On the Modified First Zagreb Connection Index of Trees of a Fixed Order and Number of Branching Vertices

Sadia Noureen ${ }^{1}$, Akhlaq Ahmad Bhattir ${ }^{1}$ and Akbar Ali ${ }^{2}$, ${ }^{\boldsymbol{\bullet}}$
${ }^{1}$ Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore Campus, B-Block, Faisal Town, Lahore, Pakistan
${ }^{2}$ Department of Mathematics, Faculty of Science, University of Ha’il, Ha'il, Saudi Arabia

ARTICLE INFO

Article History:

Received: 30 August 2020
Accepted: 27 November 2020
Published online: December 2020
Academic Editor: Ali Reza Ashrafi
Keywords:
Topological index
First Zagreb connection index
Modified first Zagreb connection index
Branching vertex
Extremal problem

> ABSTRACT
> The modified first Zagreb connection index ZC_{1}^{*} for a graph G is defined as $\mathrm{ZC}_{1}^{*}(\mathrm{G})=\sum_{\mathrm{v} \in \mathrm{V}(\mathrm{G})} \mathrm{d}_{\mathrm{v}} \tau_{\mathrm{v}}$, where d_{v} is the degree of the vertex v and τ_{v} is the connection number of v (that is, the number of vertices having distance 2 from v). A branching vertex of a graph is a vertex with degree greater than 2 . In this paper, graphs with the maximum and minimum ZC_{1}^{*} values are characterized from the class of all trees of a fixed order and having a fixed number of branching vertices.
> ©2020 University of Kashan Press. All rights reserved

1. Introduction

Throughout this paper, we are concerned with only simple and finite graphs. For a vertex $v \in V(G)$, the degree of v is denoted by d_{v} and is defined as the number of vertices adjacent to v. Let $N(v)$ be the neighborhood of the vertex $v \in V(G)$, and the maximum degree of a graph G is denoted by $\Delta(G)$. Let $n_{i}(G)$ (or simply n_{i}) be the number of vertices of degree i in a graph G and $x_{i, j}(G)$ (or $x_{i, j}$) denotes the number of edges connecting the vertices of degree i and j in a graph G. A vertex with degree 1 in a graph is said to be a pendent vertex and a vertex with degree 3 or more is called a branching vertex. A pendent path in a graph is a path in which one of the end vertices is pendent and the other is branching, and all the internal vertices (if exist) have degree 2. An internal path in a graph

[^0]is a path in which both the end vertices are branching and all the internal vertices (if exist) have degree 2. If G is a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, the sequence $\left(d_{v_{1}}, \ldots, d_{v_{n}}\right)$ is called a degree sequence of G. Undefined terminology and notation of (chemical) graph theory can be found in [12, 22, 35].

A topological index is a number that can be associated with chemical structures to predict their different properties [9]. Topological indices play an important role in mathematical chemistry particularly in the quantitative structure-property relationship and quantitative structure-activity relationship investigations. It is generally accepted fact that Wiener index [37] is one of the first topological indices that found applications in chemistry.

The first Zagreb index M_{1} (appeared in [20]) and the second Zagreb index M_{2} (devised in [21]) are among the oldest and the most studied degree-based topological indices. For a graph G, these indices are defined as:

$$
M_{1}(G)=\sum_{v \in V(G)}\left(d_{v}\right)^{2} \quad \text { and } \quad M_{2}(G)=\sum_{u v \in E(G)} d_{u} d_{v},
$$

where d_{u}, d_{v} are degrees of the vertices $u, v \in V(G)$, respectively, and $E(G)$ represents the edge set of G. Till now, many papers have been devoted to these Zagreb indices, for example, see the surveys $[15,18,28]$, particularly the recent ones $[1,7,10,11]$, and the related references cited therein.

The paper [20], where the first Zagreb index was appeared, also contain another topological index, which did not gain explicit attention from researchers till 2016. Recently, this index was reconsidered in [6] and referred to as the modified first Zagreb connection index. It is denoted by $Z C_{1}^{*}$ and for a graph G, it is defined as

$$
Z C_{1}^{*}(G)=\sum_{v \in V(G)} d_{v} \tau_{v}
$$

where τ_{v} is the connection number of v (that is, the number of vertices having distance 2 from v, see [36]). The topological index $Z C_{1}^{*}$ was referred to as the third leap Zagreb index in [27]. Detail about the mathematical properties of the index $Z C_{1}^{*}$ can be found in [2-5, 13, 14, 23, 26, 29-34, 38, 39]

The problem of finding (lower and upper) bounds on a topological index over the certain classs of graphs with fixed order and to characterize corresponding extremal graphs, is one of the most popular research problems in chemical graph theory. Detail about the research done on these lines can be found in $[8,15-19,24,25,28,31]$ and the related references cited therein.

In this paper, we contribute further in this direction by characterizing the graphs with the maximum and minimum $Z C_{1}^{*}$ values from the class of all n-vertex trees with a fixed number of branching vertices. Denote by $\mathcal{T}^{*}{ }_{n, b}$ the class of all n-vertex trees with exactly b branching vertices. Note that each tree different from the path graph contains at least one branching vertex, implying $b \geq 1$. Also, for an arbitrary tree $T \in \mathcal{T}^{*}{ }_{n, b}$, Lin [25] proved that $b \leq \frac{n}{2}-1$. Thus, we assume $1 \leq b \leq \frac{n}{2}-1$.

2. Main Results

Problem. Characterize all the trees with maximum and minimum modified first Zagreb connection index from the class $\mathcal{T}^{*}{ }_{n, b}$ for $1 \leq b \leq \frac{n}{2}-1$.

Since $\mathcal{T}^{*}{ }_{4,1}$ contains a unique tree T_{1} whereas $\mathcal{T}^{*}{ }_{5,1}$ contains only two trees T_{2} and T_{3} given in Figure 1, such that $Z C_{1}^{*}\left(T_{2}\right)=Z C_{1}^{*}\left(T_{3}\right)$; therefore, we will proceed with $n \geq 6$.

T_{1}

T_{2}

T_{3}

Figure 1: Trees for $\mathcal{T}^{*}{ }_{4,1}$ and $\mathcal{T}^{*}{ }_{5,1}$.
Theorem 1. Let $T \in \mathcal{T}^{*}{ }_{n, b}$, where $n \geq 6$ and $1 \leq b \leq \frac{n}{2}-1$, then

$$
Z C_{1}^{*}(T) \geq \begin{cases}4 n+4 b-14 & \text { if } n \geq 3 b+1 \\ 2 n+10 b-12 & \text { if } n<3 b+1\end{cases}
$$

with equality if and only if $T \in \mathcal{B}^{*}{ }_{\text {min }}(n, b)$, where $\mathcal{B}^{*}{ }_{\text {min }}(n, b)$ is the family of all n vertex trees with the degree sequence $(\underbrace{3,3, \ldots, 3}_{b}, \underbrace{2,2, \ldots, 2}_{n-2 b-2}, \underbrace{1,1, \ldots, 1}_{b+2})$, and the vertices of degree 2 are placed between the vertices of degree 3 so that there is at least one vertex of degree 2 between any two vertices of degree 3 (if we have enough vertices of degree 2, i.e., $n_{2} \geq n_{3}-1$ implying $n \geq 3 b+1$), and then the remaining vertices of degree 2 (if they exist) are placed arbitrarily between any two vertices of degree 2 or one vertex of degree 2 and one vertex of degree 3 .

Ducoffe in [16] proved that the trees with $n \geq 4$ vertices having the maximum value of modified first Zagreb connection index are the trees with a diameter at most 3, that is for $b=1$ (respectively $b=2$), the star graph (respectively double star graph) gives the maximum value $(n-2)(n-1)$ to $Z C_{1}^{*}$.

Theorem 2. Let $T \in \mathcal{T}^{*}{ }_{\mathrm{n}, \mathrm{b}}$, where $n \geq 6$ and $3 \leq b \leq \frac{n}{2}-1$, then

$$
Z C_{1}^{*}(T) \leq \begin{cases}n^{2}-3 n-4 b^{2}+12 b-6 & \text { if } 3 \leq b \leq \frac{n+2}{3} \\ 5 n^{2}+20 b^{2}-20 n b-3 n+20 b-22 & \text { if } \quad \frac{n+2}{3}<b \leq \frac{n}{2}-1\end{cases}
$$

and the equality holds if and only if $T \cong B_{1}^{*}$ for $3 \leq b \leq \frac{n+2}{3}$, where B_{1}^{*} is a tree with degree sequence $(n-2 b+1, \underbrace{3,3, \ldots, 3}_{b-1}, \underbrace{1,1, \ldots, 1}_{n-b})$ given in Figure 2, and $T \in T_{1}^{*}(n, b)$ for $\frac{n+2}{3}<b \leq \frac{n}{2}-1$, where $T_{1}^{*}(n, b)$ is the set of n-vertex trees with the degree sequence $(n-2 b+1, \underbrace{3,3, \ldots, 3}_{b-1}, \underbrace{1,1, \ldots, 1}_{n-b})$ such that the vertex of degree $n-2 b+1$ has only branching neighbors.

Figure 2: Maximum Tree for $3 \leq b \leq \frac{n+2}{3}$.

2.1. Proof of Theorem 1

Denote by $T_{\min }^{*}$ the tree with minimum modified first Zagreb connection index among all the members of $\mathcal{T}^{*}{ }_{n, b}$ for $n \geq 6$ and $1 \leq b \leq \frac{n}{2}-1$. Then the following properties hold for $T_{m i n}^{*}$:

Lemma 1. A branching vertex in the tree $T_{\text {min }}^{*} \in \mathcal{T}^{*}{ }_{n, b}$ contains at least one non-pendent neighbor.

Proof. It can easily be observed that for $b \geq 2$ the result is obvious, so we prove the result for $b=1$. Contrarily, suppose $T_{\text {min }}^{*}$ is a star graph that is, the branching vertex v of $T_{\text {min }}^{*}$ contains pendent neighbors only. Let $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{d_{v}}\right\}$ be the set of neighbors of v. The assumption $n \geq 6$ ensures that $d_{v} \geq 5$. If a tree T^{\prime} is obtained from $T_{\min }^{*}$ as $T^{\prime}=$ $T_{\text {min }}^{*}-\left\{v v_{4}, v v_{5}\right\}+\left\{v_{1} v_{4}, v_{4} v_{5}\right\}, T^{\prime} \in \mathcal{T}^{*}{ }_{n, b}$ and

$$
\begin{aligned}
Z C_{1}^{*}\left(T^{\prime}\right)-Z C_{1}^{*}\left(T_{\min }^{*}\right)= & \left(d_{v}-3\right)\left(2\left(d_{v}-2\right)-1-d_{v}+2\right)+\left(4\left(d_{v}-2\right)-2-d_{v}+2\right) \\
& +(4)+(1)-d_{v}\left(2 d_{v}-1-d_{v}\right) \\
= & 6-2 d_{v}<0
\end{aligned}
$$

which is a contradiction to the minimality of $T_{\text {min }}^{*}$.

Lemma 2. Every branching vertex in the tree $T_{\min }^{*} \in \mathcal{T}^{*}{ }_{n, b}$ has degree 3.

Proof. Contrarily, we assume that the tree $T_{\text {min }}^{*}$ contains a branching vertex v of degree greater than 3 such that the degree of v in $T_{\min }^{*}$ is maximum. Suppose $N(v)=$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}, \ldots, v_{d_{v}}\right\}$ such that

$$
d_{v_{1}}=\min \left\{d_{v_{1}}, d_{v_{2}}, \ldots, d_{v_{d_{v}}}\right\} \text { and } d_{v_{2}}=\max \left\{d_{v_{1}}, d_{v_{2}}, \ldots, d_{v_{d_{v}}}\right\} .
$$

Let z_{1} denotes a pendent vertex connected to v via v_{1} and z_{2} be the neighbor of z_{1} (z_{1} may coincide with v_{1} or $z_{2}=v$ if $\left.d\left(v_{1}\right)=1\right)$.

Figure 3: $T_{\text {min }}^{*}$ and T^{\prime}.

Let T^{\prime} be the tree obtained from $T_{\min }^{*}$ by deleting the edge $v v_{2}$ and adding the new edge $z_{1} v_{2}$ (see Figure 3). We note that $T^{\prime} \in \mathcal{T}^{*}{ }_{n, b}$ and the only vertices whose degrees differ in $T_{\text {min }}^{*}$ and T^{\prime} are v and z_{1}. If $v_{1} \neq z_{1}$ or $d_{v_{1}}>1, d_{v_{i}} \geq 2$ for $2 \leq i \leq d_{v}$. Also, by keeping in mind the facts $d_{z_{2}} \leq d_{v}$ and $\left.\sum_{i=1, i \neq 2}^{d_{v}}\left(2 d_{v_{i}}-1\right)\right) \geq 9$, we have

$$
\begin{aligned}
Z C_{1}^{*}\left(T^{\prime}\right)-Z C_{1}^{*}\left(T_{\text {min }}^{*}\right)= & \sum_{i=1, i \neq 2}^{d_{v}}\left(2\left(d_{v}-1\right) d_{v_{i}}-d_{v_{i}}-d_{v}+1\right)+\left(4 d_{z_{2}}-2-d_{z_{2}}\right) \\
& +\left(4 d_{v_{2}}-2-d_{v_{2}}\right)-\sum_{i=1, i \neq 2}^{d_{v}}\left(2 d_{v} d_{v_{i}}-d_{v_{i}}-d_{v}\right) \\
& -\left(2 d_{z_{2}}-1-d_{z_{2}}\right)-\left(2 d_{v} d_{v_{2}}-d_{v}-d_{v_{2}}\right) \\
= & \left.-\sum_{i=1, i \neq 2}^{d_{v}}\left(2 d_{v_{i}}-1\right)\right)+2 d_{z_{2}}+4 d_{v_{2}}-2 d_{v} d_{v_{2}}+d_{v}-3 \\
\leq & 4 d_{v_{2}}-2 d_{v} d_{v_{2}}+3 d_{v}-12,
\end{aligned}
$$

which is negative because the function f defined by $f(a, b)=4 a-2 a b+3 b-12$, with $a \geq 2$ and $b \geq 4$, is negative, and hence we have $Z C_{1}^{*}\left(T^{\prime}\right)<Z C_{1}^{*}\left(T_{\text {min }}^{*}\right)$, a contradiction to the choice of $T_{\text {min }}^{*}$.
Also, in a special case when $v_{1}=z_{1}$ (i.e., $z_{2}=v$), Lemma 1 ensures that $d_{v_{2}} \geq 2$ and $\left.\sum_{i=3}^{d_{v}}\left(2 d_{v_{i}}-1\right)\right) \geq 2$ we have,

$$
\begin{aligned}
Z C_{1}^{*}\left(T^{\prime}\right)-Z C_{1}^{*}\left(T_{\min }^{*}\right) & =\sum_{i=3}^{d_{v}}\left(2\left(d_{v}-1\right) d_{v_{i}}-d_{v_{i}}-d_{v}+1\right)+\left(4 d_{v_{2}}-2-d_{v_{2}}\right) \\
& +\left(4\left(d_{v}-1\right)-2-d_{v}+1\right)-\sum_{i=3}^{v_{v}}\left(2\left(d_{v}\right) d_{v_{i}}-d_{v_{i}}-d_{v}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(2 d_{v}-1-d_{v}\right)-\left(2 d_{v} d_{v_{2}}-d_{v}-d_{v_{2}}\right) \\
& \left.=-\sum_{i=3}^{d_{v}}\left(2 d_{v_{i}}-1\right)\right)+4 d_{v_{2}}-2 d_{v} d_{v_{2}}+d_{v}-6 \\
& \leq 4 d_{v_{2}}-2 d_{v} d_{v_{2}}+3 d_{v}-8
\end{aligned}
$$

which is negative because the function f defined by $f(a, b)=4 a-2 a b+3 b-8$ with $a \geq 2$ and $b \geq 4$, is negative, and hence a contradiction.

Consequently, in the tree $T_{\text {min }}^{*}$ there are only vertices of degree 1,2 , or 3 . Now keeping in mind $n_{i}=0$ for $i \geq 4$ and using the facts $\sum_{i} i n_{i}=2(n-1)$ and $\sum_{i} n_{i}=n$, we arrive at $n_{1}=n_{3}+2$. Also, it holds that $n_{1}=b+2$ and $n_{2}=n-2 b-2$ since $n_{3}=b$. Now we prove some more lemmas to obtain the structure of $T_{\text {min }}^{*}$.

Lemma 3. If a branching vertex v in the tree $T_{\text {min }}^{*} \in \mathcal{T}^{*}{ }_{n, b}$ contains a non-pendent neighbor (say) w, then $T_{\text {min }}^{*}$ does not contain any pendent path of length greater than 1 adjacent to the vertex v via a neighbor different from w.

Proof. Contrarily, assume that there is a path $P: u_{0} u_{1} u_{2} \ldots u_{t-1} u_{t} v$ with $t \geq 1$ in $T_{\min }^{*}$ where $d_{u_{0}}=1, d_{u_{1}}=d_{u_{2}}=\cdots=d_{u_{t}}=2$ and $v_{t} \neq w$.

Let $T^{\prime}=T_{\text {min }}^{*}-\left\{u_{0} u_{1}, u_{t} v, v w\right\}+\left\{u_{0} v, v u_{1}, u_{t} w\right\}$. We can observe that $T^{\prime} \in \mathcal{T}^{*}{ }_{n, b}$. As Lemma 2 ensures that $d_{v}=3$, also using $d_{w} \geq 2$, we have

$$
Z C_{1}^{*}\left(T_{\text {min }}^{*}\right)-Z C_{1}^{*}\left(T^{\prime}\right)=2\left(d_{w}-1\right)>0,
$$

which implies that $Z C_{1}^{*}\left(T^{\prime}\right)<Z C_{1}^{*}\left(T_{\min }^{*}\right)$, hence a contradiction to the choice of $T_{\text {min }}^{*}$.
Lemma 4. If the tree $T_{\text {min }}^{*} \in \mathcal{T}^{*}{ }_{n, b}$ contains any pair of adjacent branching vertices then it does not contain any internal path of length greater than 2.

Proof. Suppose, on the contrary, that there is an internal path $P: u_{1} u_{2} \cdots u_{s}$ of length at least 3 in $T_{\min }^{*}$ provided that u_{1} and u_{s} are branching vertices, let there also exists a pair of adjacent, branching vertices u and v in $T_{\text {min }}^{*}$. Lemma 2 confirms that $d_{u}=d_{v}=3$. If $T^{\prime}=T_{\text {min }}^{*}-\left\{u_{1} u_{2}, u_{2} u_{3}, u v\right\}+\left\{u_{1} u_{3}, u u_{2}, u_{2} v\right\}, T^{\prime} \in \mathcal{T}^{*}{ }_{n, b}$, and $Z C_{1}^{*}\left(T_{\text {min }}^{*}\right)-Z C_{1}^{*}\left(T^{\prime}\right)=2>0$
or $Z C_{1}^{*}\left(T^{\prime}\right)<Z C_{1}^{*}\left(T_{\text {min }}^{*}\right)$, which is a contradiction to the choice of $T_{\text {min }}^{*}$.

Now, we can prove Theorem 1.

Proof of Theorem 1. By Lemmas $1-4$, one can conclude that the tree $T_{\text {min }}^{*}$ from $\mathcal{T}^{*}{ }_{n, b}$ must belong to $\mathcal{B}^{*}{ }_{\text {min }}(n, b)$. We have further two cases:

For $n<3 b+1$ we get $x_{1,2}=x_{2,2}=0, x_{1,3}=b+2, x_{2,3}=2 n-4 b-4$ and $x_{3,3}=3 b-n+1$. Therefore, $Z C_{1}^{*}\left(T_{\text {min }}^{*}\right)=x_{1,2}+4 x_{2,2}+2 x_{1,3}+7 x_{2,3}+12 x_{3,3}=2 n+$ $10 b-12$.

Similarly, for $n \geq 3 b+1$, we have $x_{1,2}=0, x_{2,2}=n-3 b-1, x_{1,3}=b+2$, $x_{2,3}=2 b-2$ and $x_{3,3}=0$. Hence, $Z C_{1}^{*}\left(T_{\text {min }}^{*}\right)=x_{1,2}+4 x_{2,2}+2 x_{1,3}+7 x_{2,3}+12 x_{3,3}=$ $4 n+4 b-14$ which completes the proof.

2.2. PROOF OF THEOREM 2

We first find the structure of the tree that maximizes the modified first Zagreb connection index among all n-vertex trees with a fixed number of branching vertices. Now, let $T_{\max }^{*}$ be the tree with maximum $Z C_{1}^{*}$ value among all the members of $\mathcal{T}^{*}{ }_{n, b}$ for $3 \leq b \leq \frac{n}{2}-1$. To prove the main result of this section, we need to establish some lemmas first.

Lemma 5. The tree $T_{\text {max }}^{*} \in \mathcal{T}^{*}{ }_{n, b}$ does not contain any vertex of degree 2 .

Proof. Recall that $b \geq 3$. Contrarily suppose $T_{\text {max }}^{*}$ contains a vertex u of degree 2 adjacent to a branching vertex w. Let $N(u)=\{v, w\}$ and $N(w)=\left\{u, w_{1}, w_{2}, \ldots, w_{d_{w}-1}\right\}$. If T^{\prime} is the tree obtained from $T_{\max }^{*}$ by deleting the edge $u v$ and adding the new edge $v w, T^{\prime} \in$ $\mathcal{T}^{*}{ }_{n, b}$ and keeping in mind the fact $b \geq 3$ which implies that if $d_{v}=1$ then $\sum_{j=1}^{d_{w}-1}\left(2 d_{w_{j}}-1\right) \geq 4$, and if $d_{v}>1$ then $\sum_{j=1}^{d_{w}-1}\left(2 d_{w_{j}}-1\right) \geq 2$, we have

$$
\begin{aligned}
Z C_{1}^{*}\left(T^{\prime}\right)-Z C_{1}^{*}\left(T_{\max }^{*}\right) & =\left(2\left(d_{w}+1\right)-1-d_{w}-1\right)+\left(2\left(d_{w}+1\right) d_{v}-d_{w}-1-d_{v}\right) \\
& +\sum_{j=1}^{d_{w}-1}\left(2\left(d_{w}+1\right) d_{w_{j}}-d_{w_{j}}-d_{w}-1\right) \\
& -\left(4 d_{v}-2-d_{v}\right)-\left(4 d_{w}-2-d_{w}\right) \\
& -\sum_{j=1}^{d_{w}-1}\left(2 d_{w} d_{w_{j}}-d_{w_{j}}-d_{w}\right) \\
& =\left(d_{w}-1\right)\left(2 d_{v}-3\right)+\sum_{j=1}^{d_{w}-1}\left(2 d_{w_{j}}-1\right) \\
& \geq 2\left(2 d_{v}-3\right)+\sum_{j=1}^{d_{w}-1}\left(2 d_{w_{j}}-1\right) \\
& >0,
\end{aligned}
$$

which is a contradiction.

Consequently, Lemma 5 ensures that the tree $T_{\text {max }}^{*}$ contains only pendent vertices and branching vertices. Denote by $\mu(x)$ the sum of the degrees of vertices adjacent to a vertex x in $T_{\max }^{*}$. We also need the following result:

Lemma 6. If the tree $T_{\max }^{*}$ contains two vertices u and v with degrees at least 4 (i.e. $d_{u} \geq 4$ and $d_{v} \geq 4$) with assumptions $N(u)=\left\{u_{1}, u_{2}, \ldots, u_{d_{u}}\right\}, N(v)=\left\{v_{1}, v_{2}, \ldots, v_{d_{v}}\right\}$
and $\mu(v) \geq \mu(u)$ such that u is connected to v via u_{1} (it may be $u_{1}=v$), then there is a tree $T^{\prime}=T_{\text {max }}^{*}-\left\{u u_{i}: 4 \leq i \leq d_{u}\right\}+\left\{v u_{i}: 4 \leq i \leq d_{u}\right\}$ such that $T^{\prime} \in \mathcal{T}^{*}{ }_{n, b}$ (see Figure $6)$ and $Z C_{1}^{*}\left(T_{\text {max }}^{*}\right)<Z C_{1}^{*}\left(T^{\prime}\right)$.

Figure 4: $T_{\max }^{*}$ and T^{\prime}.
Proof. We consider the following cases:
Case 1. The vertices u and v are non-adjacent.

$$
\begin{aligned}
Z C_{1}^{*}\left(T^{\prime}\right)-Z C_{1}^{*}\left(T_{m a x}^{*}\right) & =\sum_{i=1}^{d_{v}}\left(2 d_{v_{i}}\left(d_{v}+d_{u}-3\right)-d_{v_{i}}-d_{v}-d_{u}+3\right) \\
& +\sum_{j=4}^{d_{u}}\left(2 d_{u_{j}}\left(d_{v}+d_{u}-3\right)-d_{u_{j}}-d_{v}-d_{u}+3\right) \\
& +\left(6 d_{u_{1}}-3-d_{u_{1}}\right)+\left(6 d_{u_{2}}-3-d_{u_{2}}\right) \\
& +\left(6 d_{u_{3}}-3-d_{u_{3}}\right)-\sum_{i=1}^{d_{v}}\left(2 d_{v_{i}} d_{v}-d_{v_{i}}-d_{v}\right) \\
& -\sum_{j=4}^{d_{u}}\left(2 d_{u_{j}} d_{u}-d_{u_{j}}-d_{u}\right)-\left(2 d_{u_{1}} d_{u}-d_{u_{1}}-d_{u}\right) \\
& -\left(2 d_{u_{2}} d_{u}-d_{u_{2}}-d_{u}\right)-\left(2 d_{u_{3}} d_{u}-d_{u_{3}}-d_{u}\right) \\
& =\left(d_{u}-3\right)\left(\sum_{i=1}^{d_{v}}\left(2 d_{v_{i}}-1\right)-\sum_{i=1}^{3}\left(2 d_{u_{i}}-1\right)\right) \\
& +\left(d_{v}-3\right) \sum_{j=4}^{d_{u}}\left(2 d_{u_{j}}-1\right) \\
& >0,
\end{aligned}
$$

which is a contradiction, where we have used the facts $\sum_{i=1}^{d_{v}}\left(2 d_{v_{i}}-1\right) \geq \sum_{i=1}^{3}\left(2 d_{u_{i}}-\right.$ $1), \sum_{j=4}^{d_{u}}\left(2 d_{u_{j}}-1\right) \geq 1, d_{u}>3$ and $d_{v}>3$.

Case 2. The vertices u and v are adjacent, that is, $v_{1}=u$ (and also $v=u_{1}$).
Denote by $\mu_{\neq u}(v)$ (respectively $\mu_{\neq v}(u)$) the sum of the degrees of vertices adjacent to v (respectively u), different from u (respectively v). Now, we compare $\mu_{\neq u}(v)$ and $\mu_{\neq v}(u)$. Suppose, without loss of generality, $\mu_{\neq v}(u) \leq \mu_{\neq u}(v)$. We can transform the tree $T_{\max }^{*}$ into the tree T^{\prime}, as described in Case I. It holds that

$$
\begin{aligned}
Z C_{1}^{*}\left(T^{\prime}\right)-Z C_{1}^{*}\left(T_{\max }^{*}\right) & =\sum_{i=2}^{d_{v}}\left(2 d_{v_{i}}\left(d_{v}+d_{u}-3\right)-d_{v_{i}}-d_{v}-d_{u}+3\right) \\
& +\sum_{j=4}^{d_{u}}\left(2 d_{u_{j}}\left(d_{v}+d_{u}-3\right)-d_{u_{j}}-d_{v}-d_{u}+3\right) \\
& +\left(6 d_{u_{2}}-3-d_{u_{2}}\right)+\left(6 d_{u_{3}}-3-d_{u_{3}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left(6\left(d_{v}+d_{u}-3\right)-3-d_{v}-d_{u}+3\right) \\
& -\sum_{i=2}^{d_{v}}\left(2 d_{v_{i}} d_{v}-d_{v_{i}}-d_{v}\right)-\sum_{j=4}^{d_{u}}\left(2 d_{u_{j}} d_{u}-d_{u_{j}}-d_{u}\right) \\
& -\left(2 d_{u} d_{v}-d_{u}-d_{v}\right)-\left(2 d_{u} d_{u_{2}}-d_{u}-d_{u_{2}}\right) \\
& -\left(2 d_{u} d_{u_{2}}-d_{u}-d_{u_{2}}\right) \\
& =\left(d_{u}-3\right)\left(\sum_{i=2}^{d_{v}}\left(2 d_{v_{i}}-1\right)-\sum_{i=2}^{3}\left(2 d_{u_{i}}-1\right)-\left(d_{v}-3\right)\right) \\
& +\left(d_{v}-3\right)\left(\sum_{j=4}^{d_{u}}\left(2 d_{u_{j}}-1\right)-\left(d_{u}-3\right)\right) \\
& >0
\end{aligned}
$$

which is again a contradiction to the choice of $T_{\text {max }}^{*}$ due to the fact $b \geq 3$ implying that either $\sum_{i=1}^{d_{v}}\left(2 d_{v_{i}}-1\right)>\sum_{i=1}^{3}\left(2 d_{u_{i}}-1\right)-\left(d_{v}-3\right)$ and $\sum_{j=4}^{d_{u}}\left(2 d_{u_{j}}-1\right) \geq\left(d_{u}-3\right)$ or $\sum_{i=1}^{d_{v}}\left(2 d_{v_{i}}-1\right) \geq \sum_{i=1}^{3}\left(2 d_{u_{i}}-1\right)-\left(d_{v}-3\right)$ and $\sum_{j=4}^{d_{u}}\left(2 d_{u_{j}}-1\right)>\left(d_{u}-3\right)$. This completes the proof.

Let $V_{3}\left(T_{\max }^{*}\right)=\left\{v_{m}, v_{1}, v_{2}, \cdots, v_{b-1}\right\}$ denote the set of all branching vertices from $T_{\text {max }}^{*}$ and Δ denote the maximum degree among the vertices of $T_{\text {max }}^{*}$ then using Lemmas 5 and 6 , one can conclude that there is at most one branching vertex in $T_{\text {max }}^{*}$ of degree greater than 3. Let $d_{v_{i}}=3$ for $1 \leq i \leq b-1$ and $d_{v_{m}}=\Delta$. Hence, $T_{\max }^{*}(n, b)$ is the collection of trees with maximum $Z C_{1}^{*}$ with $n_{3}=b-1, n_{1}=n-b$ also the fact $\sum_{i} i n_{i}=2(n-1)$ implies that $\Delta=n-2 b+1$. Now, we need to place the pendent vertices and the vertices in the set $V_{3}\left(T_{\max }^{*}\right)$ so that we may get the maximum tree $T_{\max }^{*}$. For this purpose, we establish the following lemmas:

Lemma 7. If $n_{3} \leq \Delta$, then every vertex of degree 3 in $T_{\max }^{*}$ is adjacent to the vertex v_{m} of degree Δ.

Proof. Suppose there exists a branching vertex $v_{i}(1 \leq i \leq b-1)$ non-adjacent to v_{m}, and $n_{3}=b-1 \leq \Delta$. So, there must be a pendent neighbor (say) w of v_{m} in $T_{\text {max }}^{*}$. Let $N\left(v_{i}\right)=$ $\left\{v_{j}, z_{1}, z_{2}\right\}(1 \leq j \leq b-1, j \neq i)$, where z_{1} and z_{2} are either pendent or branching vertices different from v_{m} and v_{i} is connected to v_{m} via $d_{v_{j}}$. Denote by T^{\prime} the tree obtained from $T_{\text {max }}^{*}$ as $T^{\prime}=T_{\text {max }}^{*}-\left\{v_{j} v_{i}, w v_{m}\right\}+\left\{v_{i} v_{m}, w v_{j}\right\}$.

$T_{m a x}^{*}$

T^{\prime}

Figure 5: $T_{\max }^{*}$ and T^{\prime}.

Clearly, the newly obtained tree T^{\prime} belongs to $\mathcal{T}^{*}{ }_{n, b}$ (see Figure 5) and $3 \leq b \leq \frac{n+2}{3}$. It holds

$$
\begin{gathered}
Z C_{1}^{*}\left(T^{\prime}\right)-Z C_{1}^{*}\left(T_{\max }^{*}\right)=\left(2 \Delta d_{v_{i}}-\Delta-d_{v_{i}}\right)+\left(2 d_{v_{i}}-d_{v_{i}}-1\right) \\
-\left(2 d_{v_{i}} d_{v_{j}}-d_{v_{i}}-d_{v_{j}}\right)-(2 \Delta-\Delta-1) \\
=4(\Delta-3)>0,
\end{gathered}
$$

which is a contradiction.

Note that, Lemma 7 ensures that the maximum tree $T_{\max }^{*}$ for $b-1 \leq n-2 b+1$ or $3 \leq b \leq \frac{n+2}{3}$ must be B_{1}^{*} given in Figure 2. Now, we consider the case if $n_{3}>\Delta$ (i.e. $\frac{n+2}{3}<b \leq \frac{n}{2}-1$), there is at least one vertex of degree 3 non-adjacent to v_{m}. Besides, the vertex v_{m} has only branching neighbors, so we have the following result:

Lemma 8. If a tree $T \in \mathcal{T}^{*}{ }_{n, b}$ contains a vertex u of degree 3 with branching neighbors z, v and w, with $d_{v} \geq 3, d_{z}=d_{w}=3$ and $N(w)=\left\{u, w_{1}, w_{2}\right\}$, then a tree $T^{\prime}=T-$ $\left\{z u, w_{1} w\right\}+\left\{w_{1} u, z w\right\}$ can be obtained from T (see Figure 8) such as $T^{\prime} \in \mathcal{T}^{*}{ }_{n, b}$, and $Z C_{1}^{*}\left(T^{\prime}\right)=Z C_{1}^{*}(T)$.

Figure 6: The Trees T and T^{\prime}.

Proof. It is obvious that $T^{\prime} \in \mathcal{T}^{*}{ }_{n, b}$. Also, it holds that

$$
\begin{aligned}
Z C_{1}^{*}\left(T^{\prime}\right)-Z C_{1}^{*}(T)= & \left(2 d_{u} d_{w_{1}}-d_{u}-d_{w_{1}}\right)+\left(2 d_{z} d_{w}-d_{z}-d_{w}\right) \\
& -\left(2 d_{z} d_{u}-d_{z}-d_{u}\right)-\left(2 d_{w} d_{w_{1}}-d_{w}-d_{w_{1}}\right)=0 .
\end{aligned}
$$

Consequently, using Lemmas 5-8, one can conclude that in order to maximize $Z C_{1}^{*}$, we place the vertices of degree 3 in the neighbors of v_{m} such that there is no pendent neighbor of v_{m}, then the remaining vertices of degree 3 can be placed arbitrarily in the neighbor of any pendent vertex adjacent to a vertex of degree 3 .

Figure 7: The base B_{2}^{*} of a tree with maximum $Z C_{1}^{*}$ for $\frac{n+2}{3}<b \leq \frac{n}{2}-1$.

Hence, $T_{\max }^{*}$ can be constructed, by starting from the tree B_{2}^{*} given in Figure 7, and then inserting the remaining vertices of degree 3 arbitrarily in the neighbor of any pendent vertex adjacent to a vertex of degree 3 . So, the next result follows:

Proof of Theorem 2. Using Lemmas 5-7 one can conclude that the maximum tree $T_{\max }^{*} \cong$ B_{1}^{*} for $2 \leq b \leq \frac{n+2}{3}$ given in Figure 2 which implies that $x_{1,3}=2 n_{3}=2 b-2, x_{1, \Delta}=\Delta-$ $n_{3}=n-3 b+2, x_{3, \Delta}=n_{3}=b-1$ and $x_{3,3}=0$. Hence, $Z C_{1}^{*}\left(T_{\max }^{*}\right)=n^{2}-3 n-$ $4 b^{2}+12 b-6$ for $3 \leq b \leq \frac{n+2}{3}$.

Now, using the results in Lemmas 5-8 one can construct $T_{\max }^{*}$ for $\frac{n+2}{3}<b \leq \frac{n}{2}-1$ by starting from the tree B_{2}^{*} given in Figure 7 and then inserting the remaining vertices of degree 3 arbitrarily in the neighbor of any pendent vertex adjacent to a vertex of degree 3 which implies that $T_{\text {max }}^{*} \in T_{1}^{*}(n, b)$ and $x_{1,3}=n_{1}=n-b, x_{1, \Delta}=0, x_{3, \Delta}=\Delta=n-2 b+$ 1 and $x_{3,3}=n_{3}-\Delta=3 b-n-2$. Hence, $Z C_{1}^{*}\left(T_{\max }^{*}\right)=5 n^{2}+20 b^{2}-20 n b-3 n+$ $20 b-22$ for $\frac{n+2}{3}<b \leq \frac{n}{2}-1$ which completes the proof.

Acknowledgments. The authors are grateful to the anonymous referee for his/her valuable comments, which have considerably improved the presentation of this paper.

REFERENCES

1. A. Ali, I. Gutman, E. Milovanović and I. Milovanović, Sum of powers of the degrees of graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018) 5-84.
2. U. Ali, M. Javaid and A. Kashif, Modified Zagreb connection indices of the T-sum graphs, Main Group Metal Chem. 43 (2020) 43-55.
3. U. Ali and M. Javail, Upper bounds of Zagreb connection indices of tensor and strong product on graphs, Punjab Univ. J. Math. 52 (2020) 89-100.
4. U. Ali, M. Javaid and A. M. Alanazi, Computing analysis of connection-based indices and coindices for product of molecular networks, Symmetry 12 (2020) 1320.
5. U. Ali and M. Javaid, Zagreb connection indices of disjunction and symmetric difference operations on graphs, J. Prime Resear. Math. 16 (2020) 1-15.
6. A. Ali and N. Trinajstić, A novel/old modification of the first Zagreb index, Mol. Inform. 37 (2018) 1800008.
7. A. Ali, L. Zhong and I. Gutman, Harmonic index and its generalizations: extremal results and bounds , MATCH Commun. Math. Comput. Chem. 81 (2019) 249-311.
8. B. Borovićanin, On the extremal Zagreb indices of trees with given number of segments or given number of branching vertices, MATCH Commun. Math. Comput. Chem. 74 (2015) 57-79.
9. A. T. Balaban and J. Devillers, Topological indices and related descriptors in QSAR and QSPR, CRC, Boca Raton, 2000.
10. B. Borovićanin, K. C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17-100.
11. B. Borovićanin, K. C. Das, B. Furtula and I. Gutman, Zagreb indices: Bounds and extremal graphs, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), Bounds in Chemical Graph Theory - Basics, University of Kragujevac, Kragujevac, (2017) 67-153.
12. J. A. Bondy, U. S. R. Murty, Graph Theory with Applications. American Elsevier Publishing Co., Inc., New York, 1976.
13. J. Cao, U. Ali, M. Javaid and C. Huang, Zagreb connection indices of molecular graphs based on operations, Complexity, (2020) 7385682.
14. N. Chidambaram, S. Mohandoss, X. Yu and X. Zhang, On leap Zagreb indices of bridge and chain graphs, AIMS Mathematics, 5 (2020) 6521-6536.
15. K. C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103-112.
16. G. Ducoffe, R. Marinescu-Ghemeci, C. Obreja, A. Popa and R. M. Tache, Proceedings of the 16th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, (2018) 65-68.
17. M. Goubko, Minimizing degree-based topological indices for trees with given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 71 (2014) 33-46.
18. I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
19. I. Gutman and M. Goubko, Trees with fixed number of pendent vertices with minimal first Zagreb index, Bull. Int. Math. Virt. Inst. 3 (2013) 161-164.
20. I. Gutman and T. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
21. I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
22. F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969.
23. S. Khalid, J. Kok, A. Ali and M. Bashir, Zagreb connection indices of. TiO_{2} nanotubes, Chemistry: Bulgarian J. Sci. Edu. 27 (2018) 86-92.
24. H. Lin, On segments, vertices of degree two and the first Zagreb index of trees, MATCH Commun. Math. Comput. Chem. 72 (2014) 825-834.
25. H. Lin, On the Wiener index of trees with given number of branching vertices, MATCH Commun. Math. Comput. Chem. 72 (2014) 301-310.
26. S. Manzoor, N. Fatima, A. A. Bhatti and A. Ali, Zagreb connection indices of some nanostructures, Acta Chemica Iasi. 26 (2) (2018) 169-180.
27. A. M. Naji, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim. 2 (2017) 99-117.
28. S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta. 76 (2003) 113-124.
29. S. Noureen, A. A. Bhatti and A. Ali, Extremal trees for the modified first Zagreb connection index with fixed number of segments or vertices of degree 2, J. Taibah Uni. Sci. 14 (2019) 31-37.
30. S. Noureen, A. A. Bhatti and A. Ali, Extremum modified first Zagreb connection index of n-vertex trees with fixed number of pendent vertices, Discrete Dyn. Nature Soc. (2020) 3295342.
31. S. Noureen, A. Ali and A. A. Bhatti, On the extremal Zagreb indices of n-vertex chemical trees with fixed number of segments or branching vertices, MATCH Commun. Math. Comput. Chem. 84 (2020) 513-534.
32. Z. Raza, Zagreb connection indices for some benzenoid systems, Polycycl. Aromat. Comp. (2020), DOI: 10.1080/10406638.2020.1809469.
33. Z. Shao, I. Gutman, Z. Li, S. Wang and P. Wu, Leap Zagreb indices of trees and unicyclic graphs, Commun. Comb. Optim. 3 (2) (2018) 179-194.
34. J.-H. Tang, U. Ali, M. Javaid and K. Shabbir, Zagreb connection indices of subdivision and semi-total point operations on graphs, J. Chem. 2019 (2019) 9846913.
35. N. Trinajstić, Chemical Graph Theory, 2nd revised ed. CRC Press, Boca Raton, Florida, 1993.
36. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
37. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
38. A. Ye, M. I. Qureshi, A. Fahad, A. Aslam, M. K. Jamil, A. Zafar and R. Irfan, Zagreb connection number index of nanotubes and regular hexagonal lattice, Open Chem. 17 (1) (2019) 75-80.
39. J. M. Zhu, N. Dehgardi and X. Li, The third leap Zagreb index for trees, J. Chem. 2019 (2019) 9296401.

[^0]: ${ }^{\bullet}$ Corresponding Author (akbarali.maths@ gmail.com)
 DOI: 10.22052/ijmc.2020.240260.1514

