) ≤ 푑
∈ ( )

(푣|퐺)(푛 − 푑 (푣|퐺)) 

                                 = 푛∑ 푑∈ ( ) (푣|퐺) − ∑ 푑∈ ( ) (푣|퐺) 
                                 ≤ 푛∑ 푑∈ ( ) (푣|퐺̅) − ∑ 푑∈ ( ) (푣|퐺) 
                                 = 2푛푚 − 퐿푀 (퐺). 
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The proof is completed.                                                                                                         ∎ 
 

Next, we will give the Nordhaus-Gaddum-type result of the leap eccentric 
connectivity index. 
 

Theorem 3.10. Let 퐺 be a connected graph of 푛 vertices and 푚 edges, and the complement 
퐺̅ of 퐺 is a connected graph of 푛 vertices and 푚 edges, then                                               

0 ≤ 퐿휉 (퐺) + 퐿휉 (퐺̅) ≤ 2푛(푛 − 1) − 4푚 + 2푚 푑푖푎푚(퐺̅), 
with left equality if 퐺 ≅ 퐾 , with right equality if 퐺 is a Moore graph with a diameter of 2. 
 
Proof. The left equality is obvious. In the following we prove the equation on the right. 
According to Theorem 3.5 and Corollary 3.8, we can get 

퐿휉 (퐺) + 퐿휉 (퐺̅) ≤ 2푚 푑푖푎푚(퐺) + 2푚 푑푖푎푚(퐺̅). 
In Theorem 3.5, with equality if 푑푖푎푚(퐺) ≤ 2 , In Corollary 3.8, with equality if the 
diameter of 퐺 is at least 4 or 퐺 is a regular graph with a diameter of at least 2 or 퐺 = 퐾 . So 
we can get that the equation is equal when 퐺 is a regular graph and the diameter is 2. This 
is the definition of the Moore graph, so when 퐺 is a Moore graph with a diameter of 2, the 
above equation is equal. At this time 

퐿휉 (퐺) + 퐿휉 (퐺̅) = 2푚 푑푖푎푚(퐺) + 2푚 푑푖푎푚(퐺̅) 
                                                               = 4푚 + 2푚 푑푖푎푚(퐺̅) 

                                                               = 4 ( ) −푚 + 2푚푑푖푎푚(퐺̅) 

                                                               = 2푛(푛 − 1)− 4푚 + 2푚 푑푖푎푚(퐺̅). 
The proof is completed.                                                                                                         ∎ 
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