On Topological Properties of the n-Star Graph

Document Type: Research Paper

Authors

1 Department of Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran

2 University of Tehran

10.22052/ijmc.2020.174205.1429

Abstract

The n-star graph Sn is defined on the set of all n sequenses (u1,u2,...,un), ui ∈
{1, 2, ..., n}, ui \ne uj and i \ne j, where edges are of the form (u1,u2,...,un) ∼ (ui,u2,...,un), for some i \ne 1. In this paper we will show that Sn is a vertex and edge transitive graph and discuss
some topological properties of Sn.

Keywords


  1. S. B. Akers, D. Harel and B. Krishnamurthy, The star graph: An attractive alternative to the n-cube, Proc. International Conference on Parallel Processing, St. Charles, Illinois, 1987, pp. 393-400.
  2. W. K. Chiang and R. J. Chen, The (n, k)-star graph: A generalized star graph, Info. Proc. Lett. 56 (1995) 259-264.
  3. M. R. Darafsheh, Computation of topological indices of some graphs, Acta Appl. Math. 110 (2010) 1225-1235.
  4. I. Gutman, S. Klavžar and B. Mohr (eds), Fifty years of the Wiener index, MATCH Commun. Math. Comput. Chem. 35 (1997) 1-259.
  5. I. Gutman, Y. N. Yeh, S. L. Lee and J. C. Chen, Wiener numbers of dendrimers, MATCH Commun. Math. Comput. Chem. 30 (1994)103-115.
  6. K. Qiu and S. G. Akl, On some properties of the star graph, VLSI Design, 2 (4) (1995) 389-396.
  7. H. Shabani and A. R. Ashrafi, Symmetry-Moderated Wiener index, MATCH Commun. Math. Comput Chem. 76 (2016) 3-18.
  8. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chm. Soc. 69 (1947) 17-20.