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ARTICLE INFO ABSTRACT

Avrticle History: As highly discriminant distance-based topological indices, the
Received 9 August 2018 Bal_aban index and the :lum-BaIaban ilndex of a graph G are
Accepted 1 October 2018 defined as J(G) = mZuveE NCEOIEO) and  SJ(G) =
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Yvey d(u,v) is the distance sum of a vertex u in G, m is the

Keywords: number of edges and y is the cyclomatic number of G. They are
Balaban index useful distance-based descriptor in chemometrics. In this paper,
Sum-Balaban index we focus on the extremal graphs of spiro and polyphenyl
Spiro hexagonal chain hexagonal chains with respect to the Balaban index and the
Polyphenyl hexagonal chain sum-Balaban index.

© 2018 University of Kashan Press. All rights reserved

1 INTRODUCTION

Polyphenyl and spiro hexagonal chains have been widely investigated, and they represent a
relevant area of interest in mathematical chemistry because they have been used to study
intrinsic properties of molecular graphs. Polyphenyls and their derivatives, which can be
used in organic synthesis, drug synthesis, heat exchangers, etc., attracted the attention of
chemists for many years [7, 8, 20, 21, 26, 28, 30]. Spiro compounds are an important class
of cycloalkanes in organic chemistry. A spiro union in spiro compounds is a linkage
between two rings that consists of a single atom common to both rings and a free spiro
union is a linkage that consists of the only direct union between the rings. Several works
have been developed to analyze extremal values and extremal graphs for many topological
indices on the spiro and polyphenyl hexagonal chains. Some results on energy, Merrifield-
Simmons index, Hosoya index, Wiener index and Kirchhoff index of the spiro and

*Corresponding Author (Email address: hydeng@hunnu.edu.cn)
DOI: 10.22052/ijmc.2018.143823.1381
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polyphenyl chains were reported in [2, 9, 12, 13, 16, 17, 35, 32]. In this paper, we will
consider the extremal values and the extremal graphs for the Balaban index and the sum-
Balaban index on polyphenyl and spiro chains.

As a highly discriminant distance-based topological index, the Balaban index [3]
was defined on the basis of the Randi¢ formula but using distance sums for vertices instead
of vertex degrees. The Balaban index is a variant of connectivity index, represents extended
connectivity and is a good descriptor for the shape of the molecules. It shows a good
isomer discrimination ability and produces good correlations with some physical
properties, such as the motor octane number [6], and it appears in theoretical models for
predicting and screening drug candidates in rational drug design strategies [22]. It is of
interest in combinatorial chemistry. It turned out to be applicable to several questions of
molecular chemistry.

Throughout this paper we consider only simple and connected graphs. For a graph
G with vertex set V(G) and edge set E(G). The distance between vertices u and v in G,
denoted by d;(u,v), is the length of a shortest path connecting u and v. Let D;(u) =
Yvev(c) d(u,v), which is the distance sum of vertex u in G.

The cyclomatic number u of G is the minimum number of edges that must be
removed from G in order to transform it to an acyclic graph. Let |V (G)| = n, |[E(G)| = m,
itisknownthaty =m—n+1.

The Balaban index of a connected graph G is defined as

m 1
J(G) = mZuUEE(G) MO}
It was introduced by A. T. Balaban in [3, 4], which is also called the average distance-sum
connectivity or J index. It appears to be a very useful molecular descriptor with attractive
properties. In 2010, Balaban et al. [5] also proposed the sum-Balaban index SJ(G) of a
connected graph G, which is defined as

m 1
SJ(G) = mZuUEE(G) NI

The Balaban index and the sum-Balaban index were used in various quantitative
structure-property relationship and quantitative structure activity relationship studies. Until
now, the Balaban index and the sum-Balaban index have gained much popularity and new
results related to them are constantly being reported, see [1, 10, 11, 14, 15, 18, 19, 25, 27,
29, 31, 33, 34].

Let G be a cactus graph in which each block is either an edge or a hexagon. G is
called a polyphenyl hexagonal chain if each hexagon of G has at most two cut-vertices, and
each cut-vertex is shared by exactly one hexagon and one cut-edge. The number of
hexagons in G is called the length of G. An example of a polyphenyl hexagonal chain is
shown in Figure 1.
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Figure 1: A polyphenyl hexagonal chain of length 8.

Let PPC,, = H;H,--- H,(n = 3) be a polyphenyl hexagonal chain of length n.
There is a cut-edge v,,_,u,, between PPC,_; and H,,, see Figure 2.

Note that any polyphenyl hexagonal chain of length n has 6n vertices and 7n — 1
edges. A vertex v of H, is said to be ortho-, meta-, and para-vertex if the distance between
vand u, is 1, 2 and 3, denoted by oy, m, and p;, respectively. Example of Figure 2,
On = Xg, X6, My, = X3,Xs5, Pn = X4. Obviously, every hexagon has two ortho-vertices, two
meta-vertices and one para-vertex except the first hexagon H; .

A polyphenyl hexagonal chain PPC, is a polyphenyl ortho-chain if v, = o, for
2 <k <n-1. The polyphenyl meta-chain and polyphenyl para-chain are defined in a
completely analogous manner.

X6 Xs
Vil Uy
PP Cn—l X1 H“ Xa
X2 X3

Figure 2: A polyphenyl hexagonal chain of length n.

The polyphenyl ortho-, meta-, and para-chains of length n are denoted by 0,,, M,,
and P,, respectively. Examples of polyphenyl ortho-, meta-, and para-chains are shown in
Figure 3.

OO0

P,

Figure 3: Polyphenyl hexagonal ortho-, meta-, and para-chains of length 7.



244 ZU0, TANG AND DENG

The definition of spiro hexagonal chain is same as definition of polyphenyl
hexagonal chain. A hexagonal cactus is a connected graph in which every block is a
hexagon. A vertex shared by two or more hexagon is called a cut-vertex. If each hexagon of
a hexagonal cactus G has at most two cut-vertices, and each cut-vertex is shared by exactly
two hexagons, then G is called a spiro hexagonal chain. The number of hexagon in G is
called the length of G. An example of a spiro hexagonal chain is shown in Figure 4.

Figure 4: A spiro hexagonal chain of length 7.

Obviously, a spiro hexagonal chain of length n has 5n + 1 vertices and 6n edges.

Let SPC, = H,H, -+ H,(n = 3) be a spiro hexagonal chain of length n. There is a cut-
vertex u,, between SPC, _; and H,,, see Figure 5.

X6 X5
Up
SPCn_] X4
X2 X3

Figure 5: A spiro hexagonal chain of length n.

A vertex v of H,, is said to be ortho-, meta-, and para- vertex if the distance between
vand u; is 1, 2 and 3, denoted by o, m; and p, , respectively. A spiro hexagonal chain is

a spiro ortho-chain if u, =0, for 2 < k < n. The spiro meta-chain and para-chains are
defined in a completely analogous manner. The spiro ortho-, meta-, and para-chains of
length n are denoted by SO,,, SM,, and SB,, respectively.

The following lemmas will be used in the next section.

+ >y+a. L >——1 i
Lemma 1 ([14]) Let x,y,a € R* such that x >y +a. Then 75 2 o000 with

equality if and only if x = y + a.

Lemma 2 ([15]) Letry, ty,75,t, € RY such thatr, >t, andr, — 1, =t, —t; > 0. Then
1 1 1

— =< =+ —,
Vi VNt Vo Vi

Lemma 3 ([14]) Leta, w, x,y,z € R* such that = > =, % > % Then

a a
wy
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1 1 1
+—> +

1
Jw+a)(z+a) Vxy — Vwz  J(x+a)(y+a)

2. (SumM-) BALABAN INDEX OF POLYPHENYL HEXAGONAL CHAINS

In this section, we first give two cut-edge transformations on PPC,,, and then determine the
extremal graphs by using the transformations.

The first cut-edge transformation on PPC,: Let G, =H;H,:--H,(n>3) be a
polyphenyl hexagonal chain of length n. x; and x, are two cut-vertices in the k — th
hexagon Hy,, and the distance between x; and x, is 3. If G' is the graph obtained from G by
deleting the cut edge x,u;,, between H, and H,,,, and adding a new cut-edge xsu;,
between H, and H,,, (see Figure 6), then we say that G’ is obtained from G by the first
cut-edge transformation.

Fy %S F3 F, X6 %s

@7@@ @ XI
—_— x4
Xy X3 Xy x3 ﬂ

Figure 6: The first cut-edge transformation.

Lemma 4 LetG, = H,H, - H,(n = 3) be a polyphenyl hexagonal chain of length n. G’
is obtained from G by the first cut-edge transformation. Then J(G) < J(G') and SJ(G) <

SJ(G").

Proof. Let F, =HH,---Hy_y, F, = Hy, F3 = Hy 1Hy4, -+ H, . The length of F; is
a = k — 1 and the length of F5 is b = n — k. Obviously, a + b = n — 1. Without loss of
generality, let a > b. For a vertex v, € F;, we have

D (Vy) = Zuer, AoV, u) + Lyer, de (v, ) + Xyer, de(vy,u),

Der(vy) = Yuer, doi(Ve, ) + Xyer, dor(Vy, w) + Xyep, dgr(Vy, 1)

ZuEFl de(vy,u) = ZuEFl de:(vx, u),

Zuer dg(ve,u) = Zuer dgr (g, u),

Yuer; Ao (Ve u) = Yyer, dgr(vy, u) + 6b.
S0, Dg(vy) — Dgr(vy) = 6b and D (vy) > Dyr(vy). For a vertex v, € Fs, we have

D¢ (vy) = Yuer, de(vy,u) + Xyer, de(vy,u) + Yyer, dg(vy,0),

D¢ (vy) = Yuer, doi(vy, ) + Xyer, dgr(vy,u) + Xyer, dor(vy, u).
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Furthermore,
Yuer, de(vy,u) = Zuer, de/(vy,w),
Yuer, dg(vy,u) = Zuer, dg'(vy, 1),
Yuer; g (Vy, u) = Xyer, dgr(vy,u) + 6a. So, Dg(vy) — Dyr(vy) = 6a
De(vy) > Dr(vy).

For a vertex in V(F,) = {x1, x5, X3, X4, X5, X¢}, It IS €asy to see that
Dg(x1) — Dgr(x1) = Dg(xz) — Dgr(x2) = Dg(x3) — Dgr(x3) = 6D,
Dgr(x4) — Dg(x4) = Dgr(x5) — Dg(xs5) = Dgr(x6) — D (x6) = 6D.
(1) For an edge v, v, € E(F;) U E(F3), we have
1 1

JDgr(Wx)Dgr(vy)  \/DG(vx)Dg(vy) (1)
and
1 1
D1 (x)+D g1 (vy) = VD6 (Wx)+Dg(vy) (2)
since D (vy) > D¢/ (vy) and D (vy) > D (vy).
(m In what follows, we consider an edge in
{x1X2, X2X3, X3X4, X4 X5, X5 X6, X6 X1, X1 Vk—1, XgUg41} - Let M= ZuEFl dg(xq,u) +

Yuer, de(x4,u) + Xyer, do(x,u) ,  where  x € {xy,x5,%3,%4,%5,xs} . Then M =
Yuer, Ao (X, u) + Xyer, de/(x3,u) + Xyer, de (x,u). It can be checked directly that

D;(x1) =M +18bDr(x) =M + 12b

Dg(x3) =M + 6a+ 12bD;(x,) = M + 6a + 6b

D;(x3) =M +12a +6bD;i(x3) =M + 12a

D;(x,) =M +18aD,/(x,) = M + 18a + 6b

D;(xs) =M +12a +6bD;i(xs) =M + 12a + 12b

D;(xg) =M +6a+12bD;i(xs) = M + 6a + 18b.

(i) For the edges x;vy_1, X4Uk+1 € E(G) and x,vj_q, x3Up41 € E(G"), we have
1 1 1 1
—+ >
VD1 (x1)Dgr(k—1)  Dgr(x3)Dgr(uk+1)  P6(x1)D6(Wk-1) D (xa)Dg(Uk+1)

©)

and
1 1 1 1

VD1 (x1)+Dgr (Vi—1) + VD1 (x3)+Dgr (Uk+1) = VDG (x1)+Dg(Vk-1) + VDG (x4)+DG (Up41)’ )
since Dg(x1) > Dgr(x1) » Dg(Wk—1) > Dgr(vik—1) » Dg(xs) > Dgr(x3) , Dg(upyq) >
Dgr(Ups1)-

(i) For the edges xqix¢,x3x, € E(G), we have D./(xg) = Dg(xq) +6b, Dg(x1) =
D.r(x1) +6b and D;(x¢) = D/ (xg) — 6b. By Lemma 1, we can get
1 1
VD1 (x1)Dgr(x6) — /DG (x1)Dg(x6)

()

and



The Extremal Graphs for (Sum-) Balaban Index of some Hexagonal Chains 247

1 1
>
JDor(x)+Dgr(x6) — /Dg(x1)+Dg(xe) (6)
Also, D;r(x4) = D;r(x3) +6b, D;(x3) = Dgr(x3) +6band D;(x,) = Dgr(x,) — 6b, by
Lemma 1, we have

1 1

7
D1 (x3)Dr(xs) — /Dg(x3)Dg(xa) (7)
and
1 1
>
D1 (x3)+Dgr(xs) — /Dg(x3)+Dg(x4) (8)

(iif) For the edges xix5,x4x5 € E(G), let x = Dgr(x1), vy = Dg(x;), w = Dg(x,),

zZ = Dg(x5). Then D;(x;) = x+6b, Dg(x,) =y +6b, Dsr(x,) =w+6b, Dgr(xs) =
z+6b. Note that w > x, z >y and 22> 22 22 > & by | emma 3, we have
1 1 g 1 1 (9)
VD1 (x1)Dgr(x2)  \[Dgr(x4)Dgr(xs) — Dg(x1)Dg(xz) /DG (x4)Dg(xs)
Now, let 1, = Dg(xy) + Dg(xs) =2M +30a+6b , 1, = D;r(x,) + Dr(x5) = 2M +
30a +18b, t; = D;r(x1) + Dyr(xy) = 2M + 6a + 18b, t, = Ds(x1) + Dg(x,) = 2M +
6a+30b. Thenr,—1r, =t, —t; =12b>0,1r, —t; =24a—-12b >0 (since a > b >
0). By Lemma 2, we have
1 1 1 1

+ > 1
VD1 (x1)+Dgr(x2)  Dgr(xa)+Dgr(xs)  /Dg(x1)+Dg(x2)  /Dg(x4)+Dg(xs) (10)
(iv) For the edges x,x3, x5x¢ € E(G), by the same ways as in (iii), we can get
1 1 1 1 (11)
D1 (x2)Dgr(x3)  /Dgr(xs)Dgr(xe) — /Dg(x2)Dg(x3)  /Dg(xs5)Dg(x6)
1 1 1 1 (12)

+ >
JDor(x2)+Dgr(x3)  /Dgr(xs)+Dgr(xe)  /De(x2)+Dg(x3)  /Dg(x5)+Dg(x6)
From Equations (1-12) and the definition of the Balaban index and the sum-
Balaban index, we have J(G) < J(G') and SJ(G) < SJ(G"). |

The second cut-edge transformation on PPC,: Let G, =H;H,---H,(n>3) be a
polyphenyl hexagonal chain of length n. x; and x5 are two cut-vertices in the k — th
hexagon Hy,, and the distance between x; and x, is 2. If G' is the graph obtained from G by
deleting the cut edge xsu,,, between H, and H,,,, and adding a new cut-edge x,uj1
between H, and H,,, (see Figure 7), then we say that G’ is obtained from G by the second
cut-edge transformation.

Lemma 5 LetG, = H,H, - H,(n = 3) be a polyphenyl hexagonal chain of length n. G’
is obtained from G by the second cut-edge transformation. Then J(G) <J(G') and

SJ(G) < SJ(G").
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Proof. Let F;, =HH,---Hy_,, F, = Hy, F3 = Hy 1Hy4, - H, . The length of F; is
a = k — 1 and the length of F5 is b = n — k. Obviously, a + b = n — 1. Without loss of
generality, let a > b.

Xe X5 Fi Xg X5
1
x X
X3 X3 Xy Xg
= 2
F3

Figure 7: The second cut-edge transformation.

For a vertex v, € F;, we have

DG (vx) = ZuEFl dG (vx’ u) + ZuEFZ dG (vx’ u) + ZuEF3 dG (vx’ u),

Dgr(vy) = Zuer, der(vx, ) + Xoer, dgr (v, ) + Xyer, dgr (v, u)
and  Yuer, dg(Ve W) = Xuer, do/(Vx 1) Duer, dg(Ve W) = Zuer, dor(v )
Yuer, Ao (Vx 1) = Xuer, dg'(vx,u) +6b . S0, Dg(vy) — Dgr(vy) =6b and Dg(vy) >
D1 (vy). For a vertex v, € F3, we have

DG (vy) = ZuEFl dG (vy’ u) + ZuEFZ dG (vy’ u) + ZuEF3 dG (vy’ u),

D¢ (vy) = Yuer, doi(vy, ) + Xyer, dgr(vy,u) + Xyer, dor(vy, 1)
and  Xuer, de(Vy, W) = Xuer, da(vy, 1) Zuer, de(Wy, W) = Zuer, do'(vy,u)
Sucr, do (V1) = Suer, dgr(vy10) + 6a. S0, Do(vy) = Dgr(vy) = 6a and Dg(v,) >
Dsi(vy). Foravertex in F, = {xq, x5, X3, X4, X5, X}, let

M = Yyer, do(x1,u) + Xyer, dg(X2, 1) + Lyer, dg(x,u) = Xyer, de/(xq,u) +
Yuer, de(X2,u) + Yoyer, dg,/(x,u), where x € {x,x,,x3,x4,X5,X¢}. It can be checked
directly that

D;(x) =M +12bDr(x;) = M + 6b

D;(x;) =M +6a+6bD;(x,) =M + 6a

D;(x3) =M +12aD,1(x3) = M + 12a + 6b

D;(x,) =M +18a +6bD;i(x,) =M+ 18a + 12b

D;(xs) =M +12a + 12bD;1(x5) = M + 12a + 18b

D;(xg) =M +6a+18bDi(xg) = M + 6a + 12b.
() For an edge v,v, € E(F;) U E(F3), we have D;(vy) > Dsr(vy), Dg(vy) > Dgr(vy).
So,
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1 1

13
\/Dg’(vx)Dg’(Uy) \/DG(Ux)DG(Uy) ( )
and
1 1
= 14
\/Dg’(vx)‘l‘Dg’ (vy) \/DG(Ux)+DG(Uy) ( )
(m In what follows, we consider an edge in

{X1X2, X2X3, X3X4, X4 X5, X5X g, X6X1, X1 Vi—1, X3U41}-
(i) For the edges x;vj_q1,x3uUk+1 € E(G) and x;vy_q, XUk € E(G"), it is easy to know
that Dg(x1) > Dgr(x1) o+ Dg(vk—1) > Dgr(vk—1) , Dg(x3) > Dgr(xz) , Dg(ugsqr) >

Dg(ug+1). And
1 1 1 1

+ > +
VDo (x)Dgr(vi—1)  Dgr(x2)Dgr(urs1)  VDe(*¥1)Dg(Wk—1)  Dc(*3)Dg(up41)’
1 1 1 1

+ > + .

\/DGI(X1)+DGI(UR—1) \/DGI(XZ)+DGI(uk+1) \/DG(X1)+DG(Uk—1) \/DG(X3)+DG(uk+1)
(i) For the edges x,x3,x5x¢ € E(G), because D.r(x3) > D;/(x,) + 6b, by Lemma 1, we
have

(15)

(16)

1 1
17
D1 (x2)Dr(x3) — /Dg(x2)Dg(x3) (17)
and
1 1
= . 18
D1 (x2)+Dgr(x3)  /Dg(x2)+Dg(x3) (18)
Also, because D./(x5) = D;(x¢) + 6b, by Lemma 1, we have
1 1 (19)
D1 (xs)Dr(x6) — /Dg(xs)Dg(xe)
and
1 _ 1 (20)

VD (xs)+Dgr(e) /D (x5)+Dg(x6)
(iii) For the edges xix5,x3x, € E(G), let x = Dgr(x;), y = Dgr(x1), w = Dg(x3),

zZ = Dg(x,), then x +6b = D;(x,), y+6b =Dg(x;), w+6b =D, (x3), z+6b =
D;r(x,). Note thatw > x, z > vy, % > %, LIPS %, by Lemma 3, we have
1 1 7 1 1 . (21)
VD (x1)Dgr(x2)  Dgr(x3)Dgr(xa)  DG(x1)Dg(x2) /DG (x3)Dg(xa)
Let , = Dg(x3) + Dg(xy) =2M +30a+6b , 1, = D;r(x3) + Dsr(x,) = 2M + 30a +
18b, t; = Dgr(xq) + Dgr(x,) = 2M + 6a+6b , t, = Dg(xq) + Dg(xy) = 2M + 6a +
18b. Thenr, —r, =t, —t; =12b >0, 1, — t; = 24a > 0. By Lemma 2, we have
1 1 1 1

+ > 22
VD1 (x1)+Dgr(x2)  Dgr(x3)+Dgr(xa) — DG(x1)+Dg(x2)  /DG(x3)+Dg(xa) (22)
(iv) For the edges x; x4, x,x5 € E(G), by the same way as in (iii), we have
1 1 1 1 (23)
VD' (x1)Dgr(x6)  \[Dgr(x4)Dgr(xs) — Dg(x1)Dg(xe)  /Dg(x4)Dg(xs)’
1 1 1 1 (24)

=+ > .
JDor(x)+Dgr(x6)  /Dgr(xa)+Dgr(xs)  /Dg(x1)+Dg(xe)  /Dg(x4)+Dg(xs)
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From Equations (13-24) and the definitions of the Balaban index and the sum-Balaban
index, we have J(G) < J(G") and SJ(G) < SJ(G"). |

Using the transformations above, we can get the extremal graphs for the (sum-)
Balaban index on polyphenyl hexagonal chains.

Theorem 6 Let PPC,, be a polyphenyl hexagonal chain of length n. Then

J(R) <J(PPC,) <J(0,),  SI(BR) < SJ(PPC,) < S](0,),
with equalities if and only if PPC,, = O0,, PPC,, = PB,, respectively.

Proof. Suppose on the contrary that G = H;H, - H,(n = 3), a polyphenyl hexagonal
chain of length n, has the maximum (sum-) Balaban index, and G % O,,. Then there is
1 < k < n such that the distance between two cut-vertices u; and v, which belongs to the
k-th hexagon H,, is 2 or 3. Let G' be the graph obtained from G by using the first or the
second cut-edge transformation. By Lemmas 4 and 5, we have J(G) < J(G") and SJ(G) <
SJ(G"), a contradiction. So, O, is the unique graph with the maximum (sum-) Balaban
index. Similarly, we can show that B, is the unique graph with the minimum (sum-)
Balaban index. m

3. (SuM-) BALABAN INDEX OF SPIRO HEXAGONAL CHAINS

As in the last section, we first give two transformations on SPC,,.

The first cut-vertex transformation on SPC,;: LetG = H,H, - H,(n = 3) be a spiro
hexagonal chain of length n, v, = x; and v,,, = x, are two cut-vertices in k-th hexagon

Hy. I1f G' is the graph obtained from G by taking two cut-vertices v, = x, and vy, = x5 in

k -th hexagon H, , then we say that G' is obtained from G by the first cut-vertex
transformation, see Figure 8.

F X5 %5 Fs

CRere)

X X

Figure 8: The first cut-vertex transformation.
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Lemma 7 LetG = H,H,H,(n>3) be a spiro hexagonal chain of length n. G' is
obtained from G by the first cut-vertex transformation. Then J(G) < J(G") and SJ(G) <
SJ(G").

Proof. Let F, = HyH,-Hy_y, F, = Hy, F3 = Hyy1Hy42 - H,, in Figure 8. V(F,) =
{x1,x2,x3,%4, x5, X} and the length of F; and F5 is a and b, respectively,a+b =n —1.
Let M = Yyer, dg(xq,u) + Xyer, dg(xg,u) + Xyer, de(x,u), where x € V(F,). Then
M = Yoer, der(1,w) + Xuer, dgr(x3,U) + Xuer, dor(x,1).
For a vertex v, € F;, we have

DG (vx) = ZuEFl dG (vx’ u) + ZuEFZ dG (vx’ u) + ZuEF3 dG (vx’ u),

Dgr(vy) = Xer, dgr (e, u) + Xyer, dor (Ve u) + Xyer, dor(vy, u),
and ZuEFl de(vy,u) = ZuEFl de(ve,u) Zuer dg (v, u) = Zuer dgr (v, u)
Yuer, Ao (Ve ) = Xuer, dg'(vx,u) +6b . S0, Dg(vy) — Dgr(vy) =6b and Dg(vy) >
Dgr(vy). Similarly, we have D¢ (v,) — D;(v,) = 6a for a vertex v, € F5. For a vertex in
V(F,) = {x1, x5, X3, X4, X5, Xg}, it can be check directly that

D;(x;) =M +18b,D;i(x;) =M + 12b

D;(x;) =M+ 6a+12b,D1(x;) = M + 6a + 6b

D;(x3) =M +12a+6b,D;1(x3) =M+ 12a

D;(x,) =M+ 18a,D;(x,) = M + 18a + 6b

D;(xs) =M+ 12a+6b,D;1(x5) =M+ 12a + 12b

D;(xg) =M +6a+12b,D;1(xg) = M + 6a + 18b.
Using the method as in Lemma 4, we can get Lemma 7. ]

The second cut-vertex transformation on SPC,,: Let G = H,H, --- H,(n = 3) be a spiro
hexagonal chain of length n, v, = x; and v,,, = x5 are two cut-vertices in k-th hexagon
Hy. I1f G' is the graph obtained from G by taking two cut-vertices v, = x; and vy, = x; in

k-th hexagon H, , then we say that G’ is obtained from G by the second cut-vertex
transformation (see Figure 9).

F, Xg X5

X
Q x4

Figure 9: The second cut-vertex transformation.
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Lemma 8 LetG = H,H,H,(n>3) be a spiro hexagonal chain of length n. G' is
obtained from G by the second cut-vertex transformation. Then J(G) < J(G") and S](G) <

SJ(G").
Proof. The proof is similar to Lemma 5, we omit it here.

Using the first and the second cut-vertex transformations and Lemmas 7-8, we can
directly obtain the following result, which determines the extremal graphs for the (sum-)
Balaban index on spiro hexagonal chains.

Theorem 9 Let SPC,, be a spiro hexagonal chain of length n. Then
J(SB,) < J(SPCy) < ](S0,)andS](SR,) < SJ(SPC,) < S](SO,),
with equalities if and only if SPC,, = SO,, and SPC,, = SB,, respectively.

Theorem 9 also shows that SO,, and SB, are the unique graph with the maximum
and the minimum (sum-) Balaban index among all spiro hexagonal chains of length n.
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sciences which apply the analytic geometry.
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In computational chemistry, sometimes, one needs to calculate some properties in
each point on the area of molecule or above and below it, so one must put ghost (Bg) atom
in an arbitrary point, exactly. Evaluation of the aromaticity, antiaromaticity and
nonaromaticity of compounds by nucleus independent chemical shift criterion (NICS), is an
example for it. To NICS calculation at each point above and below of the all polygons, one
must put some Bg atoms in various distances on the z axis, straightforwardly. In non-planar
molecule, vertically putting Bqg atoms in various distances of the rings in different sheets is
not very hard, but estimation of components of the nuclear magnetic shielding tensors
Oxx1 Oyy: Oz, ... 18 Very hard and for more complex molecules is impossible. But, using our
proposed method and doing calculation separately for each polygon facilitate estimation of
nuclear magnetic shielding tensors components. We refer to [3] as a good review published
which has collected a large number of works related to NICS criterion.

By mathematical language, in this paper we transfer the origin to the center of a
pentagon (or hexagon) in the space, such that the z-axes is perpendicular to the plane
containing the polygon (or hexagon). Our motivation is the study of the geometric structure
of some molecules such as Corannulene and Sumanene which are polycyclic aromatic
hydrocarbons. This method can be used for other molecules which have polygons in their
structure (Fullerenes, for example). Thanks to this technique the authors investigated the
evaluation of aromaticity of some non-planar molecules in [7]. The content of this article is
the mathematical description of the mentioned process. To see the related chemical issues,
we refer the reader to [1] and [10].

We begin with a quick review on isometries and frames, and then obtain the desire
isometry for our purpose. Finally, as an example we will apply the program for some
molecules.

2. ISOMETRIES AND FRAMES

In this section, we shall investigate the isometries of Euclidean space, and see how two
frames uniquely determine an isometry.

Definition 2. 1. An isometry, or rigid motion, of Euclidean space is a mapping that
preserves the Euclidean distance d between points. More precisely, an isometry is a
mapping F: R® - R? for which d(F (p),F(q)) = d(p,q), forall p,q € R®.

The most important examples of isometries are translations and orthogonal
transformations.
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Definition 2. 2. Translation by a point a € R3 is a map T: R3 - R3, for which T(u) = u +
a. An orthogonal transformation of R3 is a linear transformation C:R3> — R3 which
preserves inner product, namely C(p).C(q) = p.q.

For instance, rotations around a coordinate axis are orthogonal transformations. By
simple computations, one can show that If F and G are isometries of R3, then the
composite mapping G © F is also an isometry of R3. A vital theorem in differential
geometry asserts that If F is an isometry of R3, then there exists a unique translation T and
a unique orthogonal transformation C such that F =T o C [6].

Definition 2. 3. A set {e;, e,, e} of pair-wise orthogonal unit vectors tangent to p € R3 is
called a frame at p.

For example, {i = (1,0,0),j = (0,1,0),k = (0,0,1)} is a frame at each point of R3,
which is called the standard frame. It is clear that at each point of the Euclidean space,
there exist uncountable frames. Depending on the application, certain frames are used. For
example in local curve theory, the Frenet frame [5], determines the geometric properties of
the curve. Here we use the frames to obtain an important isometry. First we state a vital
theorem in differential geometry, see [6] for example.

Theorem 2. 4. For any two frames {e;,e,,es} and {fi, f>, fs} at the points p,q € R3
respectively, there exists a unique isometry F of R3 such that F maps the tangent vector e;
to tangent vector f;, fori = 1,2, 3.

To compute the isometry F in the above theorem, let e; = (a;1, aiy, ai3), fi =
(bi1, biz, bi3), A = (a;;), B = (b;;), and C = B*A. A and B are the attitude matrices of the
{e;} and {f;} frames, respectively. Now C is an orthogonal transformation and C(e;) = f;.
If T be the translation by the point g — C(p), then F = T o (C is the desired isometry.

3. APPLICATION AND ILLUSTRATION

Here we apply the last theorem in previous section to transfer the origin and the standard
frame to the center of an arbitrary pentagon or hexagon in a polycyclic molecule
(corannulene, sumanene, or fullerene), such that the z-axis will be perpendicular on this
polygon. To do so, we need a frame on the center point of polygon.

Although we don't investigate the chemical aspects of these compounds, a brief
introduction may be interesting (for some mathematical facets of Fullerenes, see [2], [8],
and [9]).
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Corannulene is a polycyclic aromatic hydrocarbon with one central pentagonal ring
and five peripheral hexagonal rings, Figure 1(a). Sumanene is a polycyclic aromatic
hydrocarbon with one central hexagonal ring and three peripheral hexagonal and three
peripheral pentagonal rings, alternately, Figure 1(b). Fullerenes are a family of carbon
allotropes which composed entirely of carbon, in the form of a sphere, ellipsoid, cylinder,
or tube. The structure of fullerenes is composed of hexagonal, pentagonal or sometimes
heptagonal and octagonal rings, Figure 1(c).

@

a

Figure 1. Structure of: (a) corannulene, (b) sumanene, and (c) a fullerene molecules.

We describe the method for a hexagon, the case pentagon is similar. Let p;, p, and
p; are three consecutive vertices of the hexagon. Then the vector p;p, X p;ps Iis
perpendicular to the plane containing the hexagon. Dividing this vector by its own length,
we have the unit vector
_ Pip; X Pip:
> Ipipz * papsl

— PiDb2

Multiply u; by the unit vector u; = — to get the unit vector u, = u; % u;. Now

P1D2

the set {u,, u,, us} is a frame. To obtain an isometry F which maps the frame {u,, u,, u3} to
the standard frame {i,j, k}, let u; = (a1, a12,a13), Uy = (azq,az;,053), U3 =
(asq, a3, ,as3), then A = (a;;) and B is the identity matrix, so C = B*A = A, namely:
(au V) a13>
C=10G1 Q22 Q33|
31 0Qzz dszs
i.e. if ¢ = (x,v,2)" be the primary coordinate of the point g, then its new coordinate is

given by:
X a1 Q12 Q13\ /X
F(q) = (Y) = (a21 Az a23> (y)
VA 31 dzz d4zz/ \Z

We did all calculations of coordinate transformation in MATLAB environment.
This program has been shown in the following lines.
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function [B,Fx]=Transfer(A);

%  A: First coordination of the molecule

%  B: New coordination after origin transfer

%  Fx: Final coordination

clc

nl=input('n1=");n2=input('n2=");n3=input('n3=");
nd=input('n4=");n5=input('n5=");n6=input('n6=");
c=mean([A(n1,:);A(n2,:);A(n3,:);A(n4,:);A(n5,:);A(n6,:)])*(-1);
B=[(A(:,1)+c(1,1)),(A(:,2)+c(1,2)),(A(:,3)+c(1,3))];
pl=B(nl,:);p2=B(n2,:);p3=B(n3,:);
p1p2=[p2(1,1)-p1(1,1),p2(1,2)-p1(1,2),p2(1,3)-p1(1,3)];
p1p3=[p3(1,1)-p1(1,1),p3(1,2)-p1(1,2),p3(1,3)-p1(1,3)];
u4=[(p2(1,2)-p1(1,2))*(p3(1,3)-p1(1,3))-(p2(1,3)-p1(1,3))*
(P3(1,2)-p1(1,2)),(p2(1,3)-p1(1,3))*(p3(1,1)-p1(1,1))-(p2(1,1)-p1(1,1))*
(P3(1,3)-p1(1,3)),(p2(1,1)-p1(1,1))*(p3(1,2)-p1(1,2))-(p2(1,2)-p1(1,2))*
(p3(1,1)-p1(L.1))];

Q=norm(plp2);T=norm(u4);

all=(p2(1,1)-p1(1,1))/Q;

al2=(p2(1,2)-p1(1,2))/Q;

al3=(p2(1,3)-p1(1,3))/Q;
a31=((p2(1,2)-p1(1,2))*(p3(1,3)-p1(1,3))-(p2(1,3)-p1(1,3))*(p3(1,2)-p1(1,2)))/T;
a32=((p2(1,3)-p1(1,3))*(p3(1,1)-p1(1,1))-(p2(1,1)-p1(1,1))*(p3(1,3)-p1(1,3)))/T;
a33=((p2(1,1)-p1(1,1))*(p3(1,2)-p1(1,2))-(p2(1,2)-p1(1,2))*(p3(1,1)-p1(1,1)))/T;
a21=(al3*a32)-(al2*a33);

a22=(all*a33)-(al3*a3l);

a23=(al2*a31)-(all*a32);

ul=[all al? al3];

u2=[a21 a22 a23];

u3=[a31 a32 a33];

w=ul*u2';z=u2*u3";v=u3*u2’

H=[all a2l a31;al2 a22 a32;al3 a23 a33];
F=B";,G=[F(1,:);F(2,:);F(3,)];

Fx=(H*G)";

As an example we apply the program for corannulene molecule. Figure 2 shows the
structure of molecule before and after translating and rotating the coordinate system.

4. CONCLUSION AND REMARK

Proposed methodology in this work helps ones to transmit origin of coordinate to an
arbitrary point and changes the axes coordinate direction perpendicular to an arbitrary
polygon. It facilitates estimation of components of the nuclear magnetic shielding tensors
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in non-planar molecules and can be used for any calculation that needs to such coordinate
change. Although our discussion was based on z-axis, but it can be used for other axes by a
simple rotation.

Figure 2. Corannulene molecule: (a) origin coordinate in in arbitrary point, (b) molecule
was rotated with uncertain angle such that $z$-axis is perpendicular to hexagon.
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1. INTRODUCTION

Topological indices have important place in theoretical chemistry. Many topological
indices were defined by using vertex degree concept. The Zagreb and Randi¢ indices are
the most used degree based topological indices so far in mathematical and chemical
literature among the all topological indices. Very recently, Chellali, Haynes, Hedetniemi
and Lewishave published a seminal study: On ve-degrees and ev-degrees in graphs [1]. The
authors defined two novel degree concepts in graph theory; ev-degrees and ve-degrees and
investigate some basic mathematical properties of both novel graph invariants with regard
to graph regularity and irregularity [1]. After given the equality of the total ev-degree and
total ve-degree for any graph, also the total ev-degree and the total ve-degree were stated as
in relation to the first Zagreb index. It was proposed in the article that the chemical
applicability of the total ev-degree (and the total ve-degree) could be an interesting problem
in view of chemistry and chemical graph theory. In the light of this suggestion, one of the
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present author has carried these novel degree concepts to chemical graph theory by
defining the ev-degree and ve-degree Zagreb and Randi¢ indices [2]. It was compared these
new group ev-degree and ve-degree indices with the other well-known and most used
topological indices in literature such as; Wiener, Zagreb and Randi¢ indices by modeling
some physicochemical properties of octane isomers [2]. It was shown that the ev-degree
Zagreb index, the ve-degree Zagreb and the ve-degree Randi¢ indices give better correlation
than Wiener, Zagreb and Randi¢ indices to predict the some specific physicochemical
properties of octanes [2]. Also it was given the relations between the second Zagreb index
and ev-degree and ve-degree Zagreb indices and some mathematical properties of ev-degree
and ve-degree Zagreb indices [2]. In this paper we define the ve-degree and ev-degree
Narumi—Katayama indices, investigate the predicting power of these novel indices and
extremal graphs with respect to these topological indices. Also we give some basic
mathematical properties of ev-degree and ve-degree Zagreb indices.

A graph G = (V,E) consists of two nonempty sets V and 2-element subsets of V
namely E. The elements of V are called vertices and the elements of E are called edges. For
a vertex v, deg (v) show the number of edges that incident to v. The set of all vertices
which adjacent to v is called the open neighborhood of v and denoted by N(v). If we add
the vertex v to N(v), then we get the closed neighborhood of v, N[v].

The first and second Zagreb indices [3] defined as follows: The first Zagreb index
of a connected graph G, defined as,

M; = M1(G) = Zuev(c) deg (W)? = Xuver(c)(deg(w) + deg(v)).
and the second Zagreb index of a connected graph G, defined as
M; = M3(G) = Yuver(c) deg(w) . deg(v).
The authors investigated the relationship between the total m-electron energy on molecules
and Zagreb indices [3]. For the details see the references [4-6]. Randi¢ investigated the
measuring the extent of branching of the carbon-atom skeleton of saturated hydrocarbons
via Randi¢ index [7]. The Randi¢ index of'a connected graph G defined as;
R = R(G) = Yyper(s)(deg(u) . deg(v))~/2.

We refer the interested reader to [8-10] and the references therein for the up to date
arguments about the Randi¢ index.

The forgotten topological index for a connected graph G is defined as,

F = F(G) = Xuev(c)deg (W)® = Yuver(s)(deg(u)? + deg(v)?).

It was showed in [11] that the predictive power of the forgotten topological index is
very close to the first Zagreb index for the entropy and eccentric factor. For further studies
about the forgotten topological index we refer to the interested reader [11-13] and
references therein.

In the 1980s, Narumi and Katayama considered the production of the degrees of
vertices
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NK = NK(G) = [lvev(c)deg (v)
and named it the “simple topological index’’ [14]. Later for this graph invariant, the name
““Narumi-Katayama index’” was used in [15-17]. The extremal graphs with respect to NK
index was studied by Gutman and Ghorbani [15], Zolfi and Ashrafi [20]. Some relations
between the Narumi-Katayama index and the first Zagreb index were introduced in the
more recent paper [21].

Multiplicative version of the first Zagreb index of a connected graph was defined by

Eliasi et. al. in [22] as:

I =111 (G) = [Nuwver ) (deg(w) + deg(v)).
For detailed discussions of the multiplicative version of Zagreb indices, we refer the
interested reader to [23] and the references cited therein.

In the following section, we will give basic definitions of ev-degree and ve-degree
concepts, ve-degree and ev-degree Zagreb indices and as well as the basic mathematical
properties of these novel topological indices. And also we give the definitions of ev-degree
and ve-degree Narumi-Katayama indices.

2. VE-DEGREE AND EV-DEGREE CONCEPTS AND CORRESPONDING
TOPOLOGICAL INDICES

In this section we give the definitions of ev-degree and ve-degree concepts which were
given by Chellali et al. in [1] and the definitions and properties of ev-degree and ve-degree
topological indices.

Definition 2.1 [1] Let G be a connected graph and v € V(G). The ve-degree of the vertexv,
deg,.(v), equals the number of different edges that incident to any vertex from the closed
neighborhood of v. For convenience we prefer to show the ve-degree of the vertex v, by c,,.

Definition 2.2 [1] Let G be a connected graph and e = uv € E(G). The ev-degree of the
edgee, deg,,(e), equals the number of vertices of the union of the closed neighborhoods of
uandv. For convenience we prefer to show the ev-degree of the edge e = uv, by c, or c,,,.

Definition 2.3 [1] Let G be a connected graph and v € V(G). The total ev-degree of the
graph G is defined as T, = T,(G) = X.cr(s) Ce and the total ve-degree of the graph G is
defined as T, = T,,(G) = Xyev(c) Cv -

Observation 2.4 [1] For any connected graph G,T.(G) = T,(G).
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Observation 2.5 [1] For any triangle free connected graph G, c, = ¢, = deg(u) +
deg(v).

The following theorem states the relationship between the first Zagreb index and the
total ve-degree of a connected graph G.

Theorem 2.6 [1] For any connected graph G, T,(G) = T,(G) = M,(G) — 3n(G), where
n(G) denotes the total number of triangles in G.

In [1], the authors suggested the idea that to carry these novel degree concepts to
mathematical chemistry. One of the present author following this suggestion defined ev-
degree and ve-degree Zagreb indices and showed that these novel group Zagreb and Randi¢
indices give better correlation than well-known topological indices such as; Wiener, Zagreb
and Randi¢ indices to modeling some physicochemical properties of octane isomers [2].
And now, we give the definitions and some basic mathematical properties of ev-degree and
ve-degree Zagreb indices which were given in [2].

Definition 2.7 [2] Let G be a connected graph and e € E(G). The ev-degree Zagreb index
of the graph G is defined as S = S(G) = X.eg(c) Ce” -

Definition 2.8 [2] Let G be a connected graph and v € V(G). The first ve-degree Zagreb
alpha index of the graph G is defined as S* = S*(G) = Yyep(c) Cv? -

Definition 2.9 [2] Let G be a connected graph and uv € E(G). The first ve-degree Zagreb
beta index of the graph G is defined as S# = SP(G) = Xy per@y(cu + ¢») .-

Definition 2.10 [2] Let G be a connected graph and uv € E(G). The second ve-degree
Zagreb index of the graph G is defined as S* = S*(G) = Yyver(c) Culy -

Definition 2.11 [2] Let G be a connected graph and uv € E(G). The ve-degree Randic¢
index of the graph G is defined as R* = R¥(G) = Xy per(ey(cucy) /2.

And now we restate the some basic properties of ev-degree and ve-degree Zagreb
indices which were given in [2].

Lemma 2.12 [2] Let T be a tree and v € V(T) then, ¢, = Xyen) deg (u).
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Theorem 2.13 [2] Let T be a tree with the vertex set V(T) = {v;,v,, ..., v,} then, S(T) =
2M,(T).

Theorem 2.14 [2] Let G be a triangle free connected graph, then; S(G) = F(G) +
2M,(G).

Corollary 2.15 Let T be a tree then, S(T) = F(T) + SB(T).

And now we give the definitions of ev-degree and ve-degree Narumi-Katayama
indices for a graph G.

Definition 2.16 The ve-Narumi-Katayama index of a graph G is defined with the following
equation NK,e = NK,e(G) = [Iyev(s)Cv -

If a graph has an isolated vertex, its NK,,, = O which is the minimal value of NK,,.
We take the graphs without isolated vertices in the following results which will be
introduced in the section four.

Definition 2.17 The ev-Narumi-Katayama index of a graph G is defined with the following
equation NK,,, = NK.,(G) = [leer(c) Ce -

In the next section we investigate the predicting power of these novel topological
indices and after that we investigate some mathematical properties of these novel indices.

3. NEw TooLs FOR QSPR RESEARCHES: THE EV-NARUMI-KATAYAMA
INDEX AND THE VE-NARUMI-KATAYAMA INDEX

In this section we compare the Narumi-Katayama index and its corresponding versions
ofthe ev-Narumi-Katayama and ve-Narumi-Katayama indices with each other by using
strong correlation coefficients acquired from the chemical graphs of octane isomers. We
get the experimental results at the www.moleculardescriptors.eu (see Table 1). The
following physicochemical features have been modeled:
* Entropy,
* Acentric factor (AcenFac),
* Enthalpy of vaporization (HVAP),
» Standard enthalpy of vaporization (DHVAP).

We select those physicochemical properties of octane isomers for which give
reasonably good correlations, i.e. the absolute value of correlation coefficients are larger
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than 0.8959 (see Table 2). Also we find the Narumi-Katayama index of octane isomers
values at thewww.moleculardescriptors.eu (see Table 3). We also calculate and show the
ev-Narumi-Katayama and the ve-Narumi-Katayama indices of octane isomers values in

Table 3.

SAHIN AND EDIZ

Table 1. Some physicochemical properties of octane isomers.

Molecule Entropy AcenFac HVAP DHVAP
n-octane 111.70 0.39790 73.19 9.915
2-methyl-heptane 109.80 0.37792 70.30 9.484
3-methyl-heptane 111.30 0.37100 71.30 9.521
4-methyl-heptane 109.30 0.37150 70.91 9.483
3-ethyl-hexane 109.40 0.36247 71.70 9.476
2,2-dimethyl-hexane 103.40 0.33943 67.70 8.915
2,3-dimethyl-hexane 108.00 0.34825 70.20 9.272
2,4-dimethyl-hexane 107.00 0.34422 68.50 9.029
2,5-dimethyl-hexane 105.70 0.35683 68.60 9.051
3,3-dimethyl-hexane 104.70 0.32260 68.50 8.973
3,4-dimethyl-hexane 106.60 0.34035 70.20 9.316
2-methyl-3-ethyl-pentane | 106.10 0.33243 69.70 9.209
3-methyl-3-ethyl-pentane | 101.50 0.30690 69.30 9.081
2,2,3-trimethyl-pentane 101.30 0.30082 67.30 8.826
2,2,4-trimethyl-pentane 104.10 0.30537 64.87 8.402
2,3,3-trimethyl-pentane 102.10 0.29318 68.10 8.897
2,3,4-trimethyl-pentane 102.40 0.31742 68.37 9.014
2,2,3,3-tetramethylbutane 93.06 0.25529 66.20 8.410

Table 2. Topological indices of octane isomers.
Molecule Nar evNar veNar
n-octane 4.159 9.129 9.129

2-methyl-heptane 3.871 9.640 9.757
3-methyl-heptane 3.871 9.575 9.575
4-methyl-heptane 3.871 9.575 9.510

3-ethyl-hexane 3.871 9.510 9.352

2,2-dimethyl-hexane 3.466 10.491 10.738

2,3-dimethyl-hexane 3.584 10.045 10.098

2,4-dimethyl-hexane 3.584 10.085 10.163

2,5-dimethyl-hexane 3.584 10.150 10.386

3,3-dimethyl-hexane 3.466 10.386 10.450

3,4-dimethyl-hexane 3.584 9.980 9.940

2-methyl-3-ethyl-pentane 3.584 9.980 9.911
3-methyl-3-ethyl-pentane 3.466 10.281 10.240
2,2,3-trimethyl-pentane 3.178 10.869 11.075
2,2,4-trimethyl-pentane 3.178 11.002 11.298
2,3,3-trimethyl-pentane 3.178 10.828 11.010
2,3,4-trimethyl-pentane 3.296 10.515 10.658
2,2,3,3-tetramethylbutane 2.773 11.736 12.210
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Table 3.The correlation coefficients between new and old topological indices and some

physicochemical properties of octane isomers.

Index Entropy AcenFac HVAP DHVAP
Nar 0.9398 0.9700 0.8959 0.9410
ve-Nar -0.9192 -0.9092 -0.9236 -0.9490
ev-Nar -0.9369 -0.9486 -0.9202 -0.9568

Table 4. The squares of correlation coefficients between topological indices and some

physicochemical properties of octane isomers.

Index Entropy AcenFac HVAP DHVAP
Nar 0.8832 0.9409 0.8026 0.8854
ve-Nar 0.8449 0.8266 0.8530 0.9006
ev-Nar 0.8778 0.8998 0.8468 0.9154

Note that the all values in Table 2 are given by using natural logarithm. It can be
seen from the Table 2 that the most convenient indices which are modeling the Entropy,
Enthalpy of vaporization (HVAP), Standard enthalpy of vaporization (DHVAP) and
Acentric factor (AcenFac) are Narumi-Katayama index (S) for entropy and Acentric
Factor, ve-Narumi-Katayama index for the Enthalpy of vaporization (HVAP) and ev-
Narumi-Katayama index for the  Standard enthalpy of vaporization (DHVAP),
respectively. But notice that the Narumi-Katayama index show the positive strong
correlation and the ve-Narumi-Katayama and theev-Narumi-Katayama indices show the
negative strong correlation. Because of this fact we can compare these graph invariants
with each other by using the squares of correlation coefficients for ensure the compliance
between the positive and negative correlation coefficients (see Table 4).

The cross-correlation matrix of the indices are given in Table 5.

Table 5. The cross-correlation matrix of the topological indices.

Index Nar ve-Nar ev-Nar
Nar 1.0000
ve-Nar -0.9901 1.0000

ev-Nar -0.9715 0.9931 1.0000
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It can be shown from the Table 5 that the absolute value of the minimum correlation
efficient among the indices is 0.9715 which is indicate strong correlation among all these
indices. From the above arguments, we can say that the ve-Narumi-Katayama index and ev-
Narumi-Katayama index are possible tools for QSPR researches.

4. MAIN RESULTS

In this section, we firstly give some basic mathematical properties of ve-degree, ev-Narumi-
Katayama  and ve-Narumi-Katayama indices. Secondly, we investigate certain
mathematical properties of ev-degree and ve-degree Zagreb indices.

Lemma 4.1. Let G be a connected graph, then ¥, ey (6) My = Xeer(c) e = 3n(G), where
n,, N, , n(G) denote the number of triangles in G containing the vertex v, the number of
triangles in G containing the edge e and the total number of triangles in G, respectively.

Proof. The second part of this equality were given in [1]. The first part comes from that
since every triangle consists of three vertices and edges, we count every triangle exactly
three times for each vertex. Since the total number of triangles in the graph G will not be
changed, the desired result acquired easily. O

Lemma 4.2. Let G be a connected graph and v € V(G), then ¢, = X,en(v) deg (u) — n,,.

Proof. From the Definition 2.1, we know that c, equals the number of different edges
incident to any vertex of N(v). Therefore c, = ¥, en)deg(u) if vdoes not lie in a

triangle. But if v belongs a triangle then the edge that does not incident to v of this triangle
must be counted twice in the sum ., ¢ () deg(u) . Therefore we must minus one from the

sum Y,,en(v) deg(u) for we find the exact number of different edges incident to N(v). Thus
if v lies in more than one triangle then we must minus n,, from the the sum ¥,y () deg(u)
for we find the exact number of different edges incident to N (v). O

Corollary 4.3. For the n-vertex triangle graph G, the ve-degree Narumi-Katayama index
NK,.(G) is calculated by the following equation:

NKve (G) = HUEV(ZMEN(U) deg (u)) :

Example 4.4. Consider the P, path graph ¢, = c,, =1 and NK,.(P,) = 1. For P; path
graph c,, = ¢,, = ¢,, = 2 and NK,,.(P;) = 8. For P, c,, =c,, =2 andc,, = c,, =30
that NK,.(P,) = 36. We take the P, suchthatn >5. ¢, =c, =2andc,, =c =3
and the ve-degree of the other vertices are 4. Therefore NK,,(B,) = 9.4™73,

VUn-1
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Example 4.5. Consider the C; cycle ¢, = c,, =c,, =3 and NK,.(C3) = 27. Forn >4
every cycle 4,,-regular and NK,,.(C,) = 4™

Example 4.6. Consider the S,,-star graph on n vertices. Every vertices have the same ve-
degree such that (n — 1). This means NK,,.(S,) = (n — 1)™.

Example 4.7. Consider the K,,-complete graph with n vertices. K,, is a m,,-regular graph
with the size m = n(n — 1)/2. Therefore, NK,,.(K,,) = m™".

Proposition 4.8. Let G be a graph with n vertices, then NK,,.(G) < NK,,.(K,,).

Proof. Note that contribution each edge is positive. Hence, NK,,.(G) reaches its maximum
value for the complete graphs. O

Proposition 4.9. For the B,-path graph with n vertices such that n > 4, NK,.(B,) =
NK,,(P,) = 9.4773,

Proof. We have already known that NK,.(B,) = 9.4"~3 from the Example 4.4. There are
n — 3 edges with their ev-degrees equal 4 and 2 edges with their ev-degrees equal 3 for the
n-vertex path. Therefore, the proof is complete. O

Proposition 4.10. For the cycle C, on n vertices such that n > 4,NK,.(C,) =
NK.,,(C,) = 4™

Proof. From the Example 4.5 we can directly write that NK,,.(C,,) = 4™. Clearly, from the
definition of ev-degree, every edge of C, is 4,,-regular. The proof comes from this fact. o

Proposition 4.11. For the S, -star graph with n vertices such that n > 4, NK,,(S,) =
n" ! < NK,.(S,) = (n—1)"

Proof. We make the proof by induction on n. For n =4, NK,,(S,) =43=64<
NK,.(S,) = 3* =81, as desired. We assume that the claim is true for n = k and we will
show that itistruen = k + 1. Forn =k, k*~1 < (k — 1)* is equivalent to

(1+ﬁ)k_1<k—1

and for n = k + 1, (k + 1)k < k**1. Thus we want to show that
1 k 1 k 1 k _ 1 k=1 1 ko _
(1+3) <k (1+3) <(1+5) =(1+5) (+H)<k-1D5=k
So, the proof is complete. O
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Theorem 4.12. (a) The n-vertex tree with maximal NK,, is S,, such that NK,.(S,) =
(n—21)".

(b) The n-vertex unicyclic graph with the maximal NK,, is S,, + e (depicted in Figure 1)
such that NK,,.(S,, + e) =n3(n — 1)"3.

(c) The n-vertex bicyclic graph with the maximal NK,, is Z, (depicted in Figure 1) such
that NK,.(Z,)) = (n + 1)*(n — 1) %

S, +e 7n

Figure 1. The graphs S,, + e and Z,,.

Theorem 4.13. (a) The n-vertex tree with minimal NK,, is B,(n =4) such that
NK,,(P,) = 9.4773,

(b) The n-vertex unicyclic graph with the minimal NK,, is R, (depicted in Figure 2) such
that NK,,.(R,) = 2.3.52.4"7%,

(c) The n-vertex bicyclic graph with the minimal NK,, is T,, (depicted in Figure 2) such
that NK,,(T,,) = 5*.4"*,

>

Rn Tn
Figure 2. Graphs which are used for Theorem 2.

Theorem 4. 14. (a) The n-vertex tree with second maximal NK,, is X,, (depicted in Figure
3) suchthat NK,.(X,) = 2(n — 1)?(n — 2)" 3.

(b) The n-vertex unicyclic graph with second maximal NK,, is S, +e + e’ (depicted in
Figure 4) such that NK,,.(S, + e +e’) =4n3(n —2)"*

(c) The n-vertex bicyclic graph with second maximal NK,, is L,, (depicted in Figure 3)
such that NK,,.(L,,) = 5.(n + 1)?n?(n — 2)*>.

Theorem 4.15. (a) The n-vertex tree with second minimal NK,, is the Q-graph (depicted
in Figure 5) such that NK,,,(Q) = 22.33.53.4"-8,
(b) The n-vertex unicyclic graph with second minimal NK,, is the R-graph (depicted in

Figure 6) such that NK,,(R) = 2.32.5°.4™8,
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(c) The n-vertex bicyclic graph with second minimal NK,, is the S-graph (depicted in
Figure 7) such that NK,,(S) = 3.57.4™8,

Xn Ln
Figure 3. The graph X,, and L,,.

Figure 4. The graph S,, + e + e,

|

Q
Figure 5. The graph Q.

R
Figure 6. The graph R.

Figure 7. The graph S.

Corollary 4.16. For any triangle-free graph G, NK,,(G) = [1;(G).
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Proof. The proof directly comes from the Observation 2.5, the Definition 2.17 and the
definition of multiplicative version of the first Zagreb index. O

Now, we give some mathematical properties of ev-degree and ve-degree Zagreb
indices in terms of the forgotten topological index and the total number of the triangles
n(G) of a connected graph G. Before giving propositions, we give following terminologies
which be used.

Theorem 4.17. Let G be a connected graph, then
S(G) = F(G) + ZMZ(G) -2 ZuveE(G)(deg(u) + deg(v)) ne + Ze=quE(G) nez '

Proof. We know that c,y, = deg(u) +deg(v) —n. and S =S5(G) = Ycer)Ce”-
Therefore,

S =5(G) = Xezuver () Ce” = (deg(w) + deg(v) — n,)?
= Ye—wer(c) (deg(u) + deg(v))? — 2 ¥, _uver(q)(deg(u) + deg(v)) n,
+ Ye=uveE(G) ne?
= Ye—uver(c)(deg (w)? + deg (v)?) + 2 ¥, —yver(c) deg(w) deg(v)
—2 Y e=uverc)(deg(w) + deg(v)) n, + Yemyver(c) Ne’
= F(G) + 2M,(G) — 2 X yver(c)(deg(u) + deg(v)) ne + Ye—yver(c) e -

Theorem 4.18. Let G be a connected graph, then S8 (G) = 2M,(G) — 6n(G), where n(G)
denotes the total number of triangles in G.

Proof. From the definition of the first ve-degree Zagreb beta index and Lemma 4.2 we get
SB (G) = ZuveE(G)(Cu + Cv)
= ZquE(G)[(ZWEN(u) deg(W) - nu) + (ZWEN(U) deg(W) - nv)]

= Yuwer) Zwenw) 2egW) + Twenw) deg(W)) — Tyvercy(my + 1y)
= SB(G) = 2M,(G) — 6n(G).

Theorem 4.19. Let G be a connected graph, then
SQ(G) = F(G) -2 ZUEV(G)(ZuEN(v) deg (u)nv) + ZUEV(G) nvz
where n,, denotes the number of triangles in G containing the vertex v.

Proof. From the definition of the first ve-degree Zagreb alpha index and Lemma 4.2 we get
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SQ(G) = ZUEV(G) CV2 = ZUEV(G) ZuEN(v)(deg(u) - nv)z
2
= ZUEV(G) [(ZuEN(v) deg (u)) -2 ZuEN(v) deg (u)nv + nvz]

2
= ZUEV(G)(ZuEN(v) deg (u)) -2 ZUEV(G)(ZMEN(U) deg (u)nv) + ZUEV(G) nvz
= ZUEV(G) deg (U)3 -2 ZUEV(G)(ZuEN(v) deg (u)nv) + ZUEV(G) nvz

= F(G) -2 ZUEV(G)(ZuEN(v) deg (u)nv) + ZUEV(G) nvz :
O

It is very surprisingly to see that for any triangle free graph the forgotten topological
index and the first ve-degree Zagreb alpha index equal each other. The following corollary
states this fact.

Corollary 4.20. Let G be a triangle-free connected graph, then S*(G) = F(G).

5. CONCLUSION

In this study we defined ev-degree and ve-degree Narumi-Katayama indices and showed
that these novel degree based topological indices can be used possible tools for QSPR
researches. Also we investigated some basic mathematical properties of ev-degree and ve-
degree Narumi-Katayama and Zagreb indices. It can be interesting to compute the exact
value of ev-degree and ve-degree topological indices for some graph operations. It can also
be interesting to investigate the ev-degree and ve-degree concepts for the other topological
indices for further studies.
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1 INTRODUCTION

Let G be a simple connected graph with vertex set V = V(G) and edge set E = E(G). The
integersn = n(G) = |V(G)| and m = m(G) = |E(G)| are the order and the size of the
graph G, respectively. We write deg;(v) = deg(v) for the degree of a vertex vand
A = A(G) for the maximum degree of G. Let u,v € V(G), then the distance d;(u, v)
between u and v is defined as the length of a shortest path in G connecting u and v.
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In [5], a new class of topological descriptors, based on some properties of the
vertices of a graph is presented. These descriptors are named as geometric-arithmetic
indices, GAgeneral, and defined as:

JQuQv
GAgeneral(G) - ZquE(G) Qu+

where Q,, is some quantity that in a uniqgue manner can be associated with the vertex u of
the graph G. The geometric-arithmetic index GA is defined in [6] as:

deg(u)deg(v

GAG) = Tuver (@) ey oo
The geometric-arithmetic index is well studied in the literature, see for example [2,
4, 7]. Let uv be an edge of G. Define N(u,G) = {x e V(G) | dg(u,x) < dg;(u,x)}. In
other words, N (u, G) consists of vertices of G which are closer to u than to v. Note that the
vertices equidistant to u and v are not included into either N(u,G) or N(v,G). Such
vertices exist only if the edge uv belongs to an odd cycle. Hence, in trees, n,+n, = n for
all edges of the tree. It is also worth noting that u € N(u,G) and v € N(v,G), which
implies that n,> 1 and n,> 1. The second geometric-arithmetic index GA, is defined in [5]

as:

2\/ u'tv
GAZ(G) = ZquE(G) o

ny+ny '’

where n,=n, (G) =|N(u,G)|. See [1, 3, 8] for more information on this index.
The following statements can be found in [5].

Theorem A. The path B, is the n-vertex tree with maximum second geometric-arithmetic
index.

Theorem B. Let S,, be a star of order n, then GA,(G) = —2(”_173”1‘1.

In this paper we first present some examples. Then we prove that for any tree T of
order n > 2 with maximum degree A,

GA,(T) <2 <(A DVA=T+ 312 [i(n= i)).
Finally, we prove that for any unicyclic graph G of order n > 3 with maximum degree
A > 3 and girth k, if k is odd, then

GAy(G) < 5<(A — 2)0Vn — 1+ yrk-a+2 m)

L, 2Ak= 1)\/(k LA 2)(n ———A+1)+

2 k-1 k-1
A+k_3JT(T +4-2)

J (n—-“2-a+1),

n—-A+1
and if k is even, then
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GA,(G) < %((A — 20— 1+ Yk fitn =) + k\/(g +A=2)(n—S—A+ 2)).

We also characterize the trees and unicyclic graphs which achieve the upper bounds.

2 EXAMPLES

Dendrimers are nanostructures that can be precisely designed and manufactured for a wide
variety of applications, such as drug delivery, gene delivery and diagnostic tests. In this
section we calculate the second geometric-arithmetic index for Dendrimers of types A and
B and for Tecto Dendrimers. See Figure 1.

dde .
D3], Di3lg D[3],

Figure 1: Dendrimers of types A and B and Tecto Dendrimers.

Example 1. In Dendrimers D[n] type A, denoted D[n],, there are 4(2™ — 1) + 1 vertices
and 4(2™ — 1) edges. Let e be an edge between the ith and the (i + 1)th layers. Then

file) = J(Z“—i -1z —2n-i—-2) fori=12,..,n—1
In addition, there are 2*2 edges between the ith and the (i + 1)th layers. Therefore, for

n =2,

4(2"-1)+1

GA,(DIn],) = —2— (4¢ @ — D@ — 1) + 1) + xr 2i+2 ﬁ-(e))

8
4(2"-1)+1

(Ve =DGE - D+ D+ 35 2 /()
For examples,

GA,(D[2],) = = (V30 +2V12) = 7.63 and

GA,(DI3],) = = (V154 + 2178 + 4v28) = 1413,

Example 2. In Dendrimers D[n] type B, denoted D[n]g, there are 3(2" — 1) + 1 vertices
and 3(2™ — 1) edges. Let e be an edge between the ith and the (i + 1)th layers. Then

fie) = J(zn—i —1)@EEY —2ni—1) fori=12,..,n—1.
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In addition, there are 3(2") edges between the ith and the (i + 1)th layers. Therefore, for
n=2,

64 (PInls) = 3 (V3@ - DEET—D + 1) + 31532) £i(0)).

3(2"-1)+1

For example,
GA(D[2]5) = = (3V21+18) = 6.35 and

GA,(DI3]p) = 22—2 (3V105 + 6v57 + 12v/21) = 11.91.

Example 3. In Tecto Dendrimers D[n], there are 2"*2 — 2 vertices and 2"*2 — 3 edges.
Let e be an edge between the ith and the (i + 1)th layers. Then

fi(e) = J(Z“—i -1z —2n-i—1) fori=12,..,n—1
In addition, there are 2*2 edges between the ith and the (i + 1)th layers. Therefore, for
n =2,
GA,(DIn];) = ——(4/@ = DGE@) — 1) + Ti1 2542 fie) + 2"+ — 1),
For example,
GA,(D[2]7) = 12—4 (4V/33+8V13+7) =840 and

GA,(D[3];) = 32—0 (4V161 + 8V81 + 16v29 + 15) = 14.93.

2 AN UPPER BOUND ON THE SECOND GEOMETRIC-ARITHMETIC OF
TREES

In this section we present a sharp upper bound for the second geometric-arithmetic index of
trees in terms of their order and maximum degree. We also characterize all trees whose the
second geometric-arithmetic index achieves the upper bound. A leaf of a tree T is a vertex
of degree 1, a support vertex is a vertex adjacent to a leaf and a strong support vertex is a
support vertex adjacent to at least two leaves. An end-support vertex is a support vertex
whose all neighbors with exception at most one are leaves. A rooted tree is a tree having a
distinguished vertex v, called the root. Let T, be the set of trees of order n and maximum
degree A. Let T be a tree of order n and let f : E(T) — Z'is a function defined by f(xy) =
\/?ny. Hence GA,(T) = %ZuveE(G) f(uv). We start with an easy but useful observation.

Observation 4. Letx >y > landn > x + y + 2 be positive integers. Then for every
1<k<y,(x+k((n-x-k)>U-k+1)(n—-y+ k —-1).
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Proof. First note that (x + k) (n—x—-k)—(y—k+1)(n—y+k—-1) = n(2k +x) —
(x+k)%. Sincen = x + y + 2, it follows that n(2k + x) — (x+ k)? > 0. So the
result follows.

Lemma 5. Let T be a tree of order n with maximum degree A and v be a vertex of
maximum degree. If T has a vertex of degree at least three different from v, then there is a
tree T' € T, 4 such that GA,(T) < GA,(T").

Proof. Let T be the rooted tree at v. Letu # v be a vertex of degree deg(u) = k > 3
such that d(u,v) is as large as possible and let N(u) = {uy, uy, ..., Ug_p, Ug_q1, Ux}. NOW
we distinguish three cases.

Case 1. u is an end-support vertex.

We may assume that u; is the parent of u. Let S = {uu,, uu,, ..., uuy_,, uuy_,} and let T’
be the tree obtained by attaching the path uu,u, ... up_ou;_1t0 T —{uy, uy, ..., Up_1}.
Suppose that S" = {uuy, uyuy, ..., Ug_ux—1}. Clearly, 7" € T, , and
ZquE(T)—S f(uv) = ZuUEE(T')—S'f(uv)'

By definition

~GA(T) = Tuves f(w0) + Tupes fv) = Zupep(ry-s f(wv) + (k= Dvn -1, (1)
and
%GAZ(T’) = Yuves' fuv) + Xopes' f(uv) =Xypeprry-st f(uv) + Zi'(=_11\/ i(n—1i). (2)
Combining (1), (2) and the fact that kK > 3, we obtain GA,(T) < GA,(T"), as desired.

Case 2. u is a support vertex.

By Case 1, we may assume that u is not an end-support vertex and deg(u,;) = 1. Suppose
deg(uy) = 2andT,, is the component of T — uu, containing u,. Since, by the choice of
vertex U, d(u,v) is as large as possible, we may assume that T,, is the path
U, X1X, ... Xe,t = 1. Let T' be the tree obtained from T — uu, by adding the pendant edge
XUy to this graph. Let S = {uuq, Uy, UpXq, X1 X0, oo, Xp_1 Xt} and
S" = {uuy, uyxq, X1%5, ..., X¢o1 X, Uy X }. Clearly, T" € T, 4, and

ZquE(T)—S f(uv) = ZuUEE(T')—S'f(uv)'

By definition
%GAZ(T) = ZquE(T)—S f(uv) + Zf;r% \/i(n — i)+ vn—1, )
and
%GAZ(T’) = ZquE(T’)—S’f(uv) + Zfﬁ Vv i(n—1i). (4)

By (3), (4) and the fact that n > t + 4, we obtain GA,(T) < GA,(T").

Case 3. u is not a support vertex.
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Suppose T,, and T,, are the components of T — {uu,, uu,} containing u; and u, ,
respectively. By the choice of vertex u, we may assume that T,,, = u;x1x; ... x5, 8 = 1
and T, = upy ¥, .. ¥e, t = 1. Then deg(x;) =deg(y;)=2,1<i<s-1 1<
j <t —1, anddeg(x;) = deg(y,) =1. Let T’ be the tree obtained from T —T,, by
adding the path x,y;y;_4 ... y,u, to this graph. Let

S = {uug, uyxy, X1%2, ., X5-1 %53 U {Utly, Ua 1, Y1 V2, - Ve-1Ve}
and

S"={uug, ugxg, 1%, 0, Xs_1 X} U {Xs Ve, Un Y1, V1Y20 oo Vo1Vt )
Clearly, " € T, 4 and

ZquE(T)—S f(uv) = ZuUEE(T')—S'f(uv)'
By definition we have
%GAZ(T) = ZquE(T)—S f(uv) + 25211 vV i(n—i)+ Zf;r% \ i(n—1i), )
and
%GAZ(T’) = ZquE(T’)—S’ f(uv) + Zf:?z vV i(n—1i). (6)
Applying Observation 4 and inequalities (5) and (6), we conclude that GA,(T) < GA,(T").
This complete the proof.

A spider is a tree with at most one vertex of degree more than 2, called the center of
the spider (if no vertex is of degree more than two, then any vertex can be the center). A leg
of a spider is a path from the center to a vertex of degree 1. Thus, a star with k edges is a
spider of k legs, each of length 1, and a path is a spider of 1 or 2 legs.

Lemma 6. Let T be a spider of order n with k > 3 legs. If T has two legs of length at least
2, then there is a spider T’ of order n with k legs such that GA,(T) < GA,(T").

Proof. Let v be the center of T and N(v) = {v,,v,, ..., v, }. Root T at v. Assume, without
loss of generality, that deg(v,)= deg(v,) = 2 and let v, x;x, ... x; and v,y,y, ... y; be two
legs of T. Let T’ be the tree obtained from T be deleting the edges x;x,, ..., xs_1 x5 and
adding the edges x;y;, X1 X5, ..., Xg_1Xs. SUPPOSE

S ={vvy, v1X1, X1 X3, .., Xs_1Xs} U {VV2, VoY1, V1V21 ooy Vo1 Ve h
and

" ={vvy, yexq1, X1%3, ., X1 X5} U {VV2, V21, V1 V2, o V-1Vt )-
Clearly

ZquE(T)—S f(uv) = ZuUEE(T')—S'f(uv)'
By definition we have

%GAZ(T) = ZquE(T)—S fluv) + X3t Ji(n—1i) + it JVi(n =), (7

and

%GAZ(T’) = Yuwverrn-s' fuv) + XA+ \/i(n —i)+vn—-1. €))
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By Observation 4, equalities (7) and (8) and the fact that n > s + t + 4 we obtain
GA,(T) < GA,(T".

We are now ready to prove the main theorem of this section.

Theorem 7. Forany tree T € T, , of ordern > 2,

GAL(T) < g((A VA= T+YA i = z)).

The equality holds if and only if T is a spider with at most one leg of length at least two.

Proof. Let T; be a tree of order n > 2 with maximum degree A such that
GA,(T,)= max{GA,(T)| T is a tree of order n with maximum degree A}.

Let v be a vertex with maximum degree A. Root T; at v. If A = 2, then T; is a path of order
n and the result follows by Theorem A. Let 4 > 3. By the choice of T;, we deduce from
Lemma 5 that T; is a spider with center v. It follows from Lemma 6 and the choice of T;
that T; has at most one leg of length at least two. First let all legs of T; have length one.
Then T; is a star of order n and the result follows by Theorem B. Now let T; have only one
leg of length at least two. Then

GAL(T) = %((A VA= T+ YA i = i)).

This completes the proof.

3 UNICcYCLIC GRAPHS

A connected graph with precisely one cycle is called a unicyclic graph. Let the set
@ xconsist of all unicycle graphs of order n, maximum degree 4 > 3 and grith k, where
3 <k < n. Note that if G is a cycle of order n, then GA,(G) = n. Let G € @, 5. In this
section we assume that the k-cycle of G is C;, = (wy, w,, ...,wy). In addition for a vertex
u € V(Cy) we let T, be the connected component of G\E(C,) containing u. Note that T, is
a tree and we assume u is the root of this tree. Without loss of generality, we also assume
one of the vertices of T, , say v, is of degree A.

Lemma 8. Let G € ¢, 4, and v be a vertex of maximum degree A. Let C be the only cycle
of G,ueV(C)andu # v. If T, is a spider with at least two legs, then there is a graph
G' € @ axsuchthat GA,(G) < GA,(G').

Proof. Assume T,, has ¢ legs with lengths t;,t,,....t, and X.{_, t; = s. Let the graph G’ be
obtained from G\E(T,,) by attaching a path P; to vertex u. Obviously, G’ € @, 4. A simple
calculation shows that

642(6") = GAz(6) = 2|z, itn — D) - X0, B, Vil — 1)
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Apply Observation 4 to obtain GA,(G') — GA,(G) > 0.

Lemma 9. Let G € ¢, o, and deg(u) = 3, whereu € T,,,, u # w;, for some2 <i < k.
Then there is a graph G’ € ¢, 4 such that GA,(G) < GA,(G").

Proof. Without loss of generality, we may assume u has the largest distance from w; among
all the vertices of T,,, whose degree is at least 3. This implies that T, is a spider with at least
two legs. Let G’ be the graph obtained from G by replacing T,, with a path with the same
order as T,,. A calculation similar to that presented in Lemma 8 shows that GA,(G') —
GA,(G) > 0.

Lemma 10. Let G € ¢, 4 and T,,, and Tw; be paths of length at least 1 for some 2 <
i,j < k,i # j.Thenthereisagraph G’ € ¢, suchthat GA,(G) < GA,(G").

Proof. Let £, and ¢, be the length of the paths T, and Tw;, respectively. Let G’ be the graph
obtained from G by removing T, and ij and attaching a path of length £1+ ¢, to the vertex
u. Then as before one can see that GA,(G) < GA,(G").

Lemma 11. Let G € ¢, 4, and assume the vertices of the cycle C, are all of degree two
except w; and w;, i #= 1. If the distance of w; from w; is not [(k — 1)/2], then there is a
graph G' € @, 4 such that GA,(G) < GA,(G").

Proof. Let G’ be the graph obtained from G by removing T,,, and attaching it to vertex w;,
where j = [(k — 1)/2]. Then one can see that GA,(G) < GA,(G").

Now we consider the graph G € ¢, 4, With deg(w;) =2 for all2 < i < k,i #
[(k—1)/2] and deg(w;) =2, where j =[(k—1)/2]. By Lemma 9, in order to
maximize GA,(G), T, must be a spider and deg;(w;) = 3 if w; # v.

Lemma 12. LetG € @, and wy # v. Then there is a graph G’ € ¢, 4, such that
GA,(G) < GA,(G).

Proof. Let G’ be the graph obtained from G\T, by attaching a path of order
[V (T, )| —4 + 2to the end vertex of the path ijwhich is different from w;, j =

[(k — 1)/2] and adding 4 — 2 pendant edges at vertex w,. Obviously, G' € ¢, 4, and it is
straightforward to verify that GA,(G) < GA,(G").

By Lammas 8-12 we obtain the following result.
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Corollary 13. Let H € ¢, be the graph which consists of a cycle C, = (wy, wy, ..., wy)
with 4 — 2 pendant edges at vertex w; and a path of order n — k — A4 + 2 at vertex w;,
where j = [(k — 1)/2]. Then for every G € @, 4, GA2(G) < GA,(H).

We are now ready to state the main theorem of this section.

Theorem 14. For any unicycle graph Gof order n, girth k and maximum degree 4 > 3, ifk
is odd, then

GA(G) <= <(A 2)Vn — +Z?;1R—A+2m)

T 1)\/(" S +A-2)(n——A+1) +

2 k-1 k-1
A+k_3JT(T +4-2)

J (n—"2-Aa+1),

n A+1
and if k is even, then

GA,(G) < %((A — 20— 1+ Yk fitn =) + k\/(g +A=2)(n—S—A+ 2)).

The equality holds if and only if G is the graph H given in Corollary 13.
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