• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Iranian Journal of Mathematical Chemistry
Articles in Press
Current Issue
Journal Archive
Volume Volume 9 (2018)
Volume Volume 8 (2017)
Volume Volume 7 (2016)
Volume Volume 6 (2015)
Issue Issue 2
Issue Issue 1
Volume Volume 5 (2014)
Volume Volume 4 (2013)
Volume Volume 3 (2012)
Volume Volume 2 (2011)
Volume Volume 1 (2010)
Eliasi, M. (2015). The maximal total irregularity of some connected graphs. Iranian Journal of Mathematical Chemistry, 6(2), 121-128. doi: 10.22052/ijmc.2015.10427
M. Eliasi. "The maximal total irregularity of some connected graphs". Iranian Journal of Mathematical Chemistry, 6, 2, 2015, 121-128. doi: 10.22052/ijmc.2015.10427
Eliasi, M. (2015). 'The maximal total irregularity of some connected graphs', Iranian Journal of Mathematical Chemistry, 6(2), pp. 121-128. doi: 10.22052/ijmc.2015.10427
Eliasi, M. The maximal total irregularity of some connected graphs. Iranian Journal of Mathematical Chemistry, 2015; 6(2): 121-128. doi: 10.22052/ijmc.2015.10427

The maximal total irregularity of some connected graphs

Article 4, Volume 6, Issue 2, Summer and Autumn 2015, Page 121-128  XML PDF (565 K)
Document Type: Research Paper
DOI: 10.22052/ijmc.2015.10427
Author
M. Eliasi
Abstract
The total irregularity of a graph G is defined as 〖irr〗_t (G)=1/2 ∑_(u,v∈V(G))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈V(G). In this paper by using the Gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.
Keywords
Total irregularity index; Gini index; majorization; Trees; Unicyclic graphs; bicyclic graph
Main Subjects
Chemical Graph Theory
Statistics
Article View: 952
PDF Download: 939
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Creative Commons
Journal Management System. Designed by sinaweb.