A N‎ote on Revised Szeged ‎Index of ‎Graph ‎Operations

Document Type: Research Paper


Sirjan University of Technology


Let $G$ be a finite and simple graph with edge set $E(G)$‎. ‎The revised Szeged index is defined as‎
‎$Sz^{*}(G)=\sum_{e=uv\in E(G)}(n_u(e|G)+\frac{n_{G}(e)}{2})(n_v(e|G)+\frac{n_{G}(e)}{2}),$‎
‎where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and‎
‎$n_{G}(e)$ is the number of‎
‎equidistant vertices of $e$ in $G$‎.
‎In this paper‎, ‎we compute the revised Szeged index of the‎
‎join and corona product of graphs‎.


Main Subjects

1. A. R. Ashrafi, T. Došlić and A. Hamzeh, The Zagreb coindices of graph
operations, Discrete Appl. Math. 158 (2010) 1571−1578.
2. M. Azari and A. Iranmanesh, Some inequalities for the multiplicative sum Zagreb
index of graph operations, J. Math. Inequal. 9 (2015) 727−738.
3. K. C. Das and I. Gutman, The first Zagreb index 30 years after, MATCH
Commun. Math. Comput. Chem. 50 (2004) 83−92.
4. N. De, S. M. Abu Nayeem and A. Pal, F-index of some graph operations, Discrete
Math. Algorithm. Appl. 8 (2016) 1650025.
5. B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53
(2015) 1184−1190.
6. I. Gutman, A formula for the Wiener number of trees and its extension to graphs
containing cycles, Graph Theory Notes New York 27 (1994) 9−15.

7. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total -
electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535−538.
8. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The first and second Zagreb
indices of some graph operations, Discrete Appl. Math. 157 (2009) 804−811.
9. S. Klavžar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of
graphs, Appl. Math. Lett. 9 (1996) 45−49.
10. T. Mansour and M. Schork, The vertex PI and Szeged index of bridge and chain
graphs, Discrete Appl. Math. 157 (2009) 1600−1606.
11. S. Nagarajan, K. Pattabiraman and M. Chendra Sekharan, Revised Szeged index
of product graphs, Gen. Math. Notes 23 (2014) 71−78.
12. Z. Yarahmadi and A. R. Ashrafi, The Szeged, vertex PI, first and second Zagreb
indices of corona product of graphs, Filomat 26 (2012) 467−472.
13. M. Randić, On generalization of Wiener index for cyclic structures, Acta Chim.
Slov. 49 (2002) 483−496.
14. D. B. West, Introduction to Graph Theory, Prentice−Hall, Inc., Upper Saddle
River, New Jersey, 2000.