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As highly discriminant distance-based topological indices, the 
Balaban index and the sum-Balaban index of a graph ܩ  are 
defined as (ܩ)ܬ = 

ఓାଵ
∑  ௨௩∈ா

ଵ
ඥಸ(௨)ಸ(௩)

 and ܵ(ܩ)ܬ =

ఓାଵ

∑  ௨௩∈ா
ଵ

ඥಸ(௨)ାಸ(௩)
, respectively, where (ݑ)ீܦ =

∑  ௩∈ ,ݑ)݀  is the ݉ ,ܩ in ݑ is the distance sum of a vertex (ݒ
number of edges and ߤ is the cyclomatic number of ܩ. They are 
useful distance-based descriptor in chemometrics. In this paper, 
we focus on the extremal graphs of spiro and polyphenyl 
hexagonal chains with respect to the Balaban index and the 
sum-Balaban index. 

 
© 2018 University of Kashan Press. All rights reserved 
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1 INTRODUCTION 

Polyphenyl and spiro hexagonal chains have been widely investigated, and they represent a 
relevant area of interest in mathematical chemistry because they have been used to study 
intrinsic properties of molecular graphs. Polyphenyls and their derivatives, which can be 
used in organic synthesis, drug synthesis, heat exchangers, etc., attracted the attention of 
chemists for many years [7, 8, 20, 21, 26, 28, 30]. Spiro compounds are an important class 
of cycloalkanes in organic chemistry. A spiro union in spiro compounds is a linkage 
between two rings that consists of a single atom common to both rings and a free spiro 
union is a linkage that consists of the only direct union between the rings. Several works 
have been developed to analyze extremal values and extremal graphs for many topological 
indices on the spiro and polyphenyl hexagonal chains. Some results on energy, Merrifield-
Simmons index, Hosoya index, Wiener index and Kirchhoff index of the spiro and 
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polyphenyl chains were reported in [2, 9, 12, 13, 16, 17, 35, 32]. In this paper, we will 
consider the extremal values and the extremal graphs for the Balaban index and the sum-
Balaban index on polyphenyl and spiro chains. 

As a highly discriminant distance-based topological index, the Balaban index [3] 
was defined on the basis of the Randić formula but using distance sums for vertices instead 
of vertex degrees. The Balaban index is a variant of connectivity index, represents extended 
connectivity and is a good descriptor for the shape of the molecules. It shows a good 
isomer discrimination ability and produces good correlations with some physical 
properties, such as the motor octane number [6], and it appears in theoretical models for 
predicting and screening drug candidates in rational drug design strategies [22]. It is of 
interest in combinatorial chemistry. It turned out to be applicable to several questions of 
molecular chemistry. 

Throughout this paper we consider only simple and connected graphs. For a graph 
ݒ and ݑ The distance between vertices .(ܩ)ܧ and edge set (ܩ)ܸ with vertex set ܩ  in ܩ , 
denoted by ݀ீ(ݒ,ݑ), is the length of a shortest path connecting ݑ  and ݒ . Let (ݑ)ீܦ =
∑  ௩∈(ீ)  .ܩ in ݑ which is the distance sum of vertex ,(ݒ,ݑ)݀

The cyclomatic number ߤ  of ܩ  is the minimum number of edges that must be 
removed from ܩ in order to transform it to an acyclic graph. Let |ܸ(ܩ)| = |(ܩ)ܧ| ,݊ = ݉, 
it is known that ߤ = ݉ − ݊ + 1. 

The Balaban index of a connected graph ܩ is defined as  
(ܩ)ܬ = 

ఓାଵ
∑  ௨௩∈ா(ீ)

ଵ
ඥಸ(௨)⋅ಸ(௩)

. 

 It was introduced by A. T. Balaban in [3, 4], which is also called the average distance-sum 
connectivity or ܬ index. It appears to be a very useful molecular descriptor with attractive 
properties. In 2010, Balaban et al. [5] also proposed the sum-Balaban index ܵ(ܩ)ܬ of a 
connected graph ܩ, which is defined as  

(ܩ)ܬܵ = 
ఓାଵ

∑  ௨௩∈ா(ீ)
ଵ

ඥಸ(௨)ାಸ(௩)
. 

The Balaban index and the sum-Balaban index were used in various quantitative 
structure-property relationship and quantitative structure activity relationship studies. Until 
now, the Balaban index and the sum-Balaban index have gained much popularity and new 
results related to them are constantly being reported, see [1, 10, 11, 14, 15, 18, 19, 25, 27, 
29, 31, 33, 34]. 

Let ܩ be a cactus graph in which each block is either an edge or a hexagon. ܩ is 
called a polyphenyl hexagonal chain if each hexagon of ܩ has at most two cut-vertices, and 
each cut-vertex is shared by exactly one hexagon and one cut-edge. The number of 
hexagons in ܩ is called the length of ܩ. An example of a polyphenyl hexagonal chain is 
shown in Figure 1.  
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Figure 1: A polyphenyl hexagonal chain of length 8. 

 
Let ܲܲܥ = ݊)ܪ⋯ଶܪଵܪ ≥ 3)  be a polyphenyl hexagonal chain of length ݊ . 

There is a cut-edge ݒିଵݑ between ܲܲܥିଵ and ܪ, see Figure 2.  
Note that any polyphenyl hexagonal chain of length ݊ has 6݊ vertices and 7݊ − 1 

edges. A vertex ݒ of ܪ  is said to be ortho-, meta-, and para-vertex if the distance between 
ݒ  and ݑ  is 1, 2 and 3, denoted by  , ݉  and  , respectively. Example of Figure 2, 
 = ,ଶݔ , ݉ݔ =  ,ହݔ,ଷݔ =  ସ. Obviously, every hexagon has two ortho-vertices, twoݔ
meta-vertices and one para-vertex except the first hexagon ܪଵ. 

A polyphenyl hexagonal chain ܲܲܥ  is a polyphenyl ortho-chain if ݒ =   for 
2 ≤ ݇ ≤ ݊ − 1. The polyphenyl meta-chain and polyphenyl para-chain are defined in a 
completely analogous manner. 

 

 
Figure 2: A polyphenyl hexagonal chain of length ݊. 

 
The polyphenyl ortho-, meta-, and para-chains of length ݊ are denoted by ܱ, ܯ 

and ܲ, respectively. Examples of polyphenyl ortho-, meta-, and para-chains are shown in 
Figure 3.  

 
Figure 3: Polyphenyl hexagonal ortho-, meta-, and para-chains of length 7. 
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The definition of spiro hexagonal chain is same as definition of polyphenyl 
hexagonal chain. A hexagonal cactus is a connected graph in which every block is a 
hexagon. A vertex shared by two or more hexagon is called a cut-vertex. If each hexagon of 
a hexagonal cactus ܩ has at most two cut-vertices, and each cut-vertex is shared by exactly 
two hexagons, then ܩ is called a spiro hexagonal chain. The number of hexagon in ܩ is 
called the length of ܩ. An example of a spiro hexagonal chain is shown in Figure 4.  

 
Figure 4: A spiro hexagonal chain of length 7. 

 

Obviously, a spiro hexagonal chain of length ݊ has 5݊ + 1 vertices and 6݊ edges. 
Let ܵܲܥ = ݊)ܪ⋯ଶܪଵܪ ≥ 3) be a spiro hexagonal chain of length ݊. There is a cut-
vertex ݑ between ܵܲܥିଵ and ܪ, see Figure 5.  

 

 
Figure 5: A spiro hexagonal chain of length ݊. 

 

A vertex ݒ of ܪ is said to be ortho-, meta-, and para- vertex if the distance between 
 , respectively. A spiro hexagonal chain is , ݉ and  is 1, 2 and 3, denoted byݑ and ݒ
a spiro ortho-chain if ݑ =   for 2 ≤ ݇ ≤ ݊. The spiro meta-chain and para-chains are 
defined in a completely analogous manner. The spiro ortho-, meta-, and para-chains of 
length ݊ are denoted by ܵ ܱ, ܵܯ and ܵ ܲ, respectively. 

 

The following lemmas will be used in the next section. 
 

Lemma 1 ([14]) Let ݔ, ܽ,ݕ ∈ ܴା  such that ݔ ≥ ݕ + ܽ . Then ଵ
√௫௬

≥ ଵ
ඥ(௫ି)(௬ା)

 with 

equality if and only if ݔ = ݕ + ܽ.  
 

Lemma 2 ([15]) Let ݎଵ, ,ଵݐ ,ଶݎ ଶݐ ∈ ܴା such that ݎଵ > ଵݐ  and ݎଶ − ଵݎ = ଶݐ − ଵݐ > 0. Then 
ଵ
√భ

+ ଵ
√௧మ

< ଵ
√మ

+ ଵ
√௧భ

.  
 

Lemma 3 ([14]) Let ܽ,ݓ, ,ݔ ,ݕ ݖ ∈ ܴା such that 
௫
≥ 

௪
, 
௬
≥ 

௭
. Then 
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ଵ
ඥ(௪ା)(௭ା)

+ ଵ
√௫௬

≥ ଵ
√௪௭

+ ଵ
ඥ(௫ା)(௬ା)

. 

 
2.  (SUM-) BALABAN INDEX OF POLYPHENYL HEXAGONAL CHAINS  

In this section, we first give two cut-edge transformations on ܲܲܥ, and then determine the 
extremal graphs by using the transformations. 
 

The first cut-edge transformation on ࡼࡼ :  Let ܩ = ݊)ܪ⋯ଶܪଵܪ ≥ 3)  be a 
polyphenyl hexagonal chain of length ݊ ଵݔ .  and ݔସ  are two cut-vertices in the ݇ −  ℎݐ
hexagon ܪ , and the distance between ݔଵ and ݔସ is 3. If ܩᇱ is the graph obtained from ܩ by 
deleting the cut edge ݔସݑାଵ  between ܪ  and ܪାଵ , and adding a new cut-edge ݔଷݑାଵ 
between ܪ  and ܪାଵ (see Figure 6), then we say that ܩᇱ is obtained from ܩ by the first 
cut-edge transformation.  

 

 
Figure 6: The first cut-edge transformation. 

 

Lemma 4  Let ܩ = ݊)ܪ⋯ଶܪଵܪ ≥ 3) be a polyphenyl hexagonal chain of length ݊. ܩᇱ 
is obtained from ܩ by the first cut-edge transformation. Then (ܩ)ܬ < (ܩ)ܬܵ and (ᇱܩ)ܬ <
  .(ᇱܩ)ܬܵ
 

Proof. Let ܨଵ = ିଵܪ⋯ଶܪଵܪ ଶܨ , = ܪ ଷܨ , = ܪ⋯ାଶܪାଵܪ . The length of ܨଵ  is 
ܽ = ݇ − 1 and the length of ܨଷ is ܾ = ݊ − ݇. Obviously, ܽ + ܾ = ݊ − 1. Without loss of 
generality, let ܽ ≥ ܾ. For a vertex ݒ௫ ∈   ଵ, we haveܨ
(௫ݒ)ீܦ  = ∑  ௨∈ிభ ௫ݒ)ீ݀ , (ݑ + ∑  ௨∈ிమ ௫ݒ)ீ݀ (ݑ, + ∑  ௨∈ிయ ௫ݒ)ீ݀ ,  ,(ݑ
(௫ݒ)ᇲீܦ  = ∑  ௨∈ிభ ݀ீᇱ(ݒ௫ (ݑ, + ∑  ௨∈ிమ ݀ீᇲ(ݒ௫ , (ݑ + ∑  ௨∈ிయ ݀ீᇲ(ݒ௫  (ݑ,
            ∑  ௨∈ிభ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிభ ݀ீᇱ(ݒ௫   ,(ݑ,
            ∑  ௨∈ிమ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிమ ݀ீᇲ(ݒ௫   ,(ݑ,
            ∑  ௨∈ிయ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிయ ݀ீᇲ(ݒ௫ (ݑ, + 6ܾ.  
So, ீܦ(ݒ௫)− (௫ݒ)ᇲீܦ = 6ܾ and ீܦ(ݒ௫) > ௬ݒ For a vertex .(௫ݒ)ᇲீܦ ∈   ଷ, we haveܨ
(௬ݒ)ீܦ  = ∑  ௨∈ிభ (ݑ,௬ݒ)ீ݀ + ∑  ௨∈ிమ (ݑ,௬ݒ)ீ݀ + ∑  ௨∈ிయ  ,(ݑ,௬ݒ)ீ݀
(௬ݒ)ᇲீܦ  = ∑  ௨∈ிభ ݀ீᇱ(ݒ௬ (ݑ, + ∑  ௨∈ிమ ݀ீᇲ(ݒ௬ (ݑ, + ∑  ௨∈ிయ ݀ீᇲ(ݒ௬,  .(ݑ
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Furthermore, 
∑  ௨∈ிభ ,௬ݒ)ீ݀ (ݑ = ∑  ௨∈ிభ ݀ீᇱ(ݒ௬   ,(ݑ,
∑  ௨∈ிమ ,௬ݒ)ீ݀ (ݑ = ∑  ௨∈ிమ ݀ீᇲ(ݒ௬,   ,(ݑ
∑  ௨∈ிయ ,௬ݒ)ீ݀ (ݑ = ∑  ௨∈ிయ ݀ீᇲ(ݒ௬, (ݑ + 6ܽ. So, ீܦ(ݒ௬) (௬ݒ)ᇲீܦ− = 6ܽ  
(௬ݒ)ீܦ >  .(௬ݒ)ᇲீܦ

 

For a vertex in ܸ(ܨଶ) = ,ଷݔ,ଶݔ,ଵݔ}   }, it is easy to see thatݔ,ହݔ,ସݔ
(ଵݔ)ீܦ  (ଵݔ)ᇲீܦ− = −(ଶݔ)ீܦ (ଶݔ)ᇲீܦ = −(ଷݔ)ீܦ (ଷݔ)ᇲீܦ = 6ܾ, 
(ସݔ)ᇲீܦ  (ସݔ)ீܦ− = −(ହݔ)ᇲீܦ (ହݔ)ீܦ = −(ݔ)ᇲீܦ (ݔ)ீܦ = 6ܾ. 
(I) For an edge ݒ௫ݒ௬ ∈ (ଵܨ)ܧ ∪   we have ,(ଷܨ)ܧ

ଵ
ඥಸᇲ(௩ೣ)ಸᇲ(௩)

> ଵ
ඥಸ(௩ೣ)ಸ(௩)

                                              (1) 

and  
ଵ

ඥಸᇲ(௩ೣ)ାಸᇲ(௩)
> ଵ

ඥಸ(௩ೣ)ାಸ(௩)
                                            (2) 

 since ீܦ(ݒ௫) > (௬ݒ)ீܦ and (௫ݒ)ᇲீܦ >  .(௬ݒ)ᇲீܦ
(II) In what follows, we consider an edge in 
,ିଵݒଵݔ,ଵݔݔ,ݔହݔ,ହݔସݔ,ସݔଷݔ,ଷݔଶݔ,ଶݔଵݔ} {ାଵݑସݔ . Let ܯ = ∑  ௨∈ிభ (ݑ,ଵݔ)ீ݀ +
∑  ௨∈ிయ (ݑ,ସݔ)ீ݀ + ∑  ௨∈ிమ (ݑ,ݔ)ீ݀ , where ݔ ∈ ,ଷݔ,ଶݔ,ଵݔ} {ݔ,ହݔ,ସݔ . Then ܯ =
∑  ௨∈ிభ ݀ீᇱ(ݔଵ, (ݑ + ∑  ௨∈ிయ ݀ீᇱ(ݔଷ,ݑ) + ∑  ௨∈ிమ ݀ீᇱ(ݑ,ݔ). It can be checked directly that  
(ଵݔ)ீܦ  = ܯ + (ଵݔ)ᇲீܦ18ܾ = ܯ + 12ܾ 
(ଶݔ)ீܦ  = ܯ + 6ܽ + (ଶݔ)ᇲீܦ12ܾ = ܯ + 6ܽ + 6ܾ 
(ଷݔ)ீܦ  = ܯ + 12ܽ + (ଷݔ)ᇲீܦ6ܾ = ܯ + 12ܽ 
(ସݔ)ீܦ  = ܯ + (ସݔ)ᇲீܦ18ܽ = ܯ + 18ܽ + 6ܾ 
(ହݔ)ீܦ  = ܯ + 12ܽ + (ହݔ)ᇲீܦ6ܾ = ܯ + 12ܽ + 12ܾ 
(ݔ)ீܦ  = ܯ + 6ܽ + (ݔ)ᇲீܦ12ܾ = ܯ + 6ܽ + 18ܾ. 
(i) For the edges ݔଵݒିଵ,ݔସݑାଵ ∈ ,ିଵݒଵݔ and (ܩ)ܧ ାଵݑଷݔ ∈   we have ,(′ܩ)ܧ

ଵ
ඥಸᇲ(௫భ)ಸᇲ(௩ೖషభ)

+ ଵ
ඥಸᇲ(௫య)ಸᇲ(௨ೖశభ)

> ଵ
ඥಸ(௫భ)ಸ(௩ೖషభ)

+ ଵ
ඥಸ(௫ర)ಸ(௨ೖశభ)

         (3) 

 and  
ଵ

ඥಸᇲ(௫భ)ାಸᇲ(௩ೖషభ)
+ ଵ

ඥಸᇲ(௫య)ାಸᇲ(௨ೖశభ)
> ଵ

ඥಸ(௫భ)ାಸ(௩ೖషభ)
+ ଵ

ඥಸ(௫ర)ାಸ(௨ೖశభ)
.       (4) 

since ீܦ(ݔଵ) > (ଵݔ)ᇲீܦ (ିଵݒ)ீܦ , > (ିଵݒ)ᇲீܦ (ସݔ)ீܦ , > (ଷݔ)ᇲீܦ (ାଵݑ)ீܦ , >
 .(ାଵݑ)ᇲீܦ
(ii) For the edges ݔଵݔ,ݔଷݔସ ∈ (ܩ)ܧ , we have ீܦᇲ(ݔ) ≥ (ଵݔ)ᇲீܦ + (ଵݔ)ீܦ   ,6ܾ =
(ଵݔ)ᇲீܦ + 6ܾ and ீܦ(ݔ) = −(ݔ)ᇲீܦ 6ܾ. By Lemma 1, we can get  

 ଵ
ඥಸᇲ(௫భ)ಸᇲ(௫ల)

≥ ଵ
ඥಸ(௫భ)ಸ(௫ల)

                                      (5) 

and  
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 ଵ
ඥಸᇲ(௫భ)ାಸᇲ(௫ల)

≥ ଵ
ඥಸ(௫భ)ାಸ(௫ల)

                                           (6) 

Also, ீܦᇲ(ݔସ) ≥ (ଷݔ)ᇲீܦ + (ଷݔ)ீܦ   ,6ܾ = (ଷݔ)ᇲீܦ + 6ܾ and ீܦ(ݔସ) = (ସݔ)ᇲீܦ − 6ܾ, by 
Lemma 1, we have  

 ଵ
ඥಸᇲ(௫య)ಸᇲ(௫ర)

≥ ଵ
ඥಸ(௫య)ಸ(௫ర)

                              (7) 

and  
 ଵ

ඥಸᇲ(௫య)ାಸᇲ(௫ర)
≥ ଵ

ඥಸ(௫య)ାಸ(௫ర)
                                (8) 

(iii) For the edges ݔଵݔଶ,ݔସݔହ ∈ (ܩ)ܧ , let ݔ = (ଵݔ)ᇲீܦ ݕ , = (ଶݔ)ᇲீܦ ݓ , = (ସݔ)ீܦ , 
ݖ = (ହݔ)ீܦ . Then ீܦ(ݔଵ) = ݔ + 6ܾ (ଶݔ)ீܦ , = ݕ + 6ܾ (ସݔ)ᇲீܦ , = ݓ + 6ܾ (ହݔ)ᇲீܦ , =
ݖ + 6ܾ. Note that ݓ > ݖ ,ݔ > and  ݕ

௫
> 

௪
, 
௬

> 
௭

, by Lemma 3, we have  

 ଵ
ඥಸᇲ(௫భ)ಸᇲ(௫మ)

+ ଵ
ඥಸᇲ(௫ర)ಸᇲ(௫ఱ)

≥ ଵ
ඥಸ(௫భ)ಸ(௫మ)

+ ଵ
ඥಸ(௫ర)ಸ(௫ఱ)

                  (9) 

Now, let ݎଵ = (ସݔ)ீܦ + (ହݔ)ீܦ = ܯ2 + 30ܽ + 6ܾ ଶݎ , = (ସݔ)ᇲீܦ + (ହݔ)ᇲீܦ = ܯ2 +
30ܽ + 18ܾ ଵݐ , = (ଵݔ)ᇲீܦ + (ଶݔ)ᇲீܦ = ܯ2 + 6ܽ + 18ܾ ଶݐ , = (ଵݔ)ீܦ + (ଶݔ)ீܦ = ܯ2 +
6ܽ + 30ܾ . Then ݎଶ − ଵݎ = ଶݐ − ଵݐ = 12ܾ > 0 ଵݎ , − ଵݐ = 24ܽ − 12ܾ > 0  (since ܽ ≥ ܾ >
0). By Lemma 2, we have  

 ଵ
ඥಸᇲ(௫భ)ାಸᇲ(௫మ)

+ ଵ
ඥಸᇲ(௫ర)ାಸᇲ(௫ఱ)

> ଵ
ඥಸ(௫భ)ାಸ(௫మ)

+ ଵ
ඥಸ(௫ర)ାಸ(௫ఱ)

      (10) 

(iv) For the edges ݔଶݔଷ, ݔହݔ ∈   by the same ways as in (iii), we can get ,(ܩ)ܧ
 ଵ

ඥಸᇲ(௫మ)ಸᇲ(௫య)
+ ଵ

ඥಸᇲ(௫ఱ)ಸᇲ(௫ల)
≥ ଵ

ඥಸ(௫మ)ಸ(௫య)
+ ଵ

ඥಸ(௫ఱ)ಸ(௫ల)
            (11) 

 ଵ
ඥಸᇲ(௫మ)ାಸᇲ(௫య)

+ ଵ
ඥಸᇲ(௫ఱ)ାಸᇲ(௫ల)

> ଵ
ඥಸ(௫మ)ାಸ(௫య)

+ ଵ
ඥಸ(௫ఱ)ାಸ(௫ల)

        (12) 

From Equations (1−12) and the definition of the Balaban index and the sum-
Balaban index, we have (ܩ)ܬ < (ܩ)ܬܵ and (ᇱܩ)ܬ <  ∎                                                .(ᇱܩ)ܬܵ

 

The second cut-edge transformation on ࡼࡼ :  Let ܩ = ݊)ܪ⋯ଶܪଵܪ ≥ 3)  be a 
polyphenyl hexagonal chain of length ݊ ଵݔ .  and ݔଷ  are two cut-vertices in the ݇ −  ℎݐ
hexagon ܪ , and the distance between ݔଵ and ݔସ is 2. If ܩᇱ is the graph obtained from ܩ by 
deleting the cut edge ݔଷݑାଵ  between ܪ  and ܪାଵ , and adding a new cut-edge ݔଶݑାଵ 
between ܪ  and ܪାଵ (see Figure 7), then we say that ܩᇱ is obtained from ܩ by the second 
cut-edge transformation.  
 

Lemma 5  Let ܩ = ݊)ܪ⋯ଶܪଵܪ ≥ 3) be a polyphenyl hexagonal chain of length ݊. ܩᇱ 
is obtained from ܩ  by the second cut-edge transformation. Then (ܩ)ܬ < (ᇱܩ)ܬ  and 
(ܩ)ܬܵ <   .(ᇱܩ)ܬܵ
 



248                                                                                                      ZUO, TANG AND  DENG 

 

Proof. Let ܨଵ = ିଵܪ⋯ଶܪଵܪ ଶܨ , = ܪ ଷܨ , = ܪ⋯ାଶܪାଵܪ . The length of ܨଵ  is 
ܽ = ݇ − 1 and the length of ܨଷ is ܾ = ݊ − ݇. Obviously, ܽ + ܾ = ݊ − 1. Without loss of 
generality, let ܽ ≥ ܾ. 
 

 
 

Figure  7: The second cut-edge transformation. 
 

For a vertex ݒ௫ ∈   ଵ, we haveܨ
(௫ݒ)ீܦ     = ∑  ௨∈ிభ ௫ݒ)ீ݀ (ݑ, + ∑  ௨∈ிమ ௫ݒ)ீ݀ , (ݑ + ∑  ௨∈ிయ ௫ݒ)ீ݀  ,(ݑ,
(௫ݒ)ᇲீܦ  = ∑  ௨∈ிభ ݀ீᇱ(ݒ௫ (ݑ, + ∑  ௨∈ிమ ݀ீᇲ(ݒ௫ , (ݑ + ∑  ௨∈ிయ ݀ீᇲ(ݒ௫  (ݑ,
 and ∑  ௨∈ிభ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிభ ݀ீᇱ(ݒ௫ , (ݑ , ∑  ௨∈ிమ ௫ݒ)ீ݀ , (ݑ = ∑  ௨∈ிమ ݀ீᇲ(ݒ௫ (ݑ, , 
∑  ௨∈ிయ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிయ ݀ீᇲ(ݒ௫ (ݑ, + 6ܾ . So, ீܦ(ݒ௫)− (௫ݒ)ᇲீܦ = 6ܾ  and ீܦ(ݒ௫) >
௬ݒ For a vertex .(௫ݒ)ᇲீܦ ∈   ଷ, we haveܨ
(௬ݒ)ீܦ  = ∑  ௨∈ிభ (ݑ,௬ݒ)ீ݀ + ∑  ௨∈ிమ (ݑ,௬ݒ)ீ݀ + ∑  ௨∈ிయ  ,(ݑ,௬ݒ)ீ݀
(௬ݒ)ᇲீܦ  = ∑  ௨∈ிభ ݀ீᇱ(ݒ௬ (ݑ, + ∑  ௨∈ிమ ݀ீᇲ(ݒ௬ (ݑ, + ∑  ௨∈ிయ ݀ீᇲ(ݒ௬,  (ݑ
 and ∑  ௨∈ிయ ,௬ݒ)ீ݀ (ݑ = ∑  ௨∈ிయ ݀ீᇱ(ݒ௬ (ݑ, , ∑  ௨∈ிమ ,௬ݒ)ீ݀ (ݑ = ∑  ௨∈ிమ ݀ீᇲ(ݒ௬ (ݑ, , 
∑  ௨∈ிభ ,௬ݒ)ீ݀ (ݑ = ∑  ௨∈ிభ ݀ீᇲ(ݒ௬, (ݑ + 6ܽ . So, ீܦ(ݒ௬) (௬ݒ)ᇲீܦ− = 6ܽ  and ீܦ(ݒ௬) >
ଶܨ For a vertex in .(௬ݒ)ᇲீܦ = ,ଷݔ,ଶݔ,ଵݔ}   }, letݔ,ହݔ,ସݔ
ܯ  = ∑  ௨∈ிభ (ݑ,ଵݔ)ீ݀ + ∑  ௨∈ிయ (ݑ,ଶݔ)ீ݀ + ∑  ௨∈ிమ ,ݔ)ீ݀ (ݑ = ∑  ௨∈ிభ ݀ீᇱ(ݔଵ,ݑ) +
∑  ௨∈ிయ ݀ீᇱ(ݔଶ,ݑ) + ∑  ௨∈ிమ ݀ீᇱ(ݑ,ݔ) , where ݔ ∈ ,ଷݔ,ଶݔ,ଵݔ} {ݔ,ହݔ,ସݔ . It can be checked 
directly that  
(ଵݔ)ீܦ  = ܯ + (ଵݔ)ᇲீܦ12ܾ = ܯ + 6ܾ 
(ଶݔ)ீܦ  = ܯ + 6ܽ + (ଶݔ)ᇲீܦ6ܾ = ܯ + 6ܽ 
(ଷݔ)ீܦ  = ܯ + (ଷݔ)ᇲீܦ12ܽ = ܯ + 12ܽ + 6ܾ 
(ସݔ)ீܦ  = ܯ + 18ܽ + (ସݔ)ᇲீܦ6ܾ = ܯ + 18ܽ + 12ܾ 
(ହݔ)ீܦ  = ܯ + 12ܽ + (ହݔ)ᇲீܦ12ܾ = ܯ + 12ܽ + 18ܾ 
(ݔ)ீܦ  = ܯ + 6ܽ + (ݔ)ᇲீܦ18ܾ = ܯ + 6ܽ + 12ܾ. 
(I) For an edge ݒ௫ݒ௬ ∈ (ଵܨ)ܧ ∪ (௫ݒ)ீܦ we have ,(ଷܨ)ܧ > (௬ݒ)ீܦ ,(௫ݒ)ᇲீܦ >  .(௬ݒ)ᇲீܦ
So,  
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 ଵ
ඥಸᇲ(௩ೣ)ಸᇲ(௩)

> ଵ
ඥಸ(௩ೣ)ಸ(௩)

                                                (13) 

and  
 ଵ

ඥಸᇲ(௩ೣ)ାಸᇲ(௩)
> ଵ

ඥಸ(௩ೣ)ାಸ(௩)
                                                 (14) 

(II) In what follows, we consider an edge in 
,ିଵݒଵݔ,ଵݔݔ,ݔହݔ,ହݔସݔ,ସݔଷݔ,ଷݔଶݔ,ଶݔଵݔ}  .{ାଵݑଷݔ
(i) For the edges ݔଵݒିଵ,ݔଷݑାଵ ∈ ,ିଵݒଵݔ and (ܩ)ܧ ାଵݑଶݔ ∈  it is easy to know ,(′ܩ)ܧ
that ீܦ(ݔଵ) > (ଵݔ)ᇲீܦ (ିଵݒ)ீܦ , > (ିଵݒ)ᇲீܦ (ଷݔ)ீܦ , > (ଶݔ)ᇲீܦ (ାଵݑ)ீܦ , >
  And .(ାଵݑ)ᇲீܦ

ଵ
ඥಸᇲ(௫భ)ಸᇲ(௩ೖషభ)

+ ଵ
ඥಸᇲ(௫మ)ಸᇲ(௨ೖశభ)

> ଵ
ඥಸ(௫భ)ಸ(௩ೖషభ)

+ ଵ
ඥಸ(௫య)ಸ(௨ೖశభ)

,          (15) 
ଵ

ඥಸᇲ(௫భ)ାಸᇲ(௩ೖషభ)
+ ଵ

ඥಸᇲ(௫మ)ାಸᇲ(௨ೖశభ)
> ଵ

ඥಸ(௫భ)ାಸ(௩ೖషభ)
+ ଵ

ඥಸ(௫య)ାಸ(௨ೖశభ)
.      (16) 

(ii) For the edges ݔଶݔଷ,ݔହݔ ∈ (ଷݔ)ᇲீܦ because ,(ܩ)ܧ > (ଶݔ)ᇲீܦ + 6ܾ, by Lemma 1, we 
have  

 ଵ
ඥಸᇲ(௫మ)ಸᇲ(௫య)

≥ ଵ
ඥಸ(௫మ)ಸ(௫య)

                                (17) 

and  
 ଵ

ඥಸᇲ(௫మ)ାಸᇲ(௫య)
= ଵ

ඥಸ(௫మ)ାಸ(௫య)
.                                  (18) 

Also, because ீܦᇲ(ݔହ) = (ݔ)ᇲீܦ + 6ܾ, by Lemma 1, we have  
 ଵ

ඥಸᇲ(௫ఱ)ಸᇲ(௫ల)
≥ ଵ

ඥಸ(௫ఱ)ಸ(௫ల)
                               (19) 

and  
 ଵ

ඥಸᇲ(௫ఱ)ାಸᇲ(௫ల)
= ଵ

ඥಸ(௫ఱ)ାಸ(௫ల)
.                                 (20) 

(iii) For the edges ݔଵݔଶ,ݔଷݔସ ∈ (ܩ)ܧ , let ݔ = (ଶݔ)ᇲீܦ ݕ , = (ଵݔ)ᇲீܦ ݓ , = (ଷݔ)ீܦ , 
ݖ = (ସݔ)ீܦ , then ݔ + 6ܾ = (ଶݔ)ீܦ ݕ , + 6ܾ = (ଵݔ)ீܦ ݓ , + 6ܾ = (ଷݔ)ᇲீܦ ݖ , + 6ܾ =
ݓ Note that .(ସݔ)ᇲீܦ > ݖ ,ݔ >  ,ݕ

௫
> 

௪
, 
௬

> 
௭

, by Lemma 3, we have  

 ଵ
ඥಸᇲ(௫భ)ಸᇲ(௫మ)

+ ଵ
ඥಸᇲ(௫య)ಸᇲ(௫ర)

> ଵ
ඥಸ(௫భ)ಸ(௫మ)

+ ଵ
ඥಸ(௫య)ಸ(௫ర)

.               (21) 

Let ݎଵ = (ଷݔ)ீܦ + (ସݔ)ீܦ = ܯ2 + 30ܽ + 6ܾ ଶݎ , = (ଷݔ)ᇲீܦ + (ସݔ)ᇲீܦ = ܯ2 + 30ܽ +
18ܾ ଵݐ , = (ଵݔ)ᇲீܦ + (ଶݔ)ᇲீܦ = ܯ2 + 6ܽ + 6ܾ ଶݐ , = (ଵݔ)ீܦ + (ଶݔ)ீܦ = ܯ2 + 6ܽ +
18ܾ. Then ݎଶ − ଵݎ = ଶݐ − ଵݐ = 12ܾ > ଵݎ ,0 − ଵݐ = 24ܽ > 0. By Lemma 2, we have  

 ଵ
ඥಸᇲ(௫భ)ାಸᇲ(௫మ)

+ ଵ
ඥಸᇲ(௫య)ାಸᇲ(௫ర)

≥ ଵ
ඥಸ(௫భ)ାಸ(௫మ)

+ ଵ
ඥಸ(௫య)ାಸ(௫ర)

      (22) 

(iv) For the edges ݔଵݔ,ݔସݔହ ∈   by the same way as in (iii), we have ,(ܩ)ܧ
 ଵ

ඥಸᇲ(௫భ)ಸᇲ(௫ల)
+ ଵ

ඥಸᇲ(௫ర)ಸᇲ(௫ఱ)
≥ ଵ

ඥಸ(௫భ)ಸ(௫ల)
+ ଵ

ඥಸ(௫ర)ಸ(௫ఱ)
,               (23) 

ଵ
ඥಸᇲ(௫భ)ାಸᇲ(௫ల)

+ ଵ
ඥಸᇲ(௫ర)ାಸᇲ(௫ఱ)

> ଵ
ඥಸ(௫భ)ାಸ(௫ల)

+ ଵ
ඥಸ(௫ర)ାಸ(௫ఱ)

.            (24) 
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From Equations (13−24) and the definitions of the Balaban index and the sum-Balaban 
index, we have (ܩ)ܬ < (ܩ)ܬܵ and (ᇱܩ)ܬ <  ∎                                                              .(ᇱܩ)ܬܵ

 

Using the transformations above, we can get the extremal graphs for the (sum-) 
Balaban index on polyphenyl hexagonal chains. 
 

Theorem 6  Let ܲܲܥ be a polyphenyl hexagonal chain of length ݊. Then  
)ܬ ܲ) ≤ (ܥܲܲ)ܬ ≤ )ܬ ܱ),        ܵܬ( ܲ) ≤ (ܥܲܲ)ܬܵ ≤ )ܬܵ ܱ), 

with equalities if and only if ܲܲܥ = ܱ, ܲܲܥ = ܲ, respectively.  
 

Proof. Suppose on the contrary that ܩ = ݊)ܪ⋯ଶܪଵܪ ≥ 3) , a polyphenyl hexagonal 
chain of length ݊, has the maximum (sum-) Balaban index, and ܩ ≇ ܱ . Then there is 
1 < ݇ < ݊ such that the distance between two cut-vertices ݑ and ݒ, which belongs to the 
݇-th hexagon ܪ , is 2 or 3. Let ܩᇱ be the graph obtained from ܩ by using the first or the 
second cut-edge transformation. By Lemmas 4 and 5, we have (ܩ)ܬ < (ܩ)ܬܵ and (ᇱܩ)ܬ <
a contradiction. So, ܱ ,(ᇱܩ)ܬܵ  is the unique graph with the maximum (sum-) Balaban 
index. Similarly, we can show that ܲ  is the unique graph with the minimum (sum-) 
Balaban index.                                                                                                                        ∎ 
 
3.  (SUM-) BALABAN INDEX OF SPIRO HEXAGONAL CHAINS 

As in the last section, we first give two transformations on ܵܲܥ. 
 

The first cut-vertex transformation on ࡼࡿ:  Let ܩ = ݊)ܪ⋯ଶܪଵܪ ≥ 3) be a spiro 
hexagonal chain of length ݊, ݒ = ାଵݒ ଵ andݔ =  ସ are two cut-vertices in ݇-th hexagonݔ
ܪ . If ܩᇱ is the graph obtained from ܩ by taking two cut-vertices ݒ = ାଵݒ ଵ andݔ =  ଷ inݔ
݇ -th hexagon ܪ , then we say that ܩᇱ  is obtained from ܩ  by the first cut-vertex 
transformation, see Figure 8.  
 

 
Figure 8: The first cut-vertex transformation. 



The Extremal Graphs for (Sum-) Balaban Index of some Hexagonal Chains                     251 

 

Lemma 7  Let ܩ = ݊)ܪ⋯ଶܪଵܪ ≥ 3) be a spiro hexagonal chain of length ݊ ᇱܩ .  is 
obtained from ܩ  by the first cut-vertex transformation. Then (ܩ)ܬ < (ܩ)ܬܵ and (ᇱܩ)ܬ <
  .(ᇱܩ)ܬܵ
 

Proof. Let ܨଵ = ିଵܪ⋯ଶܪଵܪ ଶܨ , = ܪ ଷܨ , = ܪ⋯ାଶܪାଵܪ  in Figure 8. ܸ(ܨଶ) =
,ଵݔ} ,ହݔ,ସݔ,ଷݔ,ଶݔ ܽ ,ଷ is ܽ and ܾ, respectivelyܨ ଵ andܨ } and the length ofݔ + ܾ = ݊ − 1. 
Let ܯ = ∑  ௨∈ிభ ,ଵݔ)ீ݀ (ݑ + ∑  ௨∈ிయ ,ସݔ)ீ݀ (ݑ + ∑  ௨∈ிమ ,ݔ)ீ݀ (ݑ , where ݔ ∈ (ଶܨ)ܸ . Then 
ܯ = ∑  ௨∈ிభ ݀ீᇲ(ݔଵ,ݑ) + ∑  ௨∈ிయ ݀ீᇲ(ݔଷ,ݑ) + ∑  ௨∈ிమ ݀ீᇲ(ݔ,  .(ݑ
For a vertex ݒ௫ ∈   ଵ, we haveܨ
(௫ݒ)ீܦ  = ∑  ௨∈ிభ ௫ݒ)ீ݀ (ݑ, + ∑  ௨∈ிమ ௫ݒ)ீ݀ (ݑ, + ∑  ௨∈ிయ ௫ݒ)ீ݀  ,(ݑ,
(௫ݒ)ᇲீܦ  = ∑  ௨∈ிభ ݀ீᇲ(ݒ௫ , (ݑ + ∑  ௨∈ிమ ݀ீᇲ(ݒ௫ (ݑ, + ∑  ௨∈ிయ ݀ீᇲ(ݒ௫ ,  ,(ݑ
 and ∑  ௨∈ிభ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிభ ݀ீᇱ(ݒ௫ , (ݑ , ∑  ௨∈ிమ ௫ݒ)ீ݀ , (ݑ = ∑  ௨∈ிమ ݀ீᇲ(ݒ௫ (ݑ, , 
∑  ௨∈ிయ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிయ ݀ீᇲ(ݒ௫ (ݑ, + 6ܾ . So, ீܦ(ݒ௫)− (௫ݒ)ᇲீܦ = 6ܾ  and ீܦ(ݒ௫) >
(௬ݒ)ீܦ Similarly, we have .(௫ݒ)ᇲீܦ (௬ݒ)ᇲீܦ− = 6ܽ for a vertex ݒ௬ ∈  ଷ. For a vertex inܨ
(ଶܨ)ܸ = ,ଵݔ} ,ହݔ,ସݔ,ଷݔ,ଶݔ   }, it can be check directly thatݔ
(ଵݔ)ீܦ  = ܯ + (ଵݔ)ᇲீܦ,18ܾ = ܯ + 12ܾ 
(ଶݔ)ீܦ  = ܯ + 6ܽ + (ଶݔ)ᇲீܦ,12ܾ = ܯ + 6ܽ + 6ܾ 
(ଷݔ)ீܦ  = ܯ + 12ܽ + (ଷݔ)ᇲீܦ,6ܾ = ܯ + 12ܽ 
(ସݔ)ீܦ  = ܯ + (ସݔ)ᇲீܦ,18ܽ = ܯ + 18ܽ + 6ܾ 
(ହݔ)ீܦ  = ܯ + 12ܽ + (ହݔ)ᇲீܦ,6ܾ = ܯ + 12ܽ + 12ܾ 
(ݔ)ீܦ  = ܯ + 6ܽ + (ݔ)ᇲீܦ,12ܾ = ܯ + 6ܽ + 18ܾ. 
Using the method as in Lemma 4, we can get Lemma 7.                                                      ∎ 
 

The second cut-vertex transformation on ࡼࡿ:  Let ܩ = ݊)ܪ⋯ଶܪଵܪ ≥ 3) be a spiro 
hexagonal chain of length ݊, ݒ = ାଵݒ ଵ andݔ =  ଷ are two cut-vertices in ݇-th hexagonݔ
ܪ . If ܩᇱ is the graph obtained from ܩ by taking two cut-vertices ݒ = ାଵݒ ଵ andݔ =  ଶ inݔ
݇ -th hexagon ܪ , then we say that ܩᇱ  is obtained from ܩ  by the second cut-vertex 
transformation (see Figure 9).  

 
Figure 9: The second cut-vertex transformation. 
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Lemma 8  Let ܩ = ݊)ܪ⋯ଶܪଵܪ ≥ 3) be a spiro hexagonal chain of length ݊ ᇱܩ .  is 
obtained from ܩ by the second cut-vertex transformation. Then (ܩ)ܬ < (ܩ)ܬܵ and (ᇱܩ)ܬ <
  .(ᇱܩ)ܬܵ

 
Proof. The proof is similar to Lemma 5, we omit it here. 

 

Using the first and the second cut-vertex transformations and Lemmas 7-8, we can 
directly obtain the following result, which determines the extremal graphs for the (sum-) 
Balaban index on spiro hexagonal chains. 

 

Theorem 9  Let ܵܲܥ be a spiro hexagonal chain of length ݊. Then  
ܵ)ܬ  ܲ) ≤ (ܥܲܵ)ܬ ≤ ܵ)ܬ ܱ)andܵܬ(ܵ ܲ) ≤ (ܥܲܵ)ܬܵ ≤ ܵ)ܬܵ ܱ), 
with equalities if and only if ܵܲܥ = ܵ ܱ and ܵܲܥ = ܵ ܲ, respectively.  

 

Theorem 9 also shows that ܵ ܱ and ܵ ܲ are the unique graph with the maximum 
and the minimum (sum-) Balaban index among all spiro hexagonal chains of length ݊. 
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1. INTRODUCTION  

An isometry is a distance-preserving injective map between metric spaces. The isometries 
associated with the Euclidean metric, are called Euclidean motions or rigid motions, which 
forms a Lie group under composition. This ancient group is among the oldest and most 
studied implicitly, long before the concept of group was invented. 

One of the applications of isometries is to transfer or rotate the coordinate system in 
order to simplify the computations or visions. This usually happens in all branches of 
sciences which apply the analytic geometry. 
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In computational chemistry, sometimes, one needs to calculate some properties in 
each point on the area of molecule or above and below it, so one must put ghost (Bq) atom 
in an arbitrary point, exactly. Evaluation of the aromaticity, antiaromaticity and 
nonaromaticity of compounds by nucleus independent chemical shift criterion (NICS), is an 
example for it. To NICS calculation at each point above and below of the all polygons, one 
must put some Bq atoms in various distances on the ݖ axis, straightforwardly. In non-planar 
molecule, vertically putting Bq atoms in various distances of the rings in different sheets is 
not very hard, but estimation of components of the nuclear magnetic shielding tensors 
௫௫ߪ ௬௬ߪ, , ௭௭ߪ , … is very hard and for more complex molecules is impossible. But, using our 
proposed method and doing calculation separately for each polygon facilitate estimation of 
nuclear magnetic shielding tensors components. We refer to [3] as a good review published 
which has collected a large number of works related to NICS criterion. 

 By mathematical language, in this paper we transfer the origin to the center of a 
pentagon (or hexagon) in the space, such that the ݖ-axes is perpendicular to the plane 
containing the polygon (or hexagon). Our motivation is the study of the geometric structure 
of some molecules such as Corannulene and Sumanene which are polycyclic aromatic 
hydrocarbons. This method can be used for other molecules which have polygons in their 
structure (Fullerenes, for example). Thanks to this technique the authors investigated the 
evaluation of aromaticity of some non-planar molecules in [7]. The content of this article is 
the mathematical description of the mentioned process. To see the related chemical issues, 
we refer the reader to [1] and [10]. 

 We begin with a quick review on isometries and frames, and then obtain the desire 
isometry for our purpose. Finally, as an example we will apply the program for some 
molecules. 
 
2. ISOMETRIES AND FRAMES 

In this section, we shall investigate the isometries of Euclidean space, and see how two 
frames uniquely determine an isometry. 

 
Definition 2. 1. An isometry, or rigid motion, of Euclidean space is a mapping that 
preserves the Euclidean distance ݀ between points. More precisely, an isometry is a 
mapping ܨ:ℝଷ → ℝଷ for which ݀൫(ݍ)ܨ,()ܨ൯ = , for all ,(ݍ,)݀ ݍ ∈ ℝଷ. 

 
 The most important examples of isometries are translations and orthogonal 
transformations. 
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Definition 2. 2. Translation by a point ܽ ∈ ℝଷ is a map ܶ:ℝଷ → ℝଷ , for which ܶ(ݑ) = ݑ +
ܽ. An orthogonal transformation of ℝଷ is a linear transformation ܥ:ℝଷ → ℝଷ which 
preserves inner product, namely (ݍ)ܥ.()ܥ = .  .ݍ
 

For instance, rotations around a coordinate axis are orthogonal transformations. By 
simple computations, one can show that If ܨ and ܩ are isometries of ℝଷ, then the 
composite mapping ܩ ○  is also an isometry of ℝଷ. A vital theorem in differential ܨ
geometry asserts that If ܨ is an isometry of ℝଷ, then there exists a unique translation ܶ and 
a unique orthogonal transformation ܥ such that ܨ = ܶ ○  .[6] ܥ

 
Definition 2. 3. A set {݁ଵ, ݁ଶ, ݁ଷ} of pair-wise orthogonal unit vectors tangent to  ∈ ℝଷ is 
called a frame at . 
 

For example, {݅ = (1,0,0), ݆ = (0,1,0),݇ = (0,0,1)} is a frame at each point of ℝଷ, 
which is called the standard frame. It is clear that at each point of the Euclidean space, 
there exist uncountable frames. Depending on the application, certain frames are used. For 
example in local curve theory, the Frenet frame [5], determines the geometric properties of 
the curve. Here we use the frames to obtain an important isometry. First we state a vital 
theorem in differential geometry, see [6] for example. 
 

Theorem 2. 4. For any two frames {݁ଵ, ݁ଶ, ݁ଷ} and { ଵ݂, ଶ݂ , ଷ݂} at the points ݍ, ∈ ℝଷ 
respectively, there exists a unique isometry ܨ of ℝଷ such that ܨ maps the tangent vector ݁ 
to tangent vector ݂, for ݅ = 1, 2, 3. 
 

To compute the isometry ܨ in the above theorem, let ݁ = (ܽଵ, ܽଶ,ܽଷ), ݂ =
( ܾଵ, ܾଶ, ܾଷ), ܣ = (ܽ), ܤ = ( ܾ), and ܥ =  are the attitude matrices of the ܤ and ܣ .ܣ௧ܤ
{݁} and { ݂} frames, respectively. Now ܥ is an orthogonal transformation and ܥ(݁) = ݂ . 
If ܶ be the translation by the point ݍ − ܨ then ,()ܥ = ܶ ○  .is the desired isometry ܥ

 
3. APPLICATION AND ILLUSTRATION 

Here we apply the last theorem in previous section to transfer the origin and the standard 
frame to the center of an arbitrary pentagon or hexagon in a polycyclic molecule 
(corannulene, sumanene, or fullerene), such that the ݖ-axis will be perpendicular on this 
polygon. To do so, we need a frame on the center point of polygon. 

Although we don't investigate the chemical aspects of these compounds, a brief 
introduction may be interesting (for some mathematical facets of Fullerenes, see [2], [8], 
and [9]). 
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Corannulene is a polycyclic aromatic hydrocarbon with one central pentagonal ring 
and five peripheral hexagonal rings, Figure 1(a). Sumanene is a polycyclic aromatic 
hydrocarbon with one central hexagonal ring and three peripheral hexagonal and three 
peripheral pentagonal rings, alternately, Figure 1(b). Fullerenes are a family of carbon 
allotropes which composed entirely of carbon, in the form of a sphere, ellipsoid, cylinder, 
or tube. The structure of fullerenes is composed of hexagonal, pentagonal or sometimes 
heptagonal and octagonal rings, Figure 1(c). 

 

 
Figure 1. Structure of: (a) corannulene, (b) sumanene, and (c) a fullerene  molecules. 

 
We describe the method for a hexagon, the case pentagon is similar. Let ଵ, ଶ and 

ଶሬሬሬሬሬሬሬሬ⃗ଵ ଷ are three consecutive vertices of the hexagon. Then the vector × ଷሬሬሬሬሬሬሬሬ⃗ଵ  is 
perpendicular to the plane containing the hexagon. Dividing this vector by its own length, 
we have the unit vector 

ଷݑ =
ଶሬሬሬሬሬሬሬሬ⃗ଵ × ଷሬሬሬሬሬሬሬሬ⃗ଵ

ଶሬሬሬሬሬሬሬሬ⃗ଵ| × ଷሬሬሬሬሬሬሬሬ⃗ଵ |. 

 Multiply ݑଷ by the unit vector ݑଵ = భమሬሬሬሬሬሬሬሬሬሬ⃗
|భమሬሬሬሬሬሬሬሬሬሬ⃗ |

 to get the unit vector ݑଶ = ଷݑ ×  ଵ. Nowݑ

the set {ݑଵ, ,ଶݑ ,ଵݑ} which maps the frame ܨ ଷ} is a frame. To obtain an isometryݑ ,ଶݑ  ଷ} toݑ
the standard frame {݅, ݆,݇}, let ݑଵ  =  (ܽଵଵ, ܽଵଶ , ܽଵଷ), ଶݑ  =  (ܽଶଵ,ܽଶଶ, ܽଶଷ), ଷݑ  =
 (ܽଷଵ,ܽଷଶ , ܽଷଷ), then ܣ = (ܽ) and ܤ is the identity matrix, so ܥ = ܣ௧ܤ =  :namely ,ܣ

ܥ = ൭
ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

൱, 

i.e. if ݍ = ,ݔ) ,ݕ  then its new coordinate is ,ݍ ௧ be the primary coordinate of the point(ݖ
given by: 

(ݍ)ܨ = ൭
ܺ
ܻ
ܼ
൱ = ൭

ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

൱ቆ
ݔ
ݕ
ݖ
ቇ. 

 We did all calculations of coordinate transformation in MATLAB environment. 
This program has been shown in the following lines. 
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function [B,Fx]=Transfer(A); 
 
%      A: First coordination of the molecule 
%      B: New coordination after origin transfer 
%      Fx: Final coordination 
clc 
n1=input('n1=');n2=input('n2=');n3=input('n3='); 
n4=input('n4=');n5=input('n5=');n6=input('n6='); 
c=mean([A(n1,:);A(n2,:);A(n3,:);A(n4,:);A(n5,:);A(n6,:)])*(-1); 
B=[(A(:,1)+c(1,1)),(A(:,2)+c(1,2)),(A(:,3)+c(1,3))]; 
p1=B(n1,:);p2=B(n2,:);p3=B(n3,:); 
p1p2=[p2(1,1)-p1(1,1),p2(1,2)-p1(1,2),p2(1,3)-p1(1,3)]; 
p1p3=[p3(1,1)-p1(1,1),p3(1,2)-p1(1,2),p3(1,3)-p1(1,3)]; 
u4=[(p2(1,2)-p1(1,2))*(p3(1,3)-p1(1,3))-(p2(1,3)-p1(1,3))* 
(p3(1,2)-p1(1,2)),(p2(1,3)-p1(1,3))*(p3(1,1)-p1(1,1))-(p2(1,1)-p1(1,1))* 
(p3(1,3)-p1(1,3)),(p2(1,1)-p1(1,1))*(p3(1,2)-p1(1,2))-(p2(1,2)-p1(1,2))* 
(p3(1,1)-p1(1,1))]; 
Q=norm(p1p2);T=norm(u4); 
a11=(p2(1,1)-p1(1,1))/Q; 
a12=(p2(1,2)-p1(1,2))/Q; 
a13=(p2(1,3)-p1(1,3))/Q; 
a31=((p2(1,2)-p1(1,2))*(p3(1,3)-p1(1,3))-(p2(1,3)-p1(1,3))*(p3(1,2)-p1(1,2)))/T; 
a32=((p2(1,3)-p1(1,3))*(p3(1,1)-p1(1,1))-(p2(1,1)-p1(1,1))*(p3(1,3)-p1(1,3)))/T; 
a33=((p2(1,1)-p1(1,1))*(p3(1,2)-p1(1,2))-(p2(1,2)-p1(1,2))*(p3(1,1)-p1(1,1)))/T; 
a21=(a13*a32)-(a12*a33); 
a22=(a11*a33)-(a13*a31); 
a23=(a12*a31)-(a11*a32); 
u1=[a11 a12 a13]; 
u2=[a21 a22 a23]; 
u3=[a31 a32 a33]; 
w=u1*u2';z=u2*u3';v=u3*u2'; 
H=[a11 a21 a31;a12 a22 a32;a13 a23 a33]; 
F=B';G=[F(1,:);F(2,:);F(3,:)]; 
Fx=(H'*G)'; 
 
 As an example we apply the program for corannulene molecule. Figure 2 shows the 
structure of molecule before and after translating and rotating the coordinate system. 

 
4. CONCLUSION AND REMARK 

Proposed methodology in this work helps ones to transmit origin of coordinate to an 
arbitrary point and changes the axes coordinate direction perpendicular to an arbitrary 
polygon. It facilitates estimation of components of the nuclear magnetic shielding tensors 
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in non-planar molecules and can be used for any calculation that needs to such coordinate 
change. Although our discussion was based on ݖ-axis, but it can be used for other axes by a 
simple rotation. 
 
 

 
Figure 2. Corannulene molecule: (a) origin coordinate in in arbitrary point, (b) molecule 
was rotated with uncertain angle such that $z$-axis is perpendicular to hexagon. 
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Recently two new degree concepts have been defined in graph 
theory: ev-degree and ve-degree. Also the ev-degree and ve-degree 
Zagreb and Randić indices have been defined very recently as 
parallel of the classical definitions of Zagreb and Randić indices. It 
was shown that ev-degree and ve-degree topological indices can be 
used as possible tools in QSPR researches [2]. In this paper, we 
define the ve-degree and ev-degree Narumi–Katayama indices, 
investigate the predicting power of these novel indices and extremal 
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1. INTRODUCTION  

Topological indices have important place in theoretical chemistry. Many topological 
indices were defined by using vertex degree concept. The Zagreb and Randić indices are 
the most used degree based topological indices so far in mathematical and chemical 
literature among the all topological indices. Very recently, Chellali, Haynes, Hedetniemi 
and Lewishave published a seminal study: On ve-degrees and ev-degrees in graphs [1]. The 
authors defined two novel degree concepts in graph theory; ev-degrees and ve-degrees and 
investigate some basic mathematical properties of both novel graph invariants with regard 
to graph regularity and irregularity [1]. After given the equality of the total ev-degree and 
total ve-degree for any graph, also the total ev-degree and the total ve-degree were stated as 
in relation to the first Zagreb index. It was proposed in the article that the chemical 
applicability of the total ev-degree (and the total ve-degree) could be an interesting problem 
in view of chemistry and chemical graph theory.  In the light of this suggestion, one of the 
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present author has carried these novel degree concepts to chemical graph theory by 
defining the ev-degree and ve-degree Zagreb and Randić indices [2]. It was compared these 
new group ev-degree and ve-degree indices with the other well-known and most used 
topological indices in literature such as; Wiener, Zagreb and Randić indices by modeling 
some physicochemical properties of octane isomers [2]. It was shown that the ev-degree 
Zagreb index, the ve-degree Zagreb and the ve-degree Randić indices give better correlation 
than Wiener, Zagreb and Randić indices to predict the some specific physicochemical 
properties of octanes [2]. Also it was given the relations between the second Zagreb index 
and ev-degree and ve-degree Zagreb indices and some mathematical properties of ev-degree 
and ve-degree Zagreb indices [2]. In this paper we define the ve-degree and ev-degree 
Narumi–Katayama indices, investigate the predicting power of these novel indices and 
extremal graphs with respect to these topological indices. Also we give some basic 
mathematical properties of ev-degree and ve-degree Zagreb indices.  

A graph ܩ =  ܸ consists of two nonempty sets ܸ and 2-element subsets of (ܧ,ܸ)
namely ܧ. The elements of ܸ are called vertices and the elements of ܧ are called edges. For 
a vertex ݒ, deg (ݒ) show the number of edges that incident to ݒ. The set of all vertices 
which adjacent to ݒ  is called the open neighborhood of ݒ and denoted by ܰ(ݒ).  If we add 
the vertex ݒ to ܰ(ݒ), then we get the closed neighborhood of [ݒ]ܰ ,ݒ.  

The first and second Zagreb indices [3] defined as follows: The first Zagreb index 
of a connected graph ܩ, defined as, 

ଵܯ  = (ܩ)ଵܯ = ∑ deg (ݑ)ଶ௨∈(ீ) = ∑ (deg(ݑ) + deg(ݒ)).௨௩∈ா(ீ)  
and the second Zagreb index of a connected graph ܩ, defined as 

ଶܯ  = (ܩ)ଶܯ = ∑ deg(ݑ) . deg(ݒ).௨௩∈ா(ீ)  
The authors investigated the relationship between the total π-electron energy on molecules 
and Zagreb indices [3]. For the details see the references [4−6]. Randić investigated the 
measuring the extent of branching of the carbon-atom skeleton of saturated hydrocarbons 
via Randić index [7]. The Randić index of a connected graph G defined as; 

 ܴ = (ܩ)ܴ = ∑ (deg(ݑ) . deg(ݒ))ିଵ ଶ⁄
௨௩∈ா(ீ) . 

We refer the interested reader to [8−10] and the references therein for the up to date 
arguments about the Randić index.   

The forgotten topological index for a connected graph G is defined as, 
ܨ  = (ܩ)ܨ = ∑ deg (ݑ)ଷ௨∈(ீ) = ∑ (deg(u)ଶ + deg(ݒ)ଶ)௨௩∈ா(ீ) . 

It was showed in [11] that the predictive power of the forgotten topological index is 
very close to the first Zagreb index for the entropy and eccentric factor. For further studies 
about the forgotten topological index we refer to the interested reader [11−13] and 
references therein. 

In the 1980s, Narumi and Katayama considered the production of the degrees of 
vertices 
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ܭܰ  = (ܩ)ܭܰ = ∏ deg (ݒ)௩∈(ீ)  
and named it the “simple topological index’’ [14]. Later for this graph invariant, the name 
‘‘Narumi-Katayama index’’ was used in [15−17]. The extremal graphs with respect to ܰܭ 
index was studied by Gutman and Ghorbani [15], Zolfi and Ashrafi [20]. Some relations 
between the Narumi-Katayama index and the first Zagreb index were introduced in the 
more recent paper [21]. 

Multiplicative version of the first Zagreb index of a connected graph was defined by 
Eliasi et. al. in [22] as: 

 Πଵ
∗ = Πଵ

(ܩ)∗ = ∏ (deg(ݑ) + deg(ݒ))௨௩∈ா(ீ) . 
For detailed discussions of the multiplicative version of Zagreb indices, we refer the 
interested reader to [23] and the references cited therein. 

 In the following section, we will give basic definitions of ev-degree and ve-degree 
concepts, ve-degree and ev-degree Zagreb indices and as well as the basic mathematical 
properties of these novel topological indices. And also we give the definitions of ev-degree 
and ve-degree Narumi-Katayama indices. 

 
2. VE-DEGREE AND EV-DEGREE CONCEPTS AND CORRESPONDING 

TOPOLOGICAL INDICES 
 
In this section we give the definitions of ev-degree and ve-degree concepts which were 
given by Chellali et al. in [1] and the definitions and properties of ev-degree and ve-degree 
topological indices.  
 
Definition 2.1 [1] Let ܩ be a connected graph and ݒ ∈  ,ݒThe ve-degree of the vertex .(ܩ)ܸ
݀݁݃௩(ݒ), equals the number of different edges that incident to any vertex from the closed 
neighborhood of ݒ. For convenience we prefer to show the ve-degree of the vertex ݒ, by ܿ௩. 
 
Definition 2.2 [1] Let ܩ be a connected graph and ݁ = ݒݑ ∈  The ev-degree of the .(ܩ)ܧ
edge݁, ݀݁݃௩(݁), equals the number of vertices of the union of the closed neighborhoods of 
݁ For convenience we prefer to show the ev-degree of the edge  .ݒandݑ =   .by ܿ or ܿ௨௩ ,ݒݑ
 
Definition 2.3 [1] Let ܩ be a connected graph and ݒ ∈  The total ev-degree of the .(ܩ)ܸ
graph ܩ is defined as ܶ = ܶ(ܩ) = ∑ ܿ∈ா(ீ)  and the total ve-degree of the graph ܩ is 
defined as ௩ܶ = ௩ܶ(ܩ) = ∑ ܿ௩௩∈(ீ) . 
 
Observation 2.4 [1] For any connected graph ܩ, ܶ(ܩ) = ௩ܶ(ܩ). 
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Observation 2.5 [1] For any triangle free connected graph ܩ, ܿ = ܿ௨௩ = deg(ݑ) +
deg(v) . 
 

The following theorem states the relationship between the first Zagreb index and the 
total ve-degree of a connected graph ܩ.  

 
Theorem 2.6 [1] For any connected graph ܩ, ܶ(ܩ) = ௩ܶ(ܩ) = −(ܩ)ଵܯ  where ,(ܩ)3݊
  .ܩ denotes the total number of triangles in (ܩ)݊
 

In [1], the authors suggested the idea that to carry these novel degree concepts to 
mathematical chemistry. One of the present author following this suggestion defined ev-
degree and ve-degree Zagreb indices and showed that these novel group Zagreb and Randić 
indices give better correlation than well-known topological indices such as; Wiener, Zagreb 
and Randić indices to modeling some physicochemical properties of octane isomers [2]. 
And now, we give the definitions and some basic mathematical properties of ev-degree and 
ve-degree Zagreb indices which were given in [2]. 

 
Definition 2.7 [2] Let ܩ be a connected graph and ݁ ∈  The ev-degree Zagreb index .(ܩ)ܧ
of the graph ܩ is defined as ܵ = (ܩ)ܵ = ∑ cୣଶ∈ா(ீ) . 
 
Definition 2.8 [2] Let ܩ be a connected graph and ݒ ∈  The first ve-degree Zagreb .(ܩ)ܸ
alpha index of the graph ܩ is defined as ܵఈ = ܵఈ(ܩ) = ∑ c୴ଶ௩∈(ீ) . 
 
Definition 2.9 [2] Let ܩ be a connected graph and ݒݑ ∈  The first ve-degree Zagreb .(ܩ)ܧ
beta index of the graph ܩ is defined as ܵఉ = ܵఉ(ܩ) = ∑ (ܿ௨ + ܿ௩)௨௩∈ா(ீ) . 
 
Definition 2.10 [2] Let ܩ be a connected graph and ݒݑ ∈  The second ve-degree .(ܩ)ܧ
Zagreb index of the graph ܩ is defined as ܵఓ = ܵఓ(ܩ) = ∑ ܿ௨ܿ௩௨௩∈ா(ீ) . 
 
Definition 2.11 [2] Let ܩ be a connected graph and ݒݑ ∈  The ve-degree Randić .(ܩ)ܧ
index of the graph ܩ is defined as ܴఈ = ܴఈ(ܩ) = ∑ (ܿ௨ܿ௩)ିଵ ଶ⁄

௨௩∈ா(ீ) . 
 

And now we restate the some basic properties of ev-degree and ve-degree Zagreb 
indices which were given in [2]. 

 
Lemma 2.12 [2] Let T be a tree and ݒ ∈ ܸ(ܶ) then, ܿ௩ = ∑ deg (ݑ)௨∈ே(௩) . 
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Theorem 2.13 [2] Let T be a tree with the vertex set  ܸ(ܶ) = ,ଶݒ,ଵݒ} … (ܶ)} then, ܵఉݒ, =
 .(ܶ)ଶܯ2
 
Theorem 2.14 [2] Let G be a triangle free connected graph, then; ܵ(ܩ) = (ܩ)ܨ +
 .(ܩ)ଶܯ2
 
Corollary 2.15 Let T be a tree then, ܵ(ܶ) = (ܶ)ܨ + ܵఉ(ܶ). 
 

And now we give the definitions of ev-degree and ve-degree Narumi-Katayama 
indices for a graph G.  
 
Definition 2.16 The ݁ݒ-Narumi-Katayama index of a graph G is defined with the following 
equation ܰܭ௩ = (ܩ)௩ܭܰ = ∏ c୴௩∈(ீ) . 
 

If a graph has an isolated vertex, its ܰܭ௩ = 0 which is the minimal value of  ܰܭ௩ . 
We take the graphs without isolated vertices in the following results which will be 
introduced in the section four. 
 
Definition 2.17 The ݁ݒ-Narumi-Katayama index of a graph G is defined with the following 
equation ܰܭ௩ = (ܩ)௩ܭܰ = ∏ cୣ∈ா(ீ) . 
 

In the next section we investigate the predicting power of these novel topological 
indices and after that we investigate some mathematical properties of these novel indices. 
 
3. NEW TOOLS FOR QSPR RESEARCHES: THE EV−NARUMI−KATAYAMA 

INDEX AND THE VE−NARUMI−KATAYAMA INDEX 
 
In this section we compare the Narumi-Katayama index and its corresponding versions 
ofthe ev-Narumi-Katayama and ve-Narumi-Katayama indices with each other by using 
strong correlation coefficients acquired from the chemical graphs of octane isomers. We 
get the experimental results at the www.moleculardescriptors.eu (see Table 1). The 
following physicochemical features have been modeled: 
• Entropy, 
• Acentric factor (AcenFac), 
• Enthalpy of vaporization (HVAP), 
• Standard enthalpy of vaporization (DHVAP). 

We select those physicochemical properties of octane isomers for which give 
reasonably good correlations, i.e. the absolute value of correlation coefficients are larger 
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than 0.8959 (see Table 2). Also we find the Narumi-Katayama index of octane isomers 
values at thewww.moleculardescriptors.eu (see Table 3).  We also calculate and show the 
ev-Narumi-Katayama and the ve-Narumi-Katayama indices of octane isomers values in 
Table 3.   

Table 1. Some physicochemical properties of octane isomers. 

Molecule Entropy AcenFac HVAP DHVAP 
n-octane 111.70 0.39790 73.19 9.915 
2-methyl-heptane 109.80 0.37792 70.30 9.484 
3-methyl-heptane 111.30 0.37100 71.30 9.521 
4-methyl-heptane 109.30 0.37150 70.91 9.483 
3-ethyl-hexane 109.40 0.36247 71.70 9.476 
2,2-dimethyl-hexane 103.40 0.33943 67.70 8.915 
2,3-dimethyl-hexane 108.00 0.34825 70.20 9.272 
2,4-dimethyl-hexane 107.00 0.34422 68.50 9.029 
2,5-dimethyl-hexane 105.70 0.35683 68.60 9.051 
3,3-dimethyl-hexane 104.70 0.32260 68.50 8.973 
3,4-dimethyl-hexane 106.60 0.34035 70.20 9.316 
2-methyl-3-ethyl-pentane 106.10 0.33243 69.70 9.209 
3-methyl-3-ethyl-pentane 101.50 0.30690 69.30 9.081 
2,2,3-trimethyl-pentane 101.30 0.30082 67.30 8.826 
2,2,4-trimethyl-pentane 104.10 0.30537 64.87 8.402 
2,3,3-trimethyl-pentane 102.10 0.29318 68.10 8.897 
2,3,4-trimethyl-pentane 102.40 0.31742 68.37 9.014 
2,2,3,3-tetramethylbutane 93.06 0.25529 66.20 8.410 

 
Table 2. Topological indices of octane isomers. 

 
Molecule Nar evNar veNar 
n-octane 4.159 9.129 9.129 

2-methyl-heptane 3.871 9.640 9.757 
3-methyl-heptane 3.871 9.575 9.575 
4-methyl-heptane 3.871 9.575 9.510 

3-ethyl-hexane 3.871 9.510 9.352 
2,2-dimethyl-hexane 3.466 10.491 10.738 
2,3-dimethyl-hexane 3.584 10.045 10.098 
2,4-dimethyl-hexane 3.584 10.085 10.163 
2,5-dimethyl-hexane 3.584 10.150 10.386 
3,3-dimethyl-hexane 3.466 10.386 10.450 
3,4-dimethyl-hexane 3.584 9.980 9.940 

2-methyl-3-ethyl-pentane 3.584 9.980 9.911 
3-methyl-3-ethyl-pentane 3.466 10.281 10.240 
2,2,3-trimethyl-pentane 3.178 10.869 11.075 
2,2,4-trimethyl-pentane 3.178 11.002 11.298 
2,3,3-trimethyl-pentane 3.178 10.828 11.010 
2,3,4-trimethyl-pentane 3.296 10.515 10.658 

2,2,3,3-tetramethylbutane 2.773 11.736 12.210 
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Table 3.The correlation coefficients between new and old topological indices and some 

physicochemical properties of octane isomers. 

 
Index Entropy AcenFac HVAP DHVAP 

Nar 0.9398 0.9700 0.8959 0.9410 

ve-Nar -0.9192 -0.9092 -0.9236 -0.9490 

ev-Nar -0.9369 -0.9486 -0.9202 -0.9568 

 

Table 4. The squares of correlation coefficients between topological indices and some 

physicochemical properties of octane isomers. 

 
Index Entropy AcenFac HVAP DHVAP 

Nar 0.8832 0.9409 0.8026 0.8854 

ve-Nar 0.8449 0.8266 0.8530 0.9006 

ev-Nar 0.8778 0.8998 0.8468 0.9154 

 
Note that the all values in Table 2 are given by using natural logarithm. It can be 

seen from the Table 2 that the most convenient indices which are modeling the Entropy, 
Enthalpy of vaporization (HVAP), Standard enthalpy of vaporization (DHVAP) and 
Acentric factor (AcenFac) are Narumi-Katayama  index (S) for entropy and Acentric 
Factor, ve-Narumi-Katayama index for the Enthalpy of vaporization (HVAP) and  ev-
Narumi-Katayama index for the  Standard enthalpy of vaporization (DHVAP), 
respectively. But notice that the Narumi-Katayama index show the positive strong 
correlation and the ve-Narumi-Katayama  and theev-Narumi-Katayama indices show the 
negative strong correlation. Because of this fact we can compare these graph invariants 
with each other by using the squares of correlation coefficients for ensure the compliance 
between the positive and negative correlation coefficients (see Table 4).  

 The cross-correlation matrix of the indices are given in Table 5. 
 

Table 5. The cross-correlation matrix of the topological indices. 
 

Index Nar ve-Nar ev-Nar 
Nar 1.0000   

ve-Nar -0.9901 1.0000  
ev-Nar -0.9715 0.9931 1.0000 
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It can be shown from the Table 5 that the absolute value of the minimum correlation 
efficient among the indices is 0.9715 which is indicate strong correlation among all these 
indices. From the above arguments, we can say that the ve-Narumi-Katayama index and ev-
Narumi-Katayama index are possible tools for QSPR researches. 
 

4. MAIN RESULTS 

In this section, we firstly give some basic mathematical properties of ve-degree, ev-Narumi-
Katayama  and ve-Narumi-Katayama indices. Secondly, we investigate certain 
mathematical properties of ev-degree and ve-degree Zagreb indices. 
 
Lemma 4.1. Let G be a connected graph, then ∑ ݊௩ =௩∈(ீ) ∑ ݊ =∈ா(ீ)  where ,(ܩ)3݊
݊௩, ݊ , ݊(ܩ) denote the number of triangles in G containing the vertex v, the number of 
triangles in G containing the edge e and the total number of triangles in G, respectively. 
 
Proof. The second part of this equality were given in [1]. The first part comes from that 
since every triangle  consists of three vertices and edges, we count every triangle exactly 
three times for each vertex. Since the total number of triangles in the graph G will not be 
changed, the desired result acquired easily.                                                                           □ 
 
Lemma 4.2.  Let G be a connected graph and ݒ ∈ then ܿ௩ ,(ܩ)ܸ = ∑ deg (ݑ)௨∈ே(௩) − ݊௩ . 
 
Proof. From the Definition 2.1, we know that  ܿ௩ equals the number of different edges 
incident to any vertex of ܰ(ݒ). Therefore ܿ௩ = ∑ deg(ݑ)௨∈ே(௩)  if ݒ does not lie in a 
triangle. But if ݒ belongs a triangle then the edge that does not incident to ݒ of this triangle 
must be counted twice in the sum ∑ deg(ݑ)௨∈ே(௩) . Therefore we must minus  one  from the 
sum ∑ deg(ݑ)௨∈ே(௩)  for we find the exact number of different edges incident to ܰ(ݒ). Thus 
if ݒ lies in more than one triangle then we must minus ݊௩ from the the sum ∑ deg(ݑ)௨∈ே(௩)  
for we find the exact number of different edges incident to ܰ(ݒ).                                        □ 
 
Corollary 4.3. For the n-vertex triangle graph G, the ve-degree Narumi-Katayama index 
 :is calculated by the following equation (ܩ)௩ܭܰ

(ܩ)௩ܭܰ  = ∏ ൫∑ deg (ݑ)௨∈ே(௩) ൯௩∈ . 
 
Example 4.4. Consider the ଶܲ path graph ܿ௩భ = ܿ௩మ = 1 and ܰܭ௩( ଶܲ) = 1. For ଷܲ path 
graph ܿ௩భ = ܿ௩మ = ܿ௩య = 2 and ܰܭ௩( ଷܲ) = 8. For ସܲ, ܿ௩భ = ܿ௩ర = 2 and ܿ௩మ = ܿ௩య = 3 so 
that  ܰܭ௩( ସܲ) = 36. We take the  ܲ such that ݊ ≥ 5.  ܿ௩భ = ܿ௩ = 2 and ܿ௩మ = ܿ௩షభ = 3 
and the ݁ݒ-degree of the other vertices are 4. Therefore ܰܭ௩( ܲ) = 9.4ିଷ. 
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Example 4.5. Consider the ܥଷ cycle  ܿ௩భ = ܿ௩మ = ܿ௩య = 3  and ܰܭ௩(ܥଷ) = 27.  For ݊ ≥ 4 
every cycle  4௩-regular and ܰܭ௩(ܥ) = 4 . 
 
Example 4.6. Consider the ܵ-star graph on ݊ vertices. Every vertices have the same ݁ݒ-
degree such that (݊ − 1). This means ܰܭ௩(ܵ) = (݊ − 1) . 
 
Example 4.7. Consider the ܭ-complete graph with ݊ vertices. ܭ is a ݉௩-regular graph 
with the size ݉ = ݊(݊ − 1) 2⁄ . Therefore, ܰܭ௩(ܭ) = ݉ . 
 
Proposition 4.8. Let ܩ be a graph with ݊ vertices, then ܰܭ௩(ܩ) ≤  .(ܭ)௩ܭܰ
 
Proof. Note that contribution each edge is positive. Hence, ܰܭ௩(ܩ) reaches its maximum 
value for the complete graphs.                                                                                                □ 
 
Proposition 4.9. For the ܲ-path graph with ݊ vertices such that ݊ ≥ )௩ܭܰ ,4 ܲ) =
)௩ܭܰ ܲ) = 9.4ିଷ. 
 
Proof.  We have already known that  ܰܭ௩( ܲ) = 9.4ିଷ from the Example 4.4. There are 
݊ − 3  edges with their ev-degrees equal 4 and 2 edges with their ev-degrees equal 3 for the 
n-vertex path. Therefore, the proof is complete.                                                                    □ 
 
Proposition 4.10. For the  cycle ܥ on ݊ vertices such that ݊ ≥ (ܥ)௩ܭܰ,4 =
(ܥ)௩ܭܰ = 4 . 
 
Proof. From the Example 4.5 we can directly write that ܰܭ௩(ܥ) = 4 . Clearly, from the 
definition of ev-degree, every edge of ܥ is 4௩-regular. The proof comes from this fact.   □ 
 
Proposition 4.11. For  the ܵ-star graph with ݊ vertices such that  ݊ ≥ ௩(ܵ)ܭܰ ,4 =
݊ିଵ < ௩(ܵ)ܭܰ = (݊ − 1) . 
 
Proof. We make the proof by induction on ݊. For  ݊ = ௩(ܵସ)ܭܰ ,4 = 4ଷ = 64 <
௩(ܵସ)ܭܰ = 3ସ = 81, as desired. We assume that the claim is true for ݊ = ݇ and we will 
show that it is true ݊ = ݇ + 1.  For ݊ = ݇, ݇ିଵ < (݇ − 1) is equivalent to  

 ቀ1 + ଵ
ିଵ

ቁ
ିଵ

< ݇ − 1 

and for  ݊ = ݇ + 1, (݇ + 1) < ݇ାଵ. Thus we want to show that 

 ቀ1 + ଵ

ቁ


< ݇.  ቀ1 + ଵ

ቁ


< ቀ1 + ଵ
ିଵ

ቁ


= ቀ1 + ଵ
ିଵ

ቁ
ିଵ

ቀ1 + ଵ
ିଵ

ቁ < (݇ − 1) 
ିଵ

= ݇. 
So, the proof is complete.                                                                                                       □ 
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Theorem 4.12. (a) The ݊-vertex tree with maximal ܰܭ௩ is ܵ such that  ܰܭ௩(ܵ) =
(݊ − 1) . 
(b) The ݊-vertex unicyclic graph with the maximal ܰܭ௩ is ܵ + ݁ (depicted in Figure 1) 
such that ܰܭ௩(ܵ + ݁) = ݊ଷ(݊ − 1)ିଷ. 
(c) The ݊-vertex bicyclic graph with the maximal  ܰܭ௩  is ܼ (depicted in Figure 1) such 
that ܰܭ௩(ܼ) = (݊ + 1)ସ(݊ − 1)ିସ. 
 

 

 
S୬ + e 

 
Figure 1. The graphs  ܵ + ݁ and ܼ. 

 
Theorem 4.13. (a) The ݊-vertex tree with minimal ܰܭ௩ is ܲ(݊ ≥ 4) such that 
)௩ܭܰ ܲ) = 9.4ିଷ. 
(b) The ݊-vertex unicyclic graph with the minimal  ܰܭ௩  is ܴ (depicted in Figure 2) such 
that ܰܭ௩(ܴ) = 2.3.5ଶ.4ିସ. 
 (c) The ݊-vertex bicyclic graph with the minimal  ܰܭ௩ is ܶ (depicted in Figure 2) such 
that ܰܭ௩( ܶ) = 5ସ.4ିସ. 

 
Figure 2. Graphs which are used for Theorem 2. 

 
Theorem 4. 14. (a) The ݊-vertex tree with second maximal  ܰܭ௩ is ܺ (depicted in Figure 
3)  such that ܰܭ௩(ܺ) = 2(݊ − 1)ଶ(݊ − 2)ିଷ. 
(b) The ݊-vertex unicyclic graph with second maximal  ܰܭ௩ is ܵ + ݁ + ݁ᇱ (depicted in 
Figure 4)  such that ܰܭ௩(ܵ + ݁ + ݁ᇱ) = 4.݊ଷ(݊ − 2)ିସ. 
(c) The ݊-vertex bicyclic graph with second maximal  ܰܭ௩ is ܮ (depicted in Figure 3 ) 
such that ܰܭ௩(ܮ) = 5.(݊ + 1)ଶ݊ଶ(݊ − 2)ିହ. 
 
Theorem 4.15. (a) The ݊-vertex tree with second minimal  ܰܭ௩  is the ܳ-graph (depicted 
in Figure 5)  such that ܰܭ௩(ܳ) = 2ଶ.3ଷ.5ଷ.4ି଼. 
(b) The ݊-vertex unicyclic graph with second minimal  ܰܭ௩ is the ܴ-graph (depicted in 
Figure 6)  such that ܰܭ௩(ܴ) = 2.32.55.4-8. 
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(c) The ݊-vertex bicyclic graph with second minimal  ܰܭ௩  is the ܵ-graph (depicted in 
Figure 7 ) such that ܰܭ௩(ܵ) = 3.57.4-8. 
 

 
Figure 3. The graph ܺ and ܮ . 

 

 
 

Figure 4. The graph ܵ + ݁ + ݁ᇱ. 
 

 
Figure 5. The graph ܳ. 

 

 
Figure 6. The graph ܴ. 

 

 
Figure 7. The graph ܵ. 

 
Corollary 4.16. For any triangle-free graph G, ܰܭ௩(ܩ) = ∏ ∗(ܩ)

ଵ . 
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Proof. The proof directly comes from the Observation 2.5, the Definition 2.17 and the 
definition of multiplicative version of the first Zagreb index.                                               □ 
 

Now, we give some mathematical properties of  ev-degree and ve-degree Zagreb 
indices in terms of the forgotten topological index and the total number of the triangles 
n(G) of a connected graph G. Before giving propositions, we give following terminologies 
which be used. 
 
Theorem 4.17. Let G be a connected graph, then 

(ܩ)ܵ  = (ܩ)ܨ + −(ܩ)ଶܯ2 2∑ (deg(ݑ) + deg(ݒ))௨௩∈ா(ீ) ݊ + ∑ ݊ଶୀ௨௩∈ா(ீ) . 
 
Proof. We know that ܿୀ௨௩ = deg(ݑ) + deg(v) − nୣ and ܵ = (ܩ)ܵ = ∑ cୣଶ∈ா(ீ) . 
Therefore, 
 
        ܵ = (ܩ)ܵ = ∑ cୣଶୀ௨௩∈ா(ீ) = (deg(ݑ) + deg(v) − nୣ)ଶ 
           = ∑ (deg(ݑ) + deg(v))ଶ − 2∑ (deg(ݑ) + deg(ݒ))ୀ௨௩∈ா(ீ) ݊ୀ௨௩∈ா(ீ)  
           +∑ ݊ଶୀ௨௩∈ா(ீ)  
           = ∑ (deg (ݑ)ଶ + deg (ݒ)ଶ) + 2∑ deg(ݑ) deg(ݒ)ୀ௨௩∈ா(ீ)ୀ௨௩∈ா(ீ)  
           −2∑ (deg(ݑ) + deg(ݒ))ୀ௨௩∈ா(ீ) ݊ + ∑ ݊ଶୀ௨௩∈ா(ீ)  
           = (ܩ)ܨ + −(ܩ)ଶܯ2 2∑ (deg(ݑ) + deg(ݒ))௨௩∈ா(ீ) ݊ + ∑ ݊ଶୀ௨௩∈ா(ீ) . 

□ 
 
Theorem 4.18. Let G be a connected graph, then ܵఉ(ܩ) = −(ܩ)ଶܯ2  (ܩ)݊ where ,(ܩ)6݊
denotes the total number of triangles in G. 
 
Proof.  From the definition of the first ve-degree Zagreb beta index and Lemma 4.2 we get  

 ܵఉ(ܩ) = ∑ (ܿ௨ + ܿ௩)௨௩∈ா(ீ)  
             = ∑ ൣ൫∑ deg(ݓ) − ݊௨௪∈ே(௨) ൯ + ൫∑ deg(ݓ) − ݊௩௪∈ே(௩) ൯൧௨௩∈ா(ீ)  
             =  ∑ ൫∑ (ݓ)݃݁݀ +௪∈ே(௨) ∑ ௪∈ே(௩)(ݓ)݃݁݀ ൯௨௩∈ா(ீ) − ∑ (݊௨ + ݊௩௨௩∈ா(ீ) )   
             = ܵఉ(ܩ) = −(ܩ)ଶܯ2   .(ܩ)6݊

□ 
 

Theorem 4.19.  Let G be a connected graph, then 
 ܵఈ(ܩ) = −(ܩ)ܨ 2∑ ൫∑ deg (ݑ)݊௩௨∈ே(௩) ൯௩∈(ீ) + ∑ ݊௩ଶ௩∈(ீ)  

where ݊௩ denotes the number of triangles in G containing the vertex v.  
 
Proof. From the definition of the first ve-degree Zagreb alpha index and Lemma 4.2 we get 
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       ܵఈ(ܩ) = ∑ c୴ଶ௩∈(ீ) = ∑ ∑ (deg(ݑ) − ݊௩)ଶ௨∈ே(௩)௩∈(ீ)  

                   = ∑ ቂ൫∑ deg (ݑ)௨∈ே(௩) ൯ଶ − 2∑ deg (ݑ)݊௩௨∈ே(௩) + ݊௩ଶቃ௩∈(ீ)  

                   = ∑ ൫∑ deg (ݑ)௨∈ே(௩) ൯ଶ − 2∑ ൫∑ deg (ݑ)݊௩௨∈ே(௩) ൯௩∈(ீ)௩∈(ீ) + ∑ ݊௩ଶ௩∈(ீ)  
                   = ∑ deg (ݒ)ଷ௩∈(ீ) − 2∑ ൫∑ deg (ݑ)݊௩௨∈ே(௩) ൯௩∈(ீ) + ∑ ݊௩ଶ௩∈(ீ)  
                   = (ܩ)ܨ − 2∑ ൫∑ deg (ݑ)݊௩௨∈ே(௩) ൯௩∈(ீ) + ∑ ݊௩ଶ௩∈(ீ) . 

□ 
 

It is very surprisingly to see that for any triangle free graph the forgotten topological 
index and the first ve-degree Zagreb alpha index equal each other. The following corollary 
states this fact. 
 
Corollary 4.20.  Let G be a triangle-free connected graph, then ܵఈ(ܩ) =  .(ܩ)ܨ
 
5. CONCLUSION 

In this study we defined ev-degree and ve-degree Narumi-Katayama indices and showed 
that these novel degree based topological indices can be used possible tools for QSPR 
researches. Also we investigated some basic mathematical properties of ev-degree and ve-
degree Narumi-Katayama and Zagreb indices. It can be interesting to compute the exact 
value of ev-degree and ve-degree topological indices for some graph operations. It can also 
be interesting to investigate the ev-degree and ve-degree concepts for the other topological 
indices for further studies. 
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Let ܩ  be a finite and simple graph with edge set (ܩ)ܧ. The 
second geometric-arithmetic Index is defined as 

(ܩ)ଶܣܩ  = ∑ ଶඥೠೡ
ೠାೡ௨௩∈ா(ீ) , 

where ݊௨ denotes the number of vertices in ܩ lying closer to u 
than to ݒ . In this paper we find a sharp upper bound for 
 ଶ(ܶ), where T is tree, in terms of the order and maximumܣܩ
degree of the tree. We also find a sharp upper bound for 
 ,is a unicyclic graph, in terms of the order ܩ where ,(ܩ)ଶܣܩ
maximum degree and girth of ܩ. In addition, we characterize 
the trees and unicyclic graphs which achieve the upper bounds. 
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1 INTRODUCTION 

Let ܩ be a simple connected graph with vertex set ܸ = ܧ and edge set (ܩ)ܸ =  The .(ܩ)ܧ
integers ݊ = (ܩ)݊   = = ݉ and |(ܩ)ܸ|  (ܩ)݉   =  are the order and the size of the |(ܩ)ܧ| 
graphܩ , respectively. We write ݀݁݃ீ(ݒ) = (ݒ)݃݁݀  for the degree of a vertex ݒ and 
= ߂ ܩ for the maximum degree of (ܩ)߂  . Let ݑ, ݒ ∈  (ݒ,ݑ)ீ݀ then the distance ,(ܩ)ܸ
between ݑ and ݒ is defined as the length of a shortest path in ܩ connecting u and v.  
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In [5], a new class of topological descriptors, based on some properties of the 
vertices of a graph is presented. These descriptors are named as geometric-arithmetic 
indices, ܣܩୣ୬ୣ୰ୟ୪, and defined as: 

(ܩ)ୣ୬ୣ୰ୟ୪ܣܩ = ∑ ଶඥொೠொೡ
ொೠାொೡ௨௩∈ா(ீ) , 

 

where ܳ௨ is some quantity that in a unique manner can be associated with the vertex u of 
the graph ܩ. The geometric-arithmetic index ܣܩ is defined in [6] as: 

 

(ܩ)ܣܩ = ∑ ଶඥௗ(௨)ௗ(௩)
ௗ(௨)ାௗ(௩)௨௩∈ா(ீ) . 

 
The geometric-arithmetic index is well studied in the literature, see for example [2, 

4, 7]. Let ݒݑ  be an edge of ܩ . Define ܰ(ܩ,ݑ) = ݔ}  ∈ (ݔ,ݑ)ீ݀ | (ܩ)ܸ < ,ݑ)ீ݀  In .{(ݔ
other words, ܰ(ܩ,ݑ) consists of vertices of ܩ which are closer to ݑ than to ݒ. Note that the 
vertices equidistant to ݑ  and ݒ  are not included into either ܰ(ܩ,ݑ)  or ܰ(ܩ,ݒ) . Such 
vertices exist only if the edge uv belongs to an odd cycle. Hence, in trees, ݊௨+݊௩ = ݊ for 
all edges of the tree. It is also worth noting that ݑ ∈ ݒ and (ܩ,ݑ)ܰ ∈ (ܩ,ݒ)ܰ , which 
implies that ݊௨≥ 1 and ݊௩≥ 1. The second geometric-arithmetic index ܣܩଶ is defined in [5] 
as:  

(ܩ)ଶܣܩ  = ∑ ଶඥೠೡ
ೠାೡ௨௩∈ா(ீ) , 

where  ݊௨=݊௨ (ܩ) =|ܰ(ܩ,ݑ)|. See [1, 3, 8] for more information on this index. 
 

The following statements can be found in [5]. 
 
Theorem A. The path ܲ is the n-vertex tree with maximum second geometric-arithmetic 
index. 
 

Theorem B. Let ܵ be a star of order n, then ܣܩଶ(ܩ) = ଶ(ିଵ)√ିଵ


. 

In this paper we first present some examples. Then we prove that for any tree T of 
order ݊ ≥ 2 with maximum degree Δ, 

(ܶ)ଶܣܩ  ≤ ଶ

൬(Δ − 1)√݊ − 1 + ∑ ඥ݅(݊ − ݅)ି

ୀଵ ൰. 
Finally, we prove that for any unicyclic graph G of order ݊ ≥ 3 with maximum degree 
Δ ≥ 3 and girth k, if k is odd, then 
(ܩ)ଶܣܩ               ≤ ଶ


൬(Δ − 2)√݊ − 1 + ∑ ඥ݅(݊ − ݅)ିିାଶ

ୀଵ ൰ 

                            + ଶ(ିଵ)
ିଵ

ට(ିଵ
ଶ

+ Δ − 2)(݊ − ିଵ
ଶ
− Δ + 1) +  ଶ

ା୩ିଷ
ටିଵ

ଶ
(ିଵ

ଶ
+ Δ − 2) 

                            + ଶ
ିାଵ

ටିଵ
ଶ

(݊ − ିଵ
ଶ
− Δ + 1), 

and if k is even, then 
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(ܩ)ଶܣܩ ≤ ଶ

൭(Δ − 2)√݊ − 1 + ∑ ඥ݅(݊ − ݅)ିିାଶ

ୀଵ + ݇ට(
ଶ

+ Δ − 2)(݊ − 
ଶ
− Δ + 2)൱. 

We also characterize the trees and unicyclic graphs which achieve the upper bounds. 
 

2 EXAMPLES 

Dendrimers are nanostructures that can be precisely designed and manufactured for a wide 
variety of applications, such as drug delivery, gene delivery and diagnostic tests. In this 
section we calculate the second geometric-arithmetic index for Dendrimers of types A and 
B and for Tecto Dendrimers. See Figure 1. 
 

Figure 1: Dendrimers of types A and B and Tecto Dendrimers. 
 
Example 1. In Dendrimers D[n] type A, denoted ܦ[݊], there are 4(2 − 1) + 1 vertices 
and 4(2 − 1) edges. Let e be an edge between the ith and the (i + 1)th layers. Then 

݂(݁) = ට(2ି − 1)(2ାଶ − 2ି − 2)  for  i = 1,2, … , n − 1. 

In addition, there are 2ାଶ edges between the ith and the (i + 1)th layers. Therefore, for 

݊ ≥ 2, 

([݊]ܦ)ଶܣܩ  = ଶ
ସ(ଶିଵ)ାଵ

൬4ඥ(2 − 1)(3(2 − 1) + 1) + ∑ 2ାଶିଵ
ୀଵ ݂(݁)൰ 

                  =  ଼
ସ(ଶିଵ)ାଵ

൬ඥ(2 − 1)(3(2 − 1) + 1) + ∑ 2ିଵ
ୀଵ ݂(݁)൰. 

For examples, 

([2]ܦ)ଶܣܩ  = ଼
ଵଷ
൫√30 + 2√12൯ = 7.63   ܽ݊݀ 

([3]ܦ)ଶܣܩ  = ଼
ଶଽ
൫√154 + 2√78 + 4√28൯ = 14.13. 

Example 2. In Dendrimers D[n] type B, denoted ܦ[݊], there are 3(2 − 1) + 1 vertices 
and 3(2 − 1) edges. Let e be an edge between the ith and the (i + 1)th layers. Then 

݂(݁) = ට(2ି − 1)(3(2)− 2ି − 1)  for  i = 1,2, … , n − 1. 
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In addition, there are 3(2) edges between the ith and the (i + 1)th layers. Therefore, for 
݊ ≥ 2, 

([݊]ܦ)ଶܣܩ =   ଼
ଷ(ଶିଵ)ାଵ

൬ඥ3(2 − 1)(2(2 − 1) + 1) + ∑ 3(2)ିଵ
ୀଵ ݂(݁)൰. 

For example, 
([2]ܦ)ଶܣܩ = ଶ

ଵ
൫3√21 + 18൯ = 6.35    and 

([3]ܦ)ଶܣܩ =
2

22
൫3√105 + 6√57 + 12√21൯ = 11.91. 

 

Example 3. In Tecto Dendrimers ܦ[݊]், there are 2ାଶ − 2 vertices and 2ାଶ − 3 edges. 
Let e be an edge between the ith and the (i + 1)th layers. Then 
 

݂(݁) = ට(2ି − 1)(2ାଶ − 2ି − 1)  for  i = 1,2, … , n − 1. 

In addition, there are 2ାଶ edges between the ith and the (i + 1)th layers. Therefore, for 
݊ ≥ 2, 

(்[݊]ܦ)ଶܣܩ =   ଼
ଶశమିଶ

ቀ4ඥ(2 − 1)(3(2)− 1) + ∑ 2ାଶିଵ
ୀଵ ݂(݁) + 2ାଵ − 1ቁ. 

For example, 
(்[2]ܦ)ଶܣܩ  = ଶ

ଵସ
൫4√33 + 8√13 + 7൯ = 8.40    and 

(்[3]ܦ)ଶܣܩ  = ଶ
ଷ
൫4√161 + 8√81 + 16√29 + 15൯ = 14.93. 

 

2 AN UPPER BOUND ON THE SECOND GEOMETRIC−ARITHMETIC OF  
            TREES 
 

In this section we present a sharp upper bound for the second geometric-arithmetic index of 
trees in terms of their order and maximum degree. We also characterize all trees whose the 
second geometric-arithmetic index achieves the upper bound. A leaf of a tree T is a vertex 
of degree 1, a support vertex is a vertex adjacent to a leaf and a strong support vertex is a 
support vertex adjacent to at least two leaves. An end-support vertex is a support vertex 
whose all neighbors with exception at most one are leaves. A rooted tree is a tree having a 
distinguished vertex v, called the root. Let Tn,Δ be the set of trees of order n and maximum 
degree Δ. Let T be a tree of order n and let f : E(T) → Z+is a function defined by ݂(ݕݔ) =
ඥ݊ݕ݊ݔ. Hence ܣܩଶ(ܶ) = ଶ


∑ (ீ)௨௩∈ா(ݒݑ)݂ . We start with an easy but useful observation. 

 
Observation 4. Let ݔ ≥ ݕ ≥  1 and ݊ ≥ + ݔ  + ݕ   2 be positive integers. Then for every 
1 ≤  ݇ ≤ + ݔ) ,ݕ   ݇)(݊ − − ݔ ݇)  > − ݕ) ݇ +  1)(݊ − + ݕ  ݇ − 1). 
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Proof. First note that (ݔ + ݇)(݊ − ݔ − ݇) − ݕ) − ݇ + 1)(݊ − ݕ + ݇ − 1)  =  ݊(2݇ + (ݔ −
ݔ) + ݇)ଶ . Since ݊ ≥ + ݔ  + ݕ   2 , it follows that ݊(2݇ + (ݔ   − ݔ) + ݇)ଶ > 0 . So the 
result follows. 
 
Lemma 5. Let T be a tree of order n with maximum degree Δ and v be a vertex of 
maximum degree. If T  has a vertex of degree at least three different from v, then there is a 
tree ܶ′ ∈ ܶ,௱ such that ܣܩଶ(ܶ) <  .(′ܶ)ଶܣܩ
 
Proof. Let T be the rooted tree at v. Let ݑ ≠ (ݑ)݃݁݀ be a vertex of degree ݒ   =  ݇ ≥  3 
such that ݀(ݒ,ݑ) is as large as possible and let ܰ(ݑ) = ,ଵݑ} ,ଶݑ … ,ିଵݑ,ିଶݑ,  }. Nowݑ
we distinguish three cases. 
 

Case 1. u is an end-support vertex. 

We may assume that ݑ is the parent of u. Let ܵ = ,ଶݑݑ,ଵݑݑ} …  ିଵ} and let ܶᇱݑݑ,ିଶݑݑ,
be the tree obtained by attaching the path ݑݑଵݑଶ ିଵݑିଶݑ… to ܶ − ,ଶݑ,ଵݑ} … , {ିଵݑ . 
Suppose that ܵ′ = ,ଵݑݑ} ,ଶݑଵݑ … ∋ ′ܶ ,ିଵ}. Clearlyݑିଶݑ, ܶ,௱ and 

∑ ௨௩∈ா(்)ିௌ(ݒݑ)݂ = ∑ ௨௩∈ா(்ᇲ)ିௌᇲ(ݒݑ)݂ . 
By definition 

 
ଶ
(ܶ)ଶܣܩ = ∑ ௨௩∉ௌ(ݒݑ)݂ + ∑ (ݒݑ)݂ =௨௩∈ௌ ∑ ௨௩∈ா(்)ିௌ(ݒݑ)݂ + (݇ − 1)√݊ − 1,        (1) 

and 
 
ଶ
ଶ(ܶᇱ)ܣܩ = ∑ ௨௩∉ௌᇲ(ݒݑ)݂ + ∑ (ݒݑ)݂ =௨௩∈ௌᇲ ∑ ௨௩∈ா(்ᇲ)ିௌᇲ(ݒݑ)݂ + ∑ ඥ݅(݊ − ݅)ିଵ

ୀଵ .   (2) 
Combining (1), (2) and the fact that ݇ ≥  3, we obtain ܣܩଶ(ܶ) <  .ଶ(ܶ′), as desiredܣܩ
 
Case 2. u is a support vertex. 

By Case 1, we may assume that u is not an end-support vertex and ݀݁݃(ݑଵ)  =  1. Suppose 
(ଶݑ)݃݁݀  =  2 and ௨ܶమ  is the component of ܶ −  ଶ. Since, by the choice ofݑ ଶ containingݑݑ
vertex u, ݀(ݒ,ݑ)  is as large as possible, we may assume that ௨ܶమ is the path 
ଶݔଵݔଶݑ … ≤ ݐ,௧ݔ  1. Let ܶᇱ be the tree obtained from ܶ −  ଵ by adding the pendant edgeݑݑ
ଵݑ௧ݔ  to this graph. Let ܵ = ,ଵݑݑ} ,ଶݑݑ ,ଶݔଵݔ,ଵݔଶݑ … {௧ݔ௧ିଵݔ,  and 
ܵᇱ = ,ଶݑݑ} ,ଶݔଵݔ,ଵݔଶݑ … , ∋ ′ܶ ,௧}. Clearlyݔଵݑ,௧ݔ௧ିଵݔ ܶ,௱  and 

∑ ௨௩∈ா(்)ିௌ(ݒݑ)݂ = ∑ ௨௩∈ா(்ᇲ)ିௌᇲ(ݒݑ)݂ . 
By definition 

 
ଶ
(ܶ)ଶܣܩ = ∑ ௨௩∈ா(்)ିௌ(ݒݑ)݂ + ∑ ඥ݅(݊ − ݅)௧ାଵ

ୀଵ + √݊ − 1,               (3) 
and 

 
ଶ
ଶ(ܶᇱ)ܣܩ = ∑ ௨௩∈ா(்ᇲ)ିௌᇲ(ݒݑ)݂ + ∑ ඥ݅(݊ − ݅)௧ାଶ

ୀଵ .                          (4) 
By (3), (4) and the fact that  ݊ ≥ + ݐ   4, we obtain ܣܩଶ(ܶ) <  .(′ܶ)ଶܣܩ
 
Case 3. u is not a support vertex. 
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Suppose ௨ܶభ and ௨ܶమ are the components of ܶ − ,ଵݑݑ} {ଶݑݑ containing ݑଵ and ݑଶ , 
respectively. By the choice of vertex u, we may assume that ௨ܶభ = ଶݔଵݔଵݑ … ≤ ݏ ,௦ݔ  1 
and ௨ܶమ = ଶݕଵݕଶݑ … ௧ݕ ≤ ݐ ,  1 . Then ݀݁݃(ݔ) = ݀݁݃൫ݕ൯ = 2 , 1 ≤  ݅ ≤ − ݏ  1, 1 ≤
 ݆ ≤ − ݐ  1, and݀݁݃(ݔ௦) = (௧ݕ)݃݁݀ = 1 . Let ܶᇱ  be the tree obtained from T − ௨ܶమ  by 
adding the path ݔ௦ݕ௧ݕ௧ିଵ …  ଶ to this graph. Letݑଵݕ

ܵ = ,ଵݑݑ} ,ଶݔଵݔ,ଵݔଵݑ … ∪{௦ݔ௦ିଵݔ, ,ଶݕଵݕ,ଵݕଶݑ,ଶݑݑ} …  ,{௧ݕ௧ିଵݕ,
and  

ܵᇱ = ,ଵݑݑ} ,ଶݔଵݔ,ଵݔଵݑ … , ∪{௦ݔ௦ିଵݔ ,௧ݕ௦ݔ} ,ଶݕଵݕ,ଵݕଶݑ …  .{௧ݕ௧ିଵݕ,
Clearly, ܶ′ ∈ ܶ,௱ and 

∑ ௨௩∈ா(்)ିௌ(ݒݑ)݂ = ∑ ௨௩∈ா(்ᇲ)ିௌᇲ(ݒݑ)݂ . 
By definition we have  

 
ଶ
(ܶ)ଶܣܩ = ∑ ௨௩∈ா(்)ିௌ(ݒݑ)݂ + ∑ ඥ݅(݊ − ݅)௦ାଵ

ୀଵ + ∑ ඥ݅(݊ − ݅)௧ାଵ
ୀଵ ,               (5) 

and 
 
ଶ
ଶ(ܶᇱ)ܣܩ = ∑ ௨௩∈ா(்ᇲ)ିௌᇲ(ݒݑ)݂ + ∑ ඥ݅(݊ − ݅)௦ା௧ାଶ

ୀଵ .                               (6) 
Applying Observation 4 and inequalities (5) and (6), we conclude that ܣܩଶ(ܶ) <  .(′ܶ)ଶܣܩ
This complete the proof. 
 

A spider is a tree with at most one vertex of degree more than 2, called the center of 
the spider (if no vertex is of degree more than two, then any vertex can be the center). A leg 
of a spider is a path from the center to a vertex of degree 1. Thus, a star with k edges is a 
spider of k legs, each of length 1, and a path is a spider of 1 or 2 legs. 
 
Lemma 6. Let T be a spider of order n with ݇ ≥ 3 legs. If T has two legs of length at least 
2, then there is a spider ܶᇱ of order n with k legs such that ܣܩଶ(ܶ) <  .(′ܶ)ଶܣܩ
 
Proof. Let v be the center of T and ܰ(ݒ) = ,ଵݒ} ,ଶݒ …  }. Root T at v. Assume, withoutݒ,
loss of generality, that ݀݁݃(ݒଵ)= (ଶݒ)݃݁݀ = 2 and let ݒଵݔଵݔଶ … ଶݕଵݕଶݒ ௦ andݔ …  ௧ be twoݕ
legs of T. Let ܶᇱ be the tree obtained from T be deleting the edges ݔଵݔଶ, … ,  ௦ andݔ௦ିଵݔ
adding the edges ݔଵݕ௧, ,ଶݔଵݔ …  ௦. Supposeݔ௦ିଵݔ,

ܵ = ,ଵݔଵݒ,ଵݒݒ} ,ଶݔଵݔ … , {௦ݔ௦ିଵݔ ∪ ,ଶݒݒ} ,ଵݕଶݒ ,ଶݕଵݕ … ,  ,{௧ݕ௧ିଵݕ
and  

ܵᇱ = ,ଵݒݒ} ,ଶݔଵݔ,ଵݔ௧ݕ … ∪{௦ݔ௦ିଵݔ, ,ଵݕଶݒ,ଶݒݒ} ,ଶݕଵݕ … ,  .{௧ݕ௧ିଵݕ
Clearly 

∑ ௨௩∈ா(்)ିௌ(ݒݑ)݂ = ∑ ௨௩∈ா(்ᇲ)ିௌᇲ(ݒݑ)݂ . 
By definition we have  

 
ଶ
(ܶ)ଶܣܩ = ∑ ௨௩∈ா(்)ିௌ(ݒݑ)݂ + ∑ ඥ݅(݊ − ݅)௦ାଵ

ୀଵ + ∑ ඥ݅(݊ − ݅)௧ାଵ
ୀଵ ,           (7) 

and 

 
ଶ
ଶ(ܶᇱ)ܣܩ = ∑ ௨௩∈ா(்ᇲ)ିௌᇲ(ݒݑ)݂ + ∑ ඥ݅(݊ − ݅)௦ା௧ାଵ

ୀଵ + √݊ − 1 .                (8) 
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By Observation 4, equalities (7) and (8) and the fact that ݊ ≥ + ݏ + ݐ   4  we obtain 
(ܶ)ଶܣܩ <  .(′ܶ)ଶܣܩ
 

We are now ready to prove the main theorem of this section. 
 

Theorem 7. For any tree ܶ ∈ ܶ,௱ of order ݊ ≥ 2, 

(ܶ)ଶܣܩ  ≤ ଶ

൬(Δ − 1)√݊ − 1 + ∑ ඥ݅(݊ − ݅)ି

ୀଵ ൰. 
The equality holds if and only if T is a spider with at most one leg of length at least two. 
 

Proof. Let ଵܶ be a tree of order ݊ ≥ 2 with maximum degree Δ such that 
)ଶܣܩ ଵܶ)= max{ܣܩଶ(ܶ)| T is a tree of order n with maximum degree Δ}. 

Let v be a vertex with maximum degree Δ. Root ଵܶ at v. If Δ = 2, then ଵܶ is a path of order 
n and the result follows by Theorem A. Let ߂ ≥ 3. By the choice of ଵܶ, we deduce from 
Lemma 5 that ଵܶ is a spider with center v. It follows from Lemma 6 and the choice of ଵܶ 
that ଵܶ has at most one leg of length at least two. First let all legs of ଵܶ have length one. 
Then ଵܶ is a star of order n and the result follows by Theorem B. Now let ଵܶ have only one 
leg of length at least two. Then 

(ܶ)ଶܣܩ  = ଶ

൬(Δ − 1)√݊ − 1 + ∑ ඥ݅(݊ − ݅)ି

ୀଵ ൰. 
This completes the proof. 
 

3 UNICYCLIC GRAPHS 

A connected graph with precisely one cycle is called a unicyclic graph. Let the set 
߮,௱,consist of all unicycle graphs of order n, maximum degree ߂ ≥ 3 and grith k, where 
3 ≤ ݇ ≤  ݊. Note that if ܩ is a cycle of order n, then ܣܩଶ(ܩ) = ݊. Let ܩ ∈ ߮,௱, . In this 
section we assume that the k-cycle of ܩ is ܥ = ,ଶݓ,ଵݓ) …  ). In addition for a vertexݓ,
ݑ ∈  containing u. Note that ௨ܶ is (ܥ)ܧ\ܩ we let ௨ܶ be the connected component of (ܥ)ܸ
a tree and we assume u is the root of this tree. Without loss of generality, we also assume 
one of the vertices of ௪ܶభ , say ݒ, is of degree Δ. 
 

Lemma 8. Let ܩ ∈ ߮,௱,  and v be a vertex of maximum degree Δ. Let C be the only cycle 
of ݑ ,ܩ ∈ ≠ ݑ and (ܥ)ܸ  If ௨ܶ is a spider with at least two legs, then there is a graph .ݒ
′ܩ ∈ ߮,௱,such that ܣܩଶ(ܩ) <  .(′ܩ)ଶܣܩ
 

Proof. Assume ௨ܶ has ℓ legs with lengths ݐଵ, ,ଶݐ … , ∑ ℓ andݐ ℓݐ
ୀଵ =  be ′ܩ Let the graph .ݏ

obtained from ܧ\ܩ( ௨ܶ) by attaching a path ௦ܲ to vertex u. Obviously, ܩ′ ∈ ߮,௱, . A simple 
calculation shows that 

−(′ܩ)ଶܣܩ  (ܩ)ଶܣܩ = ଶ

ቂ∑ ඥ݅(݊ − ݅)௦

ୀଵ − ∑ ∑ ඥ݅(݊ − ݅)௧ೕ
ୀଵ

ℓ
ୀଵ ቃ. 
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Apply Observation 4 to obtain ܣܩଶ(ܩᇱ)− (ܩ)ଶܣܩ > 0. 
 
Lemma 9. Let ܩ ∈ ߮,௱,  and ݀݁݃(ݑ) ≥ 3, where ݑ ∈ ௪ܶ, ݑ ≠ ≥ , for some 2ݓ ݅ ≤  ݇. 
Then there is a graph ܩ′ ∈ ߮,௱,  such that ܣܩଶ(ܩ) <  .(′ܩ)ଶܣܩ
 

Proof. Without loss of generality, we may assume u has the largest distance from ݓ among 
all the vertices of ௪ܶ whose degree is at least 3. This implies that ௨ܶ is a spider with at least 
two legs. Let ܩ′ be the graph obtained from ܩ by replacing ௨ܶ with a path with the same 
order as ௨ܶ . A calculation similar to that presented in Lemma 8 shows that ܣܩଶ(ܩᇱ)−
(ܩ)ଶܣܩ > 0. 
 

Lemma 10. Let ܩ ∈ ߮,௱,  and ௪ܶ  and ௪ܶೕ  be paths of length at least 1 for some 2 ≤
݅, ݆ ≤  ݇, ݅ ≠  ݆. Then there is a graph ܩ′ ∈ ߮,௱,  such that ܣܩଶ(ܩ) <  .(′ܩ)ଶܣܩ
 

Proof. Let ℓ1 and ℓ2 be the length of the paths ௪ܶ and ௪ܶೕ , respectively. Let ܩ′ be the graph 
obtained from ܩ by removing ௪ܶ and ௪ܶೕ  and attaching a path of length ℓ1+ ℓ2 to the vertex 
u. Then as before one can see that ܣܩଶ(ܩ) <  .(′ܩ)ଶܣܩ
 

Lemma 11. Let ܩ ∈ ߮,௱,  and assume the vertices of the cycle ܥ are all of degree two 
except ݓଵ and ݓ, ݅ ≠ 1. If the distance of ݓ from ݓଵ is not ⌈(݇ − 1)/2⌉, then there is a 
graph ܩ′ ∈ ߮,௱,  such that ܣܩଶ(ܩ) <  .(′ܩ)ଶܣܩ
 

Proof. Let ܩ′ be the graph obtained from ܩ by removing ௪ܶ and attaching it to vertex ݓ, 
where ݆ = ⌈(݇ − 1)/2⌉. Then one can see that ܣܩଶ(ܩ) <  .(′ܩ)ଶܣܩ
 

Now we consider the graph ܩ ∈ ߮,௱,with ݀݁݃(ݓ) = 2 for all 2 ≤  ݅ ≤  ݇ ,݅ ≠
⌈(݇ − 1)/2⌉  and ݀݁݃൫ݓ൯ ≥ 2 , where ݆ = ⌈(݇ − 1)/2⌉ .  By Lemma 9, in order to 
maximize ܣܩଶ(ܩ), ௩ܶ must be a spider and ݀݁݃ீ(ݓଵ) = 3 if ݓଵ ≠  .ݒ
 

Lemma 12. Let ܩ ∈ ߮,௱,  and ݓଵ ≠ ݒ . Then there is a graph ܩ′ ∈ ߮,௱, such that 
(ܩ)ଶܣܩ <  .(′ܩ)ଶܣܩ
 

Proof. Let ܩ′ be the graph obtained from ܩ\ ௪ܶభ by attaching a path of order 
|ܸ ( ௪ܶభ)|  − + ߂  2  to the end vertex of the path ௪ܶೕ which is different from ݓ , ݆ =
⌈(݇ − 1)/2⌉ and adding ߂ − 2 pendant edges at vertex ݓଵ. Obviously, ܩᇱ ∈ ߮,௱, and it is 
straightforward to verify that ܣܩଶ(ܩ) <  .(′ܩ)ଶܣܩ
 

By Lammas 8–12 we obtain the following result. 
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Corollary 13. Let ܪ ∈ ߮,௱, be the graph which consists of a cycle ܥ = ,ଶݓ,ଵݓ) …  (ݓ,
with ߂ − 2 pendant edges at vertex ଵݓ   and a path of order ݊ − ݇ − ߂ + 2 at vertex ݓ , 
where ݆ = ⌈(݇ − 1)/2⌉. Then for every ܩ ∈ ߮,௱, (ܩ)ଶܣܩ , ≤  .(ܪ)ଶܣܩ
 

We are now ready to state the main theorem of this section. 
 

Theorem 14. For any unicycle graph ܩof order n, girth k and maximum degree ߂ ≥  3, if k 
is odd, then 

(ܩ)ଶܣܩ        ≤ ଶ

൬(Δ − 2)√݊ − 1 + ∑ ඥ݅(݊ − ݅)ିିାଶ

ୀଵ ൰ 

                     + ଶ(ିଵ)
ିଵ

ට(ିଵ
ଶ

+ Δ − 2)(݊ − ିଵ
ଶ
− Δ + 1) + ଶ

ା୩ିଷ
ටିଵ

ଶ
(ିଵ

ଶ
+ Δ − 2) 

                     + ଶ
ିାଵ

ටିଵ
ଶ

(݊ − ିଵ
ଶ
− Δ + 1), 

and if k is even, then 

(ܩ)ଶܣܩ ≤ ଶ

൭(Δ − 2)√݊ − 1 + ∑ ඥ݅(݊ − ݅)ିିାଶ

ୀଵ + ݇ට(
ଶ

+ Δ − 2)(݊ − 
ଶ
− Δ + 2)൱. 

The equality holds if and only if ܩ is the graph ܪ given in Corollary 13. 
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زنجیرهاي  بالابان )-مجموع( هاي اکسترمال براي شاخص گراف

  اسپیروفنیل و  ضلعی پلی شش
 

  
  کلاوزر سندي : رابط ادیتور

 
 چکیده

 -مجموعشاخص بالابان و شاخص  ،کنندهمتمایزبسیار  ۀژیکی مبتنی بر فاصلهاي توپولو به عنوان شاخص
=J(G) به ترتیب به صورت، G بالان یک گراف 

ఓାଵ
∑ ଵ

ඥீ(௨)ீ(௩)௨,௩∊ா  و

SJ(G)= 
ఓାଵ

∑ ଵ
ඥீ(௨)ାீ(௩)

ஶ
௨,௩∊ா شوند که  تعریف میDG(u)=∑v∊V d(u,v)  مجموع فاصلۀ 

گرهاي مفید مبتنی بر  توصیفآنها . است Gعدد سیکلوماتیک  ߤها و  یالتعداد  G ،m در uیک رأس 
ضلعی  هاي اکسترمال زنجیرهاي شش دراین مقاله، ما روي گراف. هستند ها درمانی شیمیدر فاصله  

  . کنیم بالابان تمرکز می -فنیل و اسپیرو، با توجه به شاخص بالابان و شاخص مجموع پلی
ضلعی  ضلعی اسپیرو، زنجیر شش بالابان، زنجیر شش - شاخص بالابان، شاخص مجموع :لغات کلیدي

  فنیل پلی
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An Application of Geometrical Isometries in Non-

planar Molecules 
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bDepartment of Physical Chemistry, Faculty of Chemistry, University of Kashan, 
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cDepartment of Analytical Chemistry, Faculty of Chemistry, University of Kashan, 
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  هاي غیرمسطح هاي هندسی در مولکولکاربردي از ایزومتري

  
  گوتمن ایوان : رابط ادیتور

 
 چکیده

روشی جدید براي انتقال مبدأ به مرکز یک چندضلعی در یک ساختار مولکولی معرفی می  ،در این مقاله
محاسبات  .حاوي چند ضلعی مورد نظر عمود باشد ۀکنیم، به طوري که یک محور بخصوص، بر صفح

  .هیمدمی کامپیوتري ارائه ۀکنیم و الگوریتم آن را به عنوان یک برنامریاضی را به طور کامل تشرح می
  .غیرمسطح اي چندحلقه مولکول چندضلعی، متعامد، تبدیل ایزومتري، قاب، :ات کلیديلغ
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On ev−Degree and ve−Degree Topological Indices 
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2Faculty of Education, YuzuncuYil University, Van, Turkey 
 

  درجه-veدرجه و -evهاي توپولوژیکی  شاخص
 

  داسلیک تومیسلاو : رابط ادیتور
 

 چکیده

همچنین . درجه -veدرجه و  - ev: است گراف تعریف شده ۀاخیرا دو مفهوم جدید از درجه در نظری
هاي زاگرب  عاریف کلاسیک شاخصت موازاتنیز به  درجه - veدرجه و  - ev و راندیک زاگرب هاي  شاخص

 درجه - veدرجه و  -evهاي توپولوژیکی  ه شاخصکنشان داده شده است . اند تعریف شدهندیک، او ر
هاي  در این مقاله، شاخص. استفاده شوند QSPRتوانند به عنوان ابزارهاي ممکن در تحقیقات  می

هاي  شاخصاین  ةبینی شد کنیم، نیروي پیش را تعریف می درجه- veدرجه و  -evکاتایاماي  -نارومی
همچنین . کنیم می بررسیهاي توپولوژیکی جدید،  ال را با توجه به این شاخصهاي اکسترم گرافجدید و 

را ارائه  درجه -veدرجه و  - evکاتایاما و زاگرب  - هاي نارومی ریاضی شاخص اي پایه هاي ویژگیبرخی 
  .کنیم می

  درجه - ve توپولوژیکی، شاخص درجه - ev، شاخص توپولوژیکی درجه - ve، درجه  -ev :لغات کلیدي
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  دور تک گرافهاي و درختها براي ریاضی–هندسی شاخص دومین

 
 

  میمنی حمیدرضا : رابط ادیتور
 

 چکیده

ریاضی –دومین شاخص هندسی .باشد E(G)یالهاي  ۀیک گراف متناهی ساده با مجموع Gفرض کنید 
  :شود بصورت زیر تعریف می
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GEuv vu

vu

nn
nn

GGA  

، کران Tما در این مقاله براي درخت . هستند vنزدیکتر از  uاست که به  Gتعداد رئوس  unکه در آن 
همچنین براي گراف . کنیم میدرخت  محاسبه  ۀمرتبه و بیشترین درجرا بر حسب  GA2(T) دقیقبالاي 

. کنیم محاسبه میگراف  ۀمرتبه و بیشترین درجرا بر حسب  GA2(G) ، کران بالاي دقیقGدور   تک
  .کنیم میرا دسته بندي  اند به این کرانهاي بالا رسیدهدوري که  ، درختها و گرافهاي تکبعلاوه

  دور گراف تکریاضی، درخت،  –دومین شاخص هندسی :لغات کلیدي
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 ها عدد اشباع گراف

  
 گوتمن ایوان : رابط ادیتور

 
 چکیده

ܩ کنیدفرض  = اي از  مجموعه، ܩدر گراف  ܯیک جورسازي . یک گراف همبند ساده است (ܧ,ܸ)
ماکسیمال  ܯجورسازي . رأس مشترك نداشته باشند ܯکه هیچ دو یالی در   طوري  است به ܩهاي  یال

ترین  کوچک اندازة. تر گسترش دهیم رگبز ةم آن را به یک جورسازي با اندازنتوانی شود اگر نامیده می
در این مقاله،  .دهیم نشان می (ܩ)ݏنامیده و آن را با  ܩرا عدد اشباع  ܩجورسازي ماکسیمال گراف 

ی اهمیت دارند را هاي خاصی که در شیم گرافها،  عدد اشباع ضرب کروناي برخی گراف ۀعلاوه بر محاسب
  .   آنها را مطالعه خواهیم کرد اشباع عدد درنظر گرفته و

 جورسازي ماکسیمال، عدد اشباع، ضرب کرونا :لیديلغات ک



 

داراي  27/11/89مورخه  104372/11/3/89اين نشريه طبق مجوز شماره 
همچنين . از وزارت علوم ، تحقيقات و فناوري مي باشد پژوهشي‐علمي اعتبار 

 ISCاين مجله در پايگاه اطلاعاتي  (Islamic World Science Citation 

Center) وابسته به وزارت علوم ، تحقيقات و فناوري نمايه مي شود.  




