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Design of some crystal and quasicrystal networks,
based on rhombellane tiling, is presented.
[1,1,1]Propellane, is a synthesized organic molecule;
its hydrogenated form, the bicyclo[1.1.1]pentane, may
be represented by the complete bipartite graph K3
which is the smallest rhombellane. Topology of
translational and radial  structures involving
rhombellanes is described in terms of vertex symbol,
connectivity sequence, ring sequence and map
operations relating structures to their seeds. It is
shown, by alternating sum of ranked substructures, that

radial structures represent complex constructions of
higher rank. Basic properties of rhombellanes, coloring
included, are outlined.

Higher rank structure

© 2018 University of Kashan Press. All rights reserved

1 INTRODUCTION

[1,1,1]Propellaneis an organic molecule, first synthesized by Wiberg and Walker
in 1982 [1]. By IUPAC rules, it is named Tricyclo[1.1.1.0%*]pentane, a
hydrocarbon with formula CsHg and three rings of three atoms. The hydrogenated
form of propellane, CsHg, eventually named bicyclo[1.1.1]pentane, has only
rhomb/square rings; it can be represented by K3 - the complete bipartite graph,
which is the smallest rhombellane. The two bridge carbon atoms can be
functionalized, e.g., by bromine or COOH, or even by repeating the K;3; motif, as
in the polymer called staffane [2].

Rhombic polyhedra are known as aesthetic appeal objects, of mathematical
interest [3]; the well-known triacontahedron, the dual of Archimedean

*Corresponding Author: (Email: diudea@gmail.com)
DOI: 10.22052/ijmc.2018.126056.1353



168 DIUDEA

icosidodecahedron, has 30 rhombic faces. In the book “Multi-shell polyhedral
clusters” [4],the cluster C;s5, was described consisting of K3 units, which are not
polyhedra cf. Steinitz Theorem [5] but tiles [6].

Design of rhombellanes is made by a general procedure [7], achieved as
follows: join by a point (called “rbl-point”) the two vertices lying opposite
diagonal in each rhomb of an all rhomb-map (i.e. the zero-generation, Rho). Then,
add new vertices opposite to the parent vertices and join each of them with the rbl-
vertices lying in the proximity of each parent vertex, thus local Rh-cells being
formed. The process can continue, taking the envelope Rh, as “Rhy” for Rhps1, in
this way shell by shell being added to the precedent structure. Since the two
diagonals may be topologically different, each generation may consist of two
isomers.

The paper is organized as follows: after an introduction, construction of
some periodic rhombellane-consisting structures is presented; in the third section,
non-periodic radial structures are discussed; the forth section details the
rhombellanic character, in mathematical chemistry terms; in the fifth section, a
graph coloring problem related to rhombellanes is exposed; conclusions and
references will close the paper.

2. PERIODIC RHOMBELLANIC STRUCTURES

According to Steinhardt definition [8], crystals are highly ordered structures, with
atomic clusters repeated periodically, in three independent directions of the space,
and showing an essentially discrete diffraction diagram; the symmetry of infinite
crystal lattices is completely described by the 230 symmetry groups of the space.

Starting from the simplest crystal network, namely the simple cubic pcu net,
of which repeating unit is a cube C, it is possible to build a variety of triple
periodic structures.

Let first locate a point/atom in the center of cube and join it with all the
corners of cube; the obtained unit is referred here as CP2.9 (Figure 1, left), P®
meaning a point of connectivity 8. By translating this unit along the three
coordinate axes results in a “body centered cubic” bcc network, including both pcu
and bcu networks; by this reason, it is named here pcu-bcu (Figure 2, left). Second,
cut-off, in an alternating manner, four of the edges emerging from the central point
to the corners of cube; the unit thus obtained is named CP*.9 (Figure 1, middle)
while the network resulted from itby a simple translation is denoted pcu-dia
(Figure 2, middle). Third, translate CP* unit along the three coordinate axes, each
step rotated 90°, thus resulting the network called here pcu-flu (Figure 2, right); its
repeating unit consists of eight CP* units, with a total of 35 points/atoms.
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CP®.9 (pcu-beu) CP*.9 (pcu-dia); (pcu-flu) CD.8 (bcu)

Figure 1. Seeds for three periodic networks.

pcu-bcu
CP°9

pcu-flu
CP*& CP*R(90°)

Figure 2. Networks superposed over the simple cubic net pcu;
seeds are indicated on the bottom row.

The bcu, dia and flu nets alone (see [9] for symbols), resulted by deleting the
pcu net (Figure 2), are illustrated in Figure 3. Also, bcu can be generated by
translating the unit CD.8 (Figure 1, right), a diagonalized cube, representing a
substructure of the unit Rh;,P®.15 (Figure 4, top, middle).

bcu (Im-3m) dia (Fd-3m) flu (Fm-3m)

Figure 3. Periodic nets envisaged by deleting the simple cubic net
pcu in Figure 2.
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The void of flu net is the rhombic dodecahedron Rhy,.14 (Figure 4, top,
left), a space filler. By doping Rhy, with a body centered atom, P2 results in
Rhy,P®.15, a cluster of rank k = 5 (see Table 1S, Supplementary material); it is the
seed of bcu net (Figure 5, top, middle and right); relation between the two netsorks
is illustrated in Figure 4.Any atom of bcuis retrievedin the pcu (i.e., twin/entangled
pcu) net (and the reciprocal is true); it is clear that Figure 2, left, shows the bcu net
with the rectangular edges of pcu also represented. However, any of flu atoms
belongs to the (twin) pcu but the reciprocal is not true.

Figure 4. Doping by a point/atom the seed of flu, Rhy; (top, left),
becomes Rhy,P®.15 (top, middle), the seed of bcu (top right); the
void Rhy; and its complement (within the pcu frame) form the flu
net (bottom).

Similarly, the net pcu-dia (Figure 2, middle), of which seed is CP*.9, is in
fact the twin dia net, of Fm-3m space group: a “face centered cubic” fcc net is
entangled with its self-dual net; the two nets are displaced along the body diagonal
of the cube by one quorter of the diagonal length, as illustrated in Figure 5. Any
atom of (twin) dia is retrieved in the (twin) pcu net (and the reciprocal is true); in
the retrieved pcu net, the atoms of the two dia nets alternate in populating the
cubic net, as in the cube bipartite coloring (Figure 6). If rotates 90° to each other
(and identifies the superposed points) dia-dia changes to the flu net (Figures 3 and
4).
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Triple periodic networks can be characterized by sequences of vertex
connectivity, as given in the crystallographic databases [9]. Sequences of a given
topological property are counted as rows in layer/shell matrices, LM/ShM [10,11];
in this case, LC is the layer of connectivity matrix, which is taken up to the
distance ten from the chosen vertex. In addition, if the strong rings surrounding
vertices are considered, the layer of rings matrix LR [12] can be obtained; the
characterization of a triple periodic network is (for the first time) more complete.
Lists of such data for the nets: pcu, bcu, fcu, dia, flu, pcu-bcu, pcu-dia and pcu-flu
are given elsewhere (Tables 2S and 3S - Supplementary material). (The figure
count for the seeds of the discussed networks is given in Table 1S- Supplementary
material).

ada = diay dia (Fd-3m) co-ada = diapcc

Figure 5. Diamond net substructures entangled within the pcu
frame: dia = U(fcc; bcc).

ada = diag Cubic dia Twin dia (entangled)

Figure 6. Two dia-nets complementarily occupy the same space
generated by the CP* seed: there is only one ada unit (red) and one
co-ada (yellow - left); in the cubic dia net, the space filler is only
CP* unit (red - middle); in the retrieved pcu net, the atoms of the
two entangled dia nets alternatively populate the cubic net, as in
the bipartite coloring (right).
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3. RHOMBELLANIC RADIAL STRUCTURES

Quasicrystals are finite aperiodic structures, with long-range positional and
orientational order [8]. Among the rotational symmetries, 2-, 3-, 4- and 6-fold
axes are allowed in crystals, while 5-, 7- and all higher (non-crystallographic)
rotational symmetries are encountered in quasicrystals. Atomic clusters are
repeated in a complex, non-periodic pattern; electron diffraction shows sharp
patterns, as found experimentally by Shehtman [13] the Nobel prize winner in
2011. Radial structures with rhombellanic characteristics can be obtained by
applying iteratively the “rhombellation” procedure, described in the introductory
section. The procedure is illustrated in Figre 7, starting from the cube.

Rhs; = K33 Rhe and rbl points (inred)  rbl; generation (Rhi2 hull)

Figure 7. Rhombellane Rhz and rhombellation starting from the cube (i.e.,Rhg).

The new envelope Rhp.1 has twice the number of rhombs in the precedent
Rh, envelope; the number of vertices in a new generation is counted iteratively as:
Vn+1 = Vpt2hy + 2, with v = |V(G)| being the number of vertices, h, the number of
rhombs in the hull of n-generation (embedded in the sphere) and 2 is the Euler
characteristic (see below) of the sphere. Referring to the zero-generation, Rho, the
actual number of vertices can be obtained by the formula:

Vo=2(n + 1) + hy (2" - 1).

Radial series can be characterized, as the crystal structures, by shells of
connectivity LM and shells of rings around vertex LR matrices (see Supplementary
material, Table 4S).

About space dimensionality or ranking, as defined by Schulte [14], each
rhombellane generation (i.e. shell) can be seen as a cluster of rank k = 4 (Table 1);
then, two such shells share a common 3-facet, which is a sphere tessellated by
rhombs f4, a true cell (Figure 8). It means, a shell pair (1;2) or (2:3) are structures
of rank k = 5. Further, a pair {(1;2);(2:3)} will share a shell of rank k = 4 (in this
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case, the shell (2)); thus, the structure 3gu, (Table 1, bottom), bonded by two facets
of rank k =5, is a structure of rank k = 6 and the process can continue.

a5
.

- \k"\h n‘;k
il.,
l“ ¥
KL

RN
R

‘6 i "(
Sy -

o Py
IR

1[2].94 2[2,2].184 (1;2)[2,2].216
Figure 8. Facets of the shell pair (1;2) of rhombellanes rbl,(Rhsp).

Table 1. Figure count for Rhgorbla[1,..,1]; K23 = f4/3; M = No. (inner + outer)
cells.

[1,.1] v e f, Kps Kig Kps Rhg Rhy Ky M 3 4 5 6
94 240 270 20 0 0 0 12 90 2 124 0  (30;60)
184 480 540 20 0 12 30 0 180 2 244 0  (60;120)
364 960 1080 20 30 12 60 0 360 2 484 0 (120;240)
(1;2) 216 600 750 40 0 12 30 12 270 2 366 2 2
(2;3) 426 1200 1470 40 30 24 60 0 540 2 696 2 2
3 458 1320 1710 60 30 24 90 12 630 2 848 2 2 0

Note, in Table 1, the presence of K,,, complete bipartite graphs and related
rhombic cells Rh,; also note the count of f,; (pair (Rh,, Rhn1) at the top of #5 and
#6 columns). For the series [2,..,2], see Table 5S, (Supplementary material). Euler
characteristic y [15] of a surface S can be calculated as an alternating sum of

figures, ofrank k: ¥(S)="f,—f, +f,—f,+...,.
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4. RHOMBELLANIC CHARACTER

Proposition [7]. A structure is a rhombellane if all the following conditions are
obeyed: (a) All strong rings are squares/rhombs; (b) Vertex classes consist of all
non-connected vertices; (c) Omega polynomial has a single term: 1X*|E[; (d) Line
graph of the original graph shows a Hamiltonian circuit; (e) Structure contains at
least one K, 3 subgraph.

Cube (actually Rhg) is an all-square graph and Hamiltonian; its line-graph,
the cuboctahedron, is also Hamiltonian but its Omega polynomial [16,17]: Q(C) =
3X"4, meaning not all of its edges are topologically parallel; also, the vertices of
cube form a singlevertex class and thus cannot be disconnected.

Triacontahedron, Rhsy, has all-square rings, all non-connected vertex
classes but not 1X"*e Omega polynomial unique term and no Hamiltonian circuit of
its lines. Rhomb Icosahedron, Rhyg, has not all classes of non-connected vertices.

Omega polynomial is defined as: 2(x) = Zymx’, m being the number of
opposite edge strips, ops, of length s, in a graph G. There are graphs with a single
ops, which is a Hamiltonian circuit. For such graphs, Omega polynomial has a
single term: Q(x) = 1x°; s = e = |E(G)|, in other words, “all the edges in G are
topologically parallel”. However, Hamiltonicity is an NP complete problem, being
taken here as a corollary of a single ops in Omega polynomial; however, not all the
graphs having a Hamiltonian circuit have all the edges topologically parallel (see
the case of cube and cuboctahedron).

The smallest rhombellane Rh; is K3 the complete bipartite graph
(corresponding to the molecular graph of CsHg, bicyclo[1.1.1]pentane); all Kz,
graphs fulfill all the above conditions. Any K, graph consists of n(n-1)(n-2)/6
K23 substructures. There are rhomb-tessellated cages that fulfil the first four
criteria but do not contain any K3 substructure.

Further, there are graphs with more than two vertex classes obeying the
above conditions. Rhombellation operation provides such graphs, with n
shells/generations, when applied iteratively. The rbl-vertices added in the first step
of any new generation are disjoint with respect to each other while in the second
step they are joined by means of new vertices superposed on the parent vertices
(thus not connected, neither to the parent vertices nor to themselves); this
construction provides classes of vertices non-connected to each other within a
same class. Rhombellanes represent n-partite graphs, both by topology and
coloring (see below). Rhombellanic crystal networks also fulfill all the five above
criteria: among the discussed network, only the dia net (as the superposed pcu-dia)
is full rhombellanic, whereas pcu-bcu has triangles while flu does not cover all
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points/atoms in pcu. Accordingly, only the CP*.9 seed show a full rhombellanic
character.

Corollary. In a finite molecular rhombellane, with vertex classes consisting of
distinct atom types, there are only polar bonds while covalent non-polar bonds
may not exist.

5. COLORING PROBLEM

The chromatic number Ch of a graph is the smallest number of colors needed to
color its vertices so that no edge has the both endpoints colored the same [18].
Several graph constructions have been proposed about graph coloring [19-22]; two
of them are more related to our proposed construction:

Mycielski’s Theorem ([23], 1955). For any integer n > 1, there exists a triangle-
free n-chromatic graph.

Zykov’s Theorem ([24], 1949): There exist triangle-free graphs with arbitrary
large chromatic number.

Hamiltonicity and other properties of triangle-free graphs transformed by
Mycielski’s construction were discussed in [25,26]. Note that, the 4-polytope 24-
Cell is three-colored, its medial (i.e., line-graph) Cys is four-colored, its face-dual
is also four-colored; however, these graphs have a single topological vertex class;
it means, the coloring does not superposes over topology. Also, bipartite graphs
(i.e. graphs with all even size cycles) have Ch = 2 but may have more than two
topological vertex classes. In rhombellanes, topology superposes over coloring; for
rbly(C).22, we found Ch = 5; for rbl,(C).48, Ch = 8.

Q4.8CP?.24 = 24-Cell Q4.8CP°.24 Q4.8CP%sa.24 Q..CD.16
Ch=3, Cls=1 Torus T44embedding Ch=2, Cls=2 Ch=16, Cls=16

Figure 9. Hypercube Q4 derivatives.
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Jensen and Royle [27] provided an easy construction of a 22-vertex graph
(from the Grotzsch graph) and an easy proof that the result is triangle-free and 5-
chromatic. By repeating two times Mycielski’s procedure, a 45-vertex, triangle-
free, 6-chromatic graph was obtained; it is unknown if a smaller such graph exists
[18] (however, graphs of 44 or 43 vertices were questioned [28]). In this light, our
results are correct, with respect to chromatic number and our procedure seems to
be simpler than those already published.

Rhombellation operation provides triangle-free graphs with arbitrarily large
chromatic number. Figure 9 illustrates three derivatives of the hypercube Q4 —
Tesseract, in four representations: (i) Q4.8CP®24=24-Cell (Ch=3; Cls=1); the
construction is made in the idea of cube-derivatives CP®, CP* and CD, used as
network seeds (Figure 1) and seems to be a new way to build the 24-Cell 4-
polytope [7]; it has Ch = 3 but is not rbl in character (it contains triangles and has a
single class of vertices, thus cannot be disconnected): (ii) The object Q,.8CP®.24
embedded in the torus T44;(iii) Q4.8CP*sa.24, a syn-anti isomer with Ch = 2 and
Cls=2; it has a rbl character and (iv) Q4.CD.16, a diagonalized hypercube having
Ch=|V(G)|=16 (i.e., the number of atoms/vertices in the molecule/graph); in other
words, each class consists of singular vertices, clearly disconnected, as they belong
each to different classes; this is also a rhombellanic structure, obeying all the five
rbl criteria. Topology of these Qs-derivatives is given in Tables 6S to 8S
(Supplementary material).

Vertex classes were computed by our Nano-Studio software [29], as
centrality indices, and confirmed by permutations in the adjacency matrix of
graphs, performed by Mathematica [30].

6. CONCLUSIONS

Rhombellane, Rh; or K3, is the smallest tile with rhombic rings/faces; it
represents a real chemical molecule. Generalized rhombellanes, designed by the
rhombellation procedure, have non-connected vertex classes (of interest in graph
coloring); all the edges are topologically parallel (as shown by the single term
Omega polynomial, further involving Hamiltonian circuits visiting their edges) and
contain at least one K3 subgraph.

For some well-known triple periodic crystal networks, like pcu, bcu or dia,
rhombellanes enable a deeper description, helpful in understanding relations
among networks apparently not related. Cube-like molecules or crystal networks
have been reported [31,32]. For the first time in literature, crystals and
quasicrystals were characterized by sequences of strong rings around atoms.
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Exploring network seeds led to a new building way of the 4-polytope 24-

cell. Radial structures, generated by propellation are ordered (yet hypothetical)
structures of higher rank.

Rhombellanes represent a new class of structures, with promising properties,
both in theory and applications.

Supplementary Material. Available on request, at www.esmc.ro.
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1 INTRODUCTION

The molecular descriptor is the final result of a logical and mathematical procedure which
transforms chemical information encoded within a symbolic representation of a molecule
into a useful number or the result of some standardized experiment [2]. Molecular
descriptors have been shown to be useful in modeling many physico-chemical properties in
numerous QSAR and QSPR studies [3-5].

In this paper, we introduce one-alpha descriptor. It is defined as the sum of the
vertex contributions is such a way that each pendent vertex contributes 1, each vertex of
degree two adjacent to pendent vertex contributes a, and also each vertex of degree higher
than two also contributes o and another vertex contributes 0. If we take a=2, we get the
previously defined [1] one-two descriptor. As in [1], we illustrate this definition for 3-
ethyl-hexane in Figure 1.
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DOI: 10.22052/ijmc.2018.118091.1342
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One-alpha descriptor of graph G will be denoted by OA(G). For instance, if G is 3-
ethyl-hexane, then OA(G) = 3 + 4a. We show that one-alpha descriptor as generalization of
one-two descriptor may be of interest in chemistry, since it can slightly improve predictions
of the heat capacity at P constant (CP) and of the total surface area (TSA) for octane
isomers. Further, we analyze mathematical properties of this descriptor. Namely, we find
tight upper and lower bounds in the families of the trees with n vertices and the chemical
trees with n vertices.

a

o—© o—0 o
1T ¢ a 0 o A1

Figure 1. Vertex contributions of 3-ethyl-hexane. Each pendent vertex contributes 1, each
vertex of degree two adjacent to pendent vertex contributes a, and also each vertex of
degree higher than two also contributes a and another vertex contributes 0.

2. QSAR RESULTS

International Academy of Mathematical Chemistry [6] proposed four benchmark sets [7] as
sets for testing the molecular descriptors. Also, recently Adriatic descriptors [8-12] have
been proposed and in many cases they have provided better results than benchmark
descriptors [8,11]. One-two descriptor outperformed both sets of descriptors in the linear
modeling of TSA, and it was of comparable quality (slightly better) than benchmark
descriptors in the linear modeling of CP, but not as good as the best Adriatic index [8-12].

However, here we show that a =2 does not give the best results in the set of all one-
alpha descriptors. Namely in the linear modeling of TSA, the best results are obtained for o
~1.8 and in the linear modeling of CP, the best results are obtained for o =~ 2.18. The
histograms that illustrate the changes of r? in the dependence of the values of o are
presented on the Figures 2 and 3:
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0,9 -
0,8 -
0,7 -
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0,3 -
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Figure 2. r* values of the linear models for estimation of the total surface area by one-alpha
descriptors. On the left hand-side diagram o € [0,5] and on the right hand-side diagram o € [1.7,
2.1].

0.7 5 0,5955 -
06 0,595 -
05 1 05945 -
04 7 0594 -
03 - 0,5935 |
02 - 0593 -
01 - 05925 -
0 : ‘ : : . 0,592 :
0 1 2 3 4 5 18 19 2 21 22 23 24 25

Figure 3. r* values of the linear models for estimation of the heat capacity at P constant by one-
alpha descriptors. On the left hand-side diagram o € [0,5] and on the right hand-side diagram o €
[1.9, 2.4].
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3. MATHEMATICAL PROPERTIES

Before proving the main theorems, let us introduce some notations. By nj(G) we denote the
number of vertices of degree i in G and by dc(u) we denote the degree of vertex u in graph
G. Let x be any real number. By [X] we denote the greatest integer not greater than X. In the
proofs of the main theorems, we shall use the following well known lemmas:

Lemma 1. Let G be a tree with at least 2 vertices. Then it holds:

n(G) = (i-2)n,(G)+2.

i>3

Proof. It is easy to see that:

3 (i-2)n,(G)+2=3in,(G)-23 n,(G) +2

* ~(2IV(G)|-n,(G)—2n,(G) - 2)
~2(IV(G)|-n,(G) - n,(G))+2
=n,(G).

Lemma 2. Let G be a tree with maximal upper bound for one-alpha descriptor. Then G
does not contain any vertices of contribution 0 to OA index.

Proof. Supposed to the contrary that there exists a vertex u of contribution 0, and adjacent to
vertices V1 and V2 such that dg (vi1), dg (v2) > 2. Let G'= G-uv,+V;Vs. It can be easily seen that
contributions of all the vertices except u and v; to OA index remained the same, the contribution
of vy did not decrease and the contribution of u increased from 0 to 1. Hence, OA(G) > OA(G),
which is contradiction. Hence, indeed there are no vertices of contribution 0. O

Lemma 3. Let G be a tree with maximal upper bound for one-alpha descriptor and o >1.
Then G has at least a vertex of degree 2.

Proof. By Lemma 1,
n(G)=> (i-2)n(G)+22) n(G)+2.
i>3 i>3
By the above inequality we conclude that, n;(G) - 2 > Yi=; ni(G). By contrary we assume
that n(G) = 0. Since n1(G) + Y>3 Ni(G) = n, N1(G) + N1 (G) — 2 > ny(G) + >i=3 Ni(G) = n and
so ni(G) >n/2 + 1, where |V(G)| = n.

Also, since ny(G) = 0, OA(G) = ni(G) + oYi=3ni(G) = n1(G) + a(n - ny(G)). By
assumption OA(G) is maximal and a > 1, then n;(G) must have minimum value. Now we
construct a graph G' such that [V(G)| = n and ny(G) < n/2+1 and OA(G') > OA(G), which
makes contradiction. There are three cases forn>4,n=3k+1,n=3k+2o0rn=3k + 3.
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For each case we construct the graph G' as Figure 4, such that OA(G) = ny(G) +
a(n-n1(G)), ny(G) < n/2+1 and OA(G)) > OA(G), which is contradiction. O

n=3k+1

n=3k-+3

Figure 4. The constructed graph related Lemma 3.
Now, we can obtain lower and upper bounds for trees to different values of a.

Theorem 4. Let G be a tree with n vertices. It holds
0

2
2+a

535 S
Il
WN -

OA(G) >
2+2a a<n-3

2n—-4 a=n-3 n>4
(h-D+a a>n-3

Proof. To prove the lower bound for OA(G), it can be easily checked for n< 3. For n=1, 2, 3 the
lower bound can be obtained immediately. Hence, let us assume that n > 4. We use this well known
fact that each tree with at least two vertices has at least two leaves. If G is a star, then it is easy to
see that OA(G) = (n - 1) + a.. If G is not a star, than there are at least two vertices adjacent to leaves
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hence OA(G) > 2 + 2a. Now if o = n -3, then 2 + 20 = (n-1) + o = 2n - 4 and hence for o < n-3,
we have 2 + 20 < (n - 1) + a. Also for o > n -3, 2 + 20> (n - 1) + a. Examples of the extremal
graphs obtaining the lower bounds for a < n - 3 are paths P, for n> 4 and for a > n - 3 are the stars

Sy, for n>4. Also for a = n - 3, OA(P,) = OA(S,) = 2n - 4. O

Theorem 5. Let G be a tree with n vertices. Then

(n-D+a a<l
n+2 n+2
OA(G) < TS ra(n-"9) as1 12 7.
[n—jLZJlevLa(n—[n—jLzJ—l) a>1, n—+2§EZ
3 3 3

Proof. First assume that o < 1. By Lemma 2, OA(G) = ny(G) + a(n - n1(G)), then OA(G) is
maximum if and only if ny(G) is maximum. A tree with maximum number of leaves is a
star and OA(S,) = (n - 1) + a. Therefore, OA(G) <(n-1) + a.

Now we assume that o > 1. Let us prove that for each n, there exists an n-vertices
tree G with maximum OA such that A(G) < 3. Suppose that G is a tree with n vertices such
that OA(G) is maximum. If A(G) < 3, then there is nothing to prove. Let A(G) > 4, by
Lemma 3, there exists a vertex v in V(G) such that deggv = 2. Let u € V(G), degsu = A(G)
and Ty, Ty, ..., Ta) be branches from u, see Figure 5. Without loss of generality, we can

assume that visin T
Ty

Ta(c) °

Figure 5. The configuration of graph G in Theorem 5.

Now we instruct a graph G, as follow: We omit the branches T4, Ts, ..., Ta) and
join them to vertex v. By this transformation we obtain the tree G, such that OA(G;) =
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OA(G) and since OA(G) is maximum then OA(G;) will be maximum, then by Lemma 3
there exists a vertex v in V(G;), such that dgi(vi)=2. It is clear that A(G;) < A(G) and
dei(v) = A(G) - 1. By continuing the above process we can obtain the graph G, such that
A(Gy) < A(Gy) < A(G) and OA(G;) = OA(G;1) = OA(G). Finally by continuing this process
we can obtain the graph Gs from G4, such that A(Gs) < 3 and OA(Gs) = ... = OA(G,) =
OA(G). Hence from beginning we can assume that G is a tree with maximum OA and A(G)
< 3. Now by Lemma 1, n1(G) = >i=3(i - 2) ni(G) + 2 = n3(G) + 2. We have ni(G) + ny(G) +
n3(G) = 2, and so

2n1(G) + ny(G) =n+ 2. (@)

By Lemma 2, G does not contain any vertices of contribution 0 to OA index then

OA(G) = ni(G) + a(n - ny(G)). Since o > 1, OA(G) is maximum if and only if ni(G) is
minimum. Again, by Lemma 2, we have ny(G) < ni(G). From Equation (1), we conclude
that 3n1(G) > 2n;(G) + n(G) = n + 2 and then ny(G) > (n + 2)/3. Hence if

(n+2)/3=k e Z(n=1mod 3),

then n;(G)=(n+2)/3 is minimum value for n;(G) and if
(n+2)/3=k g Z(n=0or2mod 3),

then n1(G)=[(n+2)/3]+1 is minimum value. The examples of the extremal graphs obtaining the
upper bounds are presented in the Figure 6.

n=1 n=2 n=3 n=4

R

n=>5 n=3k+3 k=

n=3k+4, k==1 n=3k+5 k==1

Figure 6. Extremal graphs obtaining the upper bounds.

This proves the Theorem. |

ACKNOWLEDGMENT. The partial support of Croatian Ministry of Science, Education and
Sport (grants no. 177-0000000-0884 and 037-0000000-2779) is gratefully acknowledged.



186

VUKICEVIC AND YARAHMADI

REFERENCES

1.

10.

11.

12.

D. Vukicevi¢, M. Bralo, A. Klari¢, A. Markovina, D. Spahija, A. Tadi¢ and A. Zili¢,
One-Two descriptor, J. Math. Chem. 48 (2010) 395-400.

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH,
Weinheim, 2000.

N. Trinajsti¢, Chemical Graph Theory, CRC Press, Boca Raton, 1992,

J. Devillers and A. T. Balaban (Eds.), Topological indices and related descriptors in
QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.

M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley-Interscience, New York,
2000.

http://www.iamc-online.org/

http://www.moleculardescriptors.eu/dataset/dataset.htm

D. Vukicevi¢c and M. Gasperov, Bond additive modeling 1. Adriatic indices, Croat.
Chem. Acta 83 (3) (2010) 243-260.

D. Vukicevi¢, Bond additive modeling 2. Mathematical properties of max-min rodeg
index, Croat. Chem. Acta 83 (3) (2010) 261-273.

D. Vukicevi¢, Bond additive modeling 3. Comparison between the product-connectivity
index and sum-connectivity index, Croat. Chem. Acta 83 (3) (2011) 349-351.

D. Vukicevi¢, Bond additive modeling 4. QSPR and QSAR studies of variable adriatic
indices, Croat. Chem. Acta 84 (1) (2011) 87-91.

D. Vukicevi¢, Bond additive modeling 5. Mathematical properties of variable sum
exdeg index, Croat. Chem. Acta 84 (1) (2011) 93-101.



Iranian J. Math. Chem. 9 (3) September (2018) 187 — 199

Iranian Journal of Mathematical Chemistry

Journal homepage:ijmc.kashanu.ac.ir

A New Family of High-Order Difference Schemes for
the Solution of Second Order Boundary Value
Problems

MORTEZA BISHEH-NIASAR, ABBAS SAADATMANDI’AND MOSTAFA AKRAMI-ARANI

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Kashan,
Kashan 87317-53153, Iran

ARTICLE INFO ABSTRACT

Avrticle History: Many problems in chemistry, nanotechnology, biology, natural
Received 9 August 2017 science, chemical physics and engineering are modeled by two
Accepted 1 February 2018 point boundary value problems. In general, analytical solution of
Published online 30 August 2018 these problems does not exist. In this paper, we propose a new
Academic Editor: Hassan Y ousefi-Azari class of high-order accurate methods for solving special second
Keywords: order nonlinear two point boundary value problems. Local
Boundary value problems truncation errors of these methods are discussed. To illustrate the
Finite difference methods potential of the new methods, we apply them for solving some
Bratu’s problem well-known problems, including Troesch’s problem, Bratu’s
Troesch’s problem problem and certain singularly perturbed problem. Bratu’s and
High accuracy Troech’s problems, may be used to model some chemical reaction-

diffusion and heat transfer processes. We also compare the results
of this work with some existing results in the literature and show
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1. INTRODUCTION

The study through boundary value problem is an interesting in recent years. This interest
can be attributed due to its wide range of application in scientific research. In general,
nonlinear boundary value problems do not always have solutions which we can obtain
using analytical methods. Therefore, techniques for rapidly computing approximate
solutions of boundary value problem are very importance.

In this paper, we introduce two fast and accurate numerical schemes for the solution
of second-order nonlinear differential equations of the form

y" =1(x,y), a<x<h, €))

*Corresponding Author (Email: saadatmandi@kashanu.ac.ir)
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subject to the boundary conditions:

y@ =«  y) =5, (2)
where a, b, a and (3 are the given constants. The existence and uniqueness of the solutions
to problem (1)-(2) are discussed in [1]. The literature on the numerical approximation of
solutions of boundary value problems is large and still growing rapidly. Among the most
recent works concerned with numerical methods, we can consider direct implicit block
method [2], Chebyshev finite difference method [3], sinc collocation method [4, 5],
compact finite difference method [6], non-standard finite difference method [7, 8] and
rational finite difference method [9, 10]. Also, Ramos [11] presented a non-standard
explicit algorithm for initial-value problems.

In this paper a new class of novel non-classical difference methods is proposed for
the solution of problem (1)-(2). Our methods are based on the idea behind in [10, 11]. Two
point boundary value problems (1)-(2) covers many interesting problems. Three of these
important problems, which we consider in this paper, are as follows:

1.1 TROESCH’S PROBLEM

Troesch’s problem is defined by

{y” —usinh(uy(x)) =0, 0<x<1, €))
y(0) =0, y(1)=1,
where | is a positive constant. This problem arises in an investigation of the confinement of
a plasma column under radiation pressure [12]. Also, this problem comes from the theory
of gas porous electrodes [13]. Moreover, as pointed out in [14], Troesch’s problems may be
used to model some chemical reaction-diffusion and heat transfer processes.

The known closed-form solution of this problem in terms of the Jacobi elliptic
function is (see [15])

y(x) = Esinh‘1 {y ;O) sc <HX|1 - %Y'(O)2 )}

Here y’(0) = 2v1 — m, and the constant m satisfies the transcendental equation

sinh (%)
T = sc(pm),

where, sc(|m) is the Jacobi elliptic function. As is said in [16], this problem is inherently
unstable and difficult, especially when the sensitivity parameter p is large. Therefore,
Troesch’s problem has become a widely used test problem, and has been studied
extensively. In the last decade, variational spline method [14], discontinuous Galerkin finite
element method [17], variational iteration method [18], shooting method [19], B-spline
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collocation method [20], Christov collocation method [21], sinc-Galerkin method [22],
nonstandard finite difference method [7], finite difference method [23] and homotopy
analysis method [24] are used to solve this problem.

1.2 BRATU’S PROBLEM
The classical Bratu’s problem is given as:

{y” + Aexp(y) =0, 0<x<1, (%)
y(0) =y(1) =0,

where A is a constant. For A > 0, the analytical solution to this problem reads [24, 25,

26, 27],
cosh ((x - %) 9/2)

cosh(6/4) '

y(x) = -2In ®)

where 0 satisfies 8 = /21 cosh (8/4) . It is well known that, this problem has zero, one,
or two solutions when A > Ac, A = Ac and A < Ac, respectively. Here Ac, called the
critical value, is given by Ac = 3.513830719 [24, 25].

The Bratu model appears in a large variety of applications such as the model of
thermal reaction process, questions in geometry and relativity about the Chandrasekhar
model, radiative heat transfer, nanotechnology and the fuel ignition model of the thermal
combustion theory (for example, we refer the reader to see [24, 25, 26, 27, 28, 29, 30], and
the references therein). Various numerical methods such as homotopy analysis method
[24], Adomian decomposition method [25, 28], sinc-Galerkin method [26], B-spline
method [27], pseudospectral method [29] and finite difference method [29] have been
applied to this problem. Also, recently, Temimi and Ben-Romdhane [30] proposed an
iterative finite difference method to solve the Bratu’s problem.

1.3 SINGULARLY PERTURBED PROBLEM

We consider a class of singularly perturbed boundary value problems given in [6, 31, 32] as

{—ey”(X) +p()y(x) =ax), 0 <x<1,p(x) >0, (6)
y(0) =a, y(1)=8,

where a, B are given constants and e € (0,€5),€, < 1, is a small perturbation parameter.
Further, p(x) and q(x) are assumed to be sufficiently continuously differentiable functions.
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This type of problem occurs in many fields of science and engineering (see [6, 31, 32]). As
pointed out in [32], usual numerical treatment of singular-perturbation problems gives
major computational difficulties. This problem, has been studied by several researchers.
Gelu et al. [6] used sixth-order compact finite difference method and Rashidinia et al. [31]
employed quantic spline method. Khan et al. [32] solved this problem by sixth-order
method based on sextic splines. Also, we refer the interested readers to [33, 34, 35, 36, 37].
The organization of the rest of this paper is as follows. In Section 2, the methods are
described and also local truncation errors are discussed. In section 3, the numerical results
of applying the methods of this paper on three test problems are presented. Finally a
conclusion is drawn in Section 4.

2. THE PROPOSED METHODS

To approximate the solution of problem (1)-(2), first of all, the domain [a, b] is divided
into N equal subintervals of fixed mesh lengthh = (b —a)/N. The grid points are given
by x; =a +ih,i=0,...,N, in which N is a positive integer. For convenience
let y®O (x)) = y¥, and F®(x;,y(x;)) = £ k = 0,1,2,---. Now, following the ideas in
[11, 10], we suggest the following difference equation

Yitr — 2Yi +VYi1 ¢
v . ™
1+g(h)

equivalently,

(Vis1 — 2y; +¥i_)(1 + g(h)) = h?f;, (8)
where g(h) # —1 is a sufficiently differentiable unknown function that has to be
determined. Expanding g(h) in Taylor’s expansion about h = 0 and also expanding
Vi+1 and y;_; on the left side of Eq. (8) in the neighborhood of x; by Taylor’s expansion,
we obtain

, ht he : h*
(hZYi + Eyi(4) + ﬁyi@) + ... ) (1 + g(O) + hg (0) + 7g (0) + ) — hzfi- (9)

Now, we rewrite Eq. (9) as follows
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(0 (4)
h?[yi' (1 +9(0) — ] + h°ly;'g' ()] + h* (92()) A1+ (0))]
L s (92 y(‘” ]
B VR RO "(0) LY (1 +9(0) .
+h 24 24 360 +o(’)
=0.

In order to obtain a fourth-order scheme, the coefficients of hZ, h3 and h* in Eq.(10)
must be zero. So, we have

y(4)
g(0)=0  g@®=0  ¢"0O)=-¢ Y (11)
By substituting the above values in the Taylor series of g(h) we obtain
h2 y(4)
- i 3
g(h) = 2y + 0(h). (12)
From Egs.(8) and (12) we get
h2 y(4)
(Yier —2¥i +Yi-) | 1 - I v —h2f; = 0. (13)

Therefore, using Eq. (13) and having in mind the problem (1)-(2), we obtain the numerical
method given by

h2 f(Z) o .
Scheme 1: {(yi+1 2y; +VYi_1) (1 -5 f—) =h4f, i=12,---,N—1, (14)
Yo =& YN = B

Similarly, in order to obtain a sixth-order scheme, the coefficients of h?, h3, h*, h®
and h® in Eq.(10) must be zero. So, we obtain

1y
6y
i (15)

g(0) =g'(0) =g®(0) =0, g"(0) = -

(4) 7,
0 1+9g(0
g®(0) = ( ) yi(6) #
y 15y;

i

Therefore,
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(4)
ey® w1 () y@)
g(h)——E Y7 +y—i,, 124 y7 ~ 360 + 0(h®). (16)

Employing Egs. (1), (2), (16) and (8), we obtain the numerical method given by

( 2) @) ()
| _ o2 nt (62) i\ -
(Visr —2yi +yi-) | 1 P + E (144fi 2o ) | = hf;,
Scheme 2: 4 (17)
IU 1, 2 N -1,

Yo = Q, =B.
2.1 LocAL TRUNCATION ERROR

It follows from the construction of the methods in Egs. (14) and (17) that the new Scheme 1
and Scheme 2 are at least of fourth-order and sixth-order respectively. In fact, for Scheme 1,
let us define

h? £ (x;, y(x;))

LTE! = (y(x; + h) — 2y(x;) + y(x; — h)) <1 12 f(XpY(Xi))

) — (i, y (). (18)

After expanding each term on the right side of Eq. (18) in Taylor series about x; and
collecting terms in h we get
4 2
1 (Y®P00) 1

1=-1_ (6) 6 8
LTE] 7 o0 T3e0Y 000 e+ o) (19)

Similarly, for Scheme 2, we have

3
, / 1 (y(4)(Xi)) 1 y@W(x)y©(x) N 1
P \1728 (y7(p). 2160 y'()  20160°

LTE ®) (Xi)> h® +0(h'°).  (20)

3. NUMERICAL RESULTS

In this section, to validate the application of the presented methods to problem (1)-(2), we
consider three test problems. We have computed the numerical results by Maple
programming.

Example 1. (Troesch’s problem) In this example we will consider Troesch’s problem
given in Eq. (3) for different values of the parameter p. We solved this problem, by
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applying the techniques described in Section 2. Taking pu=0.5and pu =1, in Tables 1 and 2
we compare our results with the exact solutions given in [7]. Also, in Table 3 the numerical
solution obtained by Scheme 1 and Scheme 2 for p = 5 is compared with the numerical
approximation of the exact solutions given by a Fortran code [20] and the numerical
solution obtained by B-spline collocation method [20]. From Tables 1-3 we see that
Schemel and Scheme 2 yields a reasonable numerical solution for p = 0.5,1 and 5. As
said in [20, 23], the stiffness ratio near x = 1 increases as | increases. For this reason,
most common numerical methods fail to provide enough accurate solutions for large values
of p. In Table 4 the numerical solution obtained by the Scheme 2 with N = 300, for
i = 10,30, is compared with the results obtained in [20] by the adaptive collocation
method over a non-uniform mesh using N = 330 and those obtained in [23] by finite
difference method (FDM) for mesh size N = 2000. It can be seen from Table 4 that the
results obtained using Scheme 2 have a good agreement with the results obtained in [20,
23].

Table 1: Results for Troesch’s problem (1 = 0.5).

X Exact Schemel Scheme2
N =10 N =20 N =10 N =20

0.1 0.0959443493 5.0(-10) 1.0(-10) 8.0(-10) 1.0(-10)
0.2 0.1921287477 1.0(-9) 1.0(-10) 1.4(-9) 1.0(-10)
0.3 0.2887944009 1.3(-9) 1.0(-10) 2.0(-9) 0

0.4 0.3861848464 1.7(-9) 1.0(-10) 1.0(-10) 0

0.5 0.4845471647 1.8(-9) 1.0(-10) 2.7(-9) 0

0.6 0.5841332484 1.9(-9) 1.0(-10) 2.8(-9) 0

0.7 0.6852011483 1.8(-9) 1.0(-10) 2.7(-9) 1.0(-10)
0.8 0.7880165227 1.5(-9) 1.0(-10) 2.3(-9) 1.0(-10)
0.9 0.8928542161 9.0(-9) 0 1.3(-9) 0

Example 2. (Bratu’s problem) As the second example, we consider Bratu’s problem given
in Eq. (4) for different values of the parameter A. Taking A = 1,2, Tables 5 and 6, show
the numerical solution obtained by our methods with N = 200 compared to the exact
solution given by Eq. (5), as well as to the values computed by iterative finite difference
(IFD) method with N = 1000 given in [30] and B-spline method given in [27]. Moreover,
for the critical value A = 3.51, in Table 7 the numerical solution obtained by the present
methods with N = 300, is compared with the B-spline method [27] and IFD method [30].
As pointed by [30], many existing numerical methods for Bratu’s problem fail to compute
the solution for A = 3.51. From Tables 5-7, we see that the present methods are in
excellent agreement with the exact values and the IFD method. Also, the present methods
are clearly reliable if compared with the B-spline method.
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Table 2: Results for Troesch’s problem (p = 1).

X Exact Scheme 1 Scheme 2

N =10 N =20 N =10 N =20
0.1 0.0846612565 2.6(-8) 1.7(-9) 4.3(-8) 2.7(-9)
0.2 0.1701713582 5.2(-8) 3.3(-9) 8.4(-8) 5.4(-9)
0.3 0.2573939080 7.6(-8) 4.7(-9) 1.2(-7) 7.8(-9)
0.4 0.3472228551 9.7(-8) 6.1(-9) 1.5(-7) 1.0(-8)
05 0.4405998351 1.1(-7) 7.0(-9) 1.8(-7) 1.1(-8)
0.6 0.5385343980 1.2(-7) 7.6(-9) 2.0(-7) 1.2(-8)
0.7 0.6421286091 1.2(-7) 7.5(-9) 2.0(-7) 1.2(-8)
0.8 0.7526080939 1.0(-7) 6.5(-9) 1.7(-7) 1.1(-8)
0.9 0.8713625196 6.9(-8) 4.1(-9) 1.1(-7) 7.3(-9)

Example 3. Consider the following singularly perturbed problem [6, 31]:
—ey'+y=% 0<x<1,
1
y(0) =1, y(1)=1+exp <ﬁ)
The exact solution of this problem is
X
y(x) = x+exp <_ﬁ)
This problem is solved in [6] by sixth-order compact finite difference method. Also, in [31]
the authors used quintic spline method to solve this problem. For the purpose of
comparison in Table 8, we compare maximum absolute errors of our methods, for different
values of € and N, together with the maximum absolute errors given in [6, 31].
Furthermore, we have calculated the computational orders of our methods (denoted
by C-order) with the following formula:

(21)

(22)

log(En) — log(E,n)
log(2) '

where Ey and E,y are maximum absolute errors obtained using N and 2N mesh intervals,
respectively. The results are summarized in Tables 9 and 10. From Tables 9 and 10, we see
that the computational and theoretical orders of Scheme 1 and Scheme 2 are very close to
each other, i.e the order of Scheme 1 and Scheme 2 are O(h*) and O(h®), respectively.

4. CONCLUSION

In this paper, a new family of schemes for numerically solving two point boundary value
problems is presented. We showed that, the order of Scheme 1 and Scheme 2 are O(h*) and
0(h®), respectively. These schemes are used for solving Troesch’s problem, Bratu’s
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problem and certain singularly perturbed problem. According to the numerical results,
Scheme 1 and Scheme 2 can handle these kind of problems effectively and the comparison
show that the proposed methods are in good agreement with the existing results in the
literature. Also numerical results confirm the theoretical results of the proposed techniques.

Table 3: Comparison of numerical solutions for Troesch’s problem (L = 5).

X Fortran code Scheme 1 Scheme 2 B-spline
[20] N = 20 N = 20 [20]
0.2 0.01075342 0.01071950 0.01070406 0.01002027
0.4 0.03320051 0.03309592 0.03304801 0.03099793
0.6 0.25821664 0.25735421 0.25695699 0.24170496
0.8 0.45506034 0.45335039 0.45258050 0.42461830

Table 4: Comparison of numerical solutions for Troesch’s problem (1 = 10, 30).

u=10 n=30
Scheme 2 B-spline[20] FDM Scheme 2 FDM[23]
X N = 300 N = 330 N = 2000 N = 300 N = 2000
0 0 0 0 0 0
0.1  4.204824(-5)  4.207335(-5)  4.211194(-5) 3.614375(-13)  2.500056(—13)
0.2  1.297676(—4)  1.298517(-4)  1.299642(—4) 7.277661(-12) 5.033929(-12)
0.3  3.584358(—4)  3.586905(—4) 3.589786(—4) 1.461766(-10) 1.011094(-10)
0.4  9.764246(—4)  9.771828(—4)  9.779034(—4)  2.936036(—9)  2.030831(-9)
05  2.655001(—3)  2.657239(-3)  2.659022(—3)  5.897186(-8)  4.079021(-8)
0.6 7.218002(—3)  7.224571(-3) 7.228934(-3)  1.184481(-6)  8.192908(-7)
0.7  1.963429(-2)  1.965351(-2) 1.966406(—2)  2.379094(-5)  1.645584(-5)
0.8  5.364813(-2)  5.370517(-2) 5.373034(-2) 4.778560(—4)  3.305241(-4)
0.9  1.518614(-1)  1.520568(-1) 1.521140(-1)  9.614584(-3)  6.644214(-3)
0.95  2.757046(-1)  2.761735(-1) 4.460814(-2)  3.026175(-2)
0.97  3.713175(-1)  3.721473(-1) 8.991531(-2)  5.753674(-2)
0.98  4.468330(-1)  4.481030(-1) 1.441330(-1)  8.223035(-2)
0.99  5.714501(-1)  5.739404(-1) 5.218877(-1)  1.269861(-1)
1 1 1 1 1 1
Table 5: Comparison of numerical solutions for Bratu’s problem (1 = 1).
X Exact Scheme 1 Scheme 2 B-spline[27]  IDF[30]
0.1 0.049846791245 | 0.049846791245 0.049846791245 0.0498438103 0.049846791445
0.2 0.089189934629 | 0.089189934628 0.089189934629 0.0891844690 0.089189934988
0.3 0.117609095768 | 0.117609095767 0.117609095768 0.1176017599 0.117609096243
0.4 0.134790253884 | 0.134790253883 0.134790253884 0.1347817559 0.134790254431
0.5 0.140539214400 | 0.140539214399 0.140539214400 0.1405303221 0.140539214971
0.6 0.134790253884 | 0.134790253883 0.134790253884 0.1347817559 0.134790254430
0.7 0.117609095768 | 0.117609095767 0.117609095768 0.1176017599 0.117609096243
0.8 0.089189934629 | 0.089189934628 0.089189934629 0.0891844690 0.089189934988
0.9 0.049846791245 | 0.049846791245 0.049846791245 0.0498438103 0.049846791444
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Table 6: Comparison of numerical solutions for Bratu’s problem (1 = 2).

X Exact Scheme 1 Scheme 2 B-spline[27]  IDF[30]
0.1 0.114410743268 0.114410743264 0.114410743265 0.1143935651 0.114410743957
0.2 0.206419116488 0.206419116481 0.206419116483 0.2063865190 0.206419117764
0.3 0.273879311826 0.273879311817 0.273879311820 0.2738344125 0.273879313548
0.4 0.315089364226 0.315089364215 0.315089364220 0.3150365062 0.315089366227
0.5 0.328952421341 0.328952421330 0.328952421335 0.3288968072 0.328952423437
0.6  0.315089364226 0.315089364215 0.315089364220 0.3150365062 0.315089366228
0.7 0.273879311826 0.273879311817 0.273879311820 0.2738344125 0.273879313550
0.8 0.206419116488 0.206419116481 0.206419116483 0.2063865190 0.206419117767
0.9 0.114410743268 0.114410743264 0.114410743265 0.1143935651 0.114410743961
Table 7: Comparison of numerical solutions for Bratu’s problem (4 = 3.51).
X Exact Scheme 1 Scheme 2 B-spline[27]  IDF[30]
0.1 0.364335803565 0.364335803086 0.364335802967 0.357388461 0.364335803565
0.2 0.677869705682 0.677869704751 0.677869704528 0.664283874 0.677869705683
0.3 0.922214197098 0.922214195783 0.922214195480 0.902930838 0.922214197097
0.4 1.078634240752 1.078634239178 1.078634238825 1.055419782 1.078634240752
0.5 1.132617978282 1.132617976616 1.132617976246 1.107989815 1.132617978283
0.6  1.078634240752 1.078634239178 1.078634238825 1.055419782 1.078634240752
0.7 0.922214197097 0.922214195783 0.922214195480 0.902930838 0.922214197097
0.8 0.677869705682 0.677869704751 0.677869704528 0.664283874 0.677869705683
0.9  0.364335803565 0.364335803086 0.364335802967 0.357388461 0.364335803565
Table 8: Comparison of maximum absolute errors for Example 3.
€ N=16 N =32 N = 64
Scheme 1
1/16 2.96(—6) 1.85(-7) 1.15(-8)
1/32 1.19(-5) 7.45(-7) 4.67(-8)
1/64 4.74(-5) 2.98(—6) 1.87(-7)
1/128 1.78(-4) 1.19(-5) 7.46(-7)
Scheme 2
1/16 7.34(-9) 1.14(-10) 1.79(-12)
1/32 5.90(-8) 9.25(-10) 1.45(-11)
1/64 4.71(-7) 7.41(-9) 1.16(-10)
1/128 3.54(-6) 5.90(-8) 9.25(-10)
Method of [6]
1/16 8.03(-9) 1.26(—10) 1.97(-12)
1/32 6.41(-8) 1.01(-9) 1.59(-11)
1/64 5.06(-7) 8.10(-9) 1.27(-10)
1/128 3.72(-6) 6.42(-8) 1.01(-9)
Method of [31]
1/16 2.96(—6) 1.85(-7) 1.15(-8)
1/32 1.18(-5) 7.54(-7) 4.67(-8)
1/64 4.74(-5) 2.96(—6) 1.86(-7)
1/128 1.78(-4) 1.18(-5) 7.46(-7)
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Table 9: Errors and computational orders obtained by Scheme 1, for Example 3.

e=1/16 e=1/32 €e=1/64
N En C-order En C-order Ey C-order
16 2.96(—6) -- 1.19(-5) -- 4.74(-5) --
32 1.85(-7) 3.9999 7.45(=7) 3.9975 2.98(—6) 3.9915
64 1.15(-8) 4.0078 4.67(-8) 3.9957 1.87(-7) 3.9942
128 7.26(—10) 3.9855 2.92(-9) 3.9993 1.16(-8) 4.0108

Table 10: Errors and computational orders obtained by Scheme 2, for Example 3.

e =1/16 e=1/32 e=1/64
N En C-order En C-order En C-order
16 7.34(-9) - 5.90(-8) - 4.71(-7) -
32 1.14(-10) 6.0086 9.25(-10) 5.9951 7.41(-9) 5.9901
64 1.79(-12) 5.9929 1.45(-11) 5.9953 1.16(-10) 5.9972
128 2.80(~14) 5.9983 2.26(—13) 6.0035 1.81(-12) 6.0019
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1 INTRODUCTION

Graph theory has provided chemist with a variety of useful tools, such as Topological
Index. Molecules and molecular compounds are often modeled by molecular graph. A
molecular graph is a representation of the structural formula of a chemical compound in
terms of graph theory, whose vertices correspond to the atoms of the compound and edges
correspond to the chemical bonds.

Throughout this paper we consider only simple, connected graphs without loops and
multiple edges [1]. Let G be such graph with n vertices, m edges and vertex set V(G) = {v,
Vo, ... ,Vn}. The degree of v; € V(G), denoted by deg(vi), is the number of vertices adjacent
to v;. The sum of the degrees of the vertices of G is 2m. The distance between the vertices
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v; and v; of V(G), denoted by d(v;, v;), is the length of the shortest path joining them. The

eccentricity of a vertex v € V(G), denoted by e(v), is the largest distance between v and
any other vertex of the graph G. The radius r = r(G) of G is the minimum eccentricity of
the vertices and the diameter D = D(G) of G is the maximum eccentricity. A vertex v is
called central vertex of G, if e(v) = r(G). A graph is called self-centered if every vertex is
a central vertex. Thus in a self-centered graph r(G) = D(G). A vertex u is said to be an
eccentric vertex of a vertex v if d(u, v) = e(v). An eccentric path P(v) of a vertex v is a
path of length e(v) joining v and its eccentric vertex. There may exist more than one
eccentric path for a given vertex.

A topological index is a graph invariant applicable in chemistry. The Wiener index
is the first topological index introduced by Harold Wiener in 1947 [11]. There are many
topological indices which are frequently made their appearance in both chemical and
mathematical literature.

Wiener index W (G) of a graph G is defined as [11],

w(G) = lei<j5n d(viavj)- (1)
The reciprocal complementary Wiener (RCW) index of a graph G is defined as [3, 4]
RCW(G)= : @)

g1+ D=d(v,,v))
where D is the diameter of G.
The reciprocal complementary distance number of vertex v, of G, denoted by
RCDN(v; | G) is defined as,
n 1

RCDN(v, |G) = .
Vi 16) ;1+D—d(vi,vj)

Therefore, RCW (G) = %z RCDN(v, |G).

i=1

The chemical applications of RCW index are reported in the literature [3-5, 10] and
one can refer the mathematical properties of RCW index in [2, 6, 8, 12-14]. RCW index
has been successfully applied in the structure property modeling of the molar heat capacity,
standard Gibbs energy of formation and vaporization enthalpy of 134 alkanes Cg — C1g [3].
In [2] Cai and Zhou determined the trees with the smallest, the second smallest and the
third smallest RCW indices, and the unicyclic and bicyclic graphs with the smallest and the
second smallest RCW indices. In [13] Zhou et al. obtained some properties, especially
various upper and lower bounds and Nordhaus-Gaddum-type results of RCW indices. Qi
and Zhou [6] characterized the trees with fixed number of vertices and matching number
with the smallest RCW index. Ramane et al. [7, 9] obtained bounds for the Wiener number
and also for Harary index in terms of eccentricities. The present work contains bounds on
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the RCW index in terms of eccentricities and moreover, we have given a simple algorithm
to compute RCW index for any simple graph.

2. MAIN RESULTS

Theorem 1. Let G be a simple, connected graph with n vertices, m edges, diameter D and
e, =e(v,), fori=12..,n.Then,

L n(n—l)—zn:ei e

iz 2m-n s
REW(G) =3 D-1 D(D—1)+;,Z_1:D (j | )

Equality holds if and only if for every vertex v; of G, if P(v;) is one of the eccentric path of
vi, then for every vje V(G) which is not on P(vi), d(vi, vj) < 2.

Proof. Let P(v;) be one of the eccentric path of vieV(G). Let
A1(vi) = {vj| vjis on eccentric path P(v;) of vi},
Ax(vi) = {v;| vjis adjacent to v; and which is not on the eccentric path P(v;) of vi},
As(vi) = {vj| vjis not adjacent to v; and not on the eccentric path P(v;) of vi}.
It is clear that Ai(vi) WAz(vi) WAs(vi) = V(G) and |A1(vi)| = e + 1, |Ax(vi)| = deg(vi) — 1,
|As(vi)|=n—ei— deg(v-) Now

€

' 1 _ deg(v;)-1
z 1+D- d(v,,v) ZD (j 1) VJZ 1+D-d(v,v,) D '

vieA (%) = A (vi)
1 Jn-g —deg(v)
VE%V, 1+D-d(v;, v) D-1
Therefore,
s 1
RCDN(v. |G) =
vi16) ;1+D—d(vi,vj)

-y 1 .y L
VEAg_(V)1+D d(vw ]) VEAz(V)1+D d(vl’ ])

1
Vi e%(v,)l_i'D d(vw ])

S D(n—e, —1)—deg(vi)+1+i 1 |
D(D-1) = D-(j-1)

Therefore,
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RCW (G) %Z RCDN(v, | G)

_Z D(n—e, 1)—deg(vi)+1+i 1

D(D-1) S D-(j-1)
1 n(n—l)—izzl:ei amen +Zn:i
2| D-1 D(D-1) S4D- (J |

For equality, Let d(Vi,Vj) = 2, where VjEAg(V'). Therefore

z z Z 1 _ deg(v;) -1
veawy 1+ D= d(v,,v) = D— (j )" & ltD-d(v, v) D
1 _n—ei—deg(vi)
\,3;‘ 1+D—d(v;,v) D-1 '
Thus
. 1
RCDN(v. |G) =
vi16) ;1+D—d(vi,vj)
- 1 5 1
VEAl(V)1+D d(vl’ J) VeAz(V)1+D d(Vu J)
Z 1
VEA3(V)1+D d(VI’ J)
_ D(n—e¢ —1)—deg(vi)+1+z 1. |
D(D-1) =2 D-(]-1)
Hence

RCW (G) = z RCDN(v, | G)

i=1

a|"E oy, )
"2l b1 DOd-1 &FED-(j-)|

Conversely, suppose G is not such as explained in the equality part of this theorem.
Then there exist at least one vertex vjeAs(v;) such that d(vi, vj) > 3. Let Az(v;) be partitioned
into two sets Asz1(vi) and Asz(vi), where
Az1(vi) ={vj| v; is not adjacent to vi, not on the eccentric path P(v;) of viand d(v;, vj) = 2},
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Asz(vi) ={vj| v; is not adjacent to vi, not on the eccentric path P(vi) of v; and d(v;, vj) > 3}.
Let |[As2(vi)| = 1> 1. So, |A31(v-)| =n-ej— deg(vi) —|. Therefore

1 deg(vi)—l
VE%‘V)HD d(v,,v) ZD (j -1 Ve%(v)“D d(,v; D
1 _ n—eg —deg(v;) -1 Z 1 I
vjempy 1+ D= dm,J) D-1 ’hﬂww1+D dW“J) D-2°
Therefore,
RCDN(v, [G) =Y —©

71+ D-d(v;,v;)

.S 1 ¥ 1
VEAl(v)1+D d(Vw J) VEAz(V)1+D d(vw J)
S S

V€A31(V|)1+D d(vw J) V€A32(V)1+D d(VI’ J)

_ D(n—¢, —1)—deg(vi)+1+2 1.

D(D-1) —~D_(j-1)

j=1
I

+—
(D-2)(D-1)

and so

RCW (G) %Z RCDN(v, | G)

D(n—e¢, -1)—deg(v,)+1 < 1
D(D-1) 2,

1< = D-(j-1)
25% |
+—
(D-2)(D-1)
n(n—l)—Zn:e. o ).
_1 b1 D(D- 1)+Z- D—(j-1)
> i=1 j=1 :
nl
+—
| (D-2)(D-1) ]

This is a contradiction to the equality as | > 1. This completes the proof. 0

Corollary 2. Let G be a self-centered graph with n vertices, m edges and radius r = r(G).
Then
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nr(n—=1-r)—2m+n : 1
"we:=3 { -y B 1)} “

Equality holds if and only if for every vertex v; of a self-centered graph G, if P(v;) is one of

the eccentric path of v; then for every v;eV(G) which is not on the eccentric path P(v;),
d(Vi, Vj) <2.

Proof. Since G is a self-centered graph, the radius r = e=e(v;j) =D fori =1, 2, ... ,n
Therefore by Eqg. (3)
n(n-1-r) 2m—n+ z 1
r-1 rr-) F93r-0-9
21 nr(n—l—r)—2m+n+nz 1 .
2 r(r-1) =r—(-1)
Equality part can be proved in analogous to the proof of equality part of Theorem 1. O

RCW(G) > = {

Theorem 3. Let G be a connected graph with n vertices and ej=e(v;), i=1, 2, ... ,n. Then

n(n —1)—Zn:ei e

1 =
R(:W(G)zE 5 +;;D (J D (5)

Equality holds if and only if for every vertex v; of G, if P(v;) is one of the eccentric path of
vi, then for every vje V(G) which is not on P(vi), d(vi, vj) = 1.

Proof. Let P(v;) be one of the eccentric path of vieV(G), B1(vi) = {v;| v is on eccentric path
P(vi) of vi} and Bo(vi) = {v; | vj is not on the eccentric path P(vi) of vi}. It is easy to check
that B (v;) UB(vi) = V(G) [B1(vi)] = €i + 1 and |B2(Vi)| = n —ei — 1. Now

1 n-g -1
2 oo d(v,,v) ZD (j ) .2 Tipdwy). D

Vi EBl(V) vj eBy (v,
Therefore
n 1
RCDN(v. |G) =
vi16) ;1+D—d(vi,vj)

- Y e Y

vieBy(vi) 1+D d(Vw J) vjeBa (vi) 1+D d(VI’ ])

o 1 n-e —1
> —.
25 0" D

j=1
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Therefore

RCW (G) =%z RCDN(v, | G)

1 zz n—ei—l

i=1 j—lD (J 1) D

n(n 1) - Ze e

:E D 2D sy

i=1 j—lD (J 1)

For equality, let d(Vi,Vj) =1, where VjEBz(V') Hence

z z n Z 1 _ n-e -1 .
v l+tD- d(V.sV ) =D- ( -1) vyegy () 1+ D =d (v, vy) D
Therefore

L 1
RCDN(v, |G) =
vi16) ;1+D—d(vi,vj)

1 1
V,%:(VI)HD d(v;,v ]) . 2 1+D-d(v;,v;)

j€Ba(vi)

n—e.

-1
ZD (j 1) D

Therefore

RCW (G) = z RCDN(v, | G)

i=1

n(n 1) - Ze e

:E 5 *ZZ5-(-D (j )|

i=l j=1

Conversely, suppose G is not a such graph as explained in the equality part of this
theorem. Then there exist at least one vertex vjeB(vi) such that d(vi, vj) > 2. Let Ba(vi) be
partitioned into two sets Bai(Vvi) and Baa(vi), where B1(vi) = {v; | vjis not on the eccentric
path P(v;) of v;and d(vi, vj) = 1}, B2o(vi) = {v;j | vjis not on the eccentric path P(v;) of v; and
d(vi, vj) > 2}. Let |Boa(vi)| = 1> 1 and |Bo1(vi)] = n—ej— 1 —I. Therefore
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&

1 _n-g-1-1
z 1+D- d(v,,v) ZD (j 1)’ 2 y1+D—d(v;, v) D

vjeBy(v) j=1 vieBa (v

|
> .
y1+D—d(v,v;) D-1

VjeBy (Vi
Therefore
RCDN(Y, |G) =
' =1+ D—d(v,,v))
- ¥ 5 > 5
VEB_I_(V)1+D d(Vw J) VEBZl(V)1+D d(VI’ J)
Z 1
VEBzz(V)1+D d(Vw J)
n—ei—l—l I
Z + :
D- (j 1) D D-1
Therefore
RCW (G) %Z RCDN(v, | G)
> z L n-e —1—I+ I
2|_1 j—lD (J 1) D D-1
nin-1)-)> ¢
1l &< 1 (-1 izﬂ:' nl
== 4 + :
21’73 D-(j-1 D D(D-1)
As | > 1, it contradicts to the equality. This completes the proof. 0

If G is a self-centered graph then e; =e(vi) = r(G) foralli =1, 2, ... , n. Substituting
this in Eq. (5) we get the following corollary.

Corollary 4. Let G be a self-centered graph with n vertices and radius r = r(G). Then

1in(n-1-r) 1
RCW(G) > = fm;r = (6)

Equality holds if and only if for every vertex v; of a self-centered graph G, if P(v;) is one of

the eccentric path of v; then for every v;eV(G) which is not on the eccentric path P(v;), then
d(Vi, Vj) =1.
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Theorem 5. Let G be a connected graph with n vertices, m edges and diameter D. Let e; =
e(vi),1=1,2,...,n. Then

n g

D (J 5| (7)

i=1l j=1

RCW (G) s% n*-> e —2m +2
i=1
Equality holds if and only if D< 2.

Proof. Let P(vi) be one of the eccentric path of vieV(G). Let

Ax(vi) = {vj| vjis on the eccentric path P(v;) of v},

Ax(vi) = {v;| vjis adjacent to v; and which is not on the eccentric path P(v;) of vi},

As(vi) = {vj| vjis not adjacent to v; and not on the eccentric path P(v;) of vi}.

It is easy to check that A;(vi) WA2(vi) WAs(Vi) = V(G) and |Ay(vi)| = &i + 1, |Ax(vi)| = deg(vi)
— 1 and |As(vi)| = n — e; — deg(vi). Now

> z > 1 _ deg(v,) -1
w1+ D~ d(V.,v) IR Wil D-dv) D
1
<n-g —deg(v),
V]E%:(VI)1+D d(v;, J)
Therefore
: 1
RCDN(v. |G) =
1) élw—d(vi,v,-)
1 1
Vje%:(vl)l'FD d(Vl, J) Ve%“(vl)l-i-D d(VI’ J)
1
VE%Z(V)]‘-FD d(vw J)
o 1 deg(v,) -1
< + =+ (n—e —deg(v,
25t b e -deov)
_D(h-e)+(1- D)deg(vi)—1+z 1_ |
D = D-(j-1
Thus

RCW (G) = z RCDN(v, | G)

€,

1| D(n—g)+(@1-D)deg(v,)-1 < 1
SE; D +,le D—(j-1)
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n_&

{n —Ze—2m+2m “+22D i 1)}

i=1 j=1

For equality, let D < 2. We consider here two cases.
Case 1: If D =1, then G = K, a complete graph on n vertices. Therefore, As(vi) is an empty
set. Hence

n
RCW (G) :%{ Ze —n+21} nn-1)
Case 2: If D = 2, then for vjeAs(Vi), d(vi, vj) = 2. Therefore,

1
=n-g —deg(v,).
VJE;W)H D-d(v,v;)

Hence

1 LB 1

RCW(G)==|n n—— Ze —m+ Yy —

2 i=1 j—13

Conversely,
: 1
RCDN(v; |G) =
v 16) §1+D—d(vi,vj)

1 1
= > Y 4
Vjepi(vi)1+D—d(vi,vj) VjeAz(vi)1+D—d(vi,vj)

3 1 (8)
VjEAg(Vi)1+ D_d(vi ’Vj)

The first summation of Eqg. (8) contains the distance between v; and the vertices on its
eccentric path P(v;). Second summation of Eq. (8) contains the distance between v; and its
neighbor which are not on the eccentric path P(v;). The third summation of Eq. (8) contains
the distance between v; and a vertex which is neither adjacent to v; nor on the eccentric path
P(vi). Hence the equality in Eq. (8) holds if and only if D< 2. It is true for all vieV(G),
which completes the proof. O

Corollary 6. Let G be a self-centered graph with n vertices and radius r = r(G). Then
RCW(G)SE nz—nr—2m+2m_n+nz 1 .
2 r ar—>-9

Equality holds if and only if D <2.
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Proof. Follows by substituting ej = e(v;) =r, fori =1, 2, ... ,n in Theorem 5. O

Algorithm: To compute RCW index

Distance matrix of a graph G is a matrix Dt(G) = [d;j] of order n, where d;; = d(vi, vj).
Input: Distance matrix of a given graph.

Step 1: Declared d[i][j],rc[i][}j], D=0,RCW =0, Sum=0.

Step2: Read the distance matrix of order n.

Step3: Fori—1ton

Forj—>1ton

if (d[i] [j]>D)
D—d[i][j]

Step4: Fori—1ton

Forj—>1ton
Setrc[i][j]=0ifi=jandrc[i][]]=1/(1+D —d;), otherwise.
Sum=Sum+rc[i][j]

Step 5: Compute RCW = Sum divided by 2.
Step 6: Display RCW.
Output: RCW index of given graph.
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1 INTRODUCTION

Throughout this paper, we only consider finite, connected, undirected and simple
graphs. Let G be such a graph with the vertex set V(G) and the edge set E(G). For
a vertex u € V(G), d;(u) denotes the degree of u which is the number of edges
incident to u and N, (u) is neighbor vertex set of u. Clearly d;(u) = |N;(u)]. The
maximum degree of vertices in G is denoted by A(G). For a subset W of V(G), let
G — W be the subgraph of G obtained by deleting the vertices of W together with
their incident edges. Similarly, for a subset E' of E(G), we denote by G — E' the

*Corresponding Author: (Email address:iranmanesh@modares.ac.ir)
DOI: 10.22052/ijmc.2018.126298.1355
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subgraph of G obtained by deleting the edges of E'. If W = {u}and E' = {xy}, the
subgraphs G — W and G — E’ will be written as G —u and G — xy for short,
respectively. For any two nonadjacent vertices x and y of graph G, we let G + xy
be the graph obtained from G by adding an edge xy. As usual, let C,, and K,, be the
cycle and complete graph on n vertices, respectively.

Chemical graph theory is a branch of mathematical chemistry where
molecular structures are modeled as molecular graphs. A molecular graph is a
simple unweighted, undirected graph where the vertices correspond to the atoms in
the molecule and the edges correspond to the covalent bonds between them. A
single number, representing a chemical structure, in graph — theoretical terms, is
called a topological descriptor. It must be a structural invariant, i.e., it does not
depend on the labeling or the pictorial representation of a graph. If such a
topological descriptor correlates with a molecular property, it is named molecular
index or topological index. In fact, a topological index is numeric quantity derived
from a molecular graph which correlates with the physico—chemical properties of
the molecule. Different topological indices are used for quantitative structure—
property relationship (QSPR) and quantitative structure—activity relationship
(QSAR) [8,9,17,25].

In [15], Gutman and Trinajsti¢ introduced the most famous vertex — degree
based topological indices and named them as the first Zagreb index and second
Zagreb index. These topological indices were elaborated in [14]. For a (molecular)
graph G, the first Zagreb index M, (G) and the second Zagreb index M, (G)of G are
defined as follows:

M (G) = Yvev(e) de (v)? &M,(G) = Yuver(c) de (Wds(v).
The first Zagreb index can also expressed as [10]:
M,(G) = Yuvera)lde(w) + dg(v)].

For more information on the Zagreb indices and their applications see [3, 4,
18, 24, 25, 28].

Gutman and Trinajsti¢ in [15] obtained the approximate formulas for the
total m—electron energy. In these formulas, there was the sum of the cubes of the
degrees of all vertices of the molecular graph. This sum, except in a few works
about the general first Zagreb index [20,21] and the zeroth — order general Randi¢
index [16], has been completely neglected. Recently, Furtula and Gutman named
this sum as "forgotten topological index" [11] and they studied some basic
properties of this index. The forgotten topological index, or shortly the "F-index"
F(G) of a (molecular) graph G is defined as:

F(G) = ZUEV(G) de(v)3.
We can rewrite the F—index as [10]:
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F(G) = Yuvere)lds(W)? + dg (v)?].

For more information on the F—index see [1, 2, 5, 6, 12, 13, 27].

In papers [2, 6, 12, 27], the authors computed the F—index for some special
graphs and in papers [1,5,13], the authors presented some properties of the F-—
index. These motivate us to compute the F—index for some other special graphs
and present some other properties of the F—index.

In this paper, we compute the F—index for some special graphs such as
Wheel graph, Barbell graph and Friendship graph [23]. Moreover, the effects on
this index are observed when some operations such as edge switching, edge
moving and edge separating [22] are applied to the graphs. Finally, we investigate
degeneracy the F—index for small graphs.

2. THE F-INDEX FOR SOME SPECIAL GRAPHS

2.1. WHEEL GRAPH

A Wheel graph is a graph with p vertices, formed by connecting a single vertex to
all vertices of C,_,. It is denoted as W}, [23]. Graphs W,, Ws, Ws,W,, Wy and W,
are shown in Figure 1.

£ < ¥ ¥ o
F, LY 7
g N W
. . ",
¥ u \H\\ . ;
\ o W w
W7 Wa W
" i, i i T e
T, - - b X
¥ i I P { A
’ i x'\. -'-. L
e o i ¥ . ¥
L. - "q, ; _.-' 1 .--__,-'
L 8 " E f 5 ~
w0 W E“-
o A ¥ s

Figure 1. Graphs W,, Ws, Wy ,W.,, Wg and W,

Wheel graphs are planar graphs and as such have a unique planar
embedding. They are self—dual, the planar dual of any Wheel graph is an isometric
graph. Any maximal planar graph, other than K, = W,, contain as a subgraph
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either Wy or W. There is always a Hamiltonian cycle in the Wheel graph and there
are (p®> — 3p + 3) cycles in W, [23].

Theorem 2.1. Let W, be the Wheel graph with p vertices, p = 4, then its F-index
is equal to F(W,) = (p — 1)(p* — 2p + 28).

Proof. From the construction of Wheel graph W,,, it is clear that graph W, has
p — 1 vertices with degree 3 and 1 vertex with degreep — 1. Hence we have:

F(W,) = ZUEV(Wp) dy, )} =@-1)E@)P+1(p-1)°
=(p - D(p* —2p +28).

2.2. BARBELL GRAPH

A p-Barbell graph is the simple graph obtained by connecting two copies of a
complete graph K, by a bridge and it is denoted by B,, [23]. Graphs B3, B,, Bs and
By are shown in Figure 2.

b= <P
Wty &

Figure 2. Graphs Bs, B,, Bs and By

Theorem 2.2. Let B, be the p — Barbell graph where p > 3, then its F—index is
equal to F(B,) = 2[(p — 1)* + p°].

Proof. From the construction of graph B,, it is clear that graph B, has 2p — 2
vertices with degree p — 1 and 2 vertices with degreep. Hence we have:

F(Bp) = Zvev(s,) d5,(v)* = (2p —2)(p — 1)* +2p* = 2[(p — 1)* +p°].
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2.3. FRIENDSHIP GRAPH

A p — Friendship graph is the simple graph obtained by joining p copies of C; with
a common vertex and it is denoted as F, [23]. F,is a planar undirected graph with
2p + 1 vertices and 3p edges. Graphs F,, F5 and F, are shown in Figure 3.

>

F, Fs F,
Figure 3. Graphs F,, F; and F,.

Theorem 2.3. Let F, be the p—friendship graph, p = 2, then its F—index is equal to
F(F,) =8p(p* +2).

Proof. From the construction of graph F,, it is clear that graph F, has 2p vertices
with degree 2 and 1 vertex with degree 2p. Hence we have:

F(F,) = Yvev(r) dr, 0)° = 2p(2)° + 1(2p)° = 8p(p* + 2).

3. SOME PROPERTIES OF THE F-INDEX
Proposition 3.1. Let G be a connected graph with two nonadjacent vertices
u,v € V(G) and G' = G + uv. Then we have:
F(G") = F(G) + 2+ 3(dg(w)? + dg(u) + dg(v)? + dg (V).
Proof. By the definition of the F-index, we have:

F(G") —F(G) = (dgr(u)® + dgr/(v)?) — (dg(w)® + dg (v)?)
=de(u)+1)* —d;(u)?+ (ds(v) + 1) —d;(v)?
=2+3(ds(w)? +d;(w) + dg(v)? +d;(v)),

which completes the proof. [

From Proposition 3.1, we have the following corollary.

Corollary 3.1. If u and v are two nonadjacent vertices in graph G, then we have:

F(G +uv) > F(G).
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3.1. EDGE SWITCHING OPERATION

Theorem 3.1.1. Let u and v be two nonadjacent vertices of a connected graph G
with dg (u) = dg(v). Suppose vy, v,, ..., s € Ng(v) \ Ng(u),1 < s < dg(v). Let
G* =G —{vvy, vvy, ..., vV} + {uvy, uv,, ..., uvs}, then F(G*) > F(G).

Proof. By the definition of the F—indexand the construction of graph G*, we have:
F(G*) = F(G) = (dg-(w)® + dg-(v)*) — (dg(w)® + dg(v)?)
= (dg(u) +5)* —de(u)® + (dg(v) — 5)* — d;(v)?
= 3s(dg(u)? — dg(v)?) + 3s*(dg(w) + dg(v)) > 0.
The last inequality follows from d;(u) = d;(v). Therefore, F(G*) > F(G). [

Theorem 3.1.2. Let G, ,, be the set of connected graphs of order n and size
m.Suppose G € Gy, With maximum F—index, then we have A(G) = n — 1.

Proof. If A(G) =n — 1, our result in this theorem holds immediately. If not, we
choose a vertex u in the graph G with maximum degree and another vertex
v € V(G) such that u is not adjacent to v. So we have d;(u) = d;(v). Assume
that N;(v) \ N;(u) ={v,,v,,...,v5}. Note that N;(v) \ N;(u) # @ because of
the fact that d;(u) < n — 1. Now we construct a new graph G* as:

G* =G —{vv,,vv,, .., vv} + {uvy, uv,, ..., uvl.

From Theorem 3.1.1, we have F(G*) > F(G). Thus we find that G* € G, ,, with a
larger F—index than that of G. This is a contradiction to the choice of G, which
finishes the proof of this theorem. [

3.2. EDGE MOVING OPERATION

Suppose v is a vertex of graph G. As shown in Figure 4. Let Gy, (1 <k <) be
the graph obtained from G by attaching two new paths P: v(= vy)v,v, ... v, and
Q: v(= ug)uqu, ... u; of length kand [, respectively, at v, where v, v,, ..., v, and
Uy, Uy, ..., uy are distinct new vertices. Let Gy_q 141 = G — Vg—1Vx + U V.

Theorem 3. 2. Let G be a connected graph of ordern > 2and 1 < k < .
(1) Ifk = 2, then F(Gy;) = F(Gr-11+1)-
(2) F(Gy1y) > F(Gou41)-

Proof (1). By the definition of the F—index and the construction of graph G, ;, we
have:
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F(Gr1) — F(Gro1441) = (dakl(vk—1)3 + deYl(vk)3 + deYl(ul)3)
~(deyy o W-1)® + dg ) + dg,_,, (0)°)
=(23+13+1%) - (13 +23+13)
=0,

which completes the Proof of (1).
Proof (2).
F(Gy) — F(Goyv1) = (dalyl(v1)3 + dalyl(v)3 + dalyl(uz)3)
_(daoyl+1(v)3 + dGOYl+1(ul)3 + daoyl+1(v1)3)
= (13 + (dGo,l+1(v) + 1)3 + 13)
—(dg, ,, ()% + 28 + 13)
= (3dg,,,,()?* +3dg,,,,(v) + 12+ 13) - (2°) > 0.

Note that G is a connected graph with n > 2 vertices, so then dg .  (v) = 2.

Hence the last inequality follows easily. Therefore, F(G1;) > F(Go+1)- [
Vk
Vk—1/ Vk-14
// 7
vy ,’ 121 //

-—————— -——-® -

Uy Up—q U Uy Up—q U

Gk,l Gk—l,l+1
Figure 4.

3.3. EDGE SEPARATING OPERATION

Let e = uv be a cut edge of a graph G. If G’ is obtained from G by contracting the
edge e into a new vertex u,, which becomes adjacent to all the former neighbors of
u and of v, and adding a new pendent edge u,v,, where v, is a new pendent
vertex. We say that G’ is obtained from G by separating an edge uv (see Figure 5).
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ve
G ¢

Figure 5.

Theorem 3.3. Let e = uv be a cut edge of a connected graph G, where d;(u) = 2
and d;(v) = 2. Suppose G’ is the graph obtained from G by separating the edge
uv. Then F(G') > F(G).

Proof: By the definition of the F—index and the construction of graph G', we have:
F(G") — F(G) = [dg/(ue)® + dg/(ve)’] — [de (w)® + d (v)°]

= [(de(W) + dg(v) — 1)* + 1] — [dg(u)® + d (v)°]

—[dg(w)® +dg(v)°]

= [(de ) + de())* = 3(de (W) + dg ()" + 3(dg (w) + d ()]

= 3(dg (1) + de (V) (dg (Wde (V) + 1) — 3(d (w) + dg (v)” > 0,

Since dg(u) = 2and dg(v) = 2, so then d;(u)dg(v) = dg;(u) + dg(v). Hence
the last inequality follows easily. Therefore, F(G") > F(G). O

3.4. k — APEX TREES

A tree is a connected acyclic graph. For any positive integer k with k > 1, a graph
G is called a k — apex tree if there exists a subset X of V(G) such that G — X is a
tree and |X| = k, while for any Y € V(G) with |Y| <k, G —Y is not a tree. A
vertex of X is called a k — apex vertex [26]. For positive integersn > 3 and k > 1,
let T(n, k) denote the class of all kK — apex trees of orden n.

Theorem 3.4. Let G € T(n, k) and v be a k — apex vertex of G. If F(G) is
maximum in T(n, k), thend;(v) = n — 1.

Proof. Since G € T(n,k), we have |V (G)| =n. Hence d;(u) <n—1 for all
u € V(G). Suppose that d;(v) # n — 1, so then d;(v) < n — 1. Then there exists
a vertex u in G such that uv ¢ E(G). Then by Corollary 3.1, we have F(G +
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uv) > F(G). Clearly G +uv € T(n,k) and it contradicts to that F(G) is
maximum in T(n, k). Therefore, d;(v) =n — 1. O

Proposition 3.4. Let G € T(n, k). If F(G) is maximum in T(n, k), then we have:

|E(G)I =k(2n_2k_3)+n—1.

Proof. Let X be the set of all k — apex vertices in G. Then |X| = k. Since F(G) is
maximum in T(n, k), then by Theorem 3.4, we have d;(v) =n—1forallve X
Hence the subgraph induced by X is a complete graph of order k and G — X is a
tree of order n — k. Thus

k(@n—k-3)

> n— 1.

E@)| = () + k(1) + (n—k - 1) =

3.5. LINE GRAPH

The line graph, L(G), of a graph G has the vertex set V(L(G)) = E(G) and two
distinct vertices of L(G) are adjacent if the corresponding edges of G share a
common end vertex. The iterated line graph, L*(G), of G is defined as L*(G) =
L(L*71(G)), where k > 1 and L°(G) = G. What we can say about values of the
index with increasing k? We consider the case of r-regular graphs G, r = 3.
Denote by 7, and n,, the degree and the order of L*(G), respectively. It is not hard

to calculate that r, = 2%¥(r —2) +2 and n, = Zikn [Tt r. Then F(L¥(G)) =
Zikn(z"(r —2) + 2)3 142 (r — 2) + 2). For example, the third line iteration
of cubic graph G of order ngives F(L*(G)) = 9000n.

4. DEGENERACY THE F-INDEX FOR SMALL GRAPHS

A topological index is called degenerate if it possesses the same value for more
than one graph. A set of graphs with the same value of a given index forms a
degeneracy class. Since a topological index can be regarded as a measure of
structural similarity of molecular graphs, the finding of information on degeneracy
classes can be useful for chemical applications. There are a number of functions
for characterizing degeneration of topological indices [7]. The discriminating
ability of an index for a family of graphs can be expressed by relation
{number of unique values of an index} / {number of the considered graphs}.
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The number of unique values, of course, coincides with the number of
degeneracy classes. The similar measure was introduced in [19] where the number
of trivial degeneracy classes was used. Table 1 contains comparative data for trees,
unicyclic and bicyclic graphs of small order. One can see that the discriminating
ability of F-index is between discriminating ability of indices M;and M.

n [4]5] 6 [ 7 [ 8] 9 [ 10 ] 11 [ 12 ] 13 ] 14 [ 15 | 16 | 17 | 18 | 19 20
Trees
M, [ 1| 1] 8| 64| 39| 28 | 17 | 09 | 05 | 03 [ .01 | .006 | .003 | .001 | .001 | .000 | .000
F |1|1|.8 | .64 | .49 | 32 | 19 | 12 | 08 | .04 | .02 | .011 | .006 | .003 | .001 | .001 | .000
M, |1| 1| 1 |8 |.74| 47 | 33 | 18 | 10 | .05 | .03 | .013 | .007 | .003 | .001 | .001 | .000
Unicyclic Graphs
M, | 1| .8 .46 | 27 | .17 | 07 | .03 | .014 | .007 | .003 | .001 | .001 | .000 | .000
F |1|.8].54|.3|.18 | 01 | 05 | 024 | 012 | .006 | .003 | .001 | .000 | .000
M, |1|21|.77| 55| .3 | .16 | .08 | .038 | .017 | .007 | .003 | .001 | .001 | .000
Bicyclic Graphs
M, | 1|.6]| .32 | .15 | .06 | .024 | .009 | .004 | .001 | .000 | .000
F | 1| .8 .47 | .21 | .09 | 039 | 017 | .007 | .003 | .001 | .000
M, | 1| 1| .74 | 36 | .16 | .063 | .025 | .010 | .004 | .001 | .000

Table 1. Discriminating ability of indices for small n-vertex graphs.

Examples of trees of order 10, unicyclic graphs of order 11, and bicyclic graphs
of order 13 for which these three indices coincide are presented in Figure 6. We
have F(T;) = M,(T,) = M,(T;) =66, F(G,) = M.(G,) = M,(G;) =88, and
F(G,) = M1(Gs) = M,(Ge) = 142.

5. CONCLUSION

Topological indices are designed basically by transforming a molecular graph into
a number. The "forgotten topological index" (F—index) was introduced recently by
B. Furtula and I. Gutman in 2015 [11]. In this paper, we computed the F—index for
some special graphs such as wheel graph, Barbell graph and Friendship graph.
Moreover, the effects on the F—index were observed when some operations such as
edge switching, edge moving and edge separating were applied to the graphs.
However, there are still many other special graphs and operations which are not
covered here. So, for further studies, F—index of some other special graph can be
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computed and also properties of the F—index under some other operations can be

investigated.
gg ’7.
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Figure 6. Graphs with the same indices.
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1 INTRODUCTION

It is widely known fact that a graph can be used to represent a molecule in which
atoms correspond to the vertices while the molecular bonds between atoms
represent edges [1, 5]. In chemical graph theory, those graph invariants are usually
referred as topological indices which are expected to correlate with some physical
observable measures by experiments in such a way that theoretical predictions can
be used to gain chemical insights even for not yet existing molecules [2].
Applications of topological indices in chemistry begin in 1947, when the chemist
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Wiener [6] devised a topological index, nowadays known as Wiener index, for
predicting the boiling points of paraffins.

All graphs considered in this paper are simple and finite. Undefined
notations and terminologies from (chemical) graph theory can be found in [1-4].

The Randi¢ index [7] is one of the most studied and most applied
topological indices, which was proposed in 1975 for measuring the extent of
branching of the carbon-atom skeleton of saturated hydrocarbons. The Randi¢ (R)
index for a graph G is defined as

1
R(G) = ZquE(G) (dudv)_g’
where uv is the edge connecting the vertices u, v of the graph G, E(G) is the edge
set of G and d,, is degree of the vertex u. Determining the graphs with minimum or
maximum R value from certain collections of graphs with some fixed parameters,
was the topic of several publications. For instance, Bollobds and Erdés [8]
identified the unique tree with minimum R value among all n—vertex trees, when
n > 3. The unique graph with minimum R value was determined in [9]
(respectively, in [10]) from the class of all n—vertex connected unicyclic
(respectively, bicyclic) graphs, when n >5. Details about the chemical
applicability and mathematical properties of R can be found in the surveys [11,
12], recent papers [13-20] and/or related references listed therein.

Based on the successful consideration of Randi¢ index, Manso et al. [21]
introduced a new topological index (and named it Fi index) to predict the normal
boiling point temperatures of hydrocarbons. In the mathematical definition of Fi
index two terms are present. In 2014, Gutman et al. [22] considered one of these
terms, which is given below:

RRR(G) = ZquE(G) \/(du - 1)(dv - 1)’
and they called it reduced reciprocal Randi¢ (RRR) index. In [22], the RRR index
was compared with several well-known topological indices for predicting the
standard heats (enthalpy) of formation and normal boiling points of octane
isomers, and it was concluded that RRR index deserves attention of researchers
performing quantitative structure-property relationship and quantitative structure-
activity relationship studies.

The study of extremal graphs with respect to the RRR index was initiated
by the authors of [22]. They proved that the star graph and the complete graph
have the minimum and maximum value, respectively, among all n-vertex graphs,
and also posed a conjecture related to the maximum RRR value of trees. This
conjecture was proved by Ren et al. [23]. Recently, the problem of finding graph
with minimum RRR value among all n-vertex connected unicyclic graphs (n-
vertex connected graphs with n edges) was solved in [24]. Main purpose of the
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present paper is to extend the main result of the reference [24] for connected
bicyclic graphs (n-vertex connected graphs with n + 1 edges), or more precisely,
to solve the following extremal problem.

Problem 1. Which graph(s) has/have minimum RRR index among all n-vertex
connected bicyclic graphs?

As there is only one bicyclic graph on 4 vertices, so the Problem 1 is well
defined for n > 5 and thereby in the remaining part of this paper, it would be
assumed that the graph under consideration has at least 5 vertices.

Nowadays, many researchers are interested in finding best possible bounds
on topological indices; for example, see [25-29]. As a consequence of our main
result, we obtain best possible lower bound on the RRR index, for n—vertex
connected bicyclic graphs whenn > 5.

2. MAIN RESULTS

In order to prove the main result, we need some definitions. If uv,vw € E(G) but
uw € E(G), then the vertex v and the vertex w will be called first neighbor of u
and second neighbor of u, respectively. Denote by N (u) (or simply by N(u)) the
set of all first neighbors of u in G. The minimum and maximum degree of G will
be denoted by §(G) and A(G), respectively. A vertex with degree one is known as
a pendent vertex. Now, we are in a position to prove the main result, which gives
the complete solution of Problem 1.

Theorem 1. Among all n—vertex connected bicyclic graphs,
e B, is the only graph with minimum RRR value for 5 < n < 9;
e B, isthe only graph with minimum RRR value for 10 < n < 13;
e B, and Bj, are the only graphs with minimum RRR value for n = 14;
e By is the only graph with minimum RRR value for n > 15, where the
graphs B,,, B, and B/, are depicted in Figure 1.

Proof. We note that there are only five non-isomorphic connected bicyclic graphs
on 5 vertices. These graphs, together with their RRR index, are depicted in Figure
2. Hence, the result is true for n = 5.

Now, we assume that B,, is an n-vertex connected bicyclic graph for n > 6.

If A(B,) =n—1, then B, must be isomorphic to one of the graphs B,(ll), B,(lz),
shown in Figure 3.
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n—>5 n—>5 n—=6
— —_—~— —_—~—
B -
" B, B
where n > 5 where n > 6 where n > 7

Figure 1. The graphs B, B, and Bj,.

NEow

8.7420 8.4853 8.6569 8.8284 8.9282

Figure 2. All the non-isomorphic connected bicyclic graphs on
5 vertices together with their RRR index.

n—4 n:5

A\

B7(Ll) Bq(f)

Figure 3. The graphs B,(ll) and B,(lz).
Routine calculations yield
RRR(BS) = (2 +V2)Vn—2+2V2

and

RRR(B?) = avn=2+2
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Simple comparison gives

3(Vn—3++2)=RRR(B,) for 6<n<9,
RRR(BU)) - V2(Vn—5+2) *6= RRR(B,) for 10<n <13,
" KS\E +6 = RRR(By,) = RRR(B},) for n=14,
Vn—6+3(2++v2) =RRR(B;) for n=15,

where j = 1,2. Now, we suppose that A(B,)) < n — 2 where n > 6. If B,, does not
contain any pendent vertex, then B,, must be isomorphic to one of the graphs B,(f),
B,(f), depicted in Figure 4. It holds that

RRR(BS) = (n +2(2V2-1) ifk=0,
n+6vV2—-5 otherwise.

and
n+4J3-3 if q=1,
RRR(B{V) =|n+2(2v2-1) ifq=2
n+6v2-5 otherwise.

k>0
qg=>1

Figure 4. The graphs B,(f) and B,(f).

After simple comparison, we have

3(Vn—3++2)=RRR(B,) for 6<n<9,
2(vn—=5+2)+6 = RRR(B, 10 <n <13
RRR(BY) > v2(¥n )+ (B.)  for10<n
5V2+6 = RRR(By,) = RRR(B,) for n =14
Vn—6+3(2++v2) =RRR(B;) for n =15,
where s = 3,4. In what follows, we assume that §(B,) =1 and A(B,) <n-—2

where n > 6. Let P(By,) = {ug, uj, uy, ..., u,_1} be the set of all pendent vertices
of B,. For0 < i < p — 1, suppose that Wug is the set of all those second neighbors

of u; which are pendent. We choose a member of P(B,), say u, = u, (without
loss of generality), such that
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1. the number of elements in 14,  is as large as possible;

2. subject to (1), the first neighbor (say v,) of u, has degree as small as
possible (let d, =x and N(vo) ={ug Uy, Uz, ..., Up_q, Uy, Ux_1}
whered,, =1forO<i<r—-1landd, =2forr <i<x-1);

3. subjectto (1) and (2), X3} dy, is as small as possible;

4. subject to (1), (2) and (3), max{d,,.d vdy,_} is as small as
possible.

Ur4p? "

It is evident that x > 2. If B,,_, is the graph obtained from B,, by removing the
vertex ug, then

RRR(B,) = RRR(B;_) + (Vx =1 —-Vx—2) Y35t Jd,, — L (1)

Now, we have the following six cases: Case 1. r < x — 3; Case 2. r = x — 2 and
bothof d, , and d,,_, are greater than 2; Case 3. r =x —2,0neof d,,__,, d,__,
is 2 and other is greater than 2; Case 4. r =x —2and d, _, =d, _, = 2; Case 5.
r=x—1landd, ,>2;Caseb6.r=x—1andd =2

Fort=12,...6andn = 6, let ]B%ff) be the collection of all those n-vertex
connected bicyclic graphs which

1

Ux—1

e have at least one pendent vertex,
e have maximum vertex degree at most n — 2 and
e fallin Case t.

Claim 1. If B, € B\, then RRR(B,) = 3(vn — 3 + v2) with equality if and only
if B, = B,.

Proof of Claim 1. The claim will be proved by induction on n. For n = 6, the
claim follows from Figure 5.

< < O

9.9282 9.4388 9.7420
Figure 5. All the non-isomorphic members of ]B%él) together with their RRR index.

Let us assume that n > 7. Bearing in mind the condition r < x — 3, inductive
hypothesis and the fact x < n — 2, from Equation (1) we have
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RRR(B,) = RRR(B,_;) + (Vx —1—Vx=2)(x — 1)

>3(V2+Vn—-4) +3(Vx—1-Vx—-2)

>3(V2+vVn—4)+3(n—-3—-+vn—4) =RRR(B,).

The equality RRR(B,,) = RRR(B,,)) holds if and only if x =n —2,x —r = 3 and
B;_, = B,_,, thatis B, = B,. This completes the proof of Claim 1.

Remaining claims will also be proved by induction on n.

Claim2.1f B, € ]B%flz), then

RRR(BY) if n=8,

RRR(B,) >
(B) (RRR(B,ES)) if n>7,

where the graphs B;[ and B,(ls) are shown in Figure 6. The equalities RRR(Bg) =
RRR(B}) and RRR(B,) = RRR(B,ES)) (for> 7) hold if and only if B, = B} and
B, = B respectively.

n—>5 n—4 n—>5 n—=6
—— —N— —— —N—

B B B® B
where n > 6 wheren > 6 where n > 6 where n > T

Figure 6. The graphs B;", B> B and B{".

Proof of Claim 2. For n = 6 and n = 7, the claim follows from Figures 7 and 8,
respectively. Assume that n > 8. Using the inductive hypothesis in Equation (1),
we get
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RRR(B,) = RRR(B®,) + (Vx— 1~ Vx —2) ( \/dux_z 1+ \/dux_l - 1)

>2[1+V2+ 2(n—4)] +2V2(Vx =1 —Vx —2)
> 2[1+V2+2(n— )] + 2v2(vn =3 —vn— 4) = RRR(B").

P 2

9.7274 9.6569 10.0000

p q

10.0452 9.8284
Figure 7. All the non-isomorphic members of ]B%éz) together with their RRR index.

The equality RRR(B,) = RRR(B,ES)) holds if and only if x=n—2,d,__ =
d,, ,=3andB,_; = Br(ls_)l.

Ux—2

n

Claim 3. If B, € B, then RRR(B,) > RRR(B(G)) with equality if and only if
B, = B,(f), where the graph B,(f) is shown in Figure 6.

Proof of Claim 3. The claim is obvious for n =6, as Figure 9(a) suggests.

Suppose that n > 7. It can be easily observed that x < n — 3 because B,, € ]B%ff).
From Equation (1), it follows that

RRR(B,) > RRR(B®,) + (V=1 —Vx —2) ( \/dux_z 1+ \/dux_l - 1)

>(1L+V2)(Vn=-5+Vx—1-Vx—2)+2+32
> (1+V2)Vn—4+2+3vV2=RRR(B{)

We note that the equality RRR(B,) = RRR(B,(f)) holds if and only if

x =n—3,oneofd, ,d, ,is2andotheris3,and B,_; = 37(16—)1-
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10.4853 10.7420 10.8284 10.8284
11.0452 10.8284 10.6569 11.3631
11.3485 10.8990 11.0452 10.7274

P,
s

10.5558

11.3631

Figure 8. All the non-isomorphic members of ]Bgz) together with

their RRR index.

10.0599

9.6569
(a)

10.4853

10.7566
(b)

%

10.2426

X

10.4741
(¢)

11.2426

11.4741
(d)

235

Figure 9. Parts (a), (b), (c), (d) correspond to the all non-isomorphic

elements of B
RRR index.

, ]ngél), ]Bés), ]BgG)

, respectively, together with their
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Claim 4. If B, € B, then RRR(B,) > RRR(B,(])) with equality if and only if
B, = B,(l7), where the graph B,(l7) is depicted in Figure 6.

Proof of Claim 4. We observe that the collection ]BSS‘) is empty. For n =7, the
claim follows from Figure 9(b). Now, we assume that n > 8. It is evident that

x<n-—4asB, € ]B%ff). From Equation (1), it follows that

RRR(B,) = RRR(BY,) + (Vx— 1~ Vx —2) ( \/dux_l 1+ \/dux_z - 1)
=2n—-6+4V2+2+2(Vx —1—Vx - 2)
>2yn—5+4v2+2=RRR(B")

The equality RRR(B,) = RRR(BY") holds if and only if x =n — 4 and
B:_, = B
n-1 — “n-1"

Claim 5. If B, € B, then RRR(B,) =v2(vn—5+2 )+ 6 with equality if
and only if B, = B,,.

Proof of Claim 5. From Figure 9(c), we conclude that the claim holds for n = 6.

Now, let n > 7. The definition of 133515) guaranties that x < n — 4. Equation (1)
implies that

RRR(B,) = RRR(B,_) +(Vx—1—-+Vx—-2) |d, , -1

Ux—1

>V2(Vn—6+Vx—1-Vx—2+2)+6

>V2(Vn—5+2 )+ 6 = RRR(B,).
The equation RRR(B,)) = RRR(B,) holds if and only if x =n — 4,d
Bj_1 = By_y.

=3 and

Ux—1

Claim 6. If B, € B, then RRR(B,) > RRR(B,) with equality if and only if
B, = B),.
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Proof of Claim 6. Obviously, the collection ]BSS) is empty. For n = 7, the claim
follows from Figure 9(d). Let us assume that n > 8. Clearly, it holds thatx < n —

5 because B, € B'®. From Equation (1), we have

RRR(B,) = RRR(B,,_,) + (Vx—1—-+Vx—-2) |d, , -1

Ux—1

=Vn-7+3Q+V2)+Vx—1-Vx-2
>+/n — 6+ 3(2++2) = RRR(B)).

The equality RRR(B,) = RRR(B;,) holds if and only if x =n—-5 and B,,_, =
B;l_l.

For n > 6, if a graph G has minimum RRR index among all n-vertex
connected bicyclic graphs then, Claims 1-6 guaranty that the graph G must belongs

to the collection {l??n,BJr B® B® g™ B,,B.}. But, the RRR index of the graphs

6'"n '“n '“n

B, B! B® B® B B B’ are given as

6'"n '“n '“n

RRR(Bl) = 4(v2+1), RRR(B,)=3(Vn-3++2),
RRR(B,) =V2(N\n—=5+2)+6, RRR(B.)=+vn—6+3(2++2),
RRR(BS) =2(1+V2+,2(n —3)),
RRR(B,(f)) =1 +V2)Vn—4+2+3V2
RRR(B{") = 2Vn—5+4v2+2
After elementary comparison, we get the desired result. ]
The following corollary is a direct consequence of Theorem 1.

Corollary 1. For n > 5, if B, is any n-vertex connected bicyclic graph then the
following inequalities hold:

3(Vn -3 ++2) if n<9,
V2(¥n=5+2)+6 if 10<n <13
5vV2+6 if n=14,

RRR(B,) = k
Vn—6+302++V2) if n>15.
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The equality sign in the first, second and fourth inequality holds if and only

if B, = B,, B, = B, and B, = B}, respectively, where the graphs B,,, B, and B},
are depicted in Figure 1. Also, the equality sign in the third inequality holds if and
only if either B,, = B, or B, = B/,.
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