On the Modified First Zagreb Connection Index of Trees of a Fixed Order and Number of Branching Vertices

Document Type : Research Paper

Authors

1 National University of Computer and Emerging Sciences, Lahore, Pakistan

2 University of Hail, Hail, Saudi Arabia

Abstract

The modified first Zagreb connection index $ZC_{1}^{*}$ for a graph $G$ is defined as $ZC_{1}^{*}(G)= \sum_{v\in V(G)}d_{v}\tau_{v}\,$, where $d_{v}$ is degree of the vertex $v$ and $\tau _{v}$ is the connection number of $v$ (that is, the number of vertices having distance 2 from $v$). By an $n$-vertex graph, we mean a graph of order $n$. A branching vertex of a graph is a vertex with degree greater than $2$. In this paper, the graphs with maximum and minimum $ZC_{1}^{*}$ values are characterized from the class of all $n$-vertex trees with a fixed number of branching vertices.

Keywords


  1.  

     

    1. A. Ali, I. Gutman, E. Milovanović and I. Milovanović, Sum of powers of the degrees of graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018) 5–84.
    2. U. Ali, M. Javaid and A. Kashif, Modified Zagreb connection indices of the -sum graphs, Main Group Metal Chem. 43 (2020) 43–55.
    3. U. Ali and M. Javail, Upper bounds of Zagreb connection indices of tensor and strong product on graphs, Punjab Univ. J. Math. 52 (2020) 89–100.
    4. U. Ali, M. Javaid and A. M. Alanazi, Computing analysis of connection–based indices and coindices for product of molecular networks, Symmetry 12 (2020) 1320.
    5. U. Ali and M. Javaid, Zagreb connection indices of disjunction and symmetric difference operations on graphs, J. Prime Resear. Math. 16 (2020) 1–15.
    6. A. Ali and N. Trinajstić, A novel/old modification of the first Zagreb index, Mol. Inform. 37 (2018) 1800008.
    7. A. Ali, L. Zhong and I. Gutman, Harmonic index and its generalizations: extremal results and bounds , MATCH Commun. Math. Comput. Chem. 81 (2019) 249–311.
    8. B. Borovićanin, On the extremal Zagreb indices of trees with given number of segments or given number of branching vertices, MATCH Commun. Math. Comput. Chem. 74 (2015) 57–79.
    9.  A. T. Balaban and J. Devillers, Topological indices and related descriptors in QSAR and QSPR, CRC, Boca Raton, 2000.
    10. B. Borovićanin, K. C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices,  MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.
    11.  B. Borovićanin, K. C. Das, B. Furtula and I. Gutman, Zagreb indices: Bounds and extremal graphs, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), Bounds in Chemical Graph Theory – Basics, University of Kragujevac, Kragujevac, (2017) 67–153.
    12. J. A. Bondy, U. S. R. Murty, Graph Theory with Applications. American Elsevier Publishing Co., Inc., New York, 1976.
    13.  J. Cao, U. Ali, M. Javaid and C. Huang, Zagreb connection indices of molecular graphs based on operations, Complexity, (2020) 7385682.
    14.  N. Chidambaram, S. Mohandoss, X. Yu and X. Zhang, On leap Zagreb indices of bridge and chain graphs, AIMS Mathematics, 5 (2020) 6521–6536.
    15.  K. C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103–112.
    16. G. Ducoffe, R. Marinescu-Ghemeci, C. Obreja, A. Popa and R. M. Tache, Proceedings of the 16th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, (2018) 65–68.
    17. M. Goubko, Minimizing degree-based topological indices for trees with given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 71 (2014) 33–46.
    18.  I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
    19.  I. Gutman and M. Goubko, Trees with fixed number of pendent vertices with minimal first Zagreb index, Bull. Int. Math. Virt. Inst. 3 (2013) 161–164.
    20.  I. Gutman and T. Trinajstić, Graph theory and molecular orbitals. Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
    21.  I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405.
    22.  F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969.
    23. S. Khalid, J. Kok, A. Ali and M. Bashir, Zagreb connection indices of.  nanotubes, Chemistry: Bulgarian J. Sci. Edu. 27 (2018) 86–92.
    24.  H. Lin, On segments, vertices of degree two and the first Zagreb index of trees, MATCH Commun. Math. Comput. Chem. 72 (2014) 825–834.
    25.  H. Lin, On the Wiener index of trees with given number of branching vertices, MATCH Commun. Math. Comput. Chem. 72 (2014) 301–310.
    26. S. Manzoor, N. Fatima, A. A. Bhatti and A. Ali, Zagreb connection indices of some nanostructures, Acta Chemica Iasi. 26 (2) (2018) 169–180.
    27.  A. M. Naji, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim. 2 (2017) 99–117.
    28.  S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta. 76 (2003) 113–124.
    29.  S. Noureen, A. A. Bhatti and A. Ali, Extremal trees for the modified first Zagreb connection index with fixed number of segments or vertices of degree 2, J. Taibah Uni. Sci. 14(2019) 31–37.
    30.  S. Noureen, A. A. Bhatti and A. Ali, Extremum modified first Zagreb connection index of -vertex trees with fixed number of pendent vertices, Discrete Dyn. Nature Soc. (2020) 3295342.
    31. S. Noureen, A. Ali and A. A. Bhatti, On the extremal Zagreb indices of n-vertex chemical trees with fixed number of segments or branching vertices, MATCH Commun. Math. Comput. Chem. 84 (2020) 513–534.
    32.  Z. Raza, Zagreb connection indices for some benzenoid systems, Polycycl. Aromat. Comp. (2020), DOI: 10.1080/10406638.2020.1809469.
    33.  Z. Shao, I. Gutman, Z. Li, S. Wang and P. Wu, Leap Zagreb indices of trees and unicyclic graphs, Commun. Comb. Optim. 3 (2)(2018) 179–194.
    34.  J.-H. Tang, U. Ali, M. Javaid and K. Shabbir, Zagreb connection indices of subdivision and semi-total point operations on graphs, J. Chem. 2019 (2019) 9846913.
    35.  N. Trinajstić, Chemical Graph Theory, 2nd revised ed. CRC Press, Boca Raton, Florida, 1993.
    36. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
    37. H. Wiener, Structural determination of paraffin boiling points,  J. Am. Chem. Soc. 69 (1947)17−20.
    38. A. Ye, M. I. Qureshi, A. Fahad, A. Aslam, M. K. Jamil, A. Zafar and R. Irfan, Zagreb connection number index of nanotubes and regular hexagonal lattice, Open Chem. 17 (1) (2019) 75–80.
    39. J. M. Zhu, N. Dehgardi and X. Li, The third leap Zagreb index for trees, J. Chem. 2019 (2019) 9296401.