The generalized atom-bond connectivity index of a graph G is denoted by ABCa(G) and defined as the sum of weights ((d(u)+d(v)-2)/d(u)d(v))aa$ over all edges uv∊G. A cactus is a graph in which any two cycles have at most one common vertex. In this paper, we compute sharp bounds for ABCa index for cacti of order $n$ with fixed number of cycles and for cacti of order $n$ with given number of pendant vertices. Furthermore, we identify all the cacti that achieve the bounds.
A. Ali and A. A. Bhatti, A note on the augmented Zagreb index of cacti with fixed number of vertices and cycles, Kuwait J. Sci. 43 (2016) 11–17.
A. R. Ashrafi, T. Dehghan-Zadeh and N. Habibi, Extremal atom-bond connectivity index of cactus graphs, Commun. Korean Math. Soc. 30 (2015) 283–295.
J. Chen and X. Guo, Extremal atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 713–722.
J. Chen, J. Liu and X. Guo, Some upper bounds for the atom-bond connectivity index of graphs, Appl. Math. Lett. 25 (2012) 1077–1081.
X. Chen and G. Hao, Extremal graphs with respect to generalized ABC index, Discrete Appl. Math. 243 (2018) 115–124.
K. C. Das, Atom-bond connectivity index of graphs, Discrete Appl. Math. 158 (2010) 1181–1188.
Hayat, F. (2019). On Generalized Atom-bond Connectivity Index of Cacti. Iranian Journal of Mathematical Chemistry, 10(4), 319-330. doi: 10.22052/ijmc.2019.195759.1456
MLA
Fazal Hayat. "On Generalized Atom-bond Connectivity Index of Cacti", Iranian Journal of Mathematical Chemistry, 10, 4, 2019, 319-330. doi: 10.22052/ijmc.2019.195759.1456
HARVARD
Hayat, F. (2019). 'On Generalized Atom-bond Connectivity Index of Cacti', Iranian Journal of Mathematical Chemistry, 10(4), pp. 319-330. doi: 10.22052/ijmc.2019.195759.1456
VANCOUVER
Hayat, F. On Generalized Atom-bond Connectivity Index of Cacti. Iranian Journal of Mathematical Chemistry, 2019; 10(4): 319-330. doi: 10.22052/ijmc.2019.195759.1456