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In this paper an alternative model allowing the extension
of the Debye-Hiickel Theory (DHT) considering time
dependence explicitly is presented. From the Electro-
Quasistatic approach (EQS) introduced in earlier studies
time dependent potentials are suitable to describe several
phenomena especially conducting media as well as the
behaviour of charged particles (ions) in electrolytes. This
leads to a reformulation of the meaning of the nonlinear
Poisson-Boltzmann Equation (PBE). If a concentration
and/or flux gradient of particles is considered the
original structure of the PBE will be modified leading to
a nonlinear partial differential equation (nPDE) of the
third order. It is shown how one can derive classes of
solutions for the potential function analytically by
application of pure algebraic steps. The benefit of the
mathematical tools used here is the fact that closed-form
solutions can be calculated and thus, numerical methods
are not necessary. The important outcome of the present
study is meaningful twofold: (i) The model equation
allows the description of time dependent problems in the
theory of ions, and (ii) the mathematical procedure can
be used to derive classes of solutions of arbitrary nPDEs,
especially those of higher order.

© 2018 University of Kashan Press. All rights reserved

1 INTRODUCTION

Many problems of physical/chemical interest are described by nPDEs with
appropriate side conditions. These can be suitable chosen initial and/or boundary
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conditions. If the equations are linear, widely used methods for solving PDEs are
known (e.g. the Fourier and/or Green’s method) and the superposition principle
generates further solutions by known of a pair of solutions. For nPDEs, however,
the linear superposition principle can not be applied to generate new classes of
solutions.

Note: We stress the existence of a nonlinear superposition principle known

as the Backlund transformation which means a special contact

transformation [1]. The nPDE under consideration is not of Painlevé type,

e.g. [2], [3], [4] and therefore a suitable B&cklund system can not be

associated. Apart from this a Backlund system is only (in the most cases)

derivable for ‘simple strutured’” nPDEs. Thus this fact justifies the use of
algebraic methods for deriving analytical solutions and often represents the
only suitable way for a successful solution procedure.

Because most of the of solution methods for linear equations fail, there is
no general method of finding analytical classes of solutions for nPDEs and
numerical techniques are usually required. Sometimes special transformations can
be done to transform a nPDE into a linear PDE, or some other ‘ad hoc’ methods
(and/or assumptions) can be used to derive classes of solutions of a particular
nonlinear equation.

Note: We arrange that we suppress the item ‘classes of solutions’, so we

will simply understood “solutions’ instead of classes of solutions (although

classes of solutions is the correct notation). Since time occurs in the
derivation(s) explicitly such types of nPDEs are called evolution equations

(EVEs) since they allow the study of time-dependent processes. Any nPDE

may not have the outer form u, = K[u, u,, Uy,, ... ] necessarily being an

EVE where u; = K[u, Uy, Uyy, ...] IS @ nonlinear operator in general.

Equations containing mixed higher derivations like u,; = K[u] and/or

U, = K[u] are also called EVEs.

Techniques of finding solutions represent only one aspect in dealing with nPDEs.
Like linear equations, questions of existence, uniqueness, and stability of solutions
are also of fundamental importance.

1.1. HiIsTORICAL DEVELOPMENTS — A SHORT OVERVIEW

There is a good historical reason to deal the subject. When the developments of
interfacial electrochemistry along modern lines became restricted by the over
thermodynamics attitude of its adherents in the pre-1950 days, much attention was
diverted to what had seemed previously to some extent the accompanying side
issues, i.e. the physical chemistry of the bulk solution adjoining the double layer.
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This had concentrated upon an interest in the deviations in the behaviour of
solutions from laws derived upon the assumption that interactions between
particles are negligible. The properties of electrolyte solutions can significantly
deviate from the laws used to derive the chemical potential of solutions. In non-
electrolyte solutions the intermolecular forces are mostly comprised of weak Van
der Waals interactions, which have a o« r~7 dependence (in principle), and for
practical purposes this can be considered as ideal. In ionic solutions, however,
there are significant electrostatic interactions between solute-solvent as well as
solute-solute molecules. These electrostatic forces are governed by Coulomb's law
which has a o« r~7 dependence. Consequently, the behaviour of an electrolyte
solution deviates considerably from that an ideal solution. Thus the DHT of such
interactions attracted the attention of electrochemists away from the blocked
interface studies [5]. The DHT was proposed as a theoretical explanation for
departures from ideality in solutions of electrolytes [6]. From about 1920 to 1950
the majority of research in this domain were occupied with determining activity
coefficients of salts in dilute agueous solutions, the electrical conductance of
molten salts, or electrostatic effects of the dissociation constant of acids or bases in
aqueous solutions [7], [8]. Note that by applying the DHT restrictions have taken
into account, like much diluted solutions, completely dissociation and more [9].
Contemporaneously, Helmholtz considered a double-layer model wherein he
proposed a simple charge separation at the interface [10].

Gouy [11], [12] developed an electric double-layer model that includes the
effects both of the electric potential and ionic concentration with the aid of the
Boltzmann distribution [7], [9].

A further contribution was done by Chapman [13]. He established the
steady-state governing equation for the diffuse layer, the Poisson-Boltzmann
Equation [11]. This equation is based upon the combination of the electrostatic
basic equation, the Poisson Equation [14], and the Boltzmann distribution [15].
The model is referred to as the Gouy-Chapman model.

Further, Stern [16] improved the Gouy-Chapman model by assuming a
finite ion size and by dividing the electrolyte into two layers, specified to as the
Stern layer and the diffuse layer. Later on Grahame [17] revised the Stern model
using three layers: The Inner Helmholtz layer (IHL), the Outer Helmholtz layer
(OHL) and the diffuse layer. The difference between the Grahame model and the
Stern model is due to the existence of a specific adsorption [11].

A transient version [11] is referred to as the Nernst-Planck-Poisson-
modified Stern model or simply the Nernst-Planck-Poisson model (NPP) if there is
no modified Stern layer.
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During the past 90 decades several well-known scientists did their
contributions in this domain, and, unfortunately only a small number are
mentioned here like Bjerrum [18], Gronwall/La Mer/Sandved [19], Onsager [20],
Kirkwood [21], Falkenhagen [6], [9], Ghosh [22], Smoluchowski [23], Parker [24],
Walden [25], Planck [26], Fuoss [27], Kortum [28], [29], and extensive
developments are not finalized up to now.

1.2. ELECTROMAGNETICS FROM A QUASISTATIC PERSPECTIVE

The general theoretical considerations can be found in [30-32]. Here only the
essentials are cited.

The quasistatic limit of the Maxwell Equations (MEs) is a kind of ¢ — «©
limit (the fields propagate at once) obtained by neglecting time retardation. EQS
has important applications modelling transient phenomena in approximating
theories for materials with low conductivity (or the low-frequency approximation).
The crucial step is the fact that a time dependent electric field may derived from a
scalar potential which is, in our case the solution of a certain nPDE of the third
order [33-37]. General transient electrodynamical problems are not easy to solve,
e.g. by occurring solutions depending upon roots one has to take into account
branch points. In media with a finite conductivity a static field is not possible and
the pertinent relaxations time is given by © = g,e0~1 [38], where ¢ is the relative
permittivity (of the material) and o is the conductivity. For the most metals (e.g.
copper) the relaxation time is in the range of 107 '8s. New developments in
material sciences produce materials with a relative dielectric constant in the range
of 2<e<4 and a conductivity of about 10~°sm~1. Then the decay rate is
approximately T ~ 1073s and this is long compared to other time constants of the
system (e.g. if an electromagnetic field passes through a panel).

This is exactly the case where EQS can be applied [32], [38] and only pure
capacitive effects are of interest. In further studies considering both capacitive and
inductive effects the Darwin model will be used. Note that statics is just a
particular case of the general MEs but quasistatics works as an approximation.

1.3. THE MODEL EQUATION UNDER CONSIDERATION

The starting point is an expanded version of the PBE, a special nPDE of the third
order

0 ) C - 0 [ Z.e.U
AU+ —AU+—| -zFD—VU |—— ze.Nlexp|l———2"||=0 (1
NPT 6t[ kT j 6t[; Fo i p[ KT D @)
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where F is the Faraday constant, D the diffusion constant and k is the Boltzmann
constant.

One assumes the conversion: Let N° x 1000 = Nyc;, ¢; is the molar
concentration and the ion strength is defined by I =1/2%,c;z?. Introducing
further per definition

ecN, 1

2 0 A 2 2

=——— % CZI — =—"1, , o
P 1000 kT 24~ " P 1000 kT kT kT
one derives a third-order nPDE for the time-dependent potential function
u=u(xt):

_2e§NAI 78, , DFc

: (2)

o3u o%u  , o4 , 0u

EEy o T0O—5 & -p°
ox“ot oX oxot ot

At this stage one formally imposes boundary conditions (BCs) so that

et =0. (3)

lim, e ug = uy and lim,_,, Z—Z = 0 holds; they are necessary conditions later for
the function u = u(x,t). Note that BCs may depend upon actual problems. We find
it useful to split up the potential so that up is the potential at any surfaces and uy is
the potential in the electrolyte far away from a reference ion, thus Au = up - uL (not
to be changed with the Laplacian).

One seek solutions for the nPDE, Equation (3) for which u = F(x,t), F €
C¥(D), D = R? is an open set and

D::{u(x,t)e D:u=0, u, =0,u, =0,..... }

is excluded with t > 0. Suitable solutions are u e 1, | an interval so that | < D and
u:l - R2 It is not an easy task to solve nPDEs (especially of higher order)
exactly but here we wish to solve the Equation (3) analytically by using algebraic
methods without numeric’s. A mean value for the charge density is used in
Equation (3) and one-valued ions are assumed so that zi = z = 1. In later
considerations the case of many-valued ions will be considered. The potential
function u(X,t) =u represents the ion’s potential surrounded by the ‘ion cloud’. In
further meaning this function describes the time-dependent potential of an arbitrary
metal electrode dipping in an (liquid) electrolyte (due to the restrictions imposed
by EQS not all metals can be considered). Note that a standard concentration of c=
0,01mol/l, resp. c; for the concentration of the i-th ion at a standard temperature of
T = 293,15 K is assumed. In the following we shortly present the basics.

1.4. THE ALGEBRAIC SOLUTION PROCEDURE

Consider a given nPDE in its two independent variables x and t
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=0. €)]

,0uou o’ guou "l oM
"ox ot gx2 oxot’

Firstly the nPDE converts into a nODE by using a frame of reference
u(x,t)=f(&), where E=6x—At; & and A are constants to be determined. Thus

one has
Q(f (). (&), f"(®),...)=0 (b)

The next step is that the solutions we are looking for can be expressed in terms of a
finite series representation such that

u(x,t) = f(8)= __ani en'(&,k) and (V&)= _Eoi—n(ai en' (&) (©

holds where cn(&,k) means the cosine amplitude and k is the modulus. The
parameter n in Equation (c) is found by balancing the highest derivative with the
nonlinear terms in the reduced nODE Equation (b). This parameter must be a
positive integer since it represents the number of terms in the series (c). In the case
of fractions one can take suitable transformations as shown later. The substitution
of Equation (c) into the relevant nODE Equation (b) will yield a system of
nonlinear algebraic equations with respect to the unknowns ag,a; , ...., k, A and

d.

2. CALCULATION OF SOLUTIONS

We convert the Eq. (3) by u(x,t) = f(§), £ =0 x—At to derive the nODE of the

third-order
9. d3f  2d%f o d%f o df
A -3 + 0580 +B }Ld—gexp[—nf]zo,f:f(é),—oo<§<oo 4

5
ded3  de? de2

Note: The similarity transformation is called the travelling wave reduction
describing any wave propagation and » means the velocity. One of the new
aspects here is the introduction of the quantity & to generalize the method.

We seek for solutions for which f = F(¢), F e R® and D < R? is an open
set excluding
D={(f,&)eD: (£)=0,0, =0/,
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Suitable solutions are f € 1,1 an interval so that | D and f:1 — R,
Since the I.h.s of Equation (4) is a continuous function we ensure at least existence
locally and due to the lemmas from Peano and Picard-Lindelof we assume
uniqueness (also at least locally) in a given domain.

The question now is: Can we integrate the nODE Equation (4) directly so
that we can rewrite the nODE (4) in a complete differential form? Indeed, one has

d | o, d*f df  og, df| d {2 —qrl
da{“ .2 8N it a25hn da} da{B re }_o. (5)

Integrating once with ¢; as an arbitrary constant of integration gives a second-
order nODE

d’f 5% df
de? ° Tde
Then the transformation f (§) =1/nIn[w(&)] will remove the exponential function
yielding a further second-order nODE for the new dependent variable w(g) :

5% An

azéin—gntﬁzie " =c,. (6)

2
aszd W_s x(dWJ rolsnwdW 52, W —eqw? +p2aw=0, w=w(E)  (7)
dz2 d de de

To apply the algorithm performed in Section 1(d) above it is necessary to
know the quantity n in the series Equation (c). It can be shown that two values

exist: m =-1 and n, =-2.

This is not possible since this quantity must be ne Z* . Introducing a new
variable p(&) by the transformations w, (€) = p(&) ‘and w, (&) = p(&)~ will give
two second-order nODEs (balancing now leads to ny =1 and n, =2) for the
function p(&) :

d2 dp)? d d ~1
252, p TP 252, (d—zJ 120250 pSP 252p P 2 p4 o p2-0, for ML (7a)

de? dg dg

d2 dp)? d d =2
s9.p P 52| SR L o2snpSP _52p8P 52 3 cp2=0,for M2 T (7b)

de? dg dg de

Thus, from the Equation (c) the following solutions for the functions p(§)
are possible:
p, (&) =a,+a,cn(&,k), for n=1 (8a)

p, (&) =a, +a,cn(& k) +a,cn’(&,k), for n=2 (8b)
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Putting together the Equations (c), (8a), (8b) into the nODEs (7a), (7b) two
systems of nonlinear algebraic equations appear. For control purposes we only
stress the first and the last equation.

1% case, n=1:
2a5p — ¢y + 28220 + 521 =0, )
a? + 2k% =0.
2" case, n=2:
2a00y + 28901 ~3a3p1 — 43p 2 — 6agagh?l. — 3a5p A ~3a5 2L =,
acz)cl + a12c1 +2agagcy + agcl — agﬁzk — 3a0a12[32x — 3a(2)a2[32x — 3a12a2[32x — (9a)

~3agasP2h a3k — aZ82h — 2agagd 2 — 25521 = 0.
Solving these systems the following solutions are possible (the trivial

solution is always a solution but meaningless for our purposes; the constants o
and P are predetermined quantities and should not work as unknowns):

1% case:

(i) 3, =0, ¢ =62(3-243), kzé(\/@—l)zo,s%, 5%0, L=0, a arbitrary,  (10)

2
(ii) %:i%\/%al, c1=_@, k=3, 520, L =0, a arbitrary, (10a)

(iii) a, =0, ¢ =524 (3+243 ), k:_%(uﬁ)z_l,see,s;to,mo,al arbitrary (10b)

2" case:

2
(i) a0=3a2,a1=0,clz—752/1,k=%,5¢0,1¢0. (10c)

An interesting role plays the constant c, : It relates the parameters 6 and 4
in the similarity variable & if one sets ¢, =1 and thus we exclude ¢, =0 in the

Equation (6). By using the Equations (8a) to (10c) one derives the following
expressions for the functions f () and therefore for the functions u(x,t):

1 1 1 1
h©="in Ltlcn—(akJ - —Hln[alcn (&K)], :E(ﬁ—l),

At
=8X~ , 11
SO 5%(3-2,/3) )
fZ(a):_%lnlzal(w/g+dn[3\/§§%jﬂ, §=5X+425%, % arbitrary, & io,

(11a)



An Algebraic Calculation Method for Describing Time-Dependent Processes 85

2 A .
f3(§):—%ln{aldn( %(\/5—1)&§H, ézsx_m’ aq arbitrary,
a =0, (11b)

and for the 2™ case
20t .
f4(8) :_1|n{a2(3+cn2(§,3ﬂ, &zSX—F, a, arbitrary, a, =0. (11c)
n

Note: To derive this solutions the basic properties of the elliptic functions
(and the logarithm) was used, especially the relation for the modulus
k2 +k'2 =1, the Jacobi’s real transformation for negative modulus and the
transformation for imaginary arguments, e.g. [39]. Thus, for example, one
has the relation cn(u,—k):=cd(v,u) for the cosine amplitude. Elliptic
functions with the special modulusk =1/2, e.g. in case of the function f, (&)
are sometimes called lemniscate functions. For the following discussions it
is only necessary to consider the functions in the form f;(€), i=1....4. For
the constant n we have n~!=0,0253/C~! and this is material
independent. We assume the following domains of definition:
~1<(sn(u),cn(u)) <1, k'<dn(u) <1 and —oo < tn(u) < 0.

3. SOME SPECIAL PROPERTIES

In all cases a travelling character is observed, but for all functions the argument of
the logarithm may not be the unity, since in this case the solutions take infinity or
become a singularity, apart from that the expressions have singularities if the
denominators take zero. All functions are continuously and differentiable at least
two-fold in the domain 0 < & < 1, the first, the second and all higher derivatives
exist and have the same behaviors as above. Some special values are summarized
in the following table.

Now we are interested in further quantities. We assume an electrical field
Ei and this field will be generated by a given charge distribution. Such an electric
field can then be derived from the potential by application of the gradient operator

E; =-Vf;(€) to give the following expressions and without loss of generality one
can also set & =a, =1; the modulus are given by the Equations (11) to (11c):

Ei(8) = L (g,k)dc(&,k), &=1,7546, (12)
n
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J3E L) en(3y3e 1
3} 1/3en(3v3e,1)sn(3v3e, 1)
Ex(8)=—— >3 : (12a)
24+dn(3\/§ a,%)
Eg(g)z—Vz(;/f 1)cn(a§ %)sd(aa ) a= %(\/5—1), (12b)
l 2 cn(&, k) dn(&,k) sn
3+cn (i,k)
i@ | cfi®b | czli@h | oze i@l | czefi@h | [ 1O | [ e
f1(8) 0 1,2182 1 1,9993 0 0,5423
f2(€) 0 0,0005 0 -0,0041 -0,6826 -0,5853
f3(€) 0 0,2073 0,2440 0,1394 0 0,1126
f4(8) 0 0,2348 0,5 -0,1301 -1,3863 -1,2105

Table 1. Some selected properties of the functions Equation (11) to Equation

(11c), here a; =a, =1 is considered, i=1,...4.

Note: We stress that the first expression is not defined at those points
where the denominator vanishes, e.g. at the points as cn(&,k) =0. This is

equivalent with the task to look for solutions of the equation cn(&,k) =0.
The first real zero is given explicitly and the same is true for the remaining

denominators.

Now we show that the fields have a conservative character since by
considering Cartesian coordinates, e.g. £=(Ex,Ey,&;) the relation rot Ei =0

holds (the field is irrotational or equivalently, the existence of the potential is
secured since the curl of the field vanishes).
To show that the fields are really solenoidal one introduces Cartesian

coordinates in the Equations (12) to (12c) so that Ei (€)= (Ex,Ey,E;). Here also

a;=ar=1 is assumed and we suppress the factor n‘l

and dropping all
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arguments. The calculation is performed only for the first component El(a), the
remaining are similar. With a unit vector & one has:

(|
|

€x

I, y oy 0O o, 0 0

= — _a Y | = X z| o~ |YX y

roty =VxE; =10y 0y 0;|=8 E, E ey £, E, +€; £, E, . (13)
Ex Ey E;

Now it follows that
rotElX: Oy sn(z,k) dn(z, k) -0, sn(y. k) dn(y. k) +..=0, x#0, y#0,

’ cn(z, k) cn(y, k)

z#0 (13a)

All the individual terms disappear and therefore the rotation is zero and
thus the field is solenoidal.

To derive the charge density one has to apply the divergence operator upon
the electric field (& acts as a local coordinate once again) so that
pi (€) =1/(4n)V - Ei (&) .This yields complicate expressions with elliptic functions;
one can assume these as a kind of superposition. One has:

1
p1(0)= | 06 )= ) an2(e, ) (6 ) | 19
1 27dn (&, k) sn? (5, k) (/138 +12dn (5, k) )+ on (5, k)
nn(\/138 +12dn(g,k))

p2(8) =

(14a)
xdn(a,k)(\/ﬁJrlZdn(&,k))+4sn2(§,k)}
nn (/138 +12dn (g k) !
Ll (moq) [t 2 Y «
o= 5 W31 - L (e )+ g eafas)
(14b)

x[ L +%sd2(a§,k)j,a= %(\/5—1),

12t
1
4nn(3+ cnz(g,k))

x (2 dn?(g, k)-sn(, k))+ cn?(g,k) ) (—33n2(§, k)+2dn?(g, k)(3+ sn?(g, k)))
(14c¢)

P4 (€) = x(—6dn2(§,k)sn2(§,k)+ cn’(g,k)x

2
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Let a be a specific distance e.g. from the electrode surface to the centre of the
(hydrated) ion in the OHL. The total charge gy contained in the OHL is

obtained by integrating the charge densities p;(&) from the electrode surface with

the reference point taken at infinity. Therefore one has to integrate once the
expressions for the charge densities given in the Equations (14) to (14c). For the
first density p, (&) one has:

ot = 1p1(E)E =4i{°f°dn2(a, K)de — k2 Jsn2 (5, k)de + Tdn2 (5, k) tn2(Z, k)da} .
a ™ (a a a

(15)

The first and the second integration can be done exactly but the third term
causes troubles and can be handled only numerically. This is a standard procedure
for any numerical integration processes and will not be performed here. An
alternative way is, since all the elliptic functions are continuous functions to
consider known series representations by changing integration and sums.
Otherwise the Weierstrass expansions [40], [41] of the involved elliptic functions
can be made. This reflects, among other things, the immense difficulties in dealing
such problems (convergence of the considered integrals is assumed). To reach the
goal faster we suggest another possibility: Determining the first and the second
integrals exactly and signing the last term by

[an* (£ k(£ k) dé = [R(E,kdg .
Then, integrating once, one has, in principle
1 k E(am(a,k),k) dn(a, k)E(am(a,k),k)

Crtot =y k- - +
4mn dn(a,k)\/l—ksnz(a,k) \/1—ksn2(a,k)

+kzsnz(a,k)E(am(a,k),k)Jroo )
dn(a,k)y 1-ksn?(a,k) i\R(a’k)da i

(15a)

in which E(.,.) is the elliptic integral of the second kind and am(.,.) is the

Jacobian amplitude. Taking the limit of each term, that is a— 0 the terms
approaches to zero except the third. This guarantees charge conservation so that
charge cannot disappears anywhere. Here it is amplified how fast mathematical
problems can grow up making problems unsolvable (at least analytically). In
Equation (15a) the special case k =1 vyields:
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_a+2coth(a)E(-gd

1tot —

(a)’1)+Ttanh2(§)d§ | (15b)
4drn '

in which the argument of the elliptic integral of the second order the Guderman
function (or hyperbolic amplitude) occurs defined by %— 2arctan(ea)=: —gd(a). In

principle one also can consider the case k =0 which gives a linear connection
explicitly

a
Adrn

Outot =— + Ttan 2 (g)dg . (15¢)

However one should bear in mind that the first, the second and the fourth
term vanishes leading to the fact that essential contributions to the charge density
could be lost. In fact, the expressions (15b) and (15c) represent the classical result
known from electrostatics. For comparative purposes we show a graphical
representation of these functions in Figure 6 (remember that E(¢,0)=¢ and

E(p,l) =sing).

Note: It is possible to handle the expression R(&,k) such that one assumes
also special values for the modulus, e.g. k =0,1. Then the elliptic functions

degenerate to the usual circular and hyperbolic functions, resp., leading to
integrals of the general form

R(u,0) :Ojotanz(u)du and R(u,D) :ojotanhz(u)du .
a a

However one has to specify appropriate conditions to handle the
divergence of these integrals. Otherwise an anti derivative of R(&, k) exists

in general and one has the expression
JR(E, k)dg = jdn? (&,k)tn? (&, k)d& = £~ 2E(E) +dn(E, k) tn(&, k) + C

If necessary one can make use of the formula for the double
argument, in detail

dn? (&, k) tn? (&, k)= ((1-cn(2€) /((1+ cn(2€) /.

For the Gudermann function one has gd(x) = 2arctan(e*) - n/2. To

prove this one has to show that both sides of the last relation vanishes as
x=0. Left side: gd(0)=arctan(sinh(0))=arctan(0)=0, right side:

2arctan(e?) - n/2=1-7/2= 23-%=0.
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As a last remark we stress the possibility to express the cosine amplitude by
theta- and sigma-functions; to give an example the solution Equation (11) reads,

once again with a, =1 as
I B S T SR e 1 (1.9 | I R A9 1§
e i b et b )

Note: We want to show up here different ways to express solutions, the
user can then apply a preferred representation. It is also possible to express
these solutions in terms of the Weierstrassian g -function. Thus one has, in

principle, the relation

©(U;92,03) =63 +(31—e3)n32(U\/ e —e3,k)

where u means a general argument of the ns-function, g,, gz are the

invariants of the g -function and e; and e3 are the roots of the equation
43 - got — g3 =0which are all different. To complete, the modulus of the
ns-function is expressed by k2 = (eo —e3)/(e; —e3) for known values of the

€ The involved functions are meromorphic and double-periodic, the o;
are odd and entire functions; the 9; are even and entire. To clarify the
relationship we present the connection between o; and 8, one has in
detail o4(u) = Cy exp|(yu%) (20 [94(% - v), [39], [46]. Also one has to take
care the regularity of the arguments of the logarithm.

4, A NUMERICAL STATEMENT — PRACTICAL FUNCTION SERIES
REPRESENTATIONS

For fast numerical calculations it is convenient to have series representations,
therefore we calculate some ascending power series formulas for the solution
functions Equation (11) to Equation (11c). The functions, derived from the
transformation of the log-function are valid up to the given order valid at £ >0:

1.2 (2+43),4 (5+243),6 (23+123) ¢ 10
M@= 8 o & T on T 1ason © TtOET. @)
f2(§)=£|n{ = ]+ M2, BEDENT 4. Lo, 7a)

N [12+4138 | n@2+138) " 5 (12+/138)
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1 .4 7 6 8
f ..+0 17b
3(8) = 3nf 27na +1215\/§né +..+0[¢] (17b)
In4 6 8
fa@=—"+3 —a ——BZna 560m oo &8 OfE]®. (270)

Note: Consider the first function series f1(&), where the necessary condition
limz_,, f;(£) = 0 holds. The terms thus form a sequence of zeros and also
for the function f3(&). Since the function f1(&) is continuous (at least in the
considered domain), the sum function is also a continuous function. In
principle one has series of the general form fi(&) = a&® + be* + c€® + ... =
>d&". Although the terms form a null sequence, such series are divergent.
For practical calculations, only the first terms (row fractionation after the
quadratic term) are important. The series fy(§) and f4(§) are divergent
anyway since they do not form a null sequence. If one needs series for great
arguments, asymptotic formulas are necessary. But here one has to be
careful because the limit ¢ -« does not exist. By using asymptotic series
the divergence does not play any role.

Similar formulas can also be derived for the electric fields and charge
densities (the convergence should be checked by appropriate methods). Another
useful series representation in terms of circular functions (in the sense of a Fourier
series) is given by the following formula; we only present the first function f1(§),
Equation (11), similar expressions could be obtained for the remaining:

__1 L2 A o B R LT 1
f. (&)= n{ln{cos(ZKﬂ 4;n 1+(_1)nqns|n (ZK J} (18)

where q=exp[-nK'/K] and K, K" are the complete elliptic integrals K = K (k).

Here the expansion is valid in every strip of the form |Im n&/(ZK)|<1/2n Int

with 7 as a parameter with positive imaginary part [39,40].

From the Table 1, it is seen that the limiting values lim;_, f;(¢) vanish for
the functions f1(&) and f3(&), the functions f,(&) and f4(§) remain finite and real.
Otherwise taking lim;_,, f;(£) it is seen that these limits do not exist. From this
standpoint one can say that these functions are not stable in the sense of the
stability of solutions which require that the function(s) must vanish as & — o
(thus the limits must exist). This might cause troubles in quantum-mechanical
considerations in which the potential functions must “behave well” but such types
of functions are known and can be used by suitable assumptions (no square
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integrability). Also for a fast overview one can solve the Equations (7a) and (7b) in
terms of a power series representation; here we give formulas valid up to order two

with arbitrary coefficients a; #0 and A =6 =c; =1. Due to the similar structure
of these nODEs the series hardly differ; and one gets, for the eq.(7a)

P, (&) =2, +aié+§[a§ﬁ2 ~a,-2(a? -1)a,+ 2:1 jéz +O[E]°, (19)
and similar for the Equation (7b)
2
AGELS +a@+§(a§ﬁ2 ~a-(a’ —1)a1+2—1J52 +O[¢)°. (199)
0

5. SUMMARY — BENEFITS AND DISADVANTAGES — OPEN PROBLEMS

. Transient electrodynamical (and electrochemical) problems are notoriously
difficult to solve (in the general case one needs Green’s tensors and/or
vector potentials) and uniqueness is not always given (solutions depending
upon roots are involved so that branch cuts must be taken into account).

Il.  In this study we showed that a nPDE, the Equation (1) which has the
meaning of a modified Poisson-Boltzmann Equation can be solved
analytically by application of pure algebraic steps. The highly nonlinear
equation was introduced by the author recently [33] to describe time
depending electrochemical processes and/or charge transfer upon
electrodes.

I1l.  We applied an algebraic approach containing elliptic functions explicitly. It
is remarkable that classes of solutions derived by this special method differ
completely from solutions of the DHT in their behaviour. It is a special
hallmark of algebraic methods that one cannot predict appropriate solutions
in the sense of the solubility of the nonlinear algebraic system of
polynomial equations. Several other approaches are used but none of them
leads to useful results.

IV. The success and/or failure strongly depends upon the solubility of the
nonlinear algebraic system. Due to the experience of the author such
systems are often over determined and the number of equations n. is greater
than the number of unknowns n,. The ideal case is therefore n, = n, and by
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VI.

VII.

skillful considerations in combination with the physical reality the outer
form of the nonlinear algebraic system can be controlled. Thus we expand
the original similarity variable &=x—-At to {=8x—At. The purpose of

the similarity variable is twofold: It reduces a given nPDE to a nODE - this
always works, and, if one seeks for, due to the physical situation, a
traveling wave solution. One cannot, in general predict the solution
manifold; that means that by use of the traveling wave reduction one has no
guarantee to generate a traveling motion. In each case one has at least to
check whether the solution represents a traveling wave motion or not.

A further important fact is given by the integration constant c; in the
Equations (7a) and (7b), respectively. Only in the context of soliton theory
one can set ¢; = 0 (in view of a localized wave). Generally it is not allowed
to set it zero as happen in several papers. Otherwise an interesting feature
can be observed here: The constant c; relates the parameters & and A .

The difference of the method used here to other algebraic methods is
enormous. Most algebraic methods are based upon the fact that the
unknown solution function satisfies a NODE of the first order [42], [43],
[44], and [45] to mention some examples. Thus the name of the (algebraic)
method comes from the used nODE, e.g. the hyperbolic tangent method
(including the Riccati Equation as the cornerstone), the exponential
transform method, the Weierstrass transform method, the Lambert function
transform method and so on. Here, in our analysis the unknown solution
function (the cosine amplitude function, Equation (c) and its derivatives
can be used independently from any nODEs. Of course, the function and
their derivatives have to satisfy general mathematical properties such like
continuity, differentiability and existence in a given domain.

Note: For all scientists and engineers who are dealing with elliptic
functions we recommend the excellent formula collection from Byrd and
Friedmann, [46]. This attractive and unique treatment as well as the
classical Abramowitz/Stegun [39] should be a standard equipment for all
mathematical considerations.

In fact, the algorithm works efficiently and solutions of the highly nPDE,
the Equation (1) and the Equation (3) respectively can be derived without
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any problems. Problems may appear by further using of the solution
functions, e.g. the analytic determination of the total charge, the Equation
(15). Here only a numerical procedure is possible. Also the solution
procedure of the nonlinear algebraic system, the Equations (9) and (9a),
respectively may cause troubles. If one is interested in dealing higher order
nPDEs, the degree of the system will increase rapidly and long computing
time is expected. Due to the experience of the author many of such systems
are satisfied only by the trivial solution and the algebraic solution process
will fail.

In the present analysis the EQS approximation was used and no magnetic
effect were considered. To handle this case a further extensions will be
done in future. Another aspect is the fact that the particles involved have
quantum-like properties and another theory is necessary. Thus a quantum
mechanical approach will be considered as a next task.

1 I |-|- L ] I |-|-
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0.8
4
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Figure 1. The solution function f; (&), Equation (11), left and the solution function

f2(¢), Equation (11a), right. Both functions show a travelling character. The

graphs are generated by using the constant a; =+1. The influence of the constant

n_1:0,0253 (numerically) is such that it shifts the graphs upon the vertical axis
and this true for all further graphics.
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3 0 Halie

AVAY
10 _5\/ 5 10 )
Figure 2. The solution function f3(), Equation (11b), left and the solution
function f4(€), Equation (11c), right. Also both functions show a travelling

character. The functions are generated by using the constant a; =+1 and a, =+1.
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Figure 3. A planar sketch of the charge densities p;(€), left and p4 (&), right.
Here, also a; =a, =1 was used. The functions show periodic behaviour once
again. The periodic peaks left may be interpreted as a charge distribution near a
charged particle (e.g. analogously in a crystal lattice).
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Figure 4. A three-dimensional plot of the functions u,(x,t), left and ug(x,t)
right. The functions have the modulus k =% and k =% respectively and the
values 6 =X =1 were used.

0O 05 1 15 2 25 3

Figure 5. A graphical representation of the function Equation (11) in the principal
form ~—In[cn(&,k)] with the modulus k =0,3660 and for 0<&<n/4 left and
0 <& < m/2 right without the influence of the constant n. One can see the poles in
the given domain surrounded by symmetrical “field line distribution’.
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Figure 6. A planar sketch of the charge densities, the Equations (15b) left and
(15c) right without the integral contributions. If one interprets the distance "a" as
the seat of a charge generating size, then, on both sides of a charge accumulation is
lockable). In this model the central ion is thought to be located in the centre. The
increasing (decreasing) part up to the maximum (minimum) matches domains of

higher concentrated charged areas.
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1. INTRODUCTION

Throughout this paper, G is a simple and connected graph with the vertex and edge sets V(G)
and E(G), respectively. For a graph G, there is a novel notion named third Zagreb polynomial,
defined as M3(G,X) = Yyyer(g) X!46WdeMI Astaneh-Asl et al. [7] studied M;(G,x) of
Cartesian product of two graphs and a type of dendrimers. In special case, the value of
derivative of this polynomial at point x = 1 is well known as the irregularity of G and
denoted by irr(G), which was already proposed by Albertson [6]. In the other words
irr(G) = ZquE(G)ldG(u) —dc(W)| 1)
In [6], Albertson gave some upper bounds on irregularity for trees, bipartite, and
triangle-free graphs. Recall that the first Zagreb index M, and the second Zagreb index M, of
G are defined as M, (G) = ¥, ev(c) d&(u) and M, (G) = X yver(c) dg(U). dg(Vv), respectively.
These indices were introduced in [16] and reflect the extent of branching of the molecular
carbon-atom skeleton and can be viewed as molecular structure-descriptors [8,25]. Moreover,
the values of these indices are computed for a class of nanostar dendrimers in [26]. Fath-Tabar
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[14] named the sum in (1) the third Zagreb index, and established new bounds on the first and
second Zagrab indices that depend on irr(G). Zhou and Luo obtained the relationship between
irregularity and first Zagreb index of graphs, and also they determined the graphs with
maximum irregularity among trees and unicyclic graphs with given matching number and
number of pendent vertices [19, 29]. Hansen and Melot determined the maximum irregularity
of graphs with n vertices and m edges [17]. Moreover, Abdo and Dimitrov considered the
irregularity of graphs under several graph operations [5]. Previously, we characterized all
graphs with the second minimum of the irregularity in [20]. Also, we studied in [15, 21], trees
and unicyclic graphs whose irregularity is extremal. More works about this graph invariant
have been reported in [2, 9, 18, 22-24].

Recently, Abdo et al. [1] introduced a new measure of irregularity of a graph, so-called
the total irregularity, as irr(G) = 1723, vev(q)|dg(u) — dg(Vv)|. For a connected graph G,
the irregularity indices irr and irr, were compared in [12], where it was shown that irr,(G) <
n2/4irr(G). Furthermore, they proved that if G is a tree, then irr.(G) < (n — 2) x irr(G).
Abdo and Dimitrov [4] gave the upper bounds on irr; of graphs under several graph
operations including lexicographic, Cartesian, strong, direct, and corona products, also join,
disjunction and symmetric difference. In [1], graphs with maximal total irregularity were
characterized and the upper bound on the total irregularity of graphs was obtained. In special
classes of graphs, such as trees, unicyclic and bicyclic graphs, this invariant has been studied
in [13, 27, 28].

An Eulerian circuit is a closed walk in a graph that visits every edge of the graph once
and only once. A graph containing an Eulerian circuit is called an Eulerian graph. The study
of these graphs was initiated in 1736. Their study is a very fertile field of research for graph
theorists. Although, in the graph theory, the term Eulerian graph has two common meanings,
I.e. a graph with an Eulerian circuit, or a graph with every vertex of even degree. Note that in
the case of connected graph, these definitions are equivalent [10].

The aim of this paper is to study the irregularity and total irregularity of connected
Eulerian graphs. In Section 2, we show that the irregularity of an Eulerian graph is a
multiple of 4, and by using it, we characterize all Eulerian graphs with the second
minimum irregularity value. Finally in Section 3, we determine graphs with the second
and third minimum of total irregularity value over the class of all connected Eulerian
graphs.

2. THE SECOND MINIMUM IRREGULARITY OF EULERIAN GRAPHS
In this section,we first restate a proven result in [10], which is needful for proving that the

irregularity of Eulerian graphs is divisible by 4. Afterwards, we would able to determine the
Eulerian graphs with the second minimum irregularity value.
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Lemma 2.1. [10] A connected graph is Eulerian if and only if each of its vertices has even
degree.

Theorem 2.2. Let G be an Eulerian graph with n vertices, then irr(G) = 4k, for some non-
negative integer k.

Proof. We prove the theorem by induction on n. Obviously, for n = 1, we have irr(K;) = 0.
Suppose that for any Eulerian graph H on less than n vertices, irr(H) = 4k, for some non-
negative integer k. Now, we shall show that if G is an Eulerian graph on n vertices, then there
exists a non-negative integer k" with irr(G) = 4k’. To show this, we shall use induction on
the number of edges. For m = 0, it is obvious that irr(K,,) = 0. By induction on m, suppose
that for any n-vertex Eulerian graph H, which has less than m edges, we have irr(H) = 4k,
for some non-negative integer k. Let G be an n-vertex Eulerian graph with m edges. Let

Cq = V1Vy -+-VqVy be the smallest simple cycle in G, and H =G — E(Cy). If H = K, then
G = Cq, and therefore irr(G) = 0. If H # K., then either H is an n-vertex Eulerian graph
with less than m edges, or each of connected components of H is an Eulerian graph on less

than n vertices. Therefore, by inductions’ hypotheses, there is some k > 0 such that irr(H) =
4Kk. For convenience, we use the following notations:

E'={xveE(H):veV(Cy)&x e V(G)\V(Cy},
di(v) = |[{xv € E" : dy(x) < dyx(V)},
dg(v) = [{xv € E" : dy(x) > dy (W},

. 1 ;s=I
sign(s) :{_1 s=g

Assume that vq.; = v;. With above notations, one can immediately see that for any
vertex v; of Cg, dy(v;) = dj(v;) + dg(v;). Note that by the choice of Cg, there is no non-
consecutive indices i and j such that v;v; € E(G). Moreover, for any edge xv € E’, if dy(x) <
dy(v), then

|[dg(x) — dg(W] = [dg(x) — du (V)| = 2 = 2 sign(l).
Moreover, if dy(x) > dy(v) then

l[dg(x) —dcW)| = [dy(x) — dy(v)| = —2 = 2 sign(g).
Now, we have:

irr(G) —irr(H) = Xyver(cy)lda(U) —deWl + Xyverr(Id () = dg(V)| = [du(x) — du(v)])

= ZuVEE(Cq)IdG(u) —dg(V)| +2 Zvev(cq) (dl(V) — dg(v))
= Zuver(cy) (|dG(U) — dg(W)| + dy(u) — dg(u) + dy(v) — dg(v)) =t r
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such that forany i = 1,2, ...,q,

ri = 1dg(vi) — dg(Vip )|+ di(v;) — dg(v;) + di(Vigq) — dg(Vigq).

One can easily check that if dg(vi,,) < dg(v;), then

ri = 2d;(v;) — 2 dg(viy1) = 2 sign(D)d;(v;) + 2 sign(g)dg(vi,1),
and if dg (Viy ;) > dg(vy), then

r = —2dg(vy) + 2d,(viy1) = 2sign(g)dg(v;) + 2 sign(1)d; (Viss).
Hence, for some suitable s;, s; € {l, g}, where 1 < i < ¢, we can write the following:

irr(G) —irr(H) = ;1:1 r = (2 sign(s,)ds, (v;) +2 sign(sg)dsé (vz))

+ (2 sign(s;)ds, (v;) + 2 sign(sg)dsg (v3)) +
+ (2 sign(sq)ds, (vq) +2 sign(s{)dsfl(vl))
=y (2 sign(s;)ds, (v;) + 2 sign(si’)dsif (vi))

= 237, (sign(s)ds,(v) + sign(s)d; (vp)
=2 Z?:l ti'

Foreachi =12, ...,q, there exist three cases as follow:

1) Ifs; =s{ = I, thent; = 2 d;(v;).

2) Ifs;=s{ =g, thent; = =2 dg(v;).

3) IfSl * Si” then ti = dl(Vi) - dg(vi)'
Since dg(v;) = di(v;) + dg(vy) is even, dy(v;) — dg(v;) is even, too. Therefore, in all of the
above cases, t; is even. Thus,

irr(G) —irr(H) =231 t; =431, G) t; = 4k”

where k"’ is an integer. Hence, the theorem is proved by induction. O

Obviously, for a connected graph G, irr(G) = 0 if and only if it is a regular graph.
Therefore, we have the following result:

Corollary 2.3. For a non-regular connected Eulerian graph G of order n, irr(G) = 4.

We know that the minimal irregularity of graphs is zero. Obviously, the irregularity of
a graph is zero if and only if all of its connected components are regular. Since for each
positive integer r > 1, each connected 2r-regular graph is an Eulerian graph, hence the first
minimum irregularity of Eulerian graphs is zero; and by Theorem 2.2, we conclude that the
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second minimum of the irregularity of Eulerian graphs is 4. In the following theorem we
characterize connected Eulerian graphs with the second minimum irregularity.

Theorem 2.4. There are 12 types of connected Eulerian graphs with irregularity value 4,
where the general forms and examples of them are shown in Figure 1 and Table 1,
respectively.

Proof. Let G be a connected Eulerian graph with irr(G) = 4. For each edge uv of G, set
irr(uv) = |dg(u) —dg(v)], so we can write irr(G) = X,yeg)irr(uv). The proof
continues in three separate cases as follows:

Case 1. Let xy be an edge of G such that irr(xy) = 4. Since G is a connected Eulerian
graph, there is a cycle xyv,v, ---vix in G containing edge xy. Clearly, since irr(G) =
irr(xy) = 4, then irr(yv,) = irr(v,v,) = --- = irr(vix) = 0 and we deduce that d;(y) =
dg(vy) =dg(vy) = =dg(vy) = dg(x), which is a contradiction. Therefore, this case
does not occur.

Case 2. There are two edges xy and xz such that irr(xy) = irr(xz) = 2. It is clear
that yxz is a path from vertex y to vertex z. Suppose U = {u;,u,,..,us} and V =
{V{,Vy,...,v.} are subsets of vertices of G such that x,y,z ¢ U,V. Also assume that
YU U, -+ UgXZ and yxv,V, ---v,.z are two paths in G from vertex y to vertex z containing
vertex x. Since irr(G) = irr(xy) + irr(xz), then

irr(yu;) =irr(uyu,) = -+ = irr(ugx) = irr(xv,) = irr(v,v,) = --- =irr(v,z) = 0.

Consequently, dg(x) = dg(y) = dg(2), which is a contradiction . Thus, two subcases will be

considered as:

(I) There are two paths from vertex y to vertex z such that vertex x belongs to only one of
them. Assume that yu,u,---ugsz is a path in G, so dg(y) = dg(z). Therefore, G is
constructed of two separated components G; and G, that are connected by edges xy and
xz, which x € V(G,) and y,z € V(G,). Let |V(G;)| = k and [V(G,)| = n — k. Thus, we
may consider two different parts as follows:

(i) dg(x) = a,dg(y) =dg(z) =a—2;
(i) dg(x) = a,dg(y) = dg(2) =a+2.
In part(i), for any u in V(G)\{x}, dg,(u) =a, dg, (x) =a—2, and for any vertex
u in V(G)\My, z}, dg,(u) =a—2, dg,(y) =dg,(z) =a— 3. Therefore, 2|E(G;)| =
ka—2, 2|E(G,)| =n(a—2) —ka+ 2(k—1), G, is a (2t + 2)-regular graph, and G,
is a 2t-regular graph, for some t > 1. Consequently, ka and n(a — 2) are even. Since a is
even, k and n can be odd or even. Thus, four types will occur (see Table 1, types 1-4).
In part(ii), we have 2|E(G;)| =ka—-2, 2|E(G,)|=(-k)(a+2)-2.
Consequently, k and n can be odd or even. Thus, we have four further types (see Table 1,
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types 5-8). Note that in these types, G, is a 2t-regular graph and G, is a (2t + 2)-regular
graph, forsomet > 1.

(IT) There is only one path, say yxz, joining vertices y and z which contains vertex x. Suppose
XUqiU, -+ Ugy and Xv;V,---v,.z are two paths in G, where u; #z and v; #Y. Since
irr(G) = irr(xy) +irr(xz), then by above assumptions, d;(x) = ds(y) =d;(2),
which is a contradiction to irr(xy) = irr(xz) = 2. Therefore, G is composed of three
separate components G,, G, and G; where G; and G, are connected by edge xy, G; and
G; are connected by edge xz, x € V(G,;),y € V(G,),z € V(G3),V(G) = V(G,) U
V(G,) U V(G;) and E(G) = E(G,) UE(G,) UE(G3) U {xy, xz}. Obviously,
2|E(Gy)| + 1 = Xyev(c, de(u) but dg(u) is even, for any vertex u of G. Therefore,
this subcase does not occur.

Case 3. There are two distinct edges xy and uv such that irr(xy) = irr(uv) = 2. As case
2, we may again check this case in two subcases as follows:

(I) vertices y and u belong to all paths from vertex x to vertex v;

(IT) There are two paths from vertex x to vertex v such that vertices y and u belong to

only one of them.

Similar to case 2, in subcase (I), G is constructed of three separate components G,, G,
and G5, where G;and G,are connected by edge xy, and G,, G5 are connected by edge uv,
x € V(Gy),y,u € V(G,),v € V(G3),V(G) = V(G,) U V(G,) UV(G;) and E(G) = E(G,) U
E(G,) U E(G3) U {xy,uv}. Obviously, 2|E(G;)|+ 1= Yyev(s,)dc(W) but dg(w) is
even, for any vertex w of G. Therefore, this case does not occur.

In subcase (II), we can see that G is composed of two separate components G,, G,
where G, and G, are connected by edges xy and uv, also x,v € V(G,) and y,u € V(G,). Let
dc(x) = a,|V(G,)| = k and |V(G,)| = n — k. Without loss of generality, in the case (II), we
can consider following two parts:

(D) ds(x) =dg(v) =a,dg(y) =dg(u) =a+2;

(ii) dg(x) = dg(v) = a,dg(y) = dg(u) =a—2.

A similar argument as case 2, in part(i), k and n can be odd or even . Thus we have
another four types (see Table.1, types 9-12). Note that, the graphs in parts(ii) and (i) are
identical, where G, is 2t-regular, and G, is (2t + 2)-regular, for some t > 1. O

Note that, in generally, the irregularity of a graph is equal to the summation of its
connected components’ irregularities. Therefore, if G is an n-vertex (not necessary
connected) Eulerian graph with irr(G) = 4, then Theorem 2.2 implies that G = G’ U K,
where G’ is a connected Eulerian graph on n — s vertices with irr(G") = 4.
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General form of types 1-8 General form of types 9-12
Figure 1. General forms of Eulerian graphs with the second minimum irregularity.

Type 1l Type 2 Type 3
z z z

n=13,k=8,a=6,t=2
Gy (2t + 2)-regular
G,: 2t-regular

n=9,k=7,a=4,t=1
Gy (2t + 2)-regular
G,: 2t-regular

n=10,k=6,a=4,t=1
Gy (2t + 2)-regular
G,: 2t-regular

Type 4 Type 5 Type 6
y y
x B
yi
y4

n=14k=9,a=6,t=2
Gy (2t + 2)-regular
G,: 2t-regular

n=6,k=1,a=2t=1
G;: 2t-regular
G,: (2t + 2)-regular

n=14k=6,a=4,t=2
G;: 2t-regular
G,: (2t + 2)-regular

Type 7 Type 8 Type 9
y u \Y;

n=15k=7,a=4,t=2
G;: 2t-regular
G,: (2t + 2)-regular

n=19,k=8,a=4,t=2
G;: 2t-regular
G,: (2t + 2)-regular

n=8,k=2,a=2t=1
G;: 2t-regular
G,: (2t + 2)-regular

Table 1. Examples of Eulerian graphs with the second minimum irregularity.
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n=13,k=5,a=4,t=2 n=9,k=2,a=2t=1 n=14k=5,a=4,t=2
G;: 2t-regular G;: 2t-regular G;: 2t-regular
G,: (2t + 2)-regular G,: (2t + 2)-regular G,: (2t + 2)-regular

Table 1. (Continued).

3. THE SECOND AND THIRD MINIMUM TOTAL IRREGULARITY FOR
EULERIAN GRAPHS

In this section, first we express some initially basic definitions and a prominent proved
result of [3], and then investigate the second and third minimum total irregularity of
connected Eulerian graphs.

If V(G) ={vy,Vy,...,Vp}, then the sequence (dg(vy),dg(Vvy),...,dg(vy)) is
called a degree sequence of G [11]. Without loss of generality, we may assume that
dg(vq) = dg(vy) =...=dg(v,). A bicyclic graph is a simple connected graph in which
the number of edges equals to n + 1. A basic bicyclic co-graph, denoted by oo (p,q,1), is
obtained from two vertex-disjoint cycles C, and C4 by connecting one vertex of C,, and
one of Cy with a path R of length | — 1 (in the case of I = 1, identifying the above two
vertices) where p,q = 3and | > 1.

Clearly, a graph G has total irregularity zero if and only if G is a regular graph.
Note that the connected 2r-regular graph, is an Eulerian graph with irr. = 0. Hence,the
first minimum total irregularity of Eulerian graphs is zero. Moreover the corresponding
extremal Eulerian graphs with total irregularity O are exactly all 2r-regular Eulerian
graphs, where r >0, and if r >0 then the graph is connected. In [3], the authors
characterized the non-regular graphs with the second and the third smallest total
irregularity.

Lemma 3.1. [3] Let G be a simple connected graph with n vertices. If G is a non-regular
graph, then irr.(G) = 2n — 4.

In the following result, we show that the second minimum of the total irregularity
of Eulerian graphs is 8 and determine the unique Eulerian graph with irr, = 8.
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Theorem 3.2. Let G be a connected non-regular Eulerian graph of ordern, then irr.(G) >
8, and the equality holds if and only if G = 0(3,3,1), where the bicyclic graph o(3,3,1)

is shown in Figure 2.
c3c3N

©(3,3,1)
Figure 2. Unique Eulerian graph with the second minimum total irregularity.

Proof. By Lemma 3.1, if n > 7, then irr, > 8. If n = 6, then the degree sequence of G can
be one of the following cases: (4,4,44,4,2),(4,44,4,22),(44,42272),(44.2,2,722), and
(4,2,2,2,2,2). By a simple calculation, one can easily see that in these cases, irr.(G) > 8.
If n = 5, then the degree sequence of G may be either (4,4,2,2,2) or (4,2,2,2,2). Note that
the cases (4,4,4,4,2) and (4,4,4,2,2) do not occur. Also, the total irregularity of graph G
with degree sequence (4,4,2,2,2) is equal to 12 and with degree sequence (4,2,2,2,2) is
equal to 8. Additionally, the graph G with degree sequence (4,2,2,2,2) is the bicyclic
graph o(3,3,1). Clearly, regular graphs C; and C, are the only Eulerian graphs with 3
and 4 vertices, which have total irregularity 0. O

Theorem 3.3. Let G % 00(3,3,1) be a connected non-regular Eulerian graph of order n,
then irr(G) = 10, and the equality holds if and only if G = o(4,3,1) or H, where graphs
(4,3,1) and H are shown in Figure 3.

©(4,3,1) H
Figure 3. Eulerian graphs with the third minimum total irregularity.

Proof. By Lemma 3.1, if n > 8 then irr, > 10. If n = 7, then the degree sequence of G

may be the following cases:
(6,6,6,6,6,6,4),(6,6,6,6,6,6,2),(6,6,6,6,6,4,4),(6,6,6,6,6,4,2),(6,66,6,6,2,2),
(6,6,6,6,4,44),(6,6,66,4,4,2),(66,6,64,2,2),(66,6,6,22,2),(6,6,6,4,44,4),
(6,6,6,4442),(666,4,422),(6664222),(66,62222)(66,44444),
(66,44442),(664,4422),(6644222),(6642222)(6622222),
(6,44,4444),(6444442),(6444422),(6444222),(64,422722),
(6,422222),(6222222),(4444442),(4444422) (44,44222),

(44,42222),(4422222),(4222222).
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By a simple calculation, one can easily see that in these cases, irr.(G) > 10. If

n = 6, then the degree sequence of G can be the following cases:
(444442),(444422),(4442272),(442222),(4222272).

The total irregularity of graph G with degree sequence (4,4,4,4,4,2) or (4,2,2,2,2,2) is
equal to 10 and with the other degree sequences is more than 10. Note that if (4,4,4,4,4,2)
is degree sequence of graph G, then G = H, and if (4,2,2,2,2,2) is degree sequence of
graph G, then G = (4,3,1). Finally, if n < 5, then by referring to the proof of Theorem
3.2, we see that the total irregularity value of G is not equal to 10. O

Corollary 3.4. The second and third minimum value of the total irregularity of Eulerian
graphs are 8 and 10, respectively.
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1. INTRODUCTION

Let G=(V,E) be a finite simple graph with vertex set V={1, 2, ..., n}, edge set E and
degrees d, = d, = --- = d,,. The arithmetic-geometric index of a graph, proposed by
Vukicevi¢ and Furtula (see[19]), is defined by

2,/a@d

GA(G) = Z(i,j)e;;ddej 1)

This index has attracted considerable attention and, through a variety of
inequalities, it has been compared to a number of other indices, such as the ABC index,
the first and second Zagreb indices, the general Randi¢ index, the modified Narumi-
Katayama index and the harmonic and sum-connectivity indices, among others. Different
upper and lower bounds have been found for GA(G) either through the connections to
these other indices, or from first principles, see [5 - 8, 12, 15 - 18] for details.
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In this note we present two additional contributions to the study of GA(G). First,
we use notions of electric circuits in order to prove a relationship, to the best of our
knowledge not explored yet, between GA(G) and the global cyclicity index, introduced by
Klein and lvanciuc (see [10]) and defined by

c(G) = Z(i,j)EERiij — |E| 2
where R;; denote the effective resistance between the vertices i and j, that is, the voltage
drop between vertices i and j when a battery is installed between those two vertices such
that a unit current flows between them. This index has further been studied in [2, 21-23].

We also apply majorization techniques in order to find tight upper and lower
bounds for GA(G). Majorization has been applied extensively to find bounds and extremal
values for a variety of descriptors .We point out the book chapters [1] and [3] and the
recent articles [9, 13, 21] for a sample of the variety of scenarios covered with this
approach.

Here is a brief summary of majorization (for more details the reader is referred to
[11]): given two n-tuples x = (x1,%5, ..., X)) and y = (¥4, Y2, -, V) With x; = x5 = - >
Xnand y; =y, = -+ > y,, we say that x majorizes y and write x > y in case

X 2 Xy 3)
for1<k<n-—1and
im1X = Xis1 Vi 4)

A Schur-convex function @ : R — R keeps the majorization inequality, that is, if ®
is Schur-convex then x > y implies ®(x) > ®(y). Likewise, a Schur-concave function
reverses the inequality: for this type of function x > y implies ®(x) < d(y). A simple way
to construct a Schur-convex (resp. Schur-concave) function is to consider ®(x) =

™, f(x;), where f: R — Ris a convex (resp. concave) one-dimensional real function.

The main idea for finding bounds through majorization for a molecular index is to
express such index as a Schur-convex or Schur-concave function, and then to identify
maximal and minimal elements, x* and x. respectively, that is, elements in the subspace of
interest of the n-dimensional real space (which can be a set of n-tuples of degrees of
vertices, or eigenvalues, or effective resistances, etc.) such that x* > x > x. , for all n-
tuples x in the subspace of interest, and then if ® is Schur-convex we will have ®(x* ) >
d(x) > d(x+ ), for all x, having thus found the upper and lower bounds of interest, ®(x* )
and ®(x. ), respectively. A similar conclusion follows, exchanging the words “upper” and
“lower”, if @ is Schur-concave.

2. EFFECTIVE RESISTANCES AND THE GEOMETRIC-ARITHMETIC INDEX

The following lemma is fundamental for what follows.
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Lemma 1. For any G and (i,j) € E we have

5 ,1 1
iz 552Gt (5)
Proof. We prove that
di+dj—2
didj—l = 5+1( ) (6)

Without loss of generality, let us assume that d; = max{di,dj} and d; = min{d;,d;}.
Then ¢ < d; and since the real function f(x) = ﬁ IS increasing, in order to prove (6) it is

enough to prove that
di+dj—2 ] 1 1
didj—l d +1( ) (7)
But it is an easy computation to see that the truth of (7) is equivalent to the statement
(d; —1)(d; —d;) = 0. And now we can apply a result in [14] stating that for (ij) € E
d;+d

R;j = cli-d-j_lz finishing the proof .With this lemma we can prove now the following
i“j—

Proposition 2. For any graph G we have

GA(G) =

5 (C(6) + |E]) (8)

A((S

Proof. For any G we have

2/dd; 2 1 1
Q=) Tazs ) G

(ipee + (l])EE d;

1
= A(5+1) L(i)eE 7, R;j A(5+1)(C(G)+|E|)

The previous proposition yields as corollaries many lower bounds for GA(G) and upper
bounds for C(G). For example,

Corollary 3. For any G with n > 3 we have

26|E|?
GA(G) = AGID0D) ©)
For any d-regular G we have
c(6) < (10

Proof. It is shown in [21] that, for n > 3, C(G) >

the proof of (a). For (b), it is immediate from the definition that if G is regular, then
GA(G) = |E| and inserting this into (8) gives us the desired result .

|E|(|b;l|++|1)_ Inserting into (8) finishes
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Remarks4. The inequality (9) attains the equality for K, but not for other regular graphs,
and it is not comparable to the bound found in [5]:

GA(G) = 2520 Z'E N_ (1)

as can be seen taking G to be K-, together with an extra vertex attached with a single
edge to any of the vertices of the K, . For this graph the bound (11) is of order n*?
whereas (9) is of order n? . We will improve slightly the bound (9) below. Also, the bound
(10) recovers a result in [21], with a totally different proof.

3. MAJORIZATION AND THE GEOMETRIC-ARITHMETIC INDEX

We present the following results, found in Section 2.3 of [1] (Corollary 2.3.2 and Theorem
2.3.2) as a lemma which will be used below.

Lemma 1. Let £, be the set of real n — tuples x = (xq,x5,...,x,) such that x; > x, > ... >
xp and X, x; =a. Let S, be the set of n-tuples belonging to £, which additionally
satisfy M > x; > m. Then

(i) The minimal element of 2, is (%, ,%)

(i1) If the minimal element in (i) belongs to S, , then it is also the minimal element of S;;
(iii) the maximal element of S, is (M,M,...,M,0,m,m,...,m), where M appears k times, m
appears n—k — 1 times, k = [‘Ilw_f::] and 6=a— Mk —m(n—k—1).

Lemma 2. For all G we have
Z(l])EE < GA(G) << Z(l])EEA ' (12)

where A;; =+

Proof. Write

2,/d;d; 2 did; 2 1
Zd+d—A d; + d; ZZAU
(LJ)EE (LJ)EE (i.j)EE
The other inequality proceeds similarly. Now we will apply majorization to the summation

Z(i'j)EEAiU’ by looking at the function ®(x) —Z'E' l on the set of |E|-tuples x =

(%1, %5, ..., x5,). Specifically we will show the following:

Proposition 3. For any G we have
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2 —_
2T < Gae) <2+l (B - k-1 (13)
where
n—|El-= 3 2
k—l E_El 6=n—2k-—2(IE|-k-1).

The lower bound is attained by any regular graph. The upper bound is attained by the
complete graph.

Proof. We notice that the numbers 4;; satisfy
2

3
=4 =3 (14)
And
di _
2ijeeAij = ?:1d—i =n (15)

The right inequality in (14) is clear because in any edge (i,j) of a connected graph G with n
>2,ifdi=1thend;>2.
Let us consider the subset of RI¥! defined as
IE|
2, ={x e RIEl: x, > x, 2---2x|E|;ij:n}

j=1
and S, the subset of X, such that its |E|-tuples satisfy % > x; = ﬁfor 1 <i<|E]. By
Lemma 1 we can find explicitly the minimal element of S, , that is, an |E|-tuple x. such
that x > x. for x € S, , indeed x, = (= ).

|E]’ IEI "|E|

Notice that x. belongs to S, because the coordinates of x. , which are all equal to

%Satisfym: ! <1<—<——M as long as n > 3. Also, smcef(x)——forx>

2(n—-1) — |E] n—-1
I

0, is convex, then ®(x) = Z'E ! 1|s Schur-convex, and ®(x) > d(x. ) = —, and since the

|E|-tuple of numbers Aj; over the edges of the graph, properly arranged in decreasmg order,
belongs to the set S, on account of facts (14) and (15), we have that X ; yeg A;j = > 12 :

n

and this together with (12) of lemma 2 ends the proof of the lower bound in (13).
Analogously for the upper bound, by Lemma 2 we can identify explicitly the
maximal element of S, , that is, the |E|-tuple x* such that x* > x for all x € S, , indeed

r=(23 3 2 2 2z 3 i 2 k-
x* = (2,2,...,2,9 — 1,...,n_1), where > appears k times, — appears E| —k —1
times and k = l jl_El__l 6=n —%k—ﬁ(lEl—k—l).Therefore

2 n-1
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Z Aj < P(x¥) = (%+1+ (El -k - 1)n_—1)
v 3 6 2 7
(i )EE
and this together with (12) gives us the upper bound in (13).
For any A-regular graph G the lower bound becomes |E|, which coincides with the

value of GA(G). For the complete graph K, , k=0,0 = ﬁ and the upper bound becomes

n(n-1)
2 )

which is precisely the value of GA(K, ) = |E|.

Remarks 4. The versatility of majorization can be seen in this theorem, where the
quantities to be majorized are neither degrees, nor eigenvalues, nor effective resistances,
as is usually the case in the literature, but the numbers A;; , which perhaps do not have a
clear-cut graph significance. The lower bound in (13) is always better than (8) on account
of the fact that 8 < n — 1. We point out that this lower bound could have been obtained
without majorization, by using the harmonic mean-arithmetic mean inequality. The real
strength of the method in this case seems to be in the upper bound, which can be improved
if we restrict somewhat the degrees of the vertices in the graph, as in the following three
propositions.

Proposition 5. For any G without pendent vertices we have

<2k 1 I 1n—1
GA(G) < 5 ( +5+(|EI— - )T)

Where k = [%] 0 =n—k-— ﬁ(IEI — k — 1). The equality is attained by the

cycle graph C, and the complete graph K, .

Proof. In the absence of pendent vertices we can get the upper bound Aj; < 1 and the proof

in the previous proposition applies, replacing everywhere 3/2 with 1. For the complete

n(n-1)
2

graph we obtaink =0, 8 = ﬁ and the upper bound becomes , Which is the precise

value of GA(K, ) = |E|. For the cycle graph, where |E| =n, we get k=nand 6 = ﬁ , and
the upper bound becomes n, which is the value GA(C, ) = |E|.

Recall that a chemical graph is one where d; < 4 for all i. For this sort of graph we
can prove the following.

Proposition 6. For any chemical graph G we have
GA(G) < §<%+§+ 2(|E| £k — 1)) ,
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Where k = [n — %] ,0=n— gk —i(IEI — k — 1). The equality is attained by any 4-

regular graph.

Proof. In this case we can get the lower bound A;; 2% and the proof in proposition 2
applies, replacing everywhere ﬁ with i For any 4-regular graph we have k = 0 and

0= % , and thus the upper bound becomes 2n, which is precisely the value of GA(G) = |E|.
Combining the two hypotheses, we obtain a more compact statement in the following

Proposition 7. For any chemical graph G without pendent vertices we have

2
GA(G) < 5 (BlE| — 2n)
The equality is attained by the cycle graph C, and any 4-regular graph.

Proof. In this case we obtain that k = 2n—|E| and 6 = i , making the computations, similar
to those in the previous propositions, very simple .

REFERENCES

1. M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, Localization of graph
topological indices via majorization technique, in: M. Dehmer, F. Emmert-Streib
(Eds.), Quantitative Graph Theory—Mathematical Foundations and Applications,
CRC Press, Boca Raton, 2015, pp. 35-79.

2. M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, Bounds for the global cyclicity
index of a general network via weighted majorization, J. Inequal. Appl. (2015)
DOI:10.1186/s13660-015-0624-5.

3. M. Bianchi, G. P. Clemente, A. Cornaro, J. L. Palacios, A. Torriero, New Trends
in majorization techniques for bounding topological indices, in: I. Gutman, B.
Furtula, K. C. Das, E. Milovanovi¢, I. Milovanovi¢ (Eds.), Bounds in Chemical
Graph Theory Basics, Mathematical Chemistry Monographs, No. 19, University of
Kragujevac, Kragujevac, 2017, pp. 3-66.

4. H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum,
Discrete Appl. Math. 155 (2007) 654-661.

5. K. C. Das, On geometric-arithmetic index of graphs, MATCH Commun. Math.
Comput. Chem. 64 (2010) 619-630.

6. K. C. Das, I. Gutman, B. Furtula, Survey on geometric-arithmetic indices of
graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 595-644.



120

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

PALACIOS

K. C. Das, I. Gutman, B. Furtula, On first geometric-arithmetic index of graphs,
Discrete Appl. Math. 159 (2011) 2030-2037.

K. C. Das, N. Trinajsti¢, Comparison between first geometric-arithmetic index and
atom-bond connectivity index, Chem. Phys. Lett. 497 (2010) 149-151.

M. Eliasi, A simple approach to order the multiplicative Zagreb indices of
connected graphs, Trans. Comb. 1 (2012) 17-24.

D. J. Klein, O. Ivanciuc, Graph cyclicity, excess conductance, and resistance
deficit, J. Math. Chem. 30 (2001) 271-287.

A. W. Marshall, 1. Olkin, Inequalities—Theory of Majorization and its Applications,
Academic Press, London, 1979.

M. Mogharrab, G. H. Fath-Tabar, Some bounds on GA; index of graphs, MATCH
Commun. Math. Comput. Chem. 65 (2010) 33-38.

J. L. Palacios, Some inequalities for Laplacian descriptors via majorization,
MATCH Commun. Math. Comput. Chem. 77 (2017) 189-194.

J. L. Palacios, J. M. Renom, Another look at the degree-Kirchhoff index, Int. J.
Quant. Chem. 111 (2011) 3453-3455.

Z. Raza, A. A. Bhatti, A. Ali, More on comparison between first geometric-
arithmetic index and atom-bond connectivity index, Miskolc Math. Notes 17
(2016) 561-570.

J. M. Rodfiguez, J. M. Sigarreta, On the geometric-arithmetic index, MATCH
Commun. Math. Comput. Chem. 74 (2015) 103-120.

J. M. Rodfiguez, J. M. Sigarreta, Spectral study the geometric-arithmetic index,
MATCH Commun. Math. Comput. Chem. 74 (2015) 121-135.

J. M. Rodfiguez, J. A. Rodfiguez-Velazquez, J. M. Sigarreta, New inequalities in-
volving the geometric-arithmetic index, arXiv:1611.04187v1 (2016).

D. Vukicevi¢, B. Furtula, Topological index based on the ratios of geometrical and
arithmetical mans of end vertex degrees of edges, J. Math. Chem. 46 (2009) 1369-
1376.

R. J. Wilson, Introduction to Graph Theory, Oliver & Boyd, Edinburgh, 1972.

Y. Yang, On a new cyclicity measure of graphs—-The global cyclicity index,
Discrete Appl. Math. 172 (2014) 88-97.

Y. Yang, Resistance distances and the global cyclicity index of fullerene graphs
Dig. J. Nanomater. Biostruct. 7 (2012) 593-598.

Y. Yang, Y. Wang, Y. Li, The global cyclicity index of benzenoid chains, J. Chem.
(2013) Avrticle ID 483962.

Y. Yuan, B. Zhou, N. Trinajsti¢, On geometric-arithmetic index, J. Math. Chem.
47 (2010) 833-841.



Iranian J. Math. Chem. 9 (2) June (2018) 121 — 135

Iranian Journal of Mathematical Chemistry

Journal homepage: ijmc.kashanu.ac.ir

Novel Atom-Type-Based Topological Descriptors for
Simultaneous Prediction of Gas Chromatographic
Retention Indices of Saturated Alcohols on Different

Stationary Phases

FARIBA SAFA®

Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran

ARTICLE INFO

ABSTRACT

Avrticle History:

Received: 11 May 2016

Accepted: 12 March 2017
Published online: 30 May 2018
Academic Editor: Ali Reza Ashrafi

Keywords:

Quantitative structure—retention
relationship

Atom-type-based topological indices
Saturated alcohols

Modeling

In this work, novel atom-type-based topological indices, named AT
indices, were presented as descriptors to encode structural
information of a molecule at the atomic level. The descriptors were
successfully used for simultaneous quantitative structure-retention
relationship (QSRR) modeling of saturated alcohols on different
stationary phases (SE-30, OV-3, OV-7, OV-11, OV-17 and OV-25).
At first, multiple linear regression models for Kovats retention index
(RI) of alcohols on each stationary phase were separately developed
using AT and Randic’s first-order molecular connectivity (%)
indices. Adjusted correlation coefficient (Rzadj) and standard error
(SE) for the models were in the range of 0.994-0.999 and 4.40-8.90,
respectively. Statistical validity of the models were verified by
leave-one-out cross validation (R%, > 0.99). In the next step, whole
RI values on the stationary phases were combined to generate a new
data set. Then, a unified model, added McReynolds polarity term as
a descriptor, was developed for the new data set and the results were
satisfactory (Rzadj=0.995 and SE=8.55). External validation of the
model resulted in the average values of 8.29 and 8.69 for standard
errors of calibration and prediction, respectively. The topological
indices well covered the molecular properties known to be relevant
for retention indices of the model compounds.

© 2018 University of Kashan Press. All rights reserved

1. INTRODUCTION

QSRR modeling as a branch of quantitative structure—property relationship (QSPR) studies,
is one of the most effective approaches to provide significant information on retention
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mechanism as well as the effect of molecular structure on retention behavior of various
classes of compounds [1,2]. The first important step in QSPR studies is to quantify
chemical structures of the molecules by descriptors that can show structural similarity and
diversity of the molecules. Among the different types of descriptors, topological indices
have found major popularity in QSRR studies since they can be rapidly obtained using only
two dimensional structure of molecules. These descriptors are exact numbers without
uncertainty that offer a simple way of measuring molecular branching, shape, size,
cyclicity, symmetry, centricity and complexity [3].

A current trend in QSPR studies is the use of the atomic level topological indices
that unlike classical topological indices that characterize a molecule as a whole, code the
structural environment of each atom type in the molecule and describe the structural
information of a molecule at the atomic level. Ren [4] proposed a set of atomic-based Al
topological indices that along with modified Xu index were successfully used in estimation
of different physical and chemical properties. The topological indices showed good
correlations with normal boiling points, molar volumes, molar refractions, and molecular
total surface areas of alcohols [5]. Combination of Xu and Al indices was also used to
develop high quality QSPR models for physical properties of alkanes including normal
boiling points, heats of vaporization, molar volumes, molar refractions, van der Waals’
constants, and Pitzer’s eccentric factors [6]. Panneerselvam et al. [7] developed a linear
regression model based on Al indices for normal boiling point of trialkyl phosphates. In a
previous paper, QSPR study of standard formation enthalpies of acyclic alkanes using
atom-type-based Al topological indices was reported by our group [8]. Nevertheless, Al
indices have not found widespread application in QSRR studies and there is only one report
in which gas chromatographic retention index (RI) values of a data set consisting of 33
aldehydes and ketones on four different polar stationary phases were separately correlated
with Al atom-type-based indices [9].

The main aim of this study was to introduce novel atom-type-based topological
indices that can be effectively used in QSRR modeling. The other goal was to demonstrate
the role of structural features on the molecular mechanism of chromatographic retention on
different stationary phases. In this paper, novel atom-type-based AT topological indices
along with the most-used Randié’s first-order molecular connectivity index as a classical
topological index were used for simultaneous prediction of gas chromatographic Kovats
retention index of saturated alcohols on low to medium polar stationary phases (SE-30,
OV-3, OV-7, OV-11, OV-17 and OV-25). The model satisfactorily accounted for the
influence of molecular size and each atom-type or group on retention indices of alcohols on
different stationary phases. As far as | am aware, this is the first time use of the atomic
level topological indices for simultaneous prediction of Rl data on the stationary phases of
different polarity.
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2. COMPUTATIONAL DETAILS

2.1 DATA SET

The data sets of Kovats retention indices of 25 saturated alcohols on six stationary phases
of different polarity (SE-30, OV-3, OV-7, OV-11, OV-17 and OV-25) were taken from the
report of Pias and Gasco [10]. The RI values of the model compounds fall in the range of
544-1156 on different stationary phases. Table 1 shows the data sets of Kovats retention
indices of 25 model compounds on six stationary phases of different polarity.

Table 1. Kovats retention indices of saturated alcohols on different stationary phases.

Stationary phases

No  Compound SE-30 OV-3 OV-7 OV-11 OV-17 OV-25
(53)*  (86)* (113)* (142)* (158)* (204)*
1  1-Butanol 650 672 702 725 748 792
2 1-Hexanol 856 881 907 935 959 1003
3  1-Heptanol 960 985 1010 1038 1062 1104
4  2-Butanol 586 607 633 656 675 711
5  2-Pentanol 689 711 735 756 7 811
6  3-Pentanol 689 708 733 756 777 808
7 3-Hexanol 785 807 830 853 878 904
8  3-Heptanol 886 909 929 955 975 1008
9  4-Heptanol 880 904 924 946 968 999
10  4-Methyl-2-Butanol 628 652 674 692 709 738
11  2-Methyl-2-Hexanol 822 848 862 884 904 930
12 2-Methyl-2-Heptanol 920 944 961 982 1001 1026
13 2-Methyl-3-Hexanol 858 876 897 920 939 969
14 3-Methyl-1-Butanol 725 747 771 798 817 855
15  4-Methyl-1-Pentanol 827 849 876 902 923 960
16  2-Ethyl-1-Hexanol 1019 1046 1067 1092 1116 1156
17 3-Ethyl-3-Pentanol 853 876 898 920 939 974
18  2,2-Dimethyl-3-Pentanol 814 834 855 874 890 919

19 2,2-Dimethyl-3-Hexanol 906 926 944 962 977 1004
20  1-Propanol 544 574 - - - -
21  1-Pentanol 751 777 - 806 856 900
22 2-Hexanol 787 811 835 - 878 914
23 2-Methyl-1-Propanol 612 641 654 - 680 740
24 2-Methyl-2-Pentanol 726 748 767 - 801 827
25 2-Ethyl-1-Butanol 834 857 - 907 928 -

#McReynolds polarity
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2.2 DEFINITION OF AT TOPOLOGICAL INDEX

Novel atom-type-based AT topological indices were derived from the molecular topological
graph in the same manner of Ren [11] with some modifications. As known, a molecular
graph G = {V, E} consists of the vertex V(G) and edge E(G) sets, where vertices
correspond to individual atoms in the graph and the edges correspond to chemical bonds
between them. The graph G can be characterized by the distance matrix, D = [dij]n-n, WhoSe
elements are the length of the shortest distance between the vertices i and j in a molecular
graph with n vertices. Clearly, the sum over the row i (or column j) of the distance matrix
gives the distance sum vector, S = [Si]nx1, for the graph. The molecular graph can also be
coded by a vertex degree vector V = [vi]nx1 whose elements are the number of connections
(edges) of the vertex i in the graph. For heteroatoms and multiple bonds in the graph, the
new degree of vertex introduced by Ren [6], v", can be used to replace the v; values. This
novel degree of vertex is derived from the valence connectivity § " of Kier-Hall [12] and is
defined as:

vt =6 +k 1)

k=1/[(2/N)25" + 1] (2)

where ¢ is the number of connections of that atom and parameter k is a perturbing term

reflecting the effect of heteroatom. N is the principal quantum number of the valence shell.
According to the above definitions, for any atom i that belongs to the j-th atom-type

in the graph, the AT; (j) is defined as follows:

S,V

3 s, (3)

Clearly, for j-th atom-type in a graph, the corresponding AT(j) index is the sum of all ATi(j)
values of the same atom type.

AT,(jJ) =nx

ATG) = 3 AT() "

As an illustration, Figure 1 depicts the labeled molecular graph of 3-methyl-1-
butanol.

HO

1 2 3 jr/i

G

Figure 1. Labeled molecular graph of 3-methyl-1-butanol.
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The distance matrix D is expressed as follows:

O

1
A A WO N B O
w wWw N P O
N N P O P DN
P k O F N W
N O P N W b
O N P DD W b

The distance sum vector and vertex degree vector are readily obtained as

S=[14 10 8 8 12 12]
V=[1167 2 2 3 1 1]

where the elements of the vector V, are the modified vertex-degree v". According to the
above definitions, the AT indices are calculated as follows:

1x12 1x12
AT _ _l6 +|6 =1.4351
(-CHs) = AT (5) + AT (6) (Xloo_ggg] (X100.338j

AT(_CHZ_):AT(2)+AT(3):(6X 2x10 ]+(6x 28 ]:2.1527.

100338 100.338
AT (-CH-) = AT (4) =| 6x 38 1 _14351
B |7 100338)
14x1.167
AT HY=AT (1) = | 6x————— |=0.9770.
(FOH)=AT() ( * 100.338]

2.3 REGRESSION ANALYSIS AND MODEL VALIDATION

Multiple linear regression (MLR) analyses were performed using SPSS/PC software
package [13]. Criteria for selection of the best models were the statistics of coefficient of
multiple determination (R?), adjusted correlation coefficient, Fisher-ratio and SE. Validity
and stability of the individual models obtained for the stationary phases was tested using
leave-one-out cross-validation (LOO-CV) method [14]. External stability of the unified
model generated for simultaneous prediction of RI data of saturated alcohols on different
stationary phases was tested by external validation method. Standard error of calibration
(SEC) and standard error of prediction (SEP) were used for evaluating quality of the unified
MLR model [15].
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3. RESULTS AND DISCUSSIONS

3.1 INDIVIDUAL AND COMBINED LINEAR REGRESSION MODELS FOR DIFFERENT
STATIONARY PHASES

In the first step of the study, a combination of 'y and AT topological indices were used to
develop individual QSRR models for saturated alcohols on different stationary phases.
Specifications of the best models found for describing the RI values of saturated alcohols
on the stationary phases are given in Table 2. It can be seen that the equations represent
excellent QSRR models judging from Rzadj and SE values in the range of 0.994-0.999 and
4.40-8.90, respectively. Also, F values show a high degree of statistical credibility and are
indicative of an excellent fit of the models to experimental retention data. Table 3 shows
the values of topological descriptors entered in the individual MLR models.

To validate the models, LOO-CV test was performed and cross-validated
correlation coefficient (R%,) values were in the range of 0.993-0.999 (Table 2) which
indicate that the models are robust and reliable over the sample space. As shown, in all
cases, cross-validated correlation coefficient is only slightly less than the corresponding
value of the full model indicating the models are robust and reliable over the sample space.
Table 4 gives the cross-validated predicted values of Rl and corresponding relative errors
resulted from the individual models developed for the stationary phases. It can be easily
seen that relative errors for predicted retention indices are less than 3% and only one case
with a slightly large error was found on OV-17 column (4.3% for 2-Methyl-1-Propanol).

In the next step of the study, to generate a unified QSRR model for simultaneous
prediction of Kovats retention indices of saturated alcohols on the stationary phases of
different polarity, whole retention data for saturated alcohols were combined and used as a
new data set including 140 RI data points. As known, generation of a single QSRR model
for simultaneous prediction of retention data on different stationary phases requires a
parameter that reflects the contribution of the stationary phase to chromatographic
retention. The contribution may be reflected by the polarity which is the most
representative chromatographic property of the stationary phase. In this work, system of the
stationary phase selectivity constant of McReynolds was used and the polarity value
compared to butanol (y”) was employed [16] as additional parameter in QSRR modeling.
McReynolds polarity parameter values (M) are given in Table 1.
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Table 2. Characteristics of the best individual QSRR models found for
saturated alcohols on different stationary phases.

Coefficients (standardized coefficients)

Parameter
SE-30 oV-3 ov-7 Ov-11 O0V-17 0V-25
Constant -78.658 -61.020 -24.207 -32.319 23.379 23.473
1 212539 212.954 211.921 213.848 216.928 216.654
4 (1.109) (1.114) (1.094) (1.096) (1.098) (1.113)
AT(-OH) 236.651 244.899 237.995 266.654 233.514 283.435
(0.172) (0.179) (0.176) (0.204) (0.175) (0.213)
AT(-CH2) -13.586 -15.149 -18.715 -18.006 -28.620 -32.403
8 (-0.068) (-0.076) (-0.094) (-0.099) (-0.147) (-0.169)
Statistics
R? 0.998 0.999 0.998 0.995 0.995 0.995
Rzadj 0.998 0.999 0.997 0.995 0.994 0.994
R2CV 0.998 0.999 0.997 0.994 0.993 0.993
SE 5.39 4.40 6.20 8.34 8.83 8.90
F 4079.5 6082.8 2514.8 12253 1311.3 1251.9
n? 25 25 22 21 24 23

2 Number of molecules in the data set.

Table 3. Values of the topological descriptors entered in the individual

QSRR models.
1 AT AT 1 AT AT
Noo % (ccHy (o) N° % (cHy (-om)
1 2.4142 0.8108 0.9462 14 2.770 1.4351 0.9770
2 3.4142 0.7924 0.9248 15 3.270 1.4055 0.9648
3 3.9142 0.7869 0.9183 16 4.346 1.5273 0.8459
4 2.2701 1.5937 0.8752 17 3.682 2.3684 0.737
5 2.7701 1.5599 0.8402 18 3.481 2.8968 0.7982
6 2.8081 1.6278 0.8037 19 3.981 2.8547 0.7364
7 3.3081 1.6137 0.7634 20 1914 0.8275 0.9657
8 3.8081 1.5915 0.7429 21 2914 0.8000 0.9336
9 3.8081 1.6183 0.7177 22 3.270 1.5340 0.8225
10 25607 2.2947 0.8369 23 2.270 1.4952 0.9815
11 3.5607 2.1802 0.7673 24 3.063 2.2309 0.7923
12  4.0607 2.1455 0.7541 25 3.346 1.5572 0.9086
13 3.6807 2.2554 0.7403
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Table 4. Prediction results of the individual QSRR models for saturated alcohols on
six stationary phases using leave-one-out cross validation method.

Predicted retention indices (relative error%)

No SE-30 oV-3 oV-7 oV-11 OV-17 OV-25
1 647(-05) 673(0.1) 696(-0.9) 721(-0.6) 745(-0.4) 788 (-0.5)
2 855(-0.1) 880(-0.1) 904(-0.3) 929(-0.6) 957(-0.2) 999 (-0.4)
3 960(0.0) 986(0.1) 1009 (-0.1) 1034 (-0.4) 1065 (0.3) 1107 (0.3)
4 590(0.7) 614(12) 636(0.5) 658(0.3) 674(-0.1) 712 (0.1)
5 688(-0.1) 711(0.0) 733(-0.3) 756(0.0) 776(-0.1) 811 (0.0)
6 686(-0.4) 709(0.1) 731(-0.3) 753(-04) 773(-0.5) 807 (-0.1)
7 783(-0.3) 806(-0.1) 828(-0.2) 849 (-05) 872(-0.7) 904 (0.0)
8 885(-0.1) 908(-0.1) 930(0.1) 951(-0.4) 978(0.3) 1007 (-0.1)
9 878(-0.2) 900(-04) 923(-0.1) 944(-02) 972(0.4) 1000 (0.1)
10 633(0.8) 655(0.5) 675(0.1) 699 (1.0) 709 (0.0) 742 (0.5)
11 831(L1) 852(0.5) 873(1.3)  895(L2) 913 (1.0) 943 (L.4)
12 936(L7) 957(L4) 978(1.8) 1001 (L.9) 1022 (2.1) 1051 (2.4)
13 847(-1.3) 869(-0.8) 889(-0.9) 911(-1.0) 929 (-1.1) 956 (-1.3)
14 721(-0.6) 746(-0.1) 768(-0.4) 794 (-0.5) 810(-0.9) 854 (-0.1)
15 825(-0.2) 851(0.2) 871(-0.6) 898(-0.4) 917(-0.7) 960 (0.0)
16 1028 (0.9) 1049 (0.3) 1071 (0.4) 1096 (0.4) 1121 (0.4) 1155 (-0.1)
17 845(-0.9) 867 (-1.0) 886(-1.3) 907 (-1.4) 925(-1.5) 953 (-2.2)
18 810(-0.5) 831(-0.4) 847(-0.9) 872(-0.2) 879(-1.2) 906 (-1.4)
19 902 (-0.4) 923(-0.3) 940(-0.4)  965(0.3) 977 (0.0) 1002 (-0.2)
20 546 (0.4) 569 (-0.9) - - - -

21 751(0.0) 776 (-0.1) - 829 (2.9) 850(-0.7) 892 (-0.9)
22 790 (0.4) 814(0.4) 836 (0.1) - 881(0.3)  915(0.1)
23 617 (0.8) 640(-02) 665 (1.7) - 700 (4.3) 747 (0.9)
24 730(0.6) 752(0.5  772(0.7) - 810 (1.1) 841 (L7)
25 826 (-1.0) 850 (-0.8) - 896 (-1.2) 916 (-1.3) -

Specifications of the unified QSRR model found for simultaneous prediction of
Kovats retention indices of saturated alcohols on the six stationary phases are given in
Equation 5. As can be easily found, addition of the McReynolds polarity parameter to the
descriptors entered in the individual models resulted in a unified model for all RI data with
Rzadj value of 0.995 and SE of 8.55. Based on the results, regression explained by the model
is significant at 99% confidence level and the combined model explains 99.5% of the
variance in the retention data.
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RI =-130.088 + 214.334 *y + 250.597 AT(-OH) — 35.750 AT(—CHs3) + 0.828 M 5)

n = 140 R*=0.995 R%q;= 0.995 SE =8.55 F=7334.2

To prove the external stability of the combined model and to further demonstrate
the absence of chance correlation, external validation method was employed. In the
method, the whole data set divided into five subsets and each subset was predicted by the
other four subsets as the training set. In this procedure, the same descriptors were retained
in the correlation equation but the coefficients were allowed to vary. Calculated values of
SEC and SEP for different subsets are given in Table 5. Good agreement between average
values of 8.29 for SEC and 8.69 for SEP with standard error of the full model shows good
efficiency of the topological indices in simultaneous modeling of RI data for saturated
alcohols on different stationary phases. Average values of training and predicting qualities
(thrain:Rzpred:O.995) also indicate high statistical stability and validity of the combined
model. Graphical indication of the quality of the combined model can be seen in Figure 2
through the correlation between the experimental and calculated retention indices for
different prediction sets. Figure 3 is the plot of residuals versus experimental retention
indices for the prediction sets. As shown, all residuals values fall within a horizontal band
centered around zero showing absence of systematic error in development of the combined
QSRR model.

Table 5. Verification of statistical validity of the combined model
based on the external validation method.

Training set®  Prediction set® R%uain  SEC R’y SEP
2-5 1 0.995 835 0.993 8.84

1&3-5 2 0996 8.07 0.994 845
12&45 3 0996 831 0.995 8.67
1-3&5 4 0995 828 0.995 8.79

1-4 5 0995 838 0.997 8.70
Average 0.995 829 0.995 8.69

#Number of molecules in the training and prediction sets are 112 and 28,
respectively.
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To assess the performance of the AT topological indices in retention prediction of
saturated alcohols, the obtained results were compared with previously reported topological
based QSRR models developed for the same data set. Figure 4 shows a comparison
between standard errors of the present MLR models and those of the models reported by
Liu et al. [17] and Guo et al. [18] for predicting retention indices of saturated alcohols.
Clearly, the AT based individual models are significantly better than the other two models.
As shown, standard errors of the AT based individual models are 35.1 to 60.7% less than
the model developed by Liu et al. and are 16.9 to 51.3% less than the other model.
Moreover, a decrease of about 18% is observed in the standard error of the combined
QSRR model presented in this work relative to the model generated by Guo et al. Better
results obtained in the present study provide good evidence for high potential of the AT
topological indices in QSRR modeling of saturated alcohols.

20 i
M Liu et al. [17]

EGuo et al. [18]

B This work
15 -

Standard error

7
.
Z
%
.
.
%
%
%
.
7
%

0. , ,/4

SE-30 ov-3 ov-7 Ov-11 owv-17 OV-25 Combined
model

Figure 4. Comparison between standard errors of the presented and
previous linear models for prediction of retention indices of
saturated alcohols on different stationary phases.

3.2 CONTRIBUTION OF THE INDIVIDUAL INDICES TO RETENTION INDEX OF
SATURATED ALCOHOLS

Gas chromatographic retention indices strongly depend on the solute-stationary phase
interactions and QSRR studies provide useful information on the mechanism of these
interactions [19]. To explore the role of the topological features of the model compounds in
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determining their retention indices on each stationary phase, the standardized regression
coefficients for the individual QSRR models were used (Table 2). Furthermore, precise
contributions of the parameters entered in the combined QSRR model to RI values were
determined using calculation of the relative contribution ( ¥;) and fraction contribution (¥)
as follows [20]:

¥ (i) = ¢ T1; (6)

(i) = [R* x [ (DI 1 2] ¥ ()] ] x 100% (7)

where c; and TI; are the coefficient and the average value of the i-th topological index
entered in the model. The sum is over all indices in the model.

According to the results, standardized regression coefficients of the descriptors
decreased in the order of AT(‘y) > AT(-OH) > AT(-CH) for all the stationary phases. The
1y index encodes information about the bulkiness and branching of molecules and its value
increases with molecular size but decreases with molecular branching [21]. Positive
standardized coefficient for 'y index indicates that the molecule with higher *y value will
have higher RI value due to larger molecular size or less branching. This relationship
suggests that the main interaction force contributing to the chromatographic behavior of
saturated alcohols on the stationary phases is dispersive. As known, the magnitude of this
type of intermolecular solute-stationary phase interaction is related to molecular size as
well as degree of branching [22].

The topological index AT(—-OH) had smaller standardized coefficient than 1;( for all
the stationary phases. The descriptor that is a measure of solute polarity showed positive
standardized coefficients for all the stationary phases as the hydroxyl group of the alcohol
molecule makes the intermolecular interaction between solute and stationary phase stronger
and increases the RI value. The AT(-CHs) topological index with minimum value of the
standardized coefficient indicates the role of branching in determining RI of saturated
alcohols, because Al(—CHjs) index is clearly related to the number of methyl groups which
is a crude measure of branching [20]. As shown, standardized coefficient for the descriptor
IS negative that indicates the larger the number of the branches of molecule is, the smaller
its RI value because branching prevents solutes from close contact with stationary phase
and reduces the interactions between the solutes and the stationary phase. Consequently,
retention indices of the solutes decrease.

Relative contributions of the topological indices entered in the combined model to
RI data showed the same trend as the standardized regression coefficients of the individual
QSRR models. The obtained ¥; values for 'y, AT(~OH) and AT(-CHs) were 701.58, 210.07
and -35.75, respectively. Moreover, McReynold polarity had much larger contribution
(¥:=103.07) than AT(—CHjs) indicating the important role of the stationary phase polarity in
determining retention indices of the model compounds. Positive sign of the parameter
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shows that RI of saturated alcohols increases with increasing polarity of the stationary
phase. Based on the obtained results, fraction contributions of bulkiness and polarity of the
solutes to the retention indices were 66.45% and 19.90%, respectively. Furthermore,
stationary phase polarity (¥ = 9.76%) and methyl groups of the alcohol molecules (¥ =
3.39%) showed smaller contributions to Rl values. Results of the study showed that the
topological descriptors included in the regression models provide useful information about
structural features important in determining retention indices of saturated alcohols on the
stationary phases of different polarity.

4, CONCLUSION

In the present study, preliminary individual and combined QSRR models for predicting
Kovats retention indices of saturated alcohols on the stationary phases of different polarity
were developed using a combination of 'y index and the novel atom-type-based AT
topological indices. According to the results, 1;( and AT(-OH) indices were the most
important descriptors affecting Rl of saturated alcohols showing important role of size,
branching and polarity of the solutes molecules in determining their retention indices. In
addition, polarity of the stationary phases showed relatively large contribution in the
unified QSRR model developed for simultaneous prediction of retention indices of
saturated alcohols on the stationary phases. Satisfactory prediction results evidently suggest
efficiency of the AT based QSRR models for accurate estimation of the retention indices for
similar compounds using only two dimensional structures of the molecules. This work can
be a good starting point to provide a simple procedure for QSRR study of other heteroatom
containing aliphatic compounds.
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1 INTRODUCTION

The graph energy is a graph-spectrum-based quantity, initiated in the 1970s. After
a latent period of 20-30 years, it became a well-liked topic of research both in
mathematical chemistry and in "pure™ spectral graph theory, resulting in over 600
published papers. Considering the applications of graph energies, one can see them
in entropy [5, 15], modeling the properties of proteins (especially those of
biological relevance) in [6, 24, 28], applying them in the search for the genetic
causes of Alzheimer disease [3] and also for modeling of the spread of epidemics
[26].
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Suppose G = (V,E) is a simple graph with vertex set V (G) =
{v1,v,, -+, v,} and edge set E(G), |E(G)| = m. Let d; be the degree of the vertex
v; fori = 1,2,---,n. The maximum and minimum degree of G are denoted by A =
A(G) and 6 = 6(G), respectively. Let A(G) and D(G) = diag(d,,d,, -+, d,) be
the (0,1)-adjacency matrix of G and the diagonal matrix of vertex degrees,
respectively. The Laplacian matrix of G is L(G) = D(G) — A(G). This matrix has
nonnegative eigenvalues u; > p, =+ > u, =0. Assume that Spec(G) =
{u1, tz, -+, un} stands for the spectrum of L(G), i.e., the Laplacian spectrum of G.
As well-known [20], the Laplacian spectrum obeys the relations };7-, ; = 2m and

nou?=2m+3Yr, d;t

In 2008, Liu and Liu [18] considered a new Laplacian-spectrum-based
graph invariant LEL = LEL(G) = Y™ ./u;, and named it Laplacian-energy-like
invariant (LEL for short). The motivation for initiating LEL is in its analogy [12]
to the earlier much studied graph energy [10, 11, 16]. We refer to [17,18] for more
details on LEL and encourage the interested readers to consult papers [4, 9, 12, 14,
25, 27, 29, 31] for mathematical properties of this graph invariant.

2. AN UPPER BOUND FOR LAPLACIAN-ENERGY-LIKE
INVARIANT

In order to arrive at one of our main results, we begin by recalling a crucial lemma
as follows.

Lemma 1 ([20]). Let G be a graph on n vertices with at least one edge. Then
Uy = A + 1. Moreover, if G is connected, then the equality holds if and only if
A= n-1

We are now in a position to formulate the lower and upper bounds on LEL
interms ofn,mandd;,i = 1,2,---,n.

Theorem 1. Suppose that G is a simple connected graph on n > 1 vertices and m

edges. Then the inequality

LEL<VA+1+(n-— 2)3/44\/2m —(A+1)2+3" d; (1)
holds.
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Proof. Let yu; = u, = -+ = pu,, =0 be the eigenvalues of the Laplacian matrix
with respect to the graph G. Then, as is well-known, we have y; > A + 1 (see
also Lemma 1). Moreover, since

Lt =2m+ Y diz 2
must hold, we get Y-t ;2 = 2m — u, 2 + X%, d,;%. Using this together with the

Cauchy-Schwarz inequality for twice, applied to the vectors (viiz, y/t3, =+, /tn-1)
and (1,1,---,1) with n — 2 entries, we derive the inequality

5 < (- DT < (- 2B

=(n-2)fom - w2+ 5,4 @

Hence, we must have
LEL <+Ju, +(n— 2)3/44\/2m — 2+, d;. 4)

Now, consider the real function f(x) =+/x+ AVB —x2, where A =
(n—2)3/4 and B =2m+ Y, d;%. It is obvious that f is decreasing on the

interval
1:[ 2 ,\/§>.
A3+1

On the other hand, we claim f <A + 1. Since A< n-—1,
A3+1

B=2m+3Y",d;* =¥, d;(d; +1) <nA(A+1)
4
<(n-1A+1)?=@U435+1)(A+1)?
which proves our claim. Moreover, in view of Lemma 1 and Equations (2) and (4),
we see that A+ 1 < p; <+/B, and hence

LEL < f(u) < f(A+1) < f( /AB 1>. (5)

Remark 1. In virtue of the proof of Theorem 1, we can analyze the growth of the
obtained bounds, i.e., (5), which can be fruitful for the investigation on the energy
of hyperstructures, that is, the models with large size.

B 4B 4B-(n-2
LELsf(/i ): LR LR
A3+1

< Yna@+1) ‘ﬁ/nA(A+1) (n-2) _ a4 nA(A+1).0(n)

n-1
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which yields an upper bound for LEL related to the graphs with high order and A
as a fixed parameter. We note that a same fashion with using (1) implies the same
result:

LEL < f(A+1) < VA+ 1+ (n—2)"43na(a + 1) — (& + 1)2~ 3/A(a + 1).0(n).

3. BOUNDS OF SPECTRAL RADIUS OF GRAPHS IN TERMS OF THE
NUMBER OF TRIANGLES

For a given graph G, let us suppose that 4, > 4, = --- > 4,, are the corresponding
eigenvalues of the adjacency matrix A which are called A-eigenvalues and also let
A, be the number of triangles in G. Throughout this section, we give upper and
lower bounds for 4; such that each edge of G belongs to at least A triangles. The
goal is to utilize the upper bound obtained in order to result a lower bound for
Laplacian-energy-like invariant.

Theorem 2. Assume G is a simple graph with n vertices and m edges. If each edge
of G belongs to at least A, triangles, A;> 1, then

|4 < 2m—6—A8s(5 - 1). (6)
Proof. Suppose that A; stands for the i-th row of A. Clearly, d; is its row sum.
Without loss of generality, let u = (uq,uy, -+ ,u,)" be a unit eigenvector of
A(G) corresponding to 4; = 1;(G). Assume u(i) indicates the vector obtained
from u by replacing u; with 0 if v; is not adjacent to v; where 1 < j < n. Since
A(G)u = A u, considering the i —th component of the vectors in both sides of
recent equality, we derive A u; = A;u = A;u(i). Therefore, by taking the ||?,
applying the well-known Lagrange identity and simplifying the right hand side we
see for each i that

. , 2
/112ui2 = Au@)? =417 lu@F -2 1<j<ksn (uj - uk)
ajj=ajr=1

2
=d; Y1<jsn ujz — 2 1sj<ksn (uj - uk)
a;j#0 ajj=ajr=1

2
= di (1 - ZlSan uj2> - Z 1<j<ksn (u]' - uk) .

au=0 au=am=1

Summing over 1 < i < n in both sides we obtain,
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2
,112 =2m— Z?=1 d; (ZlSan uj2> - Z?=1 ) 1<j<ksn (uj - uk) . @)

aij=0 aij=aik=1

On the other hand, one can notice that

Z?=1 d; (lean uj2> = Z?ﬂ d; uiz > 6.

aij=0

Moving forward, since each edge belongs to at least A; triangles, then applying
Cauchy-Schwarz inequality we derive the following

2 2
Xiz1 X asj<ksn (uj - uk) = Ag lej<k5n(uj - uk)
ajj=ajr=1 ajr=1

= 0g XLy diu® — 286 Xasj<ksn Uil
ajk=1

> A6 — A X jere|wju|

> A; (6 —1).

Now, viewing the equality (7) yields the following

2] <+2m — 68 — Ag (6 - 1).
3.1. CLOSED WALKS IN GRAPH

Throughout this subsection, we aim to derive some results related to lower bound
of spectral radius of graph by using the term of A; which may be useful in further
investigations. Before present the next result, we need some preliminaries. We
recall that a closed walk in G is a walk that ends where it begins. The number of
closed walks in G of length # starting at v; is thus given by (4(G)*);;, so the total
number f; (£) of closed walks of length ¢ is given by

fe(£) = T 1(A(G)")y = tr(A(G)?)

where tr denotes the trace (sum of the main diagonal entries). From the theory of
matrices, we know that if the matrix A has eigenvalues A;,1,, -+, 4, then A? has
eigenvalues A%, 15, ---, 2% Therefore,

fo(0) =X 2. (8)

Some immediate consequences of (8) are as follows:
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i.  For¢=1%",4; = 0 which is deduced by noting that the sum of
the eigenvalues is the trace of the adjacency matrix which is O since
A is 0 on the diagonal.

i. For¢ =2, Y™, 2% =2m which is followed by the fact that the
sum of the squares of the eigenvalues is the same as the trace of A2.
The diagonal entries of A2 count the number of closed walks of
length 2 (a closed walk is a walk that starts and ends at the same
vertex; since we are on the diagonal the starting and ending vertices
are the same), for which each edge is counted exactly twice.

iii. For¢ =3,X",A3 =6A;. This is obeyed by the fact that the sum
of the cubes of the eigenvalues is the same as the trace of A3, i.e.,
the same as the number of closed walks of length 3. Each triangle
will be counted exactly six times (i.e., a choice of 3 initial vertices
and 2 directions for each triangle).

One can continue this process but it becomes impractical to get some
effective information about a graph. Next, using (iii) we study on bounds of A, and
then spectral radius of graph. Let the A-eigenvalues of G be in formof 4, = -+ >
MZ0> Ny 222, and Ay =%, 4 >0 AL=3L,,,4<0, A=

™ 1413, This implies that A, + A_ = 6A;, A, — A_ = A, which yields that
36A%2 = A?> + 4A, - A_. Therefore,

3
A=/36AZ —4A, -A_ < 6A; +2/=A, - A_ < 6A; + 2n|A A, |z, 9)

On the other hand, by H6lder inequality one can see that

n

2
Zuilz <A
i=1

\/? <A (10)

Equations (9) and (10) derive the following relation

2m3 _ A 3
/—T: SES3AG+n|/11/1n|2

which shows A is bounded below by

3 3
( /l — nlmnlz).

which means that
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The recent bound seems good for the graph with big size, i.e., m — co. Now, to
obtain a lower bound for the spectral radius of G, inspired by (iii), we easily see

that
A > 3/% (11)

With the help of inequality (11), one can make some lower bounds only in terms of
m, n following some well-known results.

A;=>*(Results in previous) Hypotheses Ay =
—n2 2 2
A= W(Nordhaus etal. n_ <m< n_ 3 2(4m _ nz)m
[22]) 4 3 T
3 2 2 n2 n2 3
N> Zmnoan m2ToIm? pgher —<m<— *|2(9mn — 2n3 — 2(n2 — 3m)?)
27 4 3 4= 9
18) 2 2 n
— I L N A PINTTR n n
Ag= (m - ||y |%|Nikiforov et lf m< lz

al. [21], Lovész et al. [19])

N MJ@

4m—-n? 2 2
8> UM Bollobas [2]) L +[am — 2n2
4 3 A > —

Table 1: A list of lower bounds of spectral radius

Remark 2. Concentrating on Table 1, we observe that since the lower bound of A
obtained by Fisher [8] is the best bound in comparison with the others in the list
above, hence the corresponding lower bound of spectral radius is the best in the
list.

4. LOWER BOUND ON LAPLACIAN-ENERGY-LIKE INVARIANT

Throughout this section, applying a crucial lemma we derive a lower bound for
Laplacian-energy-like invariant.

The following result which is known as Weyl's inequalities, is concerned
with the eigenvalues of sum of Hermitian matrices (see Theorem 111.2.1, [1]).

Lemma 2. Let A, B € M,, be Hermitian matrices and assume that A and A + B are
arranged in non-increasing order. Then
4 (A) + 2, (B) < 4 (A +B) < 4, (A) +A,(B), k=12 n (12)

Let us recall that algebraic connectivity of G (called by Fiedler [7]) is
denoted by u,,_,. Obviously, since G is connected, u,_; # 0. Using the terms of
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algebraic connectivity and edge connectivity of G, i.e., n =n(G), we obtain a
lower bound for Laplacian-energy-like invariant as follows:

Theorem 3. Assume G is a simple connected graph with n vertices and m edges.
Then, the following inequality holds

dk

n —_—
LEL2 ¥R, [X

(13)

where 1, is the spectral radius of G and

n 4 1
a= |— .
2m Hn-1

Proof. Since D(G) = A(G) + L(G) and A, B are Hermitian matrices, by Lemma
2 we get
Ae(L) + 2,(4) < 4, (D) < A (L) + 2, (4), k=1,2--n
which is simplified as
Ut A, <dp <+, k=12 n
1
Hpoa

Let y + A, < aA py, for a proper constant « large enough such that « > /% +

Indeed, fork =1,2,---,n — 1 we see

2m

n 1 n 1 N Ur 2m
/_+_g /—+ <qg & — Y _<qg o < [—< A
2m 2m  Un—q 2m ap —1 n

Uk |—

n

Moving forward, \/d, < \/w, + A1 < \/adyp, Which shows that
- |d
LEL > Z /—"
arq
k=1
n 1
forany a > /ﬁ + P
n

Thus we get the required result by the value a = o+

in recent

Hp—1
inequality.

In the following we give some immediate consequences.

Corollary 1. Suppose that G is a simple connected graph with n vertices and m
edges. Then, the following inequality holds

n
Z dye
LEL = —
arq
k=1
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where
n 1

+
2m  2n(1 - cos )

Following the formula mentioned in Theorem 2 and the bounds below we have
the following immediate consequences:

a) A4 <V2m—n+1, (see Hong [13])

b) A, < 1+€;m—1, (see Stanley [23])

c) A < 2m—68—Ag(8 — 1), (Equation (6)).

Theorem 4. Assume G is a simple connected graph with n vertices and m edges.
Then, the following inequalities hold

, n dy

) LEL22ka o
. n 24,

i) LEL 2 2k= a(Vi+8m-1)

- n dk
i)  LEL 22k=1\/am

where
n 1

RSP
2m  2n(1 - cos )
Proof. Viewing (a)-(c) and Corollary 1, the results (i)-(iii) are clear.
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The real number Zis called the eigenvalue of a graph I' with adjacency matrix Aif the
equation Ax=Axhas a nonzero solution. A solution vfor this equation is called eigenvector
corresponding to the eigenvalue 4. The characteristic polynomial of the matrix A is defined
asy,(G) = det(A -Al). It is easy to see that the eigenvalues of A are roots ofy,(G).

2. NOTATION AND DEFINITIONS

There are two types of Zagreb indices introduced by Gutman and Trinajestic[12]: the first
Zagreb index M; and the second Zagreb index M, defined as follows:
M; = M;i(G) = Zuev(c) d(u)? and M, = M,(G) = YuveE(G) d(u)d(v),

where d, denotes the degree of vertex u, see [1,4,7,9]. The first Zagreb index can be
rewritten also as M; = M,(G) = Xyper(c)ld(u) + d(v)]. For more details on these
topological indices we refer to [7, 14-16, 18]. With this notation, the F- index is defined
as [2,3,11,13]

F =F(G) = Zuevc) A(W)® = Zuere)[dw)? + d(v)?].
In [5] the following three topological indices are proposed:

Tl = TI(G) = Zvev) F1(v), Ty = TI1(G) = Zuver(s) F2(u. v),

T, =TL(G) = Zu¢v.{u.v}gV(G)F3 (u.v) (1)
where F1, F, and F3 are functions dependent of a vertex or on a pair of vertices of the
molecular graph G and forgotten index is of the form Equation 1.

3. BOUNDS OF FORGOTTEN INDEX

Let G be a graph on n vertices with maximum degree A, where n > 3. It is clear that
5m < dZ + d2 < 2A? and thus 5m < F(G) < 2A?m. The aim of this section is to
compute some bounds for F(G) and then we present some algebraic properties of this
index. Let A be the adjacency matrix of G and B is a symmetric matrix with the following
entries:

{d(u)2 +d()? if uv € E(G)
buU =

0 otherwise
Lemma 2. We have

) F(G) < Jtr(A)m/2,
i) Suvescedid3 = MZ(G)/n,
i) tr(B) =2 and Typepcey(dZ + d2)2

tr(B2)

v)  F(6) =z |72
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V) If Gis r-regular, then F(G) = ﬁtr(Bz).

Proof.
1) Itis not so difficult to see that

2 1
F(G) = ZquE(G)[du2 + dvz] =< \/ZuUEE(G)(duZ + dvz) mz = tr(AZ)m/Z,

as desired.
i) According to geometrical-arithmetic inequality we have

2
M2(G) = (Zuev(e)d2)” = nTuver(e) d2d2.
i) Since every element in the main diagonal of B is 0, we obtain tr(B)=0 The i-th

2
entry b;; in the diagonal of B? is b; = Yoo eE () [dviz + dvjz] . Thus, tr(B?)
2 2
= ?=1 bii = Z?=1 ZuiviEE(G) (dviz + dvjz) = 2ZquE(G)(du2 + dvz) .
. 2
iv) By Lemma 1, tr(B?) =2Yuer)(d’+d?) < 2¥uene(du’ +

dvz)ZquE(G)(du2 + dvz) < ZFZ(G)-
V) If G is r-regular, then B = 2124 and tr(B?) = 4r*tr(A4?). Hence,

— 932000 — 9.2 5 L 2y — 1 2
F(G) =2r*’m =2r xztr(A)—MZtr(B ).

Denote by o the variance of the sequence of the terms {du2 + dvz} appearing in
the definition of F(G).

Lemma 3. For any graph G, F(G) = \/m/2tr(B2) — m202.

Proof. Lemma 2 gives%tr(BZ) = Ywver)(du” + dvz)z. By the definition of a2, we
have

2
2 1 1 1

02 =— Z (d,>+d,?) - (E Z (d,* + df)) = 5—tr(B?) - —F(G)’

uveE(G) uv€eE(G)

and this equality yields the results.

Lemma 4. Let iy > u, = -+ > p, be all eigenvalues of B, then we have
i) uf 2 npi/(n—1).

. n 1
II) ’mﬂl < F(G) < Euln.

Proof. Suppose p, = pu, = -+ = p, are the eigenvalues of B.
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i) Since Y,y =tr(B)=0, we have u; =—>",u; and Cauchy-Schwarz
inequality gives

W=, u)? < Gk, m)*(n—1).
Hence,

ui _
n-1 n-1

YT T NPy T T
i) Suppose j is the vector j = (1.1.... 1) € R™. By Perron-Frobenius theorem we can

conclude that u; > |u,-|, for every J, and then u; = 0. Hence, Rayleigh quotient yields
(Bxx) | (BJj) _ 2F(G)
2 = 15lI% n

U = max
According to Part (i), we have
F(6)? = (Zuver(e)(dy” +d 2)) > Yuvere)(du” +dy?) =~ Zl 1 U7

_(ﬂl + Zl 2#1) > (ﬂl n#11) = %

Assume now that G is a A-regular graph. Then B = 2A%4 and p; = 2A%2;. It is
well know that the greatest eigenvalue of a A-regular graph is A itself. Hence, p; = 2A%A,

and then F(G) = 2A%m = A%2An = nA%), = % [y
4, SPECTRAL PROPERTIES

For given graph G, if the maximum degree of every vertex reaches to four, then G is called
a molecular graph. The first inverse sum indeg index (ISl index) defined as follows [17]:

dydy
ISI(G) ZquE(G) dy+dy,’

Let V(G)= {v1,v2,...,vn} be the vertex set of graph G. For 1, 2, ...,n, let d; be the degree of
the vertex vi. Then define the ISI adjacency matrix PA to be a matrix with entries bj; as
follows:

didj
ddej 'Ul'Uj € E(G)
b.: =
ij
0 otherwise
If the graph G is regular of degree r, then PA(G) = %A(G) and
PA2(G) = ;12 A%(G). )

Example 1. Let Gheanr-regular graph. Since tr(4%) = 2m, we have tr(4%(G)) = nr
This means that tr(PA%(G)) = nr3/4.
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Example 2. By using Equation 2, we have tr(PA%(S,)) = 2(n—1)3/n?. Let B, denote
the path Py, then

-0 2/3 0
2/3 0 1 0 0
0O 1 0
PA(R,) = 0 0
0 1 o0
0 01 0 2/3
0 2/3 0.

The diagonal elements of PA? are 319—3 22, ... .2.19—3.3. Therefore,

tr(PA2(R)) == +2(n—4) = 2n -2

Lemma 4. Let PA(G) = gA(G), then x,(PA(G)) = (%)”XEA(A(G)).

Proof. The proof is straightforward.

For an example, PA(S,) = nT_lA(Sn) and by using Lemma 4,
1:(PAGS) = ()" (AGS))
It is not so difficult to see that PA(K,, ,,) = %A(Zm.n) and hence
13 (PA®K ) = G Horma (AWK 2)).

Theorem 5. Let G be a graph with vertices set {1.2.....n} and 1Sl matrix PA. Then
i) tr(PA) =0

2

. _ did; _ di

i) tr(PA?) =2%,;_; <_di+éj) (PA%)j; = did; X ek~ (di+dk)§dj+dk)'
2

did; di

iii) tr(PA?) =22~ (di+ii)j Qi) (di"'dk)é(dj"'dk)).

2

iv) tr(PA*) =Y, (ZH ( didy )2)2 + i didi (X1~ i

d;+d; T (dj+d)(dj+a;)’

Proof. All parts can be proved as follows:
) The Part (i) is clear.

i) For i=j, (PA?);; = Xioy PAyPAy; = Xio1(PAg)? = Xi-j(PA;;)? =
2 2 2

didj 2\ — vn d;dy _ didj
Di~j <di+dj) . Therefore, tr(PA*) =Y Y« (dimk) =2 <—di+dj) .

Suppose |;éj Then, (PAZ)U = ‘,r(l=1 PAikPAkj = Z.k~i.k~j PAikPAkj =
did djd d:
Z.k~i.k~j( “ ) <]—k) =d;id; Y k-ik L

di+dy ) \dj+dy T (di+dp)(dj+dy)
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i) For the matrix PA® we have (PA%);=3X",PA;(PAY); =

did; 2y, — di .
Di~j dtd (PA%)ji = Xie i k=ik~j —(di+dk)(dj+dk)) and so we obtain
tr(PA3) = Z (dl ( Z
o ditd ;@ +dk)(d +dk)

_ (didj) #
=2~ di+d;j Qi (di+dk)(dj+dk)).
iv)  The trace of PA* is

tr(PA%) = i(PA2 Z(PAZ Z(PAZ

ij=1 i#j

= 21 <Zl l( l )2)2 + Xinj didy (X~ i

di+d I (di+d))(dj+d;)

This completes our argument.

5. ENERGY AND LAPLACIAN ENERGY

One of branches of graph theory which has many applications in chemistry is spectral
theory based on the eigenvalues of the adjacency matrix [6,10]. Let G be a simple graph
on n vertices and 1;. 4,. .... 4,, be the eigenvalues of its adjacency matrix. The energy E(G)
of the graph G is defined as the sum of the absolute values of its eigenvalues, i.e. E =
E(G) = XX ,14;|. Here, we define the ISI energy as the sum of absolute values of the
eigenvalues of the I1SI matrix. More formally: Let p;. p,. .... p, be the eigenvalues of the
ISI matrix PA(G). It is not difficult to see that these eigenvalues are real numbers and their
sum is zero. Hence, the ISI energy can be defined as [8] PAE = PAE(G) = X.I*,|p;|. This
definition is applicable to all graphs.

Theorem 6. Let G be a graph with n vertices. Then PAE(G) < V2nISI(G).

Proof. The variance of the numbers |p;|, i=1,2,...,n is equal to

1 n 1 n 2
;leilz - (EZV)H)
which is greater than or equal to zero. Now, Y™,|p;|? = X", p;> = tr(PA?%) and

therefore ;tr(PAZ) - (;PAE)2 > 0. Hence,
PAE(G) < \/ntr(PA2) < \/2n(ISI(G))? = V2nISI(G).
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Theorem 7. Let G be a graph with n vertices and at least one edge. Then

N|R

didj
did;j Zl“ld +d;

PAE(G) 2 2%k = PR
n k0
Yie 1(21 1<d +d]> > i Aidj (X k~ik~ “J(a +dk)(d +dk))

Proof. The Holder inequality implies that

Sune($a)(S)”

i=1 i=1 i=1
which holds for any non-negative real number a;, b;(i = 1,2,...,n). Put a; = |p;|?/3, b; =
lp;1#/3, p=3/2 and q = 3, thus we have
raloil? = 2o P2 o3 < e D3 (B, o] )3, ©)
If G has at Ieast one edge, then not all p;’s are equal to zero. Then 1|p | # 0 and
Equation 3 can be rewritten as

= 2 2 tr(PA?)3
pate) = 3 Int = Sl 2 _ Gipb): _ /tr<(PA4))
i=1 (Z |pl |) (Zl 1Pi )2
didj
_ did;j Zl~]z7l i+dj
- 22i~j di+dj 2\ ? a2 2
P 1(2‘4 ]<d +d}> ) +2i2j didj(C k~ik~j k

“’(di+dk)(dj+dk)

J

N |

Theorem 8. If G is a regular graph of degree r where r>0, then PAE(G) = gE(G). If, in
addition r = 0, then PAE = 0.

Proof. If r = 0, then G is a graph without edges. Then directly from the definition of
matrix PA, it follows that PA;; = 0O, for all i.j = 1.2.....n and consequently PA(G) = 0
Therefore, PAE(G) = 0. Suppose now that G is regular of degree r >0 and d, =d, =

= d,, = r. Then all none-zero terms in PA(G) are equal to r/2, implying that PA(G) =
—A(G) Therefore, p; = /1 for i=1,2,...n and hence PAE(G) = XM lpl zg oAl =

EE(G), which completes the proof.
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1 INTRODUCTION

All graphs in this paper are finite and simple. A graph G is an ordered pair (Vg, Eg)
consisting of a set Vg of vertices and a set Eg, disjoint from Vg, of edges, together
with an incidence function fs that associates with each edge of G an unordered pair
of (not necessarily G distinct) vertices of G. A path in a graph is a finite or infinite
sequence of edges which connect a sequence of vertices which are all distinct from
one another. The distance dg(u, v) between the vertices u and v of a graph G is
equal to the length of a shortest path that connects u and v.

The betweenness centrality, Bg, was first introduced by Bavelas [3] as the
number of times a node acts as a bridge along the shortest path between two other

v
nodes. In other words, for a vertex veVe, Bg(v) = suppurer, % where o (s,1)
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is total number of shortest paths from node s to node t and o¢, (S,t) is the number of

those paths that pass through v [7].

This invariant has important role in Psychology to study on mental
illnesses. We encourage readers to see [6, 8, 9, 12 - 17] for the role of betweenness
centrality in analysis of social networks, computer networks, and many other types
of network data models.

The lexicographic product G[H] of graphs G and H, studied first by Felix
Hausdor in 1914, is the graph with vertex set VexVy and (gs, hy) is adjacent with
(g2, hy) whenever (g; is adjacent to go) or (g:= g» and h; is adjacent to hy). We
encourage the reader to consult the book Handbook of Product Graphs, written by
Hammack, Imrich and Klavzar, for more information on results on this product.

Suppose G and H are graphs with disjoint vertex sets, x e Vg andy € Vu. A
link of G and H by vertices y and z is a graph operation defined as the graph
(G~H)(x; y) obtained by joining x and y by an edge in the union of these graphs,
see [2, 5]. Let Vg = {vi, V2, ..., Va}. The adjacency matrix A(G) = [a;] is an nxn
matrix for which a;=1 if viv; € Eg and a;;=0 otherwise [10].

The degree of a vertex v in G is denoted by degs(v). We use Ng[v] to
denote the ball of radius one centered at the vertex v in G. Also, we use the
notations P,, C, and K, to denote the path, cycle, complete graph with n vertices,
respectively. Our other notations are standard and taken mainly from the standard
books of graph theory such as [4].

2. BETWEENNESS CENTRALITY UNDER LEXICOGRAPHIC AND
LINK PRODUCTS

In this section, we compute the betweenness centrality of link and lexicographic
products from the betweenness centrality of their initial factors.

Theorem 2.1. Let (g, h) be a vertex of G[H]. Then
BG[H]((gah)) = |VH|BG(9)+ ﬁ((lVZHl)—|EH|—Z1si<js|VH|I(agjz'))>2ggreEGm

+ Z ! I v 1
g'€Nglgl.dy(h' h")=2 [Vvh|degg(g")+op (R h")

0 if x=0
1 otherwise

where al?) is ij-th entry of A(G) and I(x) = {

Proof. Let (g, h), (g1, h1) and (g2, hy) be three different vertices of G[H]. Thus,

there are four cases in which aéf’,;';)((gl, hi), (g2, hy)) # 0, as follows:
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1. g1= g>=g and dn(hs, h2) = 2. Then og1((91, h1), (92, h2)) = [Vu|dege(g) +
o (1, o) and o390 (g1, ha), (g2, hz)) = 1. Set

B ZhlthEVHvdH(hlvh2)=2 |VH|degG(g)+o'H(h_1,h_2)'

2. 01=02, ggleEG and dH(hl, hz) = 2. Then O-G[H]((gli hl), (gz, hz))
[Vuldega(@n) +oy, (M1, he) and o2 (g1, ha), (g2, hz)) = 1. Set

1
B, = ZhyhzEVHvdH(h1vhz)=2ng’€EG [Vildegg(gN+op(hyhz)’

3. 01=02, ggleEG and dH(hl, hz) > 2. Then O-G[H]((gli hl), (gz, hz))
|Vu|dege(g1) and é?H])((gth, (92, hz)) = 1. Set

1
B ZhlvhzEVHvdH(hlvh2)>2vgg’EEG |VH|degG(gI)

— 1 1% (2)
and so B3—W<(| ZHl)—|EH|—Z1si<js|VH|I(Clij ))ZggleEG m-

4. g1 #9 =02 and do(gs, g2) >2. Then
69 h1), (92, h2)) =05 (g1, G2)|Vyy | 269191,

o5l (@1 D), (G2 1)) =0 (g1, G2) |V |46 (01922,
o9(g gvyt6(e' 972
o (g gVyIi6W 901

Therefore, by summation of By, B,, B; and B4, the result can be proved. O

and so B4=|Vn|Bs(Q).

Set B4:Z{h1,h2}§VHvdG (9'.9")=z2

Corollary 2.1. If (g, h) is a vertex of G[C,,] and n > 4, then
Bc,1((9. 1)) = 1B (9) + "3 Sggrere oyt Lorenglol mtsg e o
Also, if G is a k-regular graph, we have
Beic,1((g.h)) =nBg(g) +=——=

n(k+1) pn_s
nk+1 2

Corollary 2.2. Let (g, h) be a vertex of G[C4], then
Bete,((9. 1)) = 4B6(9) + 2 Zgrencio saeglyrye
Moreover, if G is a k-regular graph, then

Berc,((g, ) = 4B (g) +

k+1
2k+1"

Corollary 2.3. If (g, h) is a vertex of G[C3], then Bgj,1((g, h)) = 3B (g).

Theorem 2.2. Let G and H be graphs with disjoint vertex sets, x e Ve andy € Vp.
Then
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(Bow) + 1Vl Y 249 iru v,

ag(t,x)
_ teVs
Bty (u) = 4 GB(ty) . '
|Ba () +1Vs] Y D ipy e,
k teVy

Proof. Supose u, s and t are three different vertices of (G ~ H)(x;y). There are two
cases as follow:
1. ueVy.Inthiscase, if s,teVy, then

O-(G~H)(x;y)(sv t) = O'G(S, t) and 0&~H)(x;y) (S, t) = O‘g(s, t)
and if seV; and teV,,, then

O~y (8, 1) = 0 (s, x)ay (v, t) and O'(uG_,H)(x;y)(S, t) = ol (s, x)oy(y, t).
Note that if s,teV,, , then a(;_py(xy) (s, t) = 0. Therefore,

JIG‘ (tx)

B(e ~ ey (U)=Be(U)+VhlXsere oo -
2. ueV, . Using a similar argument applied in the first case, we have
B(G - ey (W) =Br(U)+Ve| Eeev, 2252
which completes our proof. 0

3. APPLICATIONS

In this section, we apply our results to compute the betweenness centrality of some
well-known graphs.

Example 3.1. Consider the Catlin graph Cs[Cs] shown in Figure 1. Then

(@) = - fsr ol
215151531(% ) = 0. On the other hand, by [20], B;, (v) = {%(n—l)(n—3) 240

Therefore, by Corollary 1.1, we have B¢ c,1((g, h)) = 3.

A

NN

Figure 1. The Catlin graph.
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Example 3.2. Let G be the closed fence graph shown in Figure 2. It is clear that
the lexicographic product of C, and P, is isomorphic to G. Then, by Theorem 1,
we have

2(n-2)? 2|n

Bs(v) = Be,ip, (v) = {i(n—l)(n—3) 24n

\H_ — H_/] :
XA
Figure 2. Closed fence graph.

Example 3.3. Let G be the open fence graph depicted in Figure 3. It is not
difficult to check that G = Pi[P;] and Bp (v;) = (i —1)(n—1i). Then, by
Theorem 1, we have

Bg ((gi, hj)) = Bp,[p,] ((gi, hj)) =2(n-i)@-1).

ha

m gz g3 In—1 Gn
° ° @ ++ o— 0o [ ]

o
h|

(g1, h2) (g2, ha) (g3, ha) (gn—1.h2)  (gn, h2)

RO

(g1,h1) (g2, h1) (g3, h1) (gn-1.M)  (gn, 1)

Figure 3. Open fence graph.

The Wiener index, W, is equal to the sum of the lengths of the shortest
paths between all pairs of vertices. Kumar and Balakrishnan [11] gave the
following relation between the Wiener index and the betweenness centrality index
for a graph G:
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W(G) = Zer, Be () + (I"21)

Thus, we can use betweenness centrality instade of Wiener index.

i W(G)—(lVGl)
Therefore, if B(v) = B(u) for each u,v € Vg, then B;(v) = —

wiew-(3)
)-(3)

. For example,

Since B¢, (v) = B¢, (u) for eachu,v €V _, then B¢ (v) =

Example 3.4. Consider the dendrimer D, shown in Figure 4. As one can see in this
figure, D1 = (G ~ H)(X; y). On the other hand, if u is the vertex of G shown in

Figure 4, it is not difficult to check that Bg(u) = 2 and Zsevc% = 0. Therefore,

by Theorem 2, we have By (U) = Be-H)xy(U) = 2. Also, by the previous

argument,

W(D1)=Zyev,, Bo, (u) + (le)ll)'

Using a similar argument, B, (u) =2, where u is the vertex of D, shown in
Figure 4.

Dp

Figure 4. Dendrimers D; and Di,.

Example 3.5. A k-almost tree is a graph in which each biconnected component is
obtained by adding at most k edges to a tree. Akutsu and Nagamochi [1] studied
these graphs as an example of chemical graphs.

Consider graph G, graph H and the almost tree 7"shown in Figure 5. As one
can see, I"= (G~H)(x;y). Then, by Theorem 2 and this fact that Bg(u)=%, we have

BAU)=BG-n)xy(U)=73 -
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Figure 5. The almost tree T

Example 3.6. For handcuffs graph C,~ C,, we have

l(n—2)2+m Z T )
8 7Cn () ifuev, &2n
tEVCn Cn

1 o (ty)

—(n-1)(n-3)+m n .

8 te;; G ifu€Ve &24tn
n

B(cn~cm)(x;y)(u) =31 o (tx)
gm-r+n Z sy fUEV, & 2|m
tEVCm

u
%(m—l)(m—3)+n Z 9 (t) ifue ch & 2tm

Oy (tx)

teVey,
4. OPEN PROBLEMS

In this section, we pose two open problems to develop the topic of betweenness
centrality on other graph operations. The tensor product G ® H of graphs G and H
is the graph with vertex set Vg % Vy and (g1, hy) is adjacent with (g2, hz) whenever
(91 is adjacent to gz) and (h; is adjacent to h,), see [10, 18] for details. The strong
product G @ H of graphs G and H is the graph with vertex set VexVy and (gs, hy)
is adjacent with (g2, h,) whenever (g; is adjacent to g and h; = hy) or (hy is
adjacent to hy and g1 = @) or (g: is adjacent to gz and h; is adjacent to hy), see [10,
19].
We end this paper by the following two open questions:

1. Let G and H be two graphs and (g, h) be a vertex of G & H. What is the
value of Been((g,h))?
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Let G and H be two graphs and (g, h) be a vertex of G @ H. What is the
value of Bgen((g,h))?

Acknowledgment. The author is indebted to the referees for some helpful
remarks. Also, he dedicates this work to his one-year-old daughter, Tarannom.
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A Note on the Bounds of Laplacian-Energy-Like
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Further Results on Betweenness Centrality of Graphs
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