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1. INTRODUCTION

Throughout this paper, all graphs considered are simple and connected. Let G be a graph on
n vertices with vertex set V(G) and edge set E(G). For v € V(G), let N;(v) be the set of
all neighbors of v in G. The degree of v € V(G), denoted by d;(v) or d(v), is the
cardinality of N;(v). Denote by A(G) be maximum degree of G. A vertex is said to be a
pendant vertex if its degree is one, and an edge is said to be a pendant edge if one of its end
vertices is a pendant vertex. The graph formed from G by deleting any vertex v € V(G)
(resp. edge uv € E(G)) is denoted by G — v (resp. G — uv). Similarly, the graph formed
from G by adding an edge uv is denoted by G + uv, where u and v are non-adjacent
vertices of G. As usual, by C,,S,, and B, we denote the cycle, star and path on n vertices,
respectively.

Molecular descriptors play a key role in mathematical chemistry. Among them,
topological indices, or graph invariant playing an important role. The most studied degree-
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based graph invariant probably is the Randi¢ index [17]. For more degree base topological
indices see [22, 23].

For a connected graph G the atom-bond connectivity index (or ABC index for short)
introduced by Estrada et al. [11] and defined as

B d(u)+d(v)-2
ABC(G) = Yuver(c) W

where d(u) is the degree of vertex u in G. In [11] it has been showed that the ABC index
correlated well with the heat of formation of alkane, and also they showed a chemical
explanation for its descriptive ability. Due to the above (chemical) applications, various
mathematical properties of the ABC index, have been extensively investigated, for more
details see [3, 4, 6,7, 13,15, 18, 19, 20, 21], and the references cited therein. A cactus is a
graph that any block is either a cut edge or a cycle, or equivalently, a graph in which any
two cycles have at most one common vertex. Let C(n,t) denote the class of all cacti of
order n with t cycles, and C!(n,r) denote the class of all cacti of order n with r pendant
vertices. Dong and Wu [8] obtained the maximum value of the ABC index in C(n,t) and
CY(n,r). Ashrafi et al. [2] determined the first and second maximum values of the ABC
index among all n-vertex cacti. For more studies about cacti one may be referred to [1, 14].

In order to obtain the better correlation abilities of the ABC index for the heat of
formation of alkane, Furtula et al. [12] made generalization of the ABC index by replacing
1/2 with an arbitrary non-zero real number « as

_ d(w)+d(v)-2)“
ABCQ(G) - ZquE(G) (W) '

They showed that ABC_5;(G) have a better prediction power than the ABC index in the
study of heat of formation for heptane and octanes, which was named as augmented Zagreb
index. It was also discussed in [19]. Estrada [9, 10] provided a probabilistic explanation for
the capacity of ABC-like indices to describe the energetics of alkanes.

Recently, Chen and Hao [5] obtained graphs with maximum ABC,(G) index for
a <0 among all connected graphs with given order and vertex connectivity, edge
connectivity and matching number. Liu et el. [16] determined ABC,(G) of unicyclic graphs
with maximal and second-maximal (resp. minimal and second-minimal) values for « >0
(resp. —3 < a < 0), and bicyclic graphs with maximal and second-maximal (resp. minimal
and second-minimal) values for a« > 0 (resp. =1 < a < 0).

Motivated from [5, 16],in this paper we further explore mathematical properties of
ABC, index for cacti. In the second section, we give some preliminary results for the proof
of our main results. In the third section, we obtain sharp upper and lower bounds for « > 0
and — 3 < a < —1, respectively for the ABC, index for cacti in C(n,t), and characterize
the corresponding extremal graphs, which generalize some known results in [8, 1]. Finally,
in section 4, we give sharp upper and lower bounds for « >0 and —3 < a < —1,
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respectively for the ABC, index for cacti in C(n,7), and characterize the corresponding
extremal graphs.

2. PRELIMINARIES

In this section we give some preliminary results for the proof of our main results. For any
x+y—2

o )a. Note that g(1,1,a) =0

nonzero real number « and x,y > 1, let g(x,y, @) = (
1 a
and for x > 1, g(x,2, @) = (5) .

Lemma 2.1. [16] For x > 2, let g(x,1,a) = (xxl) .

I. Ifa>0,then g(x,1,a) is strictly increasing with x.
ii. If =3 < a <0, then g(x, 1, ) is strictly decreasing with x.

Lemma 2.2. Let G € C(n,0) of order n > 2. Then

<a-1(3) @0
>(m-1(22)" -3<a<o0
and equality holds if and only if G = S,,.

ABC,(G)

Proof. Let G € C(n,0) of ordern = 2. Then by Lemma 2.1, we have
d d(v)-2
ABCa(G) = ZquE(G) ( @)+ d(r)- )

d(u)d(v)
1+(n-1)-2
1+(n 1)-2

= -1 (5)
with equality if and only if {d(u),d(v)} = {1,n — 1} for every edge uv, i.e., G = S,,. ]

3. EXTREMAL ABC, INDEX IN C(n,t)

In this section we compute sharp upper bounds for « > 0 and sharp lower bounds for
—3 < a < —1, respectively for the ABC, index of cacti in C(n,t), and characterize the
corresponding extremal graphs.

A bundle is a cactus in which all cycles have exactly one common vertex. Let C,, .
denote the bundle with t triangles having n — 2t — 1 pendant vertices attached to the
common vertex.
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Lemma 3.1. [16] Let G € C(n,1) of order n > 3.
I. Ifa>0,then G = C,, is the unique graph having maximal ABC, index.
ii. If -3 <a <0,then G = C,;, is the unique graph having minimal ABC, index.

By direct calculation, we have

ABCo(Cr) =3t (D) + (-2t - 1) (22)".
Let

A(n t, @) = 3t G)a +(n-2t—1) (Z—:i)a

Theorem 3.1. Let G € C(n,t) of order n = 5. Then

< A(n,t,a) a >0,
ABCq(G) {2 A(n,t,a) —-3<a<-1,

with equality if and only if G = C,, ;.

Proof. We prove it by induction on n and t. For t =0 and t = 1 the result holds due to
Lemma 2.2 and Lemma 3.1, respectively. Now, we assume that n >5 and t > 2. For
n = 5 the result holds due to the fact that there is only one graph which is isomorphic to
Cs,. Let G € C(n,t) where n > 6 and ¢t > 2, then we consider the following two possible
cases.
Case 1. G has no pendant vertex. In this case, there must exist two edges say uv and
uw in some cycle of G such that d(u) = d(v) =2 and d(w) = d > 3. Here, we
consider two subcases to complete the proof.
Subcase 1. vw ¢ E(G). Let G' =G —u+vw, then G' € C(n—1,t). Then by
inductive assumption and Lemma 2.1, we have

a

ABC,(G) = ABC,(G") + (%)

SA(n—l,t,a)+G)a a>0
>An—1,t,a) + (%)a —3<a<-1

= A(n, t, @) + (%)“ —(n—-2t-1) (Z—j)a +(n—2t—2) (Z—:z)a
=A(n,t a) + (G)a — (Z—j)a)
+ ((n —2t—-2) (Z—:z)a —(n—-2t-2) (Z_:i)a)

{< A(n, t,a) a >0,
>An,t,a) —-3<a<-1
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Subcase 2. vw € E(G). Let No(W)\{u, v} = {uq,uy, ...,uq_»}. Since 6(G) = 2,
therefore d(u;) =2 for 1<i<d-2. Let G'=G—u—wv, then G' € C(n—
2,t —1). Then by inductive assumption and Lemma 2.1, we have

ABC(G) = ABCo(6") +3(2)" + B4 [9(d, d(uy), @) — g(d — 2,d(u)). )]
(<A(m-2t-1a)+3(2)

+ 27 [g(d d(uy), a) — g(d — 2,d(w;),@)]  if a>0

| =Am-2t-1a)+3(2)

+ Y42 [g(d, d(w;), @) —g(d — 2, d(w),a)] if —3<a<-1

\
— A(n.t.a) -3 G)“ _(n-2t-1) (Z—j)“ +(n—2t—1) (Z—:‘;)“
+3(2)" + 22 [9(d, d(u). @) — g(d — 2.d(u),@)]
=Amea)+ -2t -1 [(55) - ()]

n-—1

+ X7 [g(d d(w), @) — g(d — 2,d(w), @)]

< A(n,t a) a>0,

{2 Aln,t,a) -3<a<-1,
where the last equality holds if and only if all the inequalities become equalities,
e, G'=Ch_pp—q, 2t=n—-1 and d(u;)=2 for i=12,..,d—2. Thus,
ABC,(G) = A(n, t,a) ifand only if G = C,, ;.
Case 2. G has at least one pendant vertex. Let u, € V(G) with d(u,) =1 and
UyVy € E(G). Let d(vy) =d and N;(vo)\{ue} = {v1, vy, ...,v4-1}, then 2 < d <
n — 1. Without loss of generality we assume that d(v;)) =1fori=12, ..,z—-1
and d(v;)) =2 for i=zz+1 ..,d—1 Let G*=G—uy— X7}l v, then
G* € C(n — z,t). Then by inductive assumption and Lemma 2.1, we have

ABCL(G) = ABC,(G*) +2(22)" + £ [9(d.d(v). @) — g(d - 2.d(v;), )]

d

d—1\°
{SABCa(G*)+z< _ ) a>0
d—1\°
(ZABCQ(G*)+Z< d) 3 <a<-1
d—1\°
{SA(n—Z,t,a)+z< 7 ) a>0
{ e
(2A(n—z,t,a)+z< 7 ) -3 <a<-1

=A(n,t,a) — (n—2t — 1) (Z_j)a
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+(n—-2t—1-2) (n—z—z)“ +7r (E)a

n—-z-1 d
n-z-2\% n-2\%

=Ameo+e-20-1-9[0=5) - () ]

+2|(F) -(5) ]

<At ,a) a >0,

{2 A(n,t,a) -3 <a<-1,
and the last equality holds if and only if all the inequalities become equalities, i.e., G* =
Cozty 2t=n—z—1and d =n—1. Thus, ABC,(G) = A(n,t,a) if and only if G =
Cn.t- By combining Case 1 and Case 2, the result follows. |

4. EXTREMAL ABC, INDEX IN C1(n, 1)

In this section we determine sharp upper and lower bounds for «a >0 and -3 < a < —1,
respectively for the ABC, index of cacti in C'(n,r), and characterize the corresponding
extremal graphs. Denote by S, ,_; the tree formed by adding one pendant vertex to a
pendant vertex of the star S,,_;.

Lemma4.1. Let G € C1(n,n — 2) of order n > 4. Then

ABC,(6) - (n_s)c:%)izﬂ(%)Z =0
(2(71—3)(2%2) +2<§) 3<a<-1

with equality if and only if G = S ,,_3.

Proof. Since G have n — 2 pendant vertices, G have exactly two vertices say u, v of degree
at least 2 and all vertices other than u, v are of degree one and also u, v are adjacent. For
any vertex, say w in G other than u, v is either adjacent to u or adjacent to v but not both.
Let d(u) = x = 2 then d(v) = n — x. Without loss of generality, we assume that d(u) <
d(v). We have

ABC(6) = (= 1) () + (-2 - 1) (B2 + (22)" = gan).

n—x x(n—x)
Then
1

ge(x,n) = alx - 1) ("7‘1)“_ 1. (g)“ 4 (n-x_l)at—lL ~ (n_x_l)a

X n—x n—x n—x

1 a=1l Hxn
_ 2\«
* a(n 2) ( ) (x(n—-x))%"’

If «a >0, then g,(x,n) <O, ie., g(x,n) is decreasing with x. If =3 < a < —1, then
g (x,n) >0, i.e., g(x,n) is increasing with x. Thus, we have

x(n—x)
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ABC,(G) = (x—1) (xT—l)“ +(n—x—1) (n—x—l)“ + ( n-2 )05

n—x x(n—x)
-3\ 1\“
[se-9(;5) +2(3) >0
> ( 3)n_3a+21a 3<a<-1
= <n—2) <2) =asTa
with equality if and only if x = 2,i.e., G = 5;,,_3. ]
n—-r—1

Let Cy, be the graph formed by adding
n—r-—2
2
degree two-vertex in one of the independent edge if n — r is even.

. independent edges to the star S, if

n —r is odd and adding independent edges to the star S,,_; and then inserting a

Theorem 4.1.Let G € C*(n,r),wheren >4,3<r <n-1anda > 0.

n

i. Ifr =n—1,then ABC,(G) = (n— 1) (;Z)a and G = S,,.

n—-1
ii. Ifr=n—2,then ABC,(G) < (n— 3) (Z—j)“ +2 (%)“ with equality if and only if
G =853
iii. If r<n-—3, then ABC,(G) < M(n,r,a) with equality if and only if G = Cy,,
where
—2\® 3n—r—1) /1"
(Y Y i
M(n,r,a):{ n—3“+3(n—r—2) 1“+ 1\“ ]
r(=2) 7 (5) *(5) v even

Proof. If r =n —1, then by Lemma 2.2, ABC,(G) = (n—1) (Z—:i)a and ¢ = S,,. If
r =n — 2, then G is a tree with n — 2 pendant vertices. Thus, by Lemma 4.1, ABC,(G) <
(n—3) (Z—j)“ +2 (%)“ with equality if and only if G = S, ,,_. Suppose that r < n — 3,
we prove the result by inductiononn+r. Ifn+r =4, thenn=4andr =0, i.e,G = C,
and G = Cy,. The result holds in this case. Now, we assume that n+r >5, and we
consider the following two possible cases.

Case 1. r = 0. In this case, there must exist two edges, say uv and uw in some

cycle of G such that d(u) = d(v) =2 and d(w) = d = 3. Here, we consider two

subcases to complete the proof.
Subcase 1.vw ¢ E(G). Let G' = G —u + vw, then G’ € C(n — 1,0). If n is odd,

then M(n — 1,0, a) :@(ﬁ)“ + (%)“ and M(n,0,a) :@@“ If n is
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_3(n-2) [1\* _3(n-2) [1\* 1%
even, then M(n—10,a) = T(E) and M(n,0,a) = T(E) + (E) ,
Then by inductive assumption, we have

ABC,(G) = ABC,(G")
N G)a <Mn-10a) < 1\11(: 0,a)+ G)a n is odd
<MMn-10,a)+ (E) =M(n0,a) n is even.
with equality if and only if G’ = Cy_, . Hence, ABC,(G) = M(n,0, @) holds if and
only if G = C;, for even n.
Subcase 2. vw € E(G). Let No(W)\{u,v} = {u;s,uy, ...,ug_5}. Since 6(G) = 2,

d(u))=2forl<i<d-2.1fG' =G —u—v,then G' € C'(n— 2,0). Hence by
inductive assumption and Lemma 2.1, we have

o d-2
ABC,(6) = ABC,(6)+3(5) + . [9(d.d(w). @)~ g(d - 2,d(uy), @]

< M(n—-20,a)+3(2) + 287 [g(d. d(u).@) - g(d — 2, d(w;), @)]

=M(n,0,a)—3 G)a +3 G)a

+ X [9(d, d(wy), @) — g(d — 2,d(w;), )]

<M(n0, ),
and ABC,(G) = M(n,0, ) if and only if all the inequalities become equalities, i.e.,
G'=Cy 50, and d(u;) =2 fori =12, ..,d—2. Thus, ABC,(G) = M(n,0,a) if
and only if G = C, .
Case 2. r > 1. Let uy, € V(G) with d(uy) = 1 and uyvy € E(G). Let d(vy) = d
and Ng;(vo)\{ue} ={vi, vy, ....v4_1}, then 2<d <n-1. Without loss of
generality we assume that d(v;) =1 for i=12,..,s—1, and d(v;) =2 for
i=s,s+1, ..,d—-11fA(G) =n—1,thend(vy) = n—1and each block of G is
either triangle or an edge, i.e., G = Cn=r=1, where n —r — 1 is even. Suppose that

2
AG)<Sn—-2.1fG"=G—uy—2iZ1 (v,), then G* € C1(n — s,r — s5). Note that
n—r and n —s — (r —s) have same parity. Then by inductive assumption and
Lemma 2.1, we have

1
d

@ d-1
ABC,(6) = ABCL(G) +5 (=) + ) [9(d d(v).@) - g(d = 5,d(v). @)]

< ABC,(G*) +s (%)a
<Mn-sr—sa) +s(%)a
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(M(n,r,a)—r(z:i> +(r—s)(¥)a+s(d_l>a n—r is odd

. n—s—1 . d 3
_|M(n,r,a)—r(z:§> +(r—s)(%) +s(d;1> n—r is even
(M ra+ -9 [(22) - ()]
+s [(%)a — (Z—j)a] n—r is odd
"M+ e-9[(2) - ()]
+s [(%)a - (Z—:z)a] n—r is even
< 1\>I(n,r, a),

with equality if and only if all the inequalities become equalities, i.e., if and only if
d=n—-1r=sand G* = Cy_s,_s. Thus, ABC,(G) = M(n,r,a) if and only if
G=Cp,

By combining Case 1 and Case 2, the result follows. ]

Let S, (ry,72) be a tree of order n formed from the path on n — r; — r, vertices by
attaching r; and r, pendant vertices to its end vertices respectively, where 2 < r; < r, and
r +1r, <n—3. Let n,, be the number of edges of a graph G connecting vertices of
degrees x and y.

Lemma 4.2. Let T be a tree of order n > 2 with r pendant vertices, where2 <r <n—3
and -3 < a < —1.Then

Anca() = [ (EJELY “[i (Eﬁj 1m0 ()

with equality if and only ifT = S, (11, 73).

Proof. For r = 2, the result holds trivially and so we consider r > 3. Let uy, u,, ..., u; are
k vertices of T such that each u; contains r; pendant vertices for 1 < i <k, and XF , r, =
r.Notethatk >2andr;, > 1for1l <i < k. Then

ABCo(T) = X1 11g(1,d(w;), @) + Xocxsysn-1 Nayg (%, Y, @). (1)
Without loss of generality, we assume that u; and u, are the neighbours of two terminal
vertices of diametrical path P, then we have d(u;) = r; + 1 and d(u,) = r, + 1. Note that
dlu)=2fori<i<k,and ', dw)<2(n—-1)—-r—-2(n—r—k)=r+2k—-2.
For2 <i < k, we claim that d(u;) < r + 2 — d(u;). Otherwise, if d(u;) > r+ 2 —d(w;)
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forsome i # 1, thenr +2k—2>3%%  d(u) >d(u)+ (@ +2—-du,))+2k-2)=

r + 2k — 2, a contradiction. Therefore, by Lemma 2.1, we have
k k

D rgLd(w), @) = ng(Ld@w),0) + ) rig(td(w).a)

i=1 i=2
>rg(1,d(uy),a) + T, ng(Lr +2 —d(u,), a)
=rng(Ln+la)+(r-—r)g(lr—r+1la)

a a
T r—r
:rl( 1) +(T—T1)( 1) ,
r+1 r—-ri+1

with equality ifand only if k =2 and d(u,) =r—d(u)) +2=r—-r,+1,ie, 1 +1r, =

X

a
r. Moreover, let g(x) = x( ) , then g(x) is convex since

x+1
" — X a-1 1 1+«
9'0=e(5) w0
Thus,
g2 +g(r—-2)=2g@)+g(r—-3)=- 2= g([gj) + g([g]).
We have

kK g, dw) a) = 7"1( 1 )05 - 7‘1)( r—r; )a

r+1 r—-ri+1

= (L) + ()

and equality holds if and only if k =2, r, = [%J and 1, = [g]. On the other hand, by

Lemma 2.1, we have

Ny Yosxsysn-1 9 (.Y, @) 2 Ny Ypcxsyzn-1 9(2,y,0) =(n = 1-71) G) ’
and equality holds if and only if all edges are pendant or the edges with one end vertex of
degree 2. Thus, from (1), we have

Anca() = [ (EJELY ~[i (Eﬁj re-1on ()

with equality if and only if T = S, (1, 12).

Lemma 4.3. [5] Let G be a simple connected graph with two non adjacent vertices u and v.
If « <0, then ABC,(G + uv) > ABC,(G).
Theorem 4.2. Let G € C'(n,r),wheren > 4,3<r<n-land -3 <a < -1.
_o\a
i Ifr=n—1,then ABC,(G) = (n—1) (*=) and G =S,

ii. Ifr=n—2,then ABC,(G) = (n — 3) (Z—j)“ +2 (%)“ with equality if and only
ifG = S;,-3.
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iii. Ifr <n-—3,then

ABC,(6) = || (E%L)a * H(

with equality if and only if G = S, (14, 12).

F[]i) +(n—1-71) (%)a

2

o\
Proof. If r =n—1, then by Lemma 2.2, ABC,(G) = (n— 1) (Z—_i) and G = S,. If
r =n — 2, then G is tree with n — 2 pendant vertices. By Lemma 4.1,
n-3\% 1\ %
ABC(6) = (n—3) (=) +2(3)
with equality if and only if G = S; ,,_3. Note that G is either a tree or a graph having at least
one cycle. If G is a tree then the result follows from Lemma 4.2. If G contains cycles, let G’

be the graph obtain from G by removing an edge from each cycle of G. Clearly, G' €
C*(n,r), by Lemma 4.3, ABC,(G) > ABC,(G"). By Lemma 4.2, we have

ABC,(G) > ABC(6") = |4] ([2%1)& + [ ([Jﬁl)a +(n—1-17) (%)a

This completes the proof. ]
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