Turbulence, Erratic Property and Horseshoes in a Coupled Lattice System related with Belusov−Zhabotinsky Reaction

Document Type : Research Paper

Authors

School of Mathematic and Computer Science, Guangdong Ocean University Zhanjiang, Guangdong, P. R. China

Abstract

In this paper we continue to study the chaotic properties of the following lattice dynamical system: bji+1= a1 g(bji)+ a2 g(bj-1i)+ a3 g(bj+1i), where i is discrete time index, j is lattice side index with system size L, g is a selfmap on [0, 1] and a1+a2+a3 ∊ [0, 1] with a1+a2+a3=1 are coupling constants. In particular, it is shown that if g is turbulent (resp. erratic) then so is the above system, and that if there exists a g-connected family G with respect to disjointed compact subsets D1, D2, …, Dm, then there is a compact invariant set K'⊆D' such that F |K' is semi-conjugate to m-shift for any coupling constants a1+a2+a3 ∊ [0, 1] with  a1+a2+a3=1, where D' ⊆ IL is nonempty and compact. Moreover, an example and two problems are given.

Keywords


  1. T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (10) (1975) 985-992.
  2. L. S. Block and W.A. Coppel, Dynamics in One Dimension, Springer Monographs in Mathematics, Springer, Berlin, 1992.
  3. R. L. Devaney, An Introduction to Chaotics Dynamical Systems, Benjamin/ Cummings, Menlo Park, CA, 1986.
  4. J. -R. Chazottes and B. Fernandez (Eds.), Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, Lecture Notes in Physics Vol. 671, Springer Verlag, Heidelberg-Berlin, 2005.
  5. J. L. García Guirao and M. Lampart, Chaos of a coupled lattice system related with Belousov−Zhabotinskii reaction, J. Math. Chem. 48 (2010) 159-164.
  6. R. Li, F. Huang, Y. Zhao, Z. Chen and C. Huang, The principal measure and distributional (p, q)-chaos of a coupled lattice system with coupling constant ε = 1 related with Belousov−Zhabotinskii reaction, J. Math. Chem. 51 (2013) 1712-1719.
  7. R. Li, F. Huang and Y. Zhao, A note on Li−Yorke chaos in a coupled lattice system related with Belousov−Zhabotinskii reaction, J. Math. Chem. 51 (2013) 2173-2178.
  8. J. Liu, T. Lu and R. Li, Topological entropy and P-chaos of a coupled lattice system with non-zero coupling constant related with Belousov−Zhabotinskii reaction, J. Math. Chem. 53 (2015) 1220-1226.
  9. R. Li and Y. Zhao, Remark on positive entropy of a coupled lattice system related with Belousov−Zhabotinskii reaction, J. Math. Chem. 53 (2015) 2115-2119.
  10. R. Li, J. Wang, T. Lu and R. Jiang, Remark on topological entropy and P-chaos of a coupled lattice system with non-zero coupling constant related with Belousov−Zhabotinskii reaction, J. Math. Chem. 54 (2016) 1110-1116.
  11. R. Li, Y. Zhao, R. Jiang, H. Wang, Some remarks on chaos of a coupled lattice system related with the Belousov−Zhabotinskii reaction, J. Math. Chem. 54 (2016) 849-853.
  12. T. Lu and R. Li, Some chaotic properties of a coupled lattice system related with Belousov−Zhabotinsky reaction, Qual. Theory Dyn. Syst. 16 (2017) 657-670.
  13. X. X. Wu and P. Y. Zhu, Li−Yorke chaos in a coupled lattice system related with Belousov−Zhabotinskii reaction, J. Math. Chem. 50 (2012) 1304-1308.
  14. K. Kaneko, Globally coupled chaos violates law of large numbers, Phys. Rev. Lett. 65 (1990) 1391-1394.
  15. B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994) 737-754.
  16. P. Oprocha and P. Wilczyński, Shift spaces and distributional chaos, Chaos Solitons Fract. 31 (2007) 347-355.
  17. J. Smítal and M. Stefánková, Distributional chaos for triangular maps, Chaos Solitons Fract. 21 (2004) 1125-1128.
  18. R. Pikula, On some notions of chaos in dimension zero, Colloq. Math. 107 (2007) 167-177.
  19. X. X. Wu and P. Y. Zhu, A minimal DC1 system, Topol. Appl. 159 (2012) 150-152.
  20. X. X. Wu and P. Y. Zhu, The principal measure and distributional (p, q)-chaos of a coupled lattice system related with Belousov−Zhabotinskii reaction, J. Math. Chem. 50 (2012) 2439-2445.
  21. F. Balibrea, On problems of Topological Dynamics in non-autonomous discrete systems, Appl. Math. Nonlinear Sci. 1 (2) (2016) 391-404.
  22. D. L. Yuan and J. C. Xiong, Densities of trajectory approximation time sets (in Chinese), Sci. Sin. Math. 40 (11) (2010) 1097-1114.
  23. B. Schweizer, A. Sklar and J. Smítal, Distributional (and other) chaos and its measurement, Real Anal. Exch. 21 (2001) 495-524.
  24. H. Román-Flores, Y. Chalco-Cano, G. Silva and J. Kupka, On turbulent, erratic and other dynamical properties of Zadeh’s extensions, Chaos Solitons Fract. 44 (11), (2011) 990-994
  25. G. Chen and S. T. Liu, On spatial periodic orbits and spatial chaos, Int. J. Bifur. Chaos 13 (2003) 935-941.
  26. X. Yang, Q. Li and S. Cheng, Horseshoe chaos and topological entropy estimate in a simple power system, Appl. Math. Comput. 211 (2009) 467-473.
  27. X. Yang and Y. Tang, Horseshoes in piecewise continuous maps, Chaos Solitons Fract. 19 (2004) 841-845.
  28. R. Li, A note on the three versions of distributional chaos, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 1993-1997.