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An Algebraic Calculation Method for Describing 
Time−Dependent Processes in Electrochemistry – 
Expansion of Existing Procedures 
 
ALFRED HUBER 

A-8160 Weiz, Dittlergasse 10, Austria 
 
ARTICLE INFO  ABSTRACT 
Article History: 

Received  30 August 2016 
Accepted  15 February 2017 
Published online  26 January 2018 
Academic Editor: Ivan Gutman 

In this paper an alternative model allowing the extension 
of the Debye-Hückel Theory (DHT) considering time 
dependence explicitly is presented. From the Electro-
Quasistatic approach (EQS) introduced in earlier studies 
time dependent potentials are suitable to describe several 
phenomena especially conducting media as well as the 
behaviour of charged particles (ions) in electrolytes. This 
leads to a reformulation of the meaning of the nonlinear 
Poisson-Boltzmann Equation (PBE). If a concentration 
and/or flux gradient of particles is considered the 
original structure of the PBE will be modified leading to 
a nonlinear partial differential equation (nPDE) of the 
third order. It is shown how one can derive classes of 
solutions for the potential function analytically by 
application of pure algebraic steps. The benefit of the 
mathematical tools used here is the fact that closed-form 
solutions can be calculated and thus, numerical methods 
are not necessary. The important outcome of the present 
study is meaningful twofold: (i) The model equation 
allows the description of time dependent problems in the 
theory of ions, and (ii) the mathematical procedure can 
be used to derive classes of solutions of arbitrary nPDEs, 
especially those of higher order. 
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1 INTRODUCTION 

Many problems of physical/chemical interest are described by nPDEs with 
appropriate side conditions. These can be suitable chosen initial and/or boundary 
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conditions. If the equations are linear, widely used methods for solving PDEs are 
known (e.g. the Fourier and/or Green’s method) and the superposition principle 
generates further solutions by known of a pair of solutions. For nPDEs, however, 
the linear superposition principle can not be applied to generate new classes of 
solutions. 

Note: We stress the existence of a nonlinear superposition principle known 
as the Bäcklund transformation which means a special contact 
transformation [1]. The nPDE under consideration is not of Painlevé type, 
e.g. [2], [3], [4] and therefore a suitable Bäcklund system can not be 
associated. Apart from this a Bäcklund system is only (in the most cases) 
derivable for ‘simple strutured’ nPDEs. Thus this fact justifies the use of 
algebraic methods for deriving analytical solutions and often represents the 
only suitable way for a successful solution procedure.  
Because most of the of solution methods for linear equations fail, there is 

no general method of finding analytical classes of solutions for nPDEs and 
numerical techniques are usually required. Sometimes special transformations can 
be done to transform a nPDE into a linear PDE, or some other ‘ad hoc’ methods 
(and/or assumptions) can be used to derive classes of solutions of a particular 
nonlinear equation. 

Note: We arrange that we suppress the item ‘classes of solutions’, so we 
will simply understood ‘solutions’ instead of classes of solutions (although 
classes of solutions is the correct notation). Since time occurs in the 
derivation(s) explicitly such types of nPDEs are called evolution equations 
(EVEs) since they allow the study of time-dependent processes. Any nPDE 
may not have the outer form ݑ௧ = ௫ݑ,ݑ]ܭ , ௫௫ݑ , … ] necessarily being an 
EVE where  ݑ௧ = ,ݑ]ܭ ௫ݑ ௫௫ݑ, , … ] is a nonlinear operator in general. 
Equations containing mixed higher derivations like ݑ௫௧ =   and/or [ݑ]ܭ
௫௫௧ݑ =  .are also called EVEs [ݑ]ܭ

Techniques of finding solutions represent only one aspect in dealing with nPDEs. 
Like linear equations, questions of existence, uniqueness, and stability of solutions 
are also of fundamental importance. 
 
1.1. HISTORICAL DEVELOPMENTS – A SHORT OVERVIEW 

There is a good historical reason to deal the subject. When the developments of 
interfacial electrochemistry along modern lines became restricted by the over 
thermodynamics attitude of its adherents in the pre-1950 days, much attention was 
diverted to what had seemed  previously to some extent the accompanying  side 
issues, i.e. the physical chemistry of the bulk solution adjoining the double layer. 
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This had concentrated upon an interest in the deviations in the behaviour of 
solutions from laws derived upon the assumption that interactions between 
particles are negligible. The properties of electrolyte solutions can significantly 
deviate from the laws used to derive the chemical potential of solutions. In non-
electrolyte solutions the intermolecular forces are mostly comprised of weak Van 
der Waals interactions, which have a ∝  ଻ dependence (in principle), and forିݎ
practical purposes this can be considered as ideal. In ionic solutions, however, 
there are significant electrostatic interactions between solute-solvent as well as 
solute-solute molecules. These electrostatic forces are governed by Coulomb's law 
which has a ∝  ଻ dependence. Consequently, the behaviour of an electrolyteିݎ
solution deviates considerably from that an ideal solution. Thus the DHT of such 
interactions attracted the attention of electrochemists away from the blocked 
interface studies [5]. The DHT was proposed as a theoretical explanation for 
departures from ideality in solutions of electrolytes [6]. From about 1920 to 1950 
the majority of research  in this domain were occupied with determining activity 
coefficients of salts in dilute aqueous solutions, the electrical conductance of 
molten salts, or electrostatic effects of the dissociation constant of acids or bases in 
aqueous solutions [7], [8]. Note that by applying the DHT restrictions have taken 
into account, like much diluted solutions, completely dissociation and more [9]. 
Contemporaneously, Helmholtz considered a double-layer model wherein he 
proposed a simple charge separation at the interface [10].  

Gouy [11], [12] developed an electric double-layer model that includes the 
effects both of the electric potential and ionic concentration with the aid of the 
Boltzmann distribution [7], [9].  

A further contribution was done by Chapman [13]. He established the 
steady-state governing equation for the diffuse layer, the Poisson-Boltzmann 
Equation [11]. This equation is based upon the combination of the electrostatic 
basic equation, the Poisson Equation [14], and the Boltzmann distribution [15]. 
The model is referred to as the Gouy-Chapman model.  

Further, Stern [16] improved the Gouy-Chapman model by assuming a 
finite ion size and by dividing the electrolyte into two layers, specified to as the 
Stern layer and the diffuse layer. Later on Grahame [17] revised the Stern model 
using three layers: The Inner Helmholtz layer (IHL), the Outer Helmholtz layer 
(OHL) and the diffuse layer. The difference between the Grahame model and the 
Stern model is due to the existence of a specific adsorption [11].  

A transient version [11] is referred to as the Nernst-Planck-Poisson-
modified Stern model or simply the Nernst-Planck-Poisson model (NPP) if there is 
no modified Stern layer.  
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During the past 90 decades several well-known scientists did their 
contributions in this domain, and, unfortunately only a small number are 
mentioned here like Bjerrum [18], Gronwall/La Mer/Sandved [19], Onsager [20], 
Kirkwood [21], Falkenhagen [6], [9], Ghosh [22], Smoluchowski [23], Parker [24], 
Walden [25], Planck [26], Fuoss [27], Kortüm [28], [29], and extensive 
developments are not finalized up to now. 
 
1.2. ELECTROMAGNETICS FROM A QUASISTATIC PERSPECTIVE 

The general theoretical considerations can be found in [30−32]. Here only the 
essentials are cited.  

The quasistatic limit of the Maxwell Equations (MEs) is a kind of c  
limit (the fields propagate at once) obtained by neglecting time retardation. EQS 
has important applications modelling transient phenomena in approximating 
theories for materials with low conductivity (or the low-frequency approximation). 
The crucial step is the fact that a time dependent electric field may derived from a 
scalar potential which is, in our case the solution of a certain nPDE of the third 
order [33−37]. General transient electrodynamical problems are not easy to solve, 
e.g. by occurring solutions depending upon roots one has to take into account 
branch points. In media with a finite conductivity a static field is not possible and 
the pertinent relaxations time is given by ߬ = ଵ [38], where ିߪߝ଴ߝ  is the relative 
permittivity (of the material) and   is the conductivity. For the most metals (e.g. 
copper) the relaxation time is in the range of 10ିଵ଼s. New developments in 
material sciences produce materials with a relative dielectric constant in the range 
of 42   and a conductivity of about 10ିଽି݉ݏଵ. Then the decay rate is 
approximately ߬ ≈ 10ିଷs and this is long compared to other time constants of the 
system (e.g. if an electromagnetic field passes through a panel).  

This is exactly the case where EQS can be applied [32], [38] and only pure 
capacitive effects are of interest. In further studies considering both capacitive and 
inductive effects the Darwin model will be used. Note that statics is just a 
particular case of the general MEs but quasistatics works as an approximation. 

                                             
1.3. THE MODEL EQUATION UNDER CONSIDERATION 

The starting point is an expanded version of the PBE, a special nPDE of the third 
order 
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where F is the Faraday constant, D the diffusion constant and k is the Boltzmann 
constant.  

One assumes the conversion: Let ௜ܰ
଴ × 1000 = ஺ܰܿ௜ , ܿ௜ is the molar 

concentration and the ion strength is defined by ܫ = 1/2∑ ܿ௜ݖ௜ଶ.௜  Introducing 
further per definition 
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one derives a third-order nPDE for the time-dependent potential function 
),( txuu  : 
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At this stage one formally imposes boundary conditions (BCs) so that 
lim௫→ஶ ଴ݑ = ௅ and lim௫→ஶݑ

ௗ௨
ௗ௫

= 0 holds; they are necessary conditions later for 
the function u = u(x,t). Note that BCs may depend upon actual problems. We find 
it useful to split up the potential so that u0 is the potential at any surfaces and uL is 
the potential in the electrolyte far away from a reference ion, thus u = u0 − uL (not 
to be changed with the Laplacian). 

One seek solutions for the nPDE, Equation (3) for which u = F(x,t), F  
C3(D), D  R2 is an open set and  

 .....,0,0,0:~),(:  tx uuuDtxuD  

is excluded with t > 0. Suitable solutions are u  I, I an interval so that I  D and 
2: RIu  . It is not an easy task to solve nPDEs (especially of higher order) 

exactly but here we wish to solve the Equation (3) analytically by using algebraic 
methods without numeric’s. A mean value for the charge density is used in 
Equation (3) and one-valued ions are assumed so that zi = z = 1. In later 
considerations the case of many-valued ions will be considered. The potential 
function utxu ),(  represents the ion’s potential surrounded by the ‘ion cloud’. In 
further meaning this function describes the time-dependent potential of an arbitrary 
metal electrode dipping in an (liquid) electrolyte (due to the restrictions imposed 
by EQS not all metals can be considered). Note that a standard concentration of c= 
0,01mol/l, resp. ci for the concentration of the i-th ion at a standard temperature of 
T = 293,15 K is assumed. In the following we shortly present the basics. 
 
1.4. THE ALGEBRAIC SOLUTION PROCEDURE 

Consider a given nPDE in its two independent variables x  and  t  
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Firstly the nPDE converts into a nODE by using a frame of reference 
)(),(  ftxu , where tx  ;   and   are constants to be determined. Thus 

one has 

  0....,)('',)(',)(  fffQ .                                                 (b) 

The next step is that the solutions we are looking for can be expressed in terms of a 
finite series representation such that 
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holds where ),( kcn   means the cosine amplitude and k  is the modulus. The 
parameter n in Equation (c) is found by balancing the highest derivative with the 
nonlinear terms in the reduced nODE Equation (b). This parameter must be a 
positive integer since it represents the number of terms in the series (c). In the case 
of fractions one can take suitable transformations as shown later. The substitution 
of Equation (c) into the relevant nODE Equation (b) will yield a system of 
nonlinear algebraic equations with respect to the unknowns 0a , 1a  , …. , k ,   and 
 .  
 
2.  CALCULATION OF SOLUTIONS 

We convert the Eq. (3) by )(),(  ftxu , tx    to derive the nODE of the 
third-order 
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Note: The similarity transformation is called the travelling wave reduction 
describing any wave propagation and   means the velocity. One of the new 
aspects here is the introduction of the quantity to generalize the method. 

  

We seek for solutions for which )(Ff  , 3RF   and 2RD   is an open 
set excluding  

 0,0)(:~),(:  tfDfD  . 
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Suitable solutions are If  , I an interval so that DI   and 2: RIf  . 
Since the l.h.s of Equation (4) is a continuous function we ensure at least existence 
locally and due to the lemmas from Peano and Picard-Lindelöf we assume 
uniqueness (also at least locally) in a given domain. 

The question now is: Can we integrate the nODE Equation (4) directly so 
that we can rewrite the nODE (4) in a complete differential form? Indeed, one has 
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Integrating once with 1c  as an arbitrary constant of integration gives a second-
order nODE  
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Then the transformation )]([ln/1)(  wf  will remove the exponential function 
yielding a further second-order nODE for the new dependent variable )(w : 
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To apply the algorithm performed in Section 1(d) above it is necessary to 
know the quantity n  in the series Equation (c). It can be shown that two values 
exist: 11 n  and 22 n .  

This is not possible since this quantity must be Zn . Introducing a new 
variable )(p  by the transformations 1

1 )()(  pw and 2
2 )()(  pw  will give 

two second-order nODEs (balancing now leads to 11 n  and 22 n )  for the 
function )(p : 
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 Thus, from the Equation (c) the following solutions for the functions )(p  
are possible: 

),()( 101 kcnaap   , for 1n                                            (8a) 

),(),()( 2
2102 kcnakcnaap   , for 2n                     (8b) 
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 Putting together the Equations (c), (8a), (8b) into the nODEs (7a), (7b) two 
systems of nonlinear algebraic equations appear. For control purposes we only 
stress the first and the last equation. 
1st case, 1n : 

.0222
1

,0222
121

22
02





ka

aca
                                                   (9) 

2nd case, 2n : 

.022
222

20222
1

23
2

22
203

2
2

2
132

2
2
0322

10322
01

2
212021

2
11

2
0

,02
2322

232
20622

0
23

03122102







aaaaaaa

aaaaaaacacaacaca

aaaaaacaca

                  (9a) 

 Solving these systems the following solutions are possible (the trivial 
solution is always a solution but meaningless for our purposes; the constants   
and   are predetermined quantities and should not work as unknowns): 
1st case: 

(i) 00 a ,  3232
1 c ,   366,013

2
1

k , 0 , 0 , 1a  arbitrary,     (10) 

(ii) 16
23

2
1

0 aa  , 
2

245
1


c , 3k , 0 , 0 , 1a  arbitrary,                 (10a) 

(iii) 00 a ,  3232
1 c ,   366,131

2
1

k , 0 , 0 , 1a  arbitrary (10b) 

2nd case: 

(i)  20 3aa  , 01 a , 
2

7 2

1


c , 
2
1

k , 0 , 0 .                            (10c) 

An interesting role plays the constant 1c : It relates the parameters   and   
in the similarity variable   if one sets 11 c  and thus we exclude 01 c  in the 
Equation (6). By using the Equations (8a) to (10c) one derives the following 
expressions for the functions )(f  and therefore for the functions ),( txu : 

    kcna
kcna

f ,ln1
,

1ln1)( 1
1

1 












 ,  13
2
1

k , 

                                                      3232 




tx ,                                 (11) 




























 




3
1,33

24
23ln1)( 12 dnaf , 245

2





tx ,  1a  arbitrary, 01 a ,       

(11a) 



An Algebraic Calculation Method for Describing Time−Dependent Processes     85 

 

 


























3
2,13

2
1ln1)( 13 dnaf ,   3232 




tx , 1a  arbitrary,  

01 a ,                                   (11b) 
and for the 2nd case 




























2
1,3ln1)( 2

24 cnaf , 27
2





tx , 2a  arbitrary, 02 a .        (11c) 

Note: To derive this solutions the basic properties of the elliptic functions 
(and the logarithm) was used, especially the relation for the modulus

1'22  kk , the Jacobi’s real transformation for negative modulus and the 
transformation for imaginary arguments, e.g. [39]. Thus, for example, one 
has the relation ),(:),(  cdkucn  for the cosine amplitude. Elliptic 
functions with the special modulus 2/1k , e.g. in case of the function )(4 f

are sometimes called lemniscate functions. For the following discussions it 
is only necessary to consider the functions in the form )(if , 4,...,1i . For 
the constant   we have ିߟଵ =  ଵ and this is materialିܥܬ0,0253
independent. We assume the following domains of definition:

  1)(),(1  ucnusn , 1)('  udnk  and  )(utn . 
 
3.  SOME SPECIAL PROPERTIES    

In all cases a travelling character is observed, but for all functions the argument of 
the logarithm may not be the unity, since in this case the solutions take infinity or 
become a singularity, apart from that the expressions have singularities if the 
denominators take zero. All functions are continuously and differentiable at least 
two-fold in the domain 0 <  < 1, the first, the second and all higher derivatives 
exist and have the same behaviors as above. Some special values are summarized 
in the following table.    

Now we are interested in further quantities. We assume an electrical field

iE


 and this field will be generated by a given charge distribution. Such an electric 
field can then be derived from the potential by application of the gradient operator

)( ii fE


 to give the following expressions and without loss of generality one 

can also set 121  aa ; the modulus are given by the Equations (11) to (11c): 
 

   kdcksnE ,,1)(1 





,  7546,1 ,                                            (12) 
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   
 3

1

3
1

3
1

2
,33

24
23

,33,3331)(







dn

sncn
E


,                                            (12a) 

     3
2

3
2

3 ,,
3

132
)( 




 asdacnE


,   13
2
1

a ,               (12b) 

     
 kcn

ksnkdnkcnE
,3

,,,21)( 24








.                                               (12c) 

 

)(if  0|)( if  1|)( if  0|)( if  1|)( if  )(
0

lim 


if  )(
1

lim 


if  

)(1 f  0 1,2182 1 1,9993 0 0,5423 

)(2 f  0 0,0005 0 -0,0041 -0,6826 -0,5853 

)(3 f  0 0,2073 0,2440 0,1394 0 0,1126 

)(4 f  0 0,2348 0,5 -0,1301 -1,3863 -1,2105 

 

Table 1. Some selected properties of the functions Equation (11) to Equation 
(11c), here 121  aa  is considered, 4,...,1i . 
 

Note: We stress that the first expression is not defined at those points 
where the denominator vanishes, e.g. at the points as 0),(  kcn . This is 
equivalent with the task to look for solutions of the equation 0),(  kcn . 
The first real zero is given explicitly and the same is true for the remaining 
denominators.  

 

Now we show that the fields have a conservative character since by 
considering Cartesian coordinates, e.g. ),,( zyx   the relation 0)( iErot


 

holds (the field is irrotational or equivalently, the existence of the potential is 
secured since the curl of the field vanishes).  

To show that the fields are really solenoidal one introduces Cartesian 
coordinates in the Equations (12) to (12c) so that ),,()( zyxi EEEE 


. Here also 

121  aa  is assumed and we suppress the factor 1  and dropping all 
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arguments. The calculation is performed only for the first component )(1 E


, the 
remaining are similar. With a unit vector ie  one has:  

yx

yx
z

zx

zx
y

zy

zy
x

zyx

zyx

zyx

EE
e

EE
e

EE
e

EEE

eee
EErot















11 .   (13) 

Now it follows that 

0...
),(

),(),(
),(

),(),(
,1 



















kycn
kydnkysn

kzcn
kzdnkzsnErot zyx


, 0,0  yx ,  

                                                                                             0z                     (13a) 
 
All the individual terms disappear and therefore the rotation is zero and 

thus the field is solenoidal.  
To derive the charge density one has to apply the divergence operator upon 

the electric field (   acts as a local coordinate once again) so that 

)()4/(1)(  ii E


.This yields complicate expressions with elliptic functions; 
one can assume these as a kind of superposition. One has: 

        ktnkdnksnkkdn ,,,,
4

1)( 22222
1 


 ,                                (14) 

 

    
 

   
  ,

),(12138
,4),(12138),(

),(12138
,),(12138,),(27

)(

2

22
2

kdn
ksnkdnkdn

kdn
kcnkdnksnkdn









                       (14a) 

 
     

    ,13
2
1,,

8
1

12
1

,
3

1,113
12
1)(

2

22
3






























akasd

kacdkasn
                               (14b) 

  
     

               .,3,2,3,,,2

,,,6
,34

1)(

222222

422
22

4

ksnkdnksnkcnksnkdn

kcnksnkdn
kcn








     (14c) 
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Let a  be a specific distance e.g. from the electrode surface to the centre of the 
(hydrated) ion in the OHL. The total charge totiq ,  contained in the OHL is 

obtained by integrating the charge densities )(i  from the electrode surface with 
the reference point taken at infinity. Therefore one has to integrate once the 
expressions for the charge densities given in the Equations (14) to (14c). For the 
first density )(1   one has: 

























a a a a

tot dktnkdndksnkdkdndq ),(),(),(),(
4

1)( 22222
1,1 . 

(15) 
 

The first and the second integration can be done exactly but the third term 
causes troubles and can be handled only numerically. This is a standard procedure 
for any numerical integration processes and will not be performed here. An 
alternative way is, since all the elliptic functions are continuous functions to 
consider known series representations by changing integration and sums. 
Otherwise the Weierstrass expansions [40], [41] of the involved elliptic functions 
can be made. This reflects, among other things, the immense difficulties in dealing 
such problems (convergence of the considered integrals is assumed). To reach the 
goal faster we suggest another possibility: Determining the first and the second 
integrals exactly and signing the last term by 





aa

dkRdktnkdn  ),(),(),( 22 . 

Then, integrating once, one has, in principle 

  
   

    
 

    
   

  ,,
,1,

,,,

,1

,,,

,1,

,,
4

1

2

22

22.1































a

tot

CdkR
kasnkkadn

kkaamEkasnk

kasnk

kkaamEkadn

kasnkkadn

kkaamEkkaq

        (15a) 

in which (.,.)E  is the elliptic integral of the second kind and (.,.)am  is the 
Jacobian amplitude. Taking the limit of each term, that is 0a  the terms 
approaches to zero except the third. This guarantees charge conservation so that 
charge cannot disappears anywhere. Here it is amplified how fast mathematical 
problems can grow up making problems unsolvable (at least analytically). In 
Equation (15a) the special case 1k  yields:  
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  







a

tot dagdEaaq 


)(tanh
4

1,)(coth2 2
,1 ,                                 (15b) 

in which the argument of the elliptic integral of the second order the Guderman 

function (or hyperbolic amplitude) occurs defined by   )(:arctan22 agdea  . In 

principle one also can consider the case 0k  which gives a linear connection 
explicitly  





a

tot daq 


)(tan
4

2
,1 .                                                                  (15c) 

 However one should bear in mind that the first, the second and the fourth 
term vanishes leading to the fact that essential contributions to the charge density 
could be lost. In fact, the expressions (15b) and (15c) represent the classical result 
known from electrostatics. For comparative purposes we show a graphical 
representation of these functions in Figure 6 (remember that  )0,(E  and 

 sin)1,(E ). 
 

Note: It is possible to handle the expression ),( kR   such that one assumes 
also special values for the modulus, e.g. 1,0k . Then the elliptic functions 
degenerate to the usual circular and hyperbolic functions, resp., leading to 
integrals of the general form  





a

duuuR )(tan)0,( 2  and 



a

duuuR )(tanh)1,( 2 . 

However one has to specify appropriate conditions to handle the 
divergence of these integrals. Otherwise an anti derivative of ),( kR  exists 
in general and one has the expression 

   CktnkdnEdktnkdndkR ),(),()(2),(),(),( 22
. 

If necessary one can make use of the formula for the double 
argument, in detail  

 222 )2(1/(()2(1(),(),(  cncnktnkdn . 

For the Gudermann function one has 2)(arctan2)(  xexgd . To 
prove this one has to show that both sides of the last relation vanishes as 

0x . Left side: 0)0arctan())0h(arctan(sin)0( gd , right side: 

.02212)arctan(2 24
0  e  
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As a last remark we stress the possibility to express the cosine amplitude by 
theta- and sigma-functions; to give an example the solution Equation (11) reads, 
once again with 11 a  as 

 
 
 

 
  




























k
k

k
k

kcn
f 'ln

2
1

,
,ln1

,
1ln1)(

4

2

1

3
1 







 .                      (16) 

 
Note: We want to show up here different ways to express solutions, the 
user can then apply a preferred representation. It is also possible to express 
these solutions in terms of the Weierstrassian -function. Thus one has, in 
principle, the relation  

),()(),;( 31
2

31332 keeunseeeggu   

where u  means a general argument of the ns-function, 32 , gg  are the 

invariants of the -function and 1e  and 3e  are the roots of the equation 

04 32
3  gtgt which are all different. To complete, the modulus of the 

ns-function is expressed by )/()( 3132
2 eeeek   for known values of the 

ie .The involved functions are meromorphic and double-periodic, the i  

are odd and entire functions; the i  are even and entire. To clarify the 

relationship we present the connection between 1  and 1 , one has in 

detail    vuCu  2
1

1
2

11 )2/()(exp)( , [39], [46]. Also one has to take 

care the regularity of the arguments of the logarithm. 
 
4.  A NUMERICAL STATEMENT – PRACTICAL FUNCTION SERIES 

              REPRESENTATIONS  

 

For fast numerical calculations it is convenient to have series representations, 
therefore we calculate some ascending power series formulas for the solution 
functions Equation (11) to Equation (11c). The functions, derived from the 
transformation of the log-function are valid up to the given order valid at 0 :  

 108642
1 ....

1260
)31223(

90
)325(

12
)32(

2
1)( 
















 Of ,          (17) 

 
 64

2
2

2 ...
138122

)13813120(81
)13812(

54
13812

12ln1)( 





















 Of ,   (17a) 
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 8642
3 ...

21215
7

27
1

23
1)( 








 Of                                          (17b) 

 8642
4 ...

960
23

32
3

4
14ln)( 











 Of .                                       (17c) 

 
Note: Consider the first function series f1(), where the necessary condition 
limక→଴ ௜݂(ߦ) = 0 holds. The terms thus form a sequence of zeros and also 
for the function f3(). Since the function f1() is continuous (at least in the 
considered domain), the sum function is also a continuous function. In 
principle one has series of the general form fi() = a2 + b4 + c6 + ... = 
dn. Although the terms form a null sequence, such series are divergent. 
For practical calculations, only the first terms (row fractionation after the 
quadratic term) are important. The series f2() and f4() are divergent 
anyway since they do not form a null sequence. If one needs series for great 
arguments, asymptotic formulas are necessary. But here one has to be 
careful because the limit   does not exist. By using asymptotic series 
the divergence does not play any role. 

 
Similar formulas can also be derived for the electric fields and charge 

densities (the convergence should be checked by appropriate methods). Another 
useful series representation in terms of circular functions (in the sense of a Fourier 
series) is given by the following formula; we only present the first function f1(), 
Equation (11), similar expressions could be obtained for the remaining: 
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where  KKq /'exp   and K , 'K  are the complete elliptic integrals )(kKK  . 
Here the expansion is valid in every strip of the form  ln2/1)2/(Im K  

with   as a parameter with positive imaginary part [39,40].  
From the Table 1, it is seen that the limiting values limక→଴ ௜݂(ߦ) vanish for 

the functions f1() and f3(), the functions f2() and f4() remain finite and real. 
Otherwise taking limక→ஶ ௜݂(ߦ) it is seen that these limits do not exist. From this 
standpoint one can say that these functions are not stable in the sense of the 
stability of solutions which require that the function(s) must vanish as   
(thus the limits must exist). This might cause troubles in quantum-mechanical 
considerations in which the potential functions must “behave well” but such types 
of functions are known and can be used by suitable assumptions (no square 
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integrability). Also for a fast overview one can solve the Equations (7a) and (7b) in 
terms of a power series representation; here we give formulas valid up to order two 
with arbitrary coefficients 0ia  and 11  c . Due to the similar structure 
of these nODEs the series hardly differ; and one gets, for the eq.(7a) 
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and similar for the Equation (7b) 
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5. SUMMARY – BENEFITS AND DISADVANTAGES – OPEN PROBLEMS 

I. Transient electrodynamical (and electrochemical) problems are notoriously 
difficult to solve (in the general case one needs Green’s tensors and/or 
vector potentials) and uniqueness is not always given (solutions depending 
upon roots are involved so that branch cuts must be taken into account). 

 

II. In this study we showed that a nPDE, the Equation (1) which has the 
meaning of a modified Poisson-Boltzmann Equation can be solved 
analytically by application of pure algebraic steps. The highly nonlinear 
equation was introduced by the author recently [33] to describe time 
depending electrochemical processes and/or charge transfer upon 
electrodes. 

 
III. We applied an algebraic approach containing elliptic functions explicitly. It 

is remarkable that classes of solutions derived by this special method differ 
completely from solutions of the DHT in their behaviour. It is a special 
hallmark of algebraic methods that one cannot predict appropriate solutions 
in the sense of the solubility of the nonlinear algebraic system of 
polynomial equations. Several other approaches are used but none of them 
leads to useful results.  

 
IV. The success and/or failure strongly depends upon the solubility of the 

nonlinear algebraic system. Due to the experience of the author such 
systems are often over determined and the number of equations ne is greater 
than the number of unknowns nu. The ideal case is therefore ne = nu and by 



An Algebraic Calculation Method for Describing Time−Dependent Processes     93 

 

skillful considerations in combination with the physical reality the outer 
form of the nonlinear algebraic system can be controlled. Thus we expand 
the original similarity variable tx   to tx  .  The purpose of 
the similarity variable is twofold: It reduces a given nPDE to a nODE – this 
always works, and, if one seeks for, due to the physical situation, a 
traveling wave solution. One cannot, in general predict the solution 
manifold; that means that by use of the traveling wave reduction one has no 
guarantee to generate a traveling motion. In each case one has at least to 
check whether the solution represents a traveling wave motion or not. 

 
V. A further important fact is given by the integration constant c1 in the 

Equations (7a) and (7b), respectively. Only in the context of soliton theory 
one can set ci = 0 (in view of a localized wave). Generally it is not allowed 
to set it zero as happen in several papers. Otherwise an interesting feature 
can be observed here: The constant c1 relates the parameters   and  . 

 
VI. The difference of the method used here to other algebraic methods is 

enormous. Most algebraic methods are based upon the fact that the 
unknown solution function satisfies a nODE of the first order [42], [43], 
[44], and [45] to mention some examples. Thus the name of the (algebraic) 
method comes from the used nODE, e.g. the hyperbolic tangent method 
(including the Riccati Equation as the cornerstone), the exponential 
transform method, the Weierstrass transform method, the Lambert function 
transform method and so on. Here, in our analysis the unknown solution 
function (the cosine amplitude function, Equation (c) and its derivatives 
can be used independently from any nODEs. Of course, the function and 
their derivatives have to satisfy general mathematical properties such like 
continuity, differentiability and existence in a given domain. 

 

Note: For all scientists and engineers who are dealing with elliptic 
functions we recommend the excellent formula collection from Byrd and 
Friedmann, [46]. This attractive and unique treatment as well as the 
classical Abramowitz/Stegun [39] should be a standard equipment for all 
mathematical considerations. 

 

VII. In fact, the algorithm works efficiently and solutions of the highly nPDE, 
the Equation (1) and the Equation (3) respectively can be derived without 
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any problems. Problems may appear by further using of the solution 
functions, e.g. the analytic determination of the total charge, the Equation 
(15). Here only a numerical procedure is possible. Also the solution 
procedure of the nonlinear algebraic system, the Equations (9) and (9a), 
respectively may cause troubles. If one is interested in dealing higher order 
nPDEs, the degree of the system will increase rapidly and long computing 
time is expected. Due to the experience of the author many of such systems 
are satisfied only by the trivial solution and the algebraic solution process 
will fail. 

 

VIII. In the present analysis the EQS approximation was used and no magnetic 
effect were considered. To handle this case a further extensions will be 
done in future. Another aspect is the fact that the particles involved have 
quantum-like properties and another theory is necessary. Thus a quantum 
mechanical approach will be considered as a next task. 

 
 

 
 
Figure 1. The solution function )(1 f , Equation (11), left and the solution function 

)(2 f , Equation (11a), right. Both functions show a travelling character. The 
graphs are generated by using the constant 11 a . The influence of the constant 

0253,01  (numerically) is such that it shifts the graphs upon the vertical axis 
and this true for all further graphics. 
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Figure 2. The solution function )(3 f , Equation (11b), left and the solution 
function )(4 f , Equation (11c), right. Also both functions show a travelling 
character. The functions are generated by using the constant 11 a  and 12 a . 
 

 
Figure 3.  A planar sketch of the charge densities )(1  , left and )(4  , right. 
Here, also 121  aa  was used. The functions show periodic behaviour once 
again. The periodic peaks left may be interpreted as a charge distribution near a 
charged particle (e.g. analogously in a crystal lattice). 
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Figure 4. A three-dimensional plot of the functions ),(4 txu , left and ),(3 txu  
right. The functions have the modulus 2

1k  and  3
2k  respectively and the 

values 1  were used. 

Figure 5. A graphical representation of the function Equation (11) in the principal 
form  ),(ln kcn   with the modulus 3660,0k  and for 4/0   left and 

2/0   right without the influence of the constant  . One can see the poles in 
the given domain surrounded by symmetrical ‘field line distribution’. 
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Figure 6. A planar sketch of the charge densities, the Equations (15b) left and 
(15c) right without the integral contributions. If one interprets the distance "a" as 
the seat of a charge generating size, then, on both sides of a charge accumulation is 
lockable). In this model the central ion is thought to be located in the centre. The 
increasing (decreasing) part up to the maximum (minimum) matches domains of 
higher concentrated charged areas.  
 
 
Acknowledgment. The author dedicates this work to Professor Helmut Jäger, 
Professor Emeritus at the Institute of Experimental Physics, Technical University 
Graz, Austria. 
 
 
REFERENCES 

1. E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos, 
Cambridge University Press, Cambridge, 1990.  

2. K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to 
Painlevé: A modern theory of special functions, Aspects of Math. E, Vol. 
16, Vieweg, Braunschweig, Germany, 1991. 

3. K. Okamoto, in: R. Conte (ed.), The Painlevé Property, One Century Later, 
CRM Series in Math. Phys, SpringVerlag, New York, 1999. 

4. P. A. Clarkson, Painlevé equations-nonlinear special functions, J. Comp. 
Appl. Math. 153 (2001) 127−140. 

5. P. Debye, E. Hückel, Du la theorie des electrolytes. I. Abaissement du point 
de congelation et phenomenes associes, Z. Physik 24 (1923) 185−206.  

6. H. Falkenhagen, G. Kelbg, Klassische statistik unter Berücksichtigung des 
Raumbedarfs der teilchen, Ann. Physik 11 (1952) 60−64.  

7. M. Born, Über die Beweglichkeit der elektrolytischen Ionen, Z. Physik 45 
(1920) 221249.  

-3 -2 -1 1 2 3
a

-0.075

-0.05

-0.025

0.025

0.05

0.075

q1, \ tot

-3 -2 -1 1 2 3
a

-7.5

-5
-2.5

2.5

5
7.5

q1, \ tot



98                                                                                                                                                  HUBER 

 

8. I. Onsager, Electric moments of molecules in liquids, J. Am. Chem. Soc. 58 
(1936) 1486−1493.  

9. H. Falkenhagen, Elektrolyte, Verlag von Hirzel, Leipzig, 1932. 
10.  R. J. Hunter, Foundations of Colloid Science, Vol. 1, Clarendon Press, 

Oxford, 1987. 
11.  J. Bockris, A. Reddy, Modern Electrochemistry, Vol. 1, Vol. 2, 2nd ed., 

Kluwer, New York, 1998. 
12.  G. Gouy, Sur la constitution de la charge électrique à la surface d'un 

electrolyte, J. Phys. 9 (1910) 457−466. 
13.  D. L. Chapman, A contribution to the theory of electrocapillarity, Philos. 

Mag. 25 (1913) 475−481.  
14.  J. D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley & Sons, 

New York, 1998. 
15.  K. Huang, Statistical Mechanics, John Wiley & Sons, New York, 1990. 
16.  O. Stern, Theory of a doubleelectric layer with the consideration of the 

adsorption processes, Z. Electrochem. 30 (1924) 508−516.  
17.  D. C. Grahame, The electrical double layer and the theory of 

electrocapillarity, Chem. Rev. 41 (1947) 441−501. 
18.  N. Bjerrum, Der Aktivitätskoeffizient der lonen, Z. Anorg. Allgem. Chem. 

109 (1920) 275−292. 
19.  T. Gronwall, V. La Mer, K. Sandved, Über den Einfluss der sogenannten 

höheren Glieder in der DebyeHückelschen Theorie der Lösungen starker 
Elektrolyte, Z. Physik  29 (1929) 358−393. 

20.  L. Onsager, Theories of concentrated electrolytes, Chem. Rev. 13 (1933) 
73−89. 

21.  J. G. Kirkwood, Theory of solutions of molecules containing widely 
separated charges with special application to zwitterions, J. Chem. Phys. 2 
(1934) 351−361. 

22.  J. C. Ghosh, The abnormality of strong electrolytes. Part I. Electrical 
conductivity of aqueous salt solutions, J. Chem. Soc. 113 (1918) 449−458. 

23.  M. Smoluchowski, Molekularkinetische Theorie der Opaleszenz von 
Gasen im kritischen Zustand, Ann. Phys. 25 (1908) 205−226. 

24.  H. C. Parker, The conductance of dilute aqueous solutions of hydrogen 
chloride, J. Am. Chem. Soc. 45 (1923) 2017−2033. 

25.  P. Walden, H. Ulich, Weitere Zahlen in der von Walden kritisch 
bearbeiteten Übersicht in LandoltBörnsteinRothScheel, Z. Physik 
Chem. 106 (1923) 49−92. 



An Algebraic Calculation Method for Describing Time−Dependent Processes     99 

 

26.  M. Planck, Über die Potentialdifferenz zwischen zwei verdünnten 
Lösungen binärar Elektrolyte, Ann. Phys. Chem. 40 (1890) 561−576.  

27.  R. M. Fuoss, F. Accascina, Electrolytic Conductance, Intersci. Publ. Inc. 
New York, 1959. 

28.  G. Kortüm, J. Bockris, Textbook of Electrochemistry, Vol. 1, Elsevier, 
Amsterdam, 1951. 

29.  G. Kortüm, Lehrbuch der Elektrochemie, 5th ed., Verlag Chemie, 1972. 
30.  J. Larsson, Electromagnetics from a quasistatic perspective, Am. J. Phys. 

75 (3) (2007) 230−239. 
31.  J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941. 
32.  H. A. Haus, J. R. Melcher, Electromagnetic fields and energy, Prentice 

Hall Inc., New York, 1989. 
33.  A. Huber, A new time dependent approach for solving electrochemical 

interfaces part I: theoretical considerations using Lie group analysis, J. 
Math. Chem. 48 (2010) 856−875.  

34.  A. Huber, Algebraic approaches for solving time-dependent 
electrochemical interfaces, Int. J. Res. Rev. Appl. Sci. 6 (1) (2011) 1−9.  

35.  A. Huber, An algebraic approach for solving time-dependent potentials, 
MATCH Commun. Math. Comput. Chem. 66 (1) (2011) 205−217. 

36.  A. Huber, A new time dependent approach for solving electrochemical 
interfaces theoretical considerations using algebraic approaches, MATCH 
Commun. Math. Comput. Chem. 67 (1) (2012) 91−107. 

37.  A. Huber, Extensions to study electrochemical interfaces, A contribution 
to the theory of ions, Iranian J. Math. Chem. 5 (1) (2014) 31−46. 

38.  J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941. 
39.  M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, 10th 

print, Nat. Bureau of Standards, New York, 1972. 
40.  I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, 

Academic Press, New York, 1965. 
41.  A. Huber, A note on class of travelling wave solutions of a nonlinear third-

order system generated by Lie’s approach, Chaos, Solitons and Fractals, 
32 (4) (2007) 1357−1363. 

42.  A. Huber, Solitary solutions of some nonlinear evolution equations, Appl. 
Math. and Comp. 166 (2) (2005) 464−474. 

43.  A. Huber, A novel class of solutions for a nonlinear third order wave 
equation generated by the Weierstraß transform method, Chaos, Solitons 
and Fractals 28 (4) (2006) 972−978. 



100                                                                                                                                                  HUBER 

 

44.  A. Huber, A generalized exponential transform method for solving 
nonlinear evolution equations of physical relevance, Appl. Math. Comput. 
215 (1) (2009) 344−352. 

45.  A. Huber, On the connection of Lambert functions and classes of solutions 
of nonlinear evolution equations, Int. J. of Res. and Rev. in Appl. Sci. 3 (1) 
(2010) 47−54. 

46.  P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers 
and Scientists, 2nd ed., Springer−Verlag, New York-Heidelberg, 1971. 



Iranian J. Math. Chem. 9 (2) June (2018) 101 − 111 
 

 

 
 

The Irregularity and Total Irregularity of Eulerian 
Graphs 
 
R. NASIRIa,, H. R. ELLAHIa, A. GHOLAMIa AND G. H. FATH−TABARb 
aDepartment of Mathematics, Faculty of Science, University of Qom, Qom, I. R. Iran 
bDepartment of Pure Mathematics, Faculty of Mathematical Sciences, University of 
Kashan, 87317−53153, Kashan, I. R. Iran 
 
ARTICLE INFO  ABSTRACT 
Article History: 
Received 27 November 2015 
Accepted 11 January 2016 
Published online 30 May 2018 
Academic Editor: Ivan Gutman 

For an arbitrary graph G, the irregularity and total irregularity of G are 
defined as irr(G)  =  ∑ |dୋ(u)− dୋ(v)|୳୴∈୉(ୋ)  and  irr୲(G) =
1/2∑ |dୋ(u) − dୋ(v)|୳,୴∈୚(ୋ) , respectively, where dୋ(u) is the degree 
of vertex u. In this paper, we characterize all connected Eulerian graphs 
with the second minimum irregularity, the second and third minimum 
total irregularity, respectively. 
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1.  INTRODUCTION  

Throughout this paper, G is a simple and connected graph with the vertex and edge sets V(G) 
and E(G), respectively. For a graph G, there is a novel notion named third Zagreb polynomial, 
defined as Mଷ(G, x) = ∑ x|ୢృ(୳)ିୢృ(୴)|

୳୴∈୉(ୋ) . Astaneh-Asl et al. [7] studied Mଷ(G, x) of 
Cartesian product of two graphs and a type of dendrimers. In special case, the value of 
derivative of this polynomial at point x = 1 is well known as the irregularity of  G and 
denoted by irr(G), which was already proposed by Albertson [6]. In the other words 

irr(G) =  ∑ |dୋ(u) − dୋ(v)|୳୴∈୉(ୋ)                                      (1)  
In [6], Albertson gave some upper bounds on irregularity for trees, bipartite, and 

triangle-free graphs. Recall that the first Zagreb index Mଵ and the second Zagreb index Mଶ of 
are defined as Mଵ(G) ܩ = ∑ dୋଶ(u)୳∈୚(ୋ)  and Mଶ(G) = ∑ dୋ(u). dୋ(v)୳୴∈୉(ୋ) , respectively. 
These indices were introduced in [16] and reflect the extent of branching of the molecular 
carbon-atom skeleton and can be viewed as molecular structure-descriptors [8,25]. Moreover, 
the values of these indices are computed for a class of nanostar dendrimers in [26]. Fath-Tabar 
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[14] named the sum in (1) the third Zagreb index, and established new bounds on the first and 
second Zagrab indices that depend on irr(G). Zhou and Luo obtained the relationship between 
irregularity and first Zagreb index of graphs, and also they determined the graphs with 
maximum irregularity among trees and unicyclic graphs with given matching number and 
number of pendent vertices [19, 29]. Hansen and Melot determined the maximum irregularity 
of graphs with n vertices and m edges [17]. Moreover, Abdo and Dimitrov considered the 
irregularity of graphs under several graph operations [5]. Previously, we characterized all 
graphs with the second minimum of the irregularity in [20]. Also, we studied in [15, 21], trees 
and unicyclic graphs whose irregularity is extremal. More works about this graph invariant 
have been reported in [2, 9, 18, 22−24]. 

Recently, Abdo et al. [1] introduced a new measure of irregularity of a graph, so-called 
the total irregularity, as  irr୲(G) = 1/2∑ |dୋ(u)− dୋ(v)|୳,୴∈୚(ୋ) . For a connected graph G, 
the irregularity indices irr and irr୲ were compared in [12], where it was shown that irr୲(G) ≤
nଶ/4irr(G). Furthermore, they proved that if G is a tree, then irr୲(G) ≤ (n− 2) × irr(G). 
Abdo and Dimitrov [4] gave the upper bounds on ݅ݎݎ௧ of graphs under several graph 
operations including lexicographic, Cartesian, strong, direct, and corona products, also join, 
disjunction and symmetric difference. In [1], graphs with maximal total irregularity were 
characterized and the upper bound on the total irregularity of graphs was obtained. In special 
classes of graphs, such as trees, unicyclic and bicyclic graphs, this invariant has been studied 
in [13, 27, 28]. 

An Eulerian circuit is a closed walk in a graph that visits every edge of the graph once 
and only once. A graph containing an Eulerian circuit is called an Eulerian graph. The study 
of these graphs was initiated in 1736. Their study is a very fertile field of research for graph 
theorists. Although, in the graph theory, the term Eulerian graph has two common meanings, 
i.e. a graph with an Eulerian circuit, or a graph with every vertex of even degree. Note that in 
the case of connected graph, these definitions are equivalent [10]. 

The aim of this paper is to study the irregularity and total irregularity of connected 
Eulerian graphs. In Section 2, we show that the irregularity of an Eulerian graph is a 
multiple of 4, and by using it, we characterize all   Eulerian graphs with the second 
minimum irregularity value. Finally in Section 3, we determine graphs with the second 
and third minimum of total irregularity value over the class of all connected Eulerian 
graphs. 

2. THE SECOND MINIMUM IRREGULARITY OF   EULERIAN GRAPHS 

In this section,we first restate a proven result in [10], which is needful for proving that the 
irregularity of   Eulerian graphs is divisible by 4. Afterwards, we would able to determine the 
  Eulerian graphs with the second minimum irregularity value. 



The Irregularity and Total Irregularity of Eulerian Graphs 103 

 

Lemma 2.1. [10] A connected graph is Eulerian if and only if each of its vertices has even 
degree. 

Theorem 2.2. Let ܩ be an Eulerian graph with ݊ vertices, then ݅(ܩ)ݎݎ = 4݇, for some non-
negative integer ݇. 

Proof. We prove the theorem by induction on n. Obviously, for n = 1, we have  irr(Kଵ) = 0. 
Suppose that for any Eulerian graph H on less than n vertices, irr(H) = 4k, for some non-
negative integer k. Now, we shall show that if G is an Eulerian graph on n vertices, then there 
exists a non-negative integer k′ with irr(G) = 4k′. To show this, we shall use induction on 
the number of edges. For m = 0, it is obvious that irr൫K୬൯ = 0. By induction on m, suppose 
that for any n-vertex Eulerian graph H, which has less than m edges, we have irr(H) = 4k, 
for some non-negative integer k. Let G be an n-vertex Eulerian graph with m edges. Let 
C୯ = vଵvଶ⋯ v୯vଵ be the smallest simple cycle in G, and H = G − E(C୯). If H = K୬, then 
G = C୯, and therefore irr(G) = 0. If H ≠ K୬, then either H is an n-vertex Eulerian graph 
with less than m edges, or each of connected components of H is an Eulerian graph on less 
than n vertices. Therefore, by inductions’ hypotheses, there is some k ≥ 0 such that irr(H) =
4k. For convenience, we use the following notations: 

             Eᇱ = ൛xv ∈ E(H) ∶ v ∈ V൫C୯൯& ݔ ∈ ܸ(G) ∖ V൫C୯൯ൟ, 

        d୪(v) = |{xv ∈ E′ ∶ dୌ(x) ≤ dୌ(v)}|, 

       d୥(v) = |{xv ∈ E′ ∶ dୌ(x) > dୌ(v)}|, 

    sign(s) = ൜1      ;  s = l
−1   ; s = g. 

Assume that v୯ାଵ = vଵ. With above notations, one can immediately see that for any 
vertex v୧ of C୯, dୌ(v୧) = d୪(v୧) + d୥(v୧). Note that by the choice of C୯, there is no non-
consecutive indices i and j such that v୧v୨ ∈ E(G). Moreover, for any edge xv ∈ E′, if dୌ(x) ≤
dୌ(v), then 

|dୋ(x) − dୋ(v)| − |dୌ(x) − dୌ(v)| = 2 = 2 sign(l). 

Moreover, if dୌ(x) > dୌ(v) then  
|dୋ(x) − dୋ(v)| − |dୌ(x) − dୌ(v)| = −2 = 2 sign(g). 

Now, we have: 

irr(G) − irr(H) =  ∑ |dୋ(u) − dୋ(v)|୳୴∈୉൫େ౧൯    + ∑ (|dୋ(x)− dୋ(v)|− |dୌ(x) − dୌ(v)|)୶୴∈୉ᇲ    

                          =  ∑ |dୋ(u)− dୋ(v)|୳୴∈୉൫େ౧൯ + 2∑ ቀd୪(v) − d୥(v)ቁ୴∈୚൫େ౧൯  

             = ∑ ቀ|dୋ(u) − dୋ(v)| + d୪(u) − d୥(u) + d୪(v) − d୥(v)ቁ୳୴∈୉൫େ౧൯  = ∑ r୧
୯
୧ୀଵ . 
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such that for any  i = 1,2, … , q, 

r୧ = |dୋ(v୧) − dୋ(v୧ାଵ)| + d୪(v୧) − d୥(v୧) + d୪(v୧ାଵ) − d୥(v୧ାଵ). 

One can easily check that if dୋ(v୧ାଵ) ≤ dୋ(v୧), then  

r୧ = 2d୪(v୧) − 2 d୥(v୧ାଵ) = 2 sign(l)d୪(v୧) + 2 sign(g)d୥(v୧ାଵ), 

and if dୋ(v୧ାଵ) > dୋ(v୧), then  

r୧ = −2 d୥(v୧) + 2d୪(v୧ାଵ) = 2 sign(g)d୥(v୧) + 2 sign(l)d୪(v୧ାଵ). 

Hence, for some suitable s୧, s୧ᇱ ∈ {l, g}, where 1 ≤ i ≤ q, we can write the following: 

   irr(G)− irr(H) = ∑ r୧
୯
୧ୀଵ   = ቀ2 sign(sଵ)dୱభ(vଵ) + 2 sign(sଶᇱ )dୱమᇲ (vଶ)ቁ 

                                + ቀ2 sign(sଶ)dୱమ(vଶ) + 2 sign(sଷᇱ )dୱయᇲ (vଷ)ቁ + ⋯ 

 + ൬2 sign൫s୯൯dୱ౧൫v୯൯ + 2 sign(sଵᇱ )dୱభᇲ (vଵ)൰ 

 = ∑ ൬2 sign(s୧)dୱ౟(v୧) + 2 sign(s୧ᇱ)dୱ౟ᇲ(v୧)൰
୯
୧ୀଵ  

 = 2∑ ൬sign(s୧)dୱ౟(v୧) + sign(s୧ᇱ)dୱ౟ᇲ(v୧)൰
୯
୧ୀଵ   

 = 2∑ t୧.
୯
୧ୀଵ  

For each i = 1,2, … , q, there exist three cases as follow: 

1) If s୧ = s୧ᇱ = l, then t୧ = 2 d୪(v୧). 

2) If s୧ = s୧ᇱ = g, then t୧ = −2 d୥(v୧). 

3) If s୧ ≠ s୧ᇱ, then t୧ = d୪(v୧) − d୥(v୧). 

Since dୋ(v୧) = d୪(v୧) + d୥(v୧) is even, d୪(v୧) − d୥(v୧) is even, too. Therefore, in all of the 
above cases, t୧ is even. Thus, 

                       irr(G)− irr(H) = 2∑ t୧
୯
୧ୀଵ = 4∑ ቀଵ

ଶ
ቁ t୧

୯
୧ୀଵ = 4k′′ 

where k′′ is an integer. Hence, the theorem is proved by induction.                                           □ 

Obviously, for a connected graph G, irr(G) = 0 if and only if it is a regular graph. 
Therefore, we have the following result: 

Corollary 2.3.  For a non-regular connected   Eulerian graph ܩ of order ݊, irr(ܩ) ≥ 4. 

We know that the minimal irregularity of graphs is zero. Obviously, the irregularity of 
a graph is zero if and only if all of its connected components are regular. Since for each 
positive integer r ≥ 1, each connected 2r-regular graph is an Eulerian graph, hence the first 
minimum irregularity of Eulerian graphs is zero; and  by Theorem 2.2, we conclude that the 
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second minimum of the irregularity of Eulerian graphs is 4. In the following theorem we 
characterize connected Eulerian graphs with the second minimum irregularity. 

Theorem 2.4. There are  12   types of connected  Eulerian    graphs with irregularity value 4, 
where the general forms and examples of them are shown in Figure 1 and Table 1, 
respectively. 

Proof.  Let G be a connected Eulerian graph with irr(G) = 4. For each edge uv of G, set 
irr(uv) = |dୋ(u)− dୋ(v)|, so we can write  irr(G) = ∑ irr(uv)୳୴∈୉(ୋ) . The proof 
continues in three separate cases as follows: 
 

Case 1. Let xy be an edge of G such that irr(xy) = 4. Since G is a connected Eulerian 
graph, there is a cycle xyvଵvଶ⋯ v୩x in G containing edge xy. Clearly, since  irr(G) =
irr(xy) = 4, then irr(yvଵ) = irr(vଵvଶ) = ⋯ = irr(v୩x) = 0 and we deduce that dୋ(y) =
dୋ(vଵ) = dୋ(vଶ) = ⋯ = dୋ(v୩) = dୋ(x), which is a contradiction. Therefore, this case 
does not occur. 
 

Case 2. There are two edges xy and xz such that irr(xy) = irr(xz) = 2. It is clear 
that  yxz is a path from vertex y to vertex z. Suppose U = {uଵ, uଶ, … , uୱ} and V =
{vଵ, vଶ, … , v୰} are subsets of vertices of G such that x, y, z ∉ U, V. Also assume that 
yuଵuଶ⋯ uୱxz and yxvଵvଶ⋯ v୰z are two paths in G from vertex y to vertex z containing 
vertex x. Since irr(G) = irr(xy) + irr(xz), then 

irr(yuଵ) = irr(uଵuଶ) = ⋯ = irr(uୱx) = irr(xvଵ) = irr(vଵvଶ) = ⋯ = irr(v୰z) = 0. 
Consequently, dୋ(x) = dୋ(y) = dୋ(z), which is a contradiction . Thus, two subcases will be 
considered as: 
(۷) There are two paths from vertex y to vertex z such that vertex x belongs to only one of 

them. Assume that yuଵuଶ⋯ uୱz is a path in G, so dୋ(y) = dୋ(z). Therefore, G is 
constructed of two separated components Gଵ and Gଶ that are connected by edges xy and 
xz, which x ∈ V(Gଵ) and y, z ∈ V(Gଶ). Let |V(Gଵ)| = k and |V(Gଶ)| = n − k. Thus, we 
may consider two different parts as follows: 

(i) dୋ(x) = a, dୋ(y) = dୋ(z) = a − 2 ; 
(ii) dୋ(x) = a, dୋ(y) = dୋ(z) = a + 2. 

In part(i), for any u in V(Gଵ)\{x}, dୋభ(u) = a, dୋభ(x) = a − 2, and for any vertex 
u in V(Gଶ)\{y, z},  dୋమ(u) = a − 2,  dୋమ(y) = dୋమ(z) = a − 3. Therefore, 2|E(Gଵ)| =
ka − 2, 2|E(Gଶ)| = n(a − 2) − ka + 2(k − 1), Gଵ is a (2t + 2)-regular graph, and Gଶ 
is a 2t-regular graph, for some t ≥ 1. Consequently, ka and n(a − 2) are even. Since a is 
even, k and n can be odd or even. Thus, four types will occur (see Table 1, types 1-4). 

In part(ii), we have 2|E(Gଵ)| = ka − 2, 2|E(Gଶ)| = (n − k)(a + 2) − 2. 
Consequently, k and n can be odd or even. Thus, we have four further types (see Table 1, 
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types 5−8). Note that in these types, Gଵ is a 2t-regular graph and Gଶ is a (2t + 2)-regular 
graph, for some t ≥ 1. 

(۷۷) There is only one path, say yxz, joining vertices y and z which contains vertex x. Suppose 
xuଵuଶ⋯ uୱy and xvଵvଶ⋯ v୰z are two paths in G, where uଵ ≠ z and vଵ ≠ y. Since 
irr(G) = irr(xy) + irr(xz), then by above assumptions, dୋ(x) = dୋ(y) = dୋ(z), 
which is a contradiction to irr(xy) = irr(xz) = 2. Therefore, G is composed of three 
separate components Gଵ, Gଶ and Gଷ where Gଵ and Gଶ are connected by edge xy, Gଵ and 
Gଷ are connected by edge xz, x ∈ V(Gଵ), y ∈ V(Gଶ), z ∈ V(Gଷ), V(G) = V(Gଵ) ∪
V(Gଶ) ∪ V(Gଷ) and E(G) = E(Gଵ) ∪ E(Gଶ) ∪ E(Gଷ) ∪ {xy, xz}. Obviously,  
2|E(Gଶ)| + 1 = ∑ dୋ(u)୳∈୚(ୋమ)  but dୋ(u)  is even, for any vertex u of G. Therefore, 
this subcase does not occur. 

 
Case 3. There are two distinct edges xy and uv such that irr(xy) = irr(uv) = 2. As case 

2, we may again check this case in two subcases as follows: 
(۷) vertices y and u belong to all paths from vertex x to vertex v; 
(۷۷) There are two paths from vertex x to vertex v such that vertices y and u belong to 
only one of them.  

Similar to case 2, in subcase (۷), G is constructed of three separate components Gଵ, Gଶ  
and Gଷ, where Gଵand Gଶare connected by edge xy, and Gଶ, Gଷ are connected by edge uv, 
x ∈ V(Gଵ), y, u ∈ V(Gଶ), v ∈ V(Gଷ), V(G) =  V(Gଵ) ∪ V(Gଶ) ∪ V(Gଷ) and E(G) = E(Gଵ) ∪
E(Gଶ) ∪ E(Gଷ) ∪ {xy, uv}. Obviously,  2|E(Gଵ)| + 1 = ∑ dୋ(w)୵∈୚(ୋభ)  but dୋ(w)  is 
even, for any vertex w of G. Therefore, this case does not occur. 

In subcase (۷۷), we can see that G is composed of two separate components  Gଵ, Gଶ 
where Gଵ and Gଶ are connected by edges xy and uv, also x, v ∈ V(Gଵ) and y, u ∈ V(Gଶ). Let 
dୋ(x) = a, |V(Gଵ)| = k and |V(Gଶ)| = n − k. Without loss of generality, in the case (۷۷), we 
can consider following two parts: 

(i) dୋ(x) = dୋ(v) = a, dୋ(y) = dୋ(u) = a + 2 ; 
(ii) dୋ(x) = dୋ(v) = a, dୋ(y) = dୋ(u) = a − 2. 

A similar argument as case 2, in part(i), k and n can be odd or even . Thus we have 
another four types (see Table.1, types 9−12). Note that, the graphs in parts(ii) and (i) are 
identical, where Gଵ is 2t-regular, and Gଶ is (2t + 2)-regular, for some t ≥ 1.                          □ 

Note that, in generally, the irregularity of a graph is equal to the summation of its 
connected components’ irregularities. Therefore, if G is an n-vertex (not necessary 
connected) Eulerian graph with irr(G) = 4, then Theorem 2.2 implies that G ≅ G′ ∪ Kୱ, 
where G′ is a connected Eulerian graph on n − s vertices with irr(G′) = 4. 
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General form of types 1−8 General form of types 9−12 

Figure 1. General forms of Eulerian graphs with the second minimum irregularity. 

 

Type 1 Type 2 Type 3 

   
n=13,k=8,a=6,t=2 n=9,k=7,a=4,t=1 n=10,k=6,a=4,t=1 

Gଵ: (2t + 2)-regular Gଵ: (2t + 2)-regular Gଵ: (2t + 2)-regular 
Gଶ: 2t-regular Gଶ: 2t-regular Gଶ: 2t-regular 

Type 4 Type 5 Type 6 

  
 

n=14,k=9,a=6,t=2 n=6,k=1,a=2,t=1 n=14,k=6,a=4,t=2 
Gଵ: (2t + 2)-regular Gଵ: 2t-regular Gଵ: 2t-regular 

Gଶ: 2t-regular Gଶ: (2t + 2)-regular Gଶ: (2t + 2)-regular 
Type 7 Type 8 Type 9 

 

 

  
n=15,k=7,a=4,t=2 n=19,k=8,a=4,t=2 n=8,k=2,a=2,t=1 

Gଵ: 2t-regular Gଵ: 2t-regular Gଵ: 2t-regular 
Gଶ: (2t + 2)-regular Gଶ: (2t + 2)-regular Gଶ: (2t + 2)-regular 

Table 1. Examples of Eulerian graphs with the second minimum irregularity. 
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Type 10 Type 11 Type 12 

   
n=13,k=5,a=4,t=2 n=9,k=2,a=2,t=1 n=14,k=5,a=4,t=2 

Gଵ: 2t-regular Gଵ: 2t-regular Gଵ: 2t-regular 
Gଶ: (2t + 2)-regular Gଶ: (2t + 2)-regular Gଶ: (2t + 2)-regular 

Table 1. (Continued). 
 

3. THE SECOND AND THIRD MINIMUM TOTAL IRREGULARITY FOR 

  EULERIAN GRAPHS  
In this section, first we express some initially basic definitions and a prominent proved 
result of [3], and then investigate the second and third minimum total irregularity of 
connected Eulerian graphs. 

If V(G)  = {vଵ, vଶ, . . . , v୬}, then the sequence ൫dୋ(vଵ), dୋ(vଶ), . . . , dୋ(v୬)൯ is 
called a degree sequence of G [11]. Without loss of generality, we may assume that 
dୋ(vଵ) ≥ dୋ(vଶ) ≥. . .≥ dୋ(v୬). A bicyclic graph is a simple connected graph in which 
the number of edges equals to n + 1. A basic bicyclic ∞-graph, denoted by ∞(p, q, l), is 
obtained from two vertex-disjoint cycles C୮ and C୯ by connecting one vertex of C୮ and 
one of C୯ with a path P୪ of length l − 1 (in the case of l =  1, identifying the above two 
vertices) where p, q ≥  3 and l ≥  1. 

Clearly, a graph G has total irregularity zero if and only if G is a regular graph. 
Note that the connected 2r-regular graph, is an Eulerian graph with irr୲ = 0. Hence,the 
first minimum total irregularity of Eulerian graphs is zero. Moreover the corresponding 
extremal Eulerian graphs with total irregularity 0 are exactly all 2r-regular Eulerian 
graphs, where r ≥ 0, and if r > 0 then the graph is connected. In [3], the authors 
characterized the non-regular graphs with the second and the third smallest total 
irregularity. 

Lemma 3.1. [3]  Let G be a simple connected graph with ݊ vertices. If ܩ is a non-regular  
graph, then ݅ݎݎ௧(ܩ) ≥  2݊ −  4. 

In the following result, we show that the second minimum of the total irregularity 
of Eulerian graphs is 8 and determine the unique Eulerian graph with irr୲ = 8. 
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Theorem 3.2. Let ܩ be a connected non-regular   Eulerian graph of order݊, then irr୲(ܩ) ≥
8, and the equality holds if and only if ܩ ≅ ∞(3,3,1), where the bicyclic graph ∞(3,3,1) 
is shown in Figure 2. 
 

∞(3,3,1) 
Figure 2. Unique Eulerian graph with the second minimum total irregularity. 

Proof. By Lemma 3.1, if n ≥ 7, then irr୲ > 8. If n = 6, then the degree sequence of G can 
be one of the following cases: (4,4,4,4,4,2), (4,4,4,4,2,2), (4,4,4,2,2,2), (4,4,2,2,2,2), and 
(4,2,2,2,2,2). By a simple calculation, one can easily see that in these cases, irr୲(G) > 8. 
If n = 5, then the degree sequence of G may be either (4,4,2,2,2) or (4,2,2,2,2). Note that 
the cases (4,4,4,4,2) and (4,4,4,2,2) do not occur. Also, the total irregularity of graph G 
with degree sequence (4,4,2,2,2) is equal to 12 and with degree sequence  (4,2,2,2,2) is 
equal to 8. Additionally, the graph G with  degree sequence  (4,2,2,2,2) is the bicyclic 
graph ∞(3,3,1). Clearly, regular graphs Cଷ and Cସ are the only Eulerian graphs with 3 
and 4 vertices, which have total irregularity 0.                                                            □ 

Theorem 3.3. Let ܩ ≇ ∞(3,3,1) be a connected non-regular   Eulerian graph of order  ݊, 
then ݅ݎݎ௧(ܩ) ≥ 10, and the equality holds if and only if ܩ ≅ ∞(4,3,1) or ܪ, where graphs 
∞(4,3,1) and ܪ are shown in Figure 3. 

  
∞(4,3,1) H 

Figure 3. Eulerian graphs with the third minimum total irregularity. 
 

Proof. By Lemma 3.1, if n ≥ 8 then irr୲ > 10. If n = 7, then the degree sequence of G 
may be the following cases: 

(6,6,6,6,6,6,4), (6,6,6,6,6,6,2), (6,6,6,6,6,4,4), (6,6,6,6,6,4,2), (6,6,6,6,6,2,2), 
(6,6,6,6,4,4,4), (6,6,6,6,4,4,2), (6,6,6,6,4,2,2), (6,6,6,6,2,2,2), (6,6,6,4,4,4,4), 
(6,6,6,4,4,4,2), (6,6,6,4,4,2,2), (6,6,6,4,2,2,2), (6,6,6,2,2,2,2), (6,6,4,4,4,4,4), 
(6,6,4,4,4,4,2), (6,6,4,4,4,2,2), (6,6,4,4,2,2,2), (6,6,4,2,2,2,2), (6,6,2,2,2,2,2), 
(6,4,4,4,4,4,4), (6,4,4,4,4,4,2), (6,4,4,4,4,2,2), (6,4,4,4,2,2,2), (6,4,4,2,2,2,2), 
(6,4,2,2,2,2,2), (6,2,2,2,2,2,2), (4,4,4,4,4,4,2), (4,4,4,4,4,2,2), (4,4,4,4,2,2,2), 

(4,4,4,2,2,2,2), (4,4,2,2,2,2,2), (4,2,2,2,2,2,2). 

   CସCଷ 

CଷCଷ 
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By a simple calculation, one can easily see that in these cases, irr୲(G) > 10. If 
n = 6, then the degree sequence of G can be the following cases: 

   (4,4,4,4,4,2), (4,4,4,4,2,2), (4,4,4,2,2,2), (4,4,2,2,2,2), (4,2,2,2,2,2). 
The total irregularity of graph G with degree sequence (4,4,4,4,4,2) or (4,2,2,2,2,2) is 
equal to 10 and with the other degree sequences is more than 10. Note that if (4,4,4,4,4,2) 
is degree sequence of graph G, then G ≅ H, and if (4,2,2,2,2,2) is degree sequence of 
graph G, then G ≅ ∞(4,3,1). Finally, if n ≤ 5, then by  referring to the proof of Theorem 
3.2, we see that the total irregularity value of G is not equal to 10.                                      □ 

Corollary 3.4. The second and third minimum value of the total irregularity of Eulerian 
graphs are 8 and 10, respectively. 
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1. INTRODUCTION  

 Let G=(V,E) be a finite simple graph with vertex set V={1 ,  2 , ... ,  n} ,  edge set E and 
degrees ݀ଵ ≥ ݀ଶ ≥ ⋯ ≥ ݀௡ .  The arithmetic-geometric index of a graph ,  proposed by 
Vukičević and Furtula (see[19]) ,  is defined by  

(ܩ)ܣܩ = ∑ ଶඥௗ೔ௗೕ
ௗ೔ାௗೕ(௜,௝)∈ா                                        (1) 

This index has attracted considerable attention and ,  through a variety of 
inequalities ,  it has been compared to a number of other indices ,  such as the ABC index , 
 the first and second Zagreb indices ,  the general Randić index ,  the modified Narumi-
Katayama index and the harmonic and sum-connectivity indices ,  among others .   Different 
upper and lower bounds have been found for GA(G) either through the connections to 
these other indices ,  or from first principles,  see [5 − 8, 12, 15 − 18] for details .
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  In this note we present two additional contributions to the study of GA(G) .  First , 
 we use notions of electric circuits in order to prove a relationship ,  to the best of our 
knowledge not explored yet ,  between GA(G) and the global cyclicity index ,  introduced by 
Klein and Ivanciuc (see [10]) and defined by  

(ܩ)ܥ = ∑ ଵ
ோ೔ೕ(௜,௝)∈ா −  (2)                                  |ܧ|

 where ܴ௜௝ denote the effective resistance between the vertices i and j ,  that is ,  the voltage 
drop between vertices i and j when a battery is installed between those two vertices such 
that a unit current flows between them .  This index has further been studied in [2, 21−23]. 
  We also apply majorization techniques in order to find tight upper and lower 
bounds for GA(G).  Majorization has been applied extensively to find bounds and extremal 
values for a variety of descriptors . We point out the book chapters [1] and [3] and the 
recent articles [9, 13, 21] for a sample of the variety of scenarios covered with this 
approach . 

 Here is a brief summary of majorization (for more details the reader is referred to 
[11]) :  given two n-tuples ݔ = ,ଶݔ,ଵݔ) … , ݕ ௡) andݔ = ,ଵݕ) ,ଶݕ … , ଵݔ ௡) withݕ ≥ ଶݔ ≥ ⋯ ≥
ଵݕ  ௡ andݔ ≥ ଶݕ ≥ ⋯ ≥ ݔ ௡ ,  we say that  x majorizes y and writeݕ ≻   in case ݕ

∑ ௜ ௞ݔ
௜ୀଵ ≥  ∑ ௜௞ݕ

௜ୀଵ ,                                       (3) 
for 1 ≤ k ≤ n − 1 and 

∑ ௜ ௡ݔ
௜ୀଵ =  ∑ ௜௡ݕ

௜ୀଵ .                                       (4) 
A Schur-convex function Φ : R → R keeps the majorization inequality, that is, if Φ 

is Schur-convex then x ≻ y implies Φ(x) ≥ Φ(y). Likewise, a Schur-concave function 
reverses the inequality: for this type of function x ≻ y implies Φ(x) ≤ Φ(y). A simple way 
to construct a Schur-convex (resp. Schur-concave) function is to consider Φ(x) = 
∑ ௡(௜ݔ)݂
௜ୀଵ , where ݂: ℝ → ℝ is a convex (resp. concave) one-dimensional real function. 

The main idea for finding bounds through majorization for a molecular index is to 
express such index as a Schur-convex or Schur-concave function, and then to identify 
maximal and minimal elements, x∗ and x∗ respectively, that is, elements in the subspace of 
interest of the n-dimensional real space (which can be a set of n-tuples of degrees of 
vertices, or eigenvalues, or effective resistances, etc.) such that x∗ ≻ x ≻ x∗ , for all n-
tuples x in the subspace of interest, and then if Φ is Schur-convex we will have Φ(x∗ ) ≥ 
Φ(x) ≥ Φ(x∗ ), for all x, having thus found the upper and lower bounds of interest, Φ(x∗ ) 
and Φ(x∗ ), respectively.  A similar conclusion follows, exchanging the words “upper” and 
“lower”, if Φ is Schur-concave. 
 
2. EFFECTIVE RESISTANCES AND THE GEOMETRIC-ARITHMETIC INDEX 

The following lemma is fundamental for what follows. 
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Lemma 1. For any G and (i,j) ∈ E we have 

ܴ௜௝ ≥  ఋ
ఋାଵ

( ଵ
ௗ೔

+ ଵ
ௗೕ

)                                (5) 

 
Proof. We prove that 

ௗ೔ାௗೕିଶ 
ௗ೔ௗೕିଵ

≥  ఋ
ఋାଵ

( ଵ
ௗ೔

+ ଵ
ௗೕ

)                             (6) 

Without loss of generality, let us assume that di = max{di,dj} and dj = min{di,dj}. 
Then δ ≤ dj and since the real function f(x) = ௫

௫ାଵ
 is increasing, in order to prove (6) it is 

enough to prove that 
ௗ೔ାௗೕିଶ 
ௗ೔ௗೕିଵ

≥
ௗೕ

ௗೕାଵ
( ଵ
ௗ೔

+ ଵ
ௗೕ

)                                  (7) 

But it is an easy computation to see that the truth of (7) is equivalent to the statement 
(݀௜ − 1)(݀௜ − ௝݀) ≥ 0. And now we can apply a result in [14] stating that for (i,j) ∈ E 

ܴ௜௝ ≥
ௗ೔ାௗೕିଶ 
ௗ೔ௗೕିଵ

 finishing the proof .With this lemma we can prove now the following 

 
Proposition 2. For any graph G we have 
 

(ܩ)ܣܩ ≥ ଶఋ
୼(ఋାଵ) (ܩ)ܥ) +  (8)             (|ܧ|

 
Proof. For any G we have 

(ܩ)ܣܩ = ෍
2ඥ݀௜ ௝݀

݀௜ + ௝݀(௜,௝)∈୉

≥
2
∆ ෍ (

1
݀௜

+
1
௝݀(௜,௝)∈ா

) ିଵ 

                                                     ≥ ଶఋ
∆(ఋାଵ)

∑ ଵ
ோ೔ೕ

(௜,௝)∈ா = ଶఋ
∆(ఋାଵ)

(C(G)+|E|). 

The previous proposition yields as corollaries many lower bounds for GA(G) and upper 
bounds for C(G). For example, 
 
Corollary 3. For any G with n ≥ 3 we have 

(ܩ)ܣܩ ≥ ଶఋ|ா|మ

∆(ఋାଵ)(௡ିଵ)
                                (9) 

For any d-regular G we have 

(ܩ)ܥ ≤ ௡ௗ(ௗିଵ)
ସ

                                    (10) 

Proof. It is shown in [21] that, for n ≥ 3, C(G) ≥ |ா|(|ா|ି௡ା|ଵ)
௡ିଵ

.  Inserting into (8) finishes 
the proof of (a). For (b), it is immediate from the definition that if G is regular, then 
GA(G) = |E| and inserting this into (8) gives us the desired result . 
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Remarks4. The inequality (9) attains the equality for Kn, but not for other regular graphs, 
and it is not comparable to the bound found in [5]: 

(ܩ)ܣܩ ≥ ଶ|ா|√∆ఋ
∆ାఋ

                                 (11) 
 
as can be seen taking G to be Kn−1 together with an extra vertex attached with a single 
edge to any of the vertices of the Kn−1 . For this graph the bound (11) is of order n3/2 

whereas (9) is of order n2 . We will improve slightly the bound (9) below. Also, the bound 
(10) recovers a result in [21], with a totally different proof. 
 
3. MAJORIZATION AND THE GEOMETRIC-ARITHMETIC INDEX 

We present the following results, found in Section 2.3 of [1] (Corollary 2.3.2 and Theorem 
2.3.2) as a lemma which will be used below. 
 
Lemma 1. Let Σ௔   be the set of real n – tuples  ݔ = ,ଶݔ,ଵݔ) … ,  ≤ ... ≤ ௡) such that x1 ≥ x2ݔ
xn  and  ∑ ௜௡ݔ

௜ୀଵ = ܽ.  Let Sa be the set of n-tuples belonging to Σ௔ which additionally 
satisfy M ≥ xi ≥ m. Then  
(i) The minimal element of Σ௔ is (௔

௡
, … , ௔

௡
) 

(ii) If the minimal element in (i) belongs to Sa , then it is also the minimal element of Sa; 
(iii) the maximal element of Sa is (M,M,...,M,θ,m,m,...,m), where M  appears  k times, m 
appears  n − k − 1 times, ݇ = [௔ି௡௠

ெି௠
]  and  θ = a − Mk − m(n − k − 1). 

 
Lemma 2. For all G we have 

ଶ
୼
∑ ଵ

஺೔ೕ(௜,௝)∈ா ≤ (ܩ)ܣܩ ≤ ଶ
ఋ
∑ ଵ

஺೔ೕ
(௜,௝)∈ா   ,                        (12) 

where ܣ௜௝ = ଵ
ௗ೔

+ ଵ
ௗೕ

 . 

 
Proof. Write  

෍
2ඥ݀௜ ௝݀

݀௜ + ௝݀(௜,௝)∈ா

≥
2
∆ ෍

݀௜ ௝݀

݀௜ + ௝݀(௜,௝)∈ா

=
2
∆ ෍

1
௜௝(௜,௝)∈ாܣ

 

The other inequality proceeds similarly. Now we will apply majorization to the summation 
∑ ଵ

஺೔ೕ(௜,௝)∈ா , by looking at the function Φ(ݔ) = ∑ ଵ
௫೔

|ா|
௜ୀଵ  on the set of |E|-tuples ݔ =

,ଶݔ,ଵݔ) … ,  :௡). Specifically we will show the followingݔ
 
Proposition 3.  For any G we have 
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ଶ
୼

 |ா|మ

௡
≤ (ܩ)ܣܩ ≤ ଶ

ఋ
(ଶ௞
ଷ

+ ଵ
ఏ

+ |ܧ|) − ݇ − 1) ௡ିଵ
ଶ

)                                  (13) 

 
where 

݇ = ቈ
௡ି|ா| మ

೙షభ
య
మି

మ
೙షభ

቉ , ߠ = ݊ − ଷ
ଶ
݇ − ଶ

௡ିଵ
−|ܧ|) ݇ − 1). 

The lower bound is attained by any regular graph. The upper bound is attained by the 
complete graph. 
 
Proof. We notice that the numbers ܣ௜௝ satisfy 

ଶ
௡ିଵ

≤ ௜௝ܣ ≤
ଷ
ଶ
                                            (14) 

And 

∑ ௜௝(௜,௝)∈ாܣ = ∑ ௗ೔
ௗ೔

௡
௜ୀଵ = ݊                                (15) 

The right inequality in (14) is clear because in any edge (i,j) of a connected graph G with n 
> 2, if di = 1 then dj ≥ 2. 

Let us consider the subset of ℝ|ா| defined as 

Σ௡ = ݔ} ∈ ℝ|ா| ∶ ଵݔ ≥ ଶݔ ≥ ⋯ ≥ ; |ா|ݔ  ෍ݔ௝ = ݊}
|ா|

௝ୀଵ

 

and Sn the subset of Σ௡ such that its |E|-tuples satisfy ଷ
ଶ
≥ ௜ݔ  ≥ ଶ

௡ିଵ
 for 1 ≤ i ≤ |E|. By 

Lemma 1 we can find explicitly the minimal element of Sn , that is, an |E|-tuple x∗ such 
that x ≻ x∗ for x ∈ Sn , indeed ݔ∗ = ( ௡

|ா|
, ௡

|ா|
, … , ௡

|ா|
). 

Notice that x∗ belongs to Sn because the coordinates of x∗ , which are all equal to 
௡

|ா|
 Satisfy ݉ = ଵ

ଶ(௡ିଵ)
≤ ௡

|ா|
≤ ௡

௡ିଵ
≤ ଷ

ଶ
= as long as n ≥ 3. Also, since f(x) = ଵ , ܯ

௫
, for x > 

0, is convex, then Φ(x) = ∑ ଵ
௫೔

|ா|
௜ୀଵ is Schur-convex, and Φ(x) ≥ Φ(x∗ ) = |ா|మ

௡
, and since the 

|E|-tuple of numbers Aij over the edges of the graph, properly arranged in decreasing order, 

belongs to the set Sn on account of facts (14) and (15), we have that ∑ ௜௝ܣ  ≥  |ா|మ

௡(௜,௝)∈ா  , 
and this together with (12) of lemma 2 ends the proof of the lower bound in (13). 

Analogously for the upper bound, by Lemma 2 we can identify explicitly the 
maximal element of Sn , that is, the |E|-tuple x∗ such that x∗ ≻ x for all x ∈ Sn , indeed 

∗ݔ = ቀଷ
ଶ

, ଷ
ଶ

, … , ଷ
ଶ

, ,ߠ ଶ
௡ିଵ

, ଶ
௡ିଵ

, … , ଶ
௡ିଵ

ቁ , where ଷ
ଶ
 appears k times, ଶ

௡ିଵ
 appears |E| − k − 1 

times and ݇ = ቈ
௡ି|ா| మ

೙షభ
య
మି

మ
೙షభ

቉ , ߠ = ݊ − ଷ
ଶ
݇ − ଶ

௡ିଵ
|ܧ|) − ݇ − 1). Therefore 
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෍ ௜௝ܣ ≤ Φ(ݔ∗) = (
(௜,௝)∈ா

2݇
3 +

1
ߠ + |ܧ|) − ݇ − 1)

݊ − 1
2 ) , 

and this together with (12) gives us the upper bound in (13). 
For any ∆-regular graph G the lower bound becomes |E|, which coincides with the 

value of GA(G). For the complete graph Kn , k = 0, ߠ = ଶ
௡ିଵ

 and the upper bound becomes 
௡(௡ିଵ)

ଶ
 , which is precisely the value of GA(Kn ) = |E|. 

 
Remarks 4. The versatility of majorization can be seen in this theorem, where the 
quantities to be majorized are neither degrees, nor eigenvalues, nor effective resistances, 
as is usually the case in the literature, but the numbers Aij , which perhaps do not have a 
clear-cut graph significance. The lower bound in (13) is always better than (8) on account 
of the fact that δ ≤ n − 1. We point out that this lower bound could have been obtained 
without majorization, by using the harmonic mean-arithmetic mean inequality. The real 
strength of the method in this case seems to be in the upper bound, which can be improved 
if we restrict somewhat the degrees of the vertices in the graph, as in the following three 
propositions. 
 
Proposition 5.  For any G without pendent vertices we have 

(ܩ)ܣܩ ≤
2
ߜ (݇ +

1
ߠ + |ܧ|) − ݇ − 1)

݊ − 1
2 ) 

Where ݇ = [௡(௡ିଵ)ିଶ|ா|
௡ିଵ

ߠ, [ = ݊ − ݇ − ଶ
௡ିଵ

|ܧ|) − ݇ − 1). The equality is attained by the 
cycle graph Cn and the complete graph Kn . 
 
Proof. In the absence of pendent vertices we can get the upper bound Aij ≤ 1 and the proof 
in the previous proposition applies, replacing everywhere 3/2 with 1. For the complete 
graph we obtain k = 0, ߠ = ଶ

௡ିଵ
 and the upper bound becomes ௡(௡ିଵ)

ଶ
 , which is the precise 

value of GA(Kn ) = |E|. For the cycle graph, where |E| = n, we get k = n and ߠ = ଶ
௡ିଵ

 , and 
the upper bound becomes n, which is the value GA(Cn ) = |E|.  

 
Recall that a chemical graph is one where di ≤ 4 for all i. For this sort of graph we 

can prove the following. 
 
Proposition 6.  For any chemical graph G we have  

(ܩ)ܣܩ ≤ ଶ
ఋ
൬ଶ௞
ଷ

+ ଵ
ఏ

+ |ܧ|)2 ± ݇ − 1)൰ , 
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Where ݇ = [݊ − |ா|
ଶ

ߠ , [ = ݊ − ଷ
ଶ
݇ − ଵ

ଶ
|ܧ|) − ݇ − 1). The equality is attained by any 4-

regular graph. 
 
Proof. In this case we can get the lower bound ܣ௜௝ ≥

ଵ
ଶ
 and the proof in proposition 2 

applies, replacing everywhere ଶ
௡ିଵ

 with ଵ
ଶ
. For any 4-regular graph we have k = 0 and 

ߠ = ଵ
ଶ
 , and thus the upper bound becomes 2n, which is precisely the value of GA(G) = |E|. 

Combining the two hypotheses, we obtain a more compact statement in the following 
 
Proposition 7.  For any chemical graph G without pendent vertices we have 

(ܩ)ܣܩ ≤
2
ߜ −|ܧ|3) 2݊) 

The equality is attained by the cycle graph Cn and any 4-regular graph. 
 
Proof. In this case we obtain that k = 2n−|E| and ߠ = ଵ

ଶ
 , making the computations, similar 

to those in the previous propositions, very simple . 
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In this work, novel atom-type-based topological indices, named AT 
indices, were presented as descriptors to encode structural 
information of a molecule at the atomic level. The descriptors were 
successfully used for simultaneous quantitative structure-retention 
relationship (QSRR) modeling of saturated alcohols on different 
stationary phases (SE-30, OV-3, OV-7, OV-11, OV-17 and OV-25). 
At first, multiple linear regression models for Kovats retention index 
(RI) of alcohols on each stationary phase were separately developed 
using AT and Randic’s first-order molecular connectivity (1χ) 
indices. Adjusted correlation coefficient (R2

adj) and standard error 
(SE) for the models were in the range of 0.994-0.999 and 4.40-8.90, 
respectively. Statistical validity of the models were verified by 
leave-one-out cross validation (R2

cv > 0.99). In the next step, whole 
RI values on the stationary phases were combined to generate a new 
data set. Then, a unified model, added McReynolds polarity term as 
a descriptor, was developed for the new data set and the results were 
satisfactory (R2

adj=0.995 and SE=8.55). External validation of the 
model resulted in the average values of 8.29 and 8.69 for standard 
errors of calibration and prediction, respectively. The topological 
indices well covered the molecular properties known to be relevant 
for retention indices of the model compounds. 
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1. INTRODUCTION  

QSRR modeling as a branch of quantitative structure–property relationship (QSPR) studies, 
is one of the most effective approaches to provide significant information on retention 
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mechanism as well as the effect of molecular structure on retention behavior of various 
classes of compounds [1,2]. The first important step in QSPR studies is to quantify 
chemical structures of the molecules by descriptors that can show structural similarity and 
diversity of the molecules. Among the different types of descriptors, topological indices 
have found major popularity in QSRR studies since they can be rapidly obtained using only 
two dimensional structure of molecules. These descriptors are exact numbers without 
uncertainty that offer a simple way of measuring molecular branching, shape, size, 
cyclicity, symmetry, centricity and complexity [3]. 

A current trend in QSPR studies is the use of the atomic level topological indices 
that unlike classical topological indices that characterize a molecule as a whole, code the 
structural environment of each atom type in the molecule and describe the structural 
information of a molecule at the atomic level. Ren [4] proposed a set of atomic-based AI 
topological indices that along with modified Xu index were successfully used in estimation 
of different physical and chemical properties. The topological indices showed good 
correlations with normal boiling points, molar volumes, molar refractions, and molecular 
total surface areas of alcohols [5]. Combination of Xu and AI indices was also used to 
develop high quality QSPR models for physical properties of alkanes including normal 
boiling points, heats of vaporization, molar volumes, molar refractions, van der Waals’ 
constants, and Pitzer’s eccentric factors [6]. Panneerselvam et al. [7] developed a linear 
regression model based on AI indices for normal boiling point of trialkyl phosphates. In a 
previous paper, QSPR study of standard formation enthalpies of acyclic alkanes using 
atom-type-based AI topological indices was reported by our group [8]. Nevertheless, AI 
indices have not found widespread application in QSRR studies and there is only one report 
in which gas chromatographic retention index (RI) values of a data set consisting of 33 
aldehydes and ketones on four different polar stationary phases were separately correlated 
with AI atom-type-based indices [9]. 

The main aim of this study was to introduce novel atom-type-based topological 
indices that can be effectively used in QSRR modeling. The other goal was to demonstrate 
the role of structural features on the molecular mechanism of chromatographic retention on 
different stationary phases. In this paper, novel atom-type-based AT topological indices 
along with the most-used Randić’s first-order molecular connectivity index as a classical 
topological index were used for simultaneous prediction of gas chromatographic Kovats 
retention index of saturated alcohols on low to medium polar stationary phases (SE-30, 
OV-3, OV-7, OV-11, OV-17 and OV-25). The model satisfactorily accounted for the 
influence of molecular size and each atom-type or group on retention indices of alcohols on 
different stationary phases. As far as I am aware, this is the first time use of the atomic 
level topological indices for simultaneous prediction of RI data on the stationary phases of 
different polarity. 

 



Novel Atom-Type-Based Topological Descriptors                                                                     123 

2. COMPUTATIONAL DETAILS 

2.1 DATA SET 

The data sets of Kovats retention indices of 25 saturated alcohols on six stationary phases 
of different polarity (SE-30, OV-3, OV-7, OV-11, OV-17 and OV-25) were taken from the 
report of Pias and Gasco [10]. The RI values of the model compounds fall in the range of 
544-1156 on different stationary phases. Table 1 shows the data sets of Kovats retention 
indices of 25 model compounds on six stationary phases of different polarity. 

Table 1. Kovats retention indices of saturated alcohols on different stationary phases. 
 

No Compound 
Stationary phases 

SE-30 
(53)a 

OV-3 
(86)a 

OV-7 
(113)a  

OV-11 
(142)a 

OV-17 
(158)a  

OV-25 
(204)a 

1 1-Butanol 650 672 702 725 748 792 
2 1-Hexanol 856 881 907 935 959 1003 
3 1-Heptanol 960 985 1010 1038 1062 1104 
4 2-Butanol 586 607 633 656 675 711 
5 2-Pentanol 689 711 735 756 777 811 
6 3-Pentanol 689 708 733 756 777 808 
7 3-Hexanol 785 807 830 853 878 904 
8 3-Heptanol 886 909 929 955 975 1008 
9 4-Heptanol 880 904 924 946 968 999 
10 4-Methyl-2-Butanol 628 652 674 692 709 738 
11 2-Methyl-2-Hexanol 822 848 862 884 904 930 
12 2-Methyl-2-Heptanol 920 944 961 982 1001 1026 
13 2-Methyl-3-Hexanol 858 876 897 920 939 969 
14 3-Methyl-1-Butanol 725 747 771 798 817 855 
15 4-Methyl-1-Pentanol 827 849 876 902 923 960 
16 2-Ethyl-1-Hexanol 1019 1046 1067 1092 1116 1156 
17 3-Ethyl-3-Pentanol 853 876 898 920 939 974 
18 2,2-Dimethyl-3-Pentanol 814 834 855 874 890 919 
19 2,2-Dimethyl-3-Hexanol 906 926 944 962 977 1004 
20 1-Propanol 544 574 - - - - 
21 1-Pentanol 751 777 - 806 856 900 
22 2-Hexanol 787 811 835 - 878 914 
23 2-Methyl-1-Propanol 612 641 654 - 680 740 
24 2-Methyl-2-Pentanol 726 748 767 - 801 827 
25 2-Ethyl-1-Butanol 834 857 - 907 928 - 

a McReynolds polarity  
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2.2 DEFINITION OF AT TOPOLOGICAL INDEX 

Novel atom-type-based AT topological indices were derived from the molecular topological 
graph in the same manner of Ren [11] with some modifications. As known, a molecular 
graph G = {V, E} consists of the vertex V(G) and edge E(G) sets, where vertices 
correspond to individual atoms in the graph and the edges correspond to chemical bonds 
between them. The graph G can be characterized by the distance matrix, D = [dij]nn, whose 
elements are the length of the shortest distance between the vertices i and j in a molecular 
graph with n vertices. Clearly, the sum over the row i (or column j) of the distance matrix 
gives the distance sum vector, S = [si]n1, for the graph. The molecular graph can also be 
coded by a vertex degree vector V = [vi]n×1 whose elements are the number of connections 
(edges) of the vertex i in the graph. For heteroatoms and multiple bonds in the graph, the 
new degree of vertex introduced by Ren [6], m, can be used to replace the vi values. This 
novel degree of vertex is derived from the valence connectivity  v of Kier-Hall [12] and is 
defined as: 

௠ݒ =  + ݇ (1) 

݇ = 1 / [(2/ܰ)ଶ ௩ + 1] (2) 

where  is the number of connections of that atom and parameter k is a perturbing term 
reflecting the effect of heteroatom. N is the principal quantum number of the valence shell.  

According to the above definitions, for any atom i that belongs to the j-th atom-type 
in the graph, the ATi (j) is defined as follows: 




 n

1i
ii

ii
i

vs

vsn(j)AT  
(3) 

Clearly, for j-th atom-type in a graph, the corresponding AT(j) index is the sum of all ATi(j) 
values of the same atom type. 


n

i
i(j)ATAT(j)  

 
(4) 

As an illustration, Figure 1 depicts the labeled molecular graph of 3-methyl-1-
butanol.  

 
Figure 1. Labeled molecular graph of 3-methyl-1-butanol. 
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The distance matrix D is expressed as follows: 
 

  0 1 2 3 4 4  
  1 0 1 2 3 3  

 
D = 

 2 1 0 1 2 2  

 3 2 1 0 1 1  

  4 3 2 1 0 2  

  4 3 2 1 2 0  

 
The distance sum vector and vertex degree vector are readily obtained as  
 

S = [ 14     10    8     8    12   12 ] 

V = [ 1.167   2     2     3     1     1 ] 
                                                                                 
where the elements of the vector V, are the modified vertex-degree m. According to the 
above definitions, the AT indices are calculated as follows: 

AT (CH3) = AT (5) + AT (6) = .4351.1
338.100
1216

338.100
1216 






 







 
  

AT (CH2) = AT (2) + AT (3) = .1527.2
338.100
826

338.100
1026 






 







 
  

AT (−CH) = AT (4) = .4351.1
338.100
836 






 
  

AT (OH) = AT (1) = .9770.0
338.100
167.1146 






 
   

2.3 REGRESSION ANALYSIS AND MODEL VALIDATION 

Multiple linear regression (MLR) analyses were performed using SPSS/PC software 
package [13]. Criteria for selection of the best models were the statistics of coefficient of 
multiple determination (R2), adjusted correlation coefficient, Fisher-ratio and SE. Validity 
and stability of the individual models obtained for the stationary phases was tested using 
leave-one-out cross-validation (LOO-CV) method [14]. External stability of the unified 
model generated for simultaneous prediction of RI data of saturated alcohols on different 
stationary phases was tested by external validation method. Standard error of calibration 
(SEC) and standard error of prediction (SEP) were used for evaluating quality of the unified 
MLR model [15]. 
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3. RESULTS AND DISCUSSIONS 

3.1 INDIVIDUAL AND COMBINED LINEAR REGRESSION MODELS FOR DIFFERENT 
STATIONARY PHASES 
 

In the first step of the study, a combination of 1χ and AT topological indices were used to 
develop individual QSRR models for saturated alcohols on different stationary phases. 
Specifications of the best models found for describing the RI values of saturated alcohols 
on the stationary phases are given in Table 2. It can be seen that the equations represent 
excellent QSRR models judging from R2

adj and SE values in the range of 0.994-0.999 and 
4.40-8.90, respectively. Also, F values show a high degree of statistical credibility and are 
indicative of an excellent fit of the models to experimental retention data. Table 3 shows 
the values of topological descriptors entered in the individual MLR models.  

To validate the models, LOO-CV test was performed and cross-validated 
correlation coefficient (R2

cv) values were in the range of 0.993-0.999 (Table 2) which 
indicate that the models are robust and reliable over the sample space. As shown, in all 
cases, cross-validated correlation coefficient is only slightly less than the corresponding 
value of the full model indicating the models are robust and reliable over the sample space. 
Table 4 gives the cross-validated predicted values of RI and corresponding relative errors 
resulted from the individual models developed for the stationary phases. It can be easily 
seen that relative errors for predicted retention indices are less than 3% and only one case 
with a slightly large error was found on OV-17 column (4.3% for 2-Methyl-1-Propanol).  

In the next step of the study, to generate a unified QSRR model for simultaneous 
prediction of Kovats retention indices of saturated alcohols on the stationary phases of 
different polarity, whole retention data for saturated alcohols were combined and used as a 
new data set including 140 RI data points. As known, generation of a single QSRR model 
for simultaneous prediction of retention data on different stationary phases requires a 
parameter that reflects the contribution of the stationary phase to chromatographic 
retention. The contribution may be reflected by the polarity which is the most 
representative chromatographic property of the stationary phase. In this work, system of the 
stationary phase selectivity constant of McReynolds was used and the polarity value 
compared to butanol (y) was employed [16] as additional parameter in QSRR modeling. 
McReynolds polarity parameter values (M) are given in Table 1. 
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Table 2. Characteristics of the best individual QSRR models found for 
saturated alcohols on different stationary phases. 

Coefficients (standardized coefficients) 
Parameter 

OV-25 OV-17 OV-11 OV-7 OV-3 SE-30 
23.473 23.379 -32.319 -24.207 -61.020 -78.658 Constant 

216.654 
(1.113) 

216.928 
(1.098) 

213.848 
(1.096) 

211.921 
(1.094) 

212.954 
(1.114) 

212.539 
(1.109) 

1 

283.435 
(0.213) 

233.514 
(0.175) 

266.654 
(0.204) 

237.995 
(0.176) 

244.899 
(0.179) 

236.651 
(0.172) AT(OH) 

-32.403  
(-0.169) 

-28.620 
(-0.147) 

-18.006 
(-0.099) 

-18.715 
(-0.094) 

-15.149 
(-0.076) 

-13.586 
(-0.068) AT(CH3) 

Statistics  
0.995 0.995 0.995 0.998 0.999 0.998 R2 
0.994 0.994 0.995 0.997 0.999 o.998 R2

adj 
0.993 0.993 0.994 0.997 0.999 0.998 R2

cv 
8.90 8.83 8.34 6.20 4.40 5.39 SE 

1251.9 1311.3 1225.3 2514.8 6082.8 4079.5 F 
23 24 21 22 25 25 na 

a Number of molecules in the data set. 
 

Table 3.  Values of the topological descriptors entered in the individual 
QSRR models.  

No 1χ AT 
(−CH3) 

AT 
(−OH) No 1χ AT 

(−CH3) 
AT 

(−OH) 
1 2.4142 0.8108 0.9462 14 2.770

7 
1.4351 0.9770 

2 3.4142 0.7924 0.9248 15 3.270
1 

1.4055 0.9648 
3 3.9142 0.7869 0.9183 16 4.346

1 
1.5273 0.8459 

4 2.2701 1.5937 0.8752 17 3.682
0 

2.3684 0.737 
5 2.7701 1.5599 0.8402 18 3.481

4 
2.8968 0.7982 

6 2.8081 1.6278 0.8037 19 3.981
4 

2.8547 0.7364 
7 3.3081 1.6137 0.7634 20 1.914

2 
0.8275 0.9657 

8 3.8081 1.5915 0.7429 21 2.914
2 

0.8000 0.9336 
9 3.8081 1.6183 0.7177 22 3.270

1 
1.5340 0.8225 

10 2.5607 2.2947 0.8369 23 2.270
1 

1.4952 0.9815 
11 3.5607 2.1802 0.7673 24 3.063

7 
2.2309 0.7923 

12 4.0607 2.1455 0.7541 25 3.346
1 

1.5572 0.9086 
13 3.6807 2.2554 0.7403     



128                                                                                                                                                      SAFA 

 
Specifications of the unified QSRR model found for simultaneous prediction of 

Kovats retention indices of saturated alcohols on the six stationary phases are given in 
Equation 5. As can be easily found, addition of the McReynolds polarity parameter to the 
descriptors entered in the individual models resulted in a unified model for all RI data with 
R2

adj value of 0.995 and SE of 8.55. Based on the results, regression explained by the model 
is significant at 99% confidence level and the combined model explains 99.5% of the 
variance in the retention data. 

Table 4. Prediction results of the individual QSRR models for saturated alcohols on 
six stationary phases using leave-one-out cross validation method. 

 
No 

Predicted retention indices (relative error%) 

SE-30 OV-3 OV-7 OV-11 OV-17 OV-25 
1 647 (-0.5) 673 (0.1) 696 (-0.9) 721 (-0.6) 745 (-0.4) 788 (-0.5) 
2 855 (-0.1) 880 (-0.1) 904 (-0.3) 929 (-0.6) 957 (-0.2) 999 (-0.4) 
3 960 (0.0) 986 (0.1) 1009 (-0.1) 1034 (-0.4) 1065 (0.3) 1107 (0.3) 
4 590 (0.7) 614 (1.2) 636 (0.5) 658 (0.3) 674 (-0.1) 712 (0.1) 
5 688 (-0.1) 711 (0.0) 733 (-0.3) 756 (0.0) 776 (-0.1) 811 (0.0) 
6 686 (-0.4) 709 (0.1) 731 (-0.3) 753 (-0.4) 773 (-0.5) 807 (-0.1) 
7 783 (-0.3) 806 (-0.1) 828 (-0.2) 849 (-0.5) 872 (-0.7) 904 (0.0) 
8 885 (-0.1) 908 (-0.1) 930 (0.1) 951 (-0.4) 978 (0.3) 1007 (-0.1) 
9 878 (-0.2) 900 (-0.4) 923 (-0.1) 944 (-0.2) 972 (0.4) 1000 (0.1) 
10 633 (0.8) 655 (0.5) 675 (0.1) 699 (1.0) 709 (0.0) 742 (0.5) 
11 831 (1.1) 852 (0.5) 873 (1.3) 895 (1.2) 913 (1.0) 943 (1.4) 
12 936 (1.7) 957 (1.4) 978 (1.8) 1001 (1.9) 1022 (2.1) 1051 (2.4) 
13 847 (-1.3) 869 (-0.8) 889 (-0.9) 911 (-1.0) 929 (-1.1) 956 (-1.3) 
14 721 (-0.6) 746 (-0.1) 768 (-0.4) 794 (-0.5) 810 (-0.9) 854 (-0.1) 
15 825 (-0.2) 851 (0.2) 871 (-0.6) 898 (-0.4) 917 (-0.7) 960 (0.0) 
16 1028 (0.9) 1049 (0.3) 1071 (0.4) 1096 (0.4) 1121 (0.4) 1155 (-0.1) 
17 845 (-0.9) 867 (-1.0) 886 (-1.3) 907 (-1.4) 925 (-1.5) 953 (-2.2) 
18 810 (-0.5) 831 (-0.4) 847 (-0.9) 872 (-0.2) 879 (-1.2) 906 (-1.4) 
19 902 (-0.4) 923 (-0.3) 940 (-0.4) 965 (0.3) 977 (0.0) 1002 (-0.2) 
20 546 (0.4) 569 (-0.9) - - - - 
21 751 (0.0) 776 (-0.1) - 829 (2.9) 850 (-0.7) 892 (-0.9) 
22 790 (0.4) 814 (0.4) 836 (0.1) - 881 (0.3) 915 (0.1) 
23 617 (0.8) 640 (-0.2) 665 (1.7) - 709 (4.3) 747 (0.9) 
24 730 (0.6) 752 (0.5) 772 (0.7) - 810 (1.1) 841 (1.7) 
25 826 (-1.0) 850 (-0.8) - 896 (-1.2) 916 (-1.3) - 



Novel Atom-Type-Based Topological Descriptors                                                                     129 

RI = -130.088 + 214.334 1 + 250.597 AT(OH) 35.750 AT(CH3) + 0.828 M (5) 

n = 140           R2 = 0.995            R2
adj = 0.995            SE = 8.55             F = 7334.2  

 
To prove the external stability of the combined model and to further demonstrate 

the absence of chance correlation, external validation method was employed. In the 
method, the whole data set divided into five subsets and each subset was predicted by the 
other four subsets as the training set. In this procedure, the same descriptors were retained 
in the correlation equation but the coefficients were allowed to vary. Calculated values of 
SEC and SEP for different subsets are given in Table 5. Good agreement between average 
values of 8.29 for SEC and 8.69 for SEP with standard error of the full model shows good 
efficiency of the topological indices in simultaneous modeling of RI data for saturated 
alcohols on different stationary phases. Average values of training and predicting qualities 
(R2

train=R2
pred=0.995) also indicate high statistical stability and validity of the combined 

model. Graphical indication of the quality of the combined model can be seen in Figure 2 
through the correlation between the experimental and calculated retention indices for 
different prediction sets. Figure 3 is the plot of residuals versus experimental retention 
indices for the prediction sets. As shown, all residuals values fall within a horizontal band 
centered around zero showing absence of systematic error in development of the combined 
QSRR model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Verification of statistical validity of the combined model 
based on the external validation method. 

Training seta Prediction seta R2
train SEC R2

pred SEP 

2-5 1 0.995 8.35 0.993 8.84 
1 & 3-5 2 0.996 8.07 0.994 8.45 

1,2 & 4,5 3 0.996 8.31 0.995 8.67 
1-3 & 5 4 0.995 8.28 0.995 8.79 

1-4 5 0.995 8.38 0.997 8.70 
Average   0.995 8.29 0.995 8.69 

a Number of molecules in the training and prediction sets are 112 and 28,    
respectively. 
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Figure 2. Plot of the predicted versus experimental retention 
indices for different prediction sets used in the external 
validation test. 

 

 

Figure 3. Plot of residuals versus experimental retention indices 
for different prediction sets used in the external validation test. 
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To assess the performance of the AT topological indices in retention prediction of 
saturated alcohols, the obtained results were compared with previously reported topological 
based QSRR models developed for the same data set. Figure 4 shows a comparison 
between standard errors of the present MLR models and those of the models reported by 
Liu et al. [17] and Guo et al. [18] for predicting retention indices of saturated alcohols. 
Clearly, the AT based individual models are significantly better than the other two models. 
As shown, standard errors of the AT based individual models are 35.1 to 60.7% less than 
the model developed by Liu et al. and are 16.9 to 51.3% less than the other model. 
Moreover, a decrease of about 18% is observed in the standard error of the combined 
QSRR model presented in this work relative to the model generated by Guo et al. Better 
results obtained in the present study provide good evidence for high potential of the AT 
topological indices in QSRR modeling of saturated alcohols. 
 

 
Figure 4. Comparison between standard errors of the presented and 
previous linear models for prediction of retention indices of 
saturated alcohols on different stationary phases. 
 

 
3.2 CONTRIBUTION OF THE INDIVIDUAL INDICES TO RETENTION INDEX OF 
SATURATED ALCOHOLS 
 
Gas chromatographic retention indices strongly depend on the solute-stationary phase 
interactions and QSRR studies provide useful information on the mechanism of these 
interactions [19]. To explore the role of the topological features of the model compounds in 
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determining their retention indices on each stationary phase, the standardized regression 
coefficients for the individual QSRR models were used (Table 2). Furthermore, precise 
contributions of the parameters entered in the combined QSRR model to RI values were 
determined using calculation of the relative contribution (r) and fraction contribution (f) 
as follows [20]: 

r (i) = ci ܶܫതതത௜                                                                                                                              (6) 

f (i) = [ R2  |r (i)| / 
i

|r (i)| ]  100%      (7) 

where ci and ܶܫതതത௜ are the coefficient and the average value of the i-th topological index 
entered in the model. The sum is over all indices in the model.  

According to the results, standardized regression coefficients of the descriptors 
decreased in the order of AT(1χ) > AT(–OH) > AT(–CH3) for all the stationary phases. The 

1χ index encodes information about the bulkiness and branching of molecules and its value 
increases with molecular size but decreases with molecular branching [21]. Positive 
standardized coefficient for 1χ index indicates that the molecule with higher 1χ value will 
have higher RI value due to larger molecular size or less branching. This relationship 
suggests that the main interaction force contributing to the chromatographic behavior of 
saturated alcohols on the stationary phases is dispersive. As known, the magnitude of this 
type of intermolecular solute-stationary phase interaction is related to molecular size as 
well as degree of branching [22].  

The topological index AT(–OH) had smaller standardized coefficient than 1χ for all 
the stationary phases. The descriptor that is a measure of solute polarity showed positive 
standardized coefficients for all the stationary phases as the hydroxyl group of the alcohol 
molecule makes the intermolecular interaction between solute and stationary phase stronger 
and increases the RI value. The AT(–CH3) topological index with minimum value of the 
standardized coefficient indicates the role of branching in determining RI of saturated 
alcohols, because AI(–CH3) index is clearly related to the number of methyl groups which 
is a crude measure of branching [20]. As shown, standardized coefficient for the descriptor 
is negative that indicates the larger the number of the branches of molecule is, the smaller 
its RI value because branching prevents solutes from close contact with stationary phase 
and reduces the interactions between the solutes and the stationary phase. Consequently, 
retention indices of the solutes decrease. 

Relative contributions of the topological indices entered in the combined model to 
RI data showed the same trend as the standardized regression coefficients of the individual 
QSRR models. The obtained r values for 1χ, AT(–OH) and AT(–CH3) were 701.58, 210.07 
and -35.75, respectively. Moreover, McReynold polarity had much larger contribution 
(r=103.07) than AT(–CH3) indicating the important role of the stationary phase polarity in 
determining retention indices of the model compounds. Positive sign of the parameter 
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shows that RI of saturated alcohols increases with increasing polarity of the stationary 
phase. Based on the obtained results, fraction contributions of bulkiness and polarity of the 
solutes to the retention indices were 66.45% and 19.90%, respectively. Furthermore, 
stationary phase polarity (f = 9.76%) and methyl groups of the alcohol molecules (f = 
3.39%) showed smaller contributions to RI values. Results of the study showed that the 
topological descriptors included in the regression models provide useful information about 
structural features important in determining retention indices of saturated alcohols on the 
stationary phases of different polarity. 

4. CONCLUSION 

In the present study, preliminary individual and combined QSRR models for predicting 
Kovats retention indices of saturated alcohols on the stationary phases of different polarity 
were developed using a combination of 1χ index and the novel atom-type-based AT 
topological indices. According to the results, 1χ and AT(–OH) indices were the most 
important descriptors affecting RI of saturated alcohols showing important role of size, 
branching and polarity of the solutes molecules in determining their retention indices. In 
addition, polarity of the stationary phases showed relatively large contribution in the 
unified QSRR model developed for simultaneous prediction of retention indices of 
saturated alcohols on the stationary phases. Satisfactory prediction results evidently suggest 
efficiency of the AT based QSRR models for accurate estimation of the retention indices for 
similar compounds using only two dimensional structures of the molecules. This work can 
be a good starting point to provide a simple procedure for QSRR study of other heteroatom 
containing aliphatic compounds. 
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is defined as   LEL ܩ = LEL(G) = ∑ ඥߤ௜௡

௜ୀଵ ,  where 
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1 INTRODUCTION 

The graph energy is a graph-spectrum-based quantity, initiated in the 1970s. After 
a latent period of 20-30 years, it became a well-liked topic of research both in 
mathematical chemistry and in "pure" spectral graph theory, resulting in over 600 
published papers. Considering the applications of graph energies, one can see them 
in entropy [5, 15], modeling the properties of proteins (especially those of 
biological relevance) in [6, 24, 28], applying them in the search for the genetic 
causes of Alzheimer disease [3] and also for modeling of the spread of epidemics 
[26]. 
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 Suppose ܩ = (ܩ) ܸ is a simple graph with vertex set (ܧ,ܸ)  =
⋯,ଶݒ,ଵݒ} , |(ܩ)ܧ| ,(ܩ)ܧ ௡} and edge setݒ = ݉. Let ݀௜ be the degree of the vertex 
݅ ௜ forݒ =  1, 2,⋯ , ݊. The maximum and minimum degree of ܩ are denoted by ∆ = 
ߜ and (ܩ)∆ = (ܩ)ܦ and (ܩ)ܣ respectively. Let ,(ܩ)ߜ  = diag(݀ଵ,݀ଶ,⋯ ,݀௡) be 
the (0,1)-adjacency matrix of ܩ and the diagonal matrix of vertex degrees, 
respectively. The Laplacian matrix of ܩ is (ܩ)ܮ = (ܩ)ܦ −  This matrix has .(ܩ)ܣ
nonnegative eigenvalues ߤଵ ≥ ଶߤ  ≥ ⋯ ≥ ௡ߤ = 0. Assume that Spec(ܩ) =
,ଵߤ} ⋯,ଶߤ  .ܩ i.e., the Laplacian spectrum of ,(ܩ)ܮ ௡} stands for the spectrum ofߤ,
As well-known [20], the Laplacian spectrum obeys the relations ∑ ௜௡ߤ

௜ୀଵ = 2݉ and 
∑ ௜ଶ௡ߤ
௜ୀଵ = 2݉ + ∑ ݀௜

ଶ௡
௜ୀଵ .  

 In 2008, Liu and Liu [18] considered a new Laplacian-spectrum-based 
graph invariant ܮܧܮ = (ܩ)ܮܧܮ  = ∑ ඥߤ௜௡ିଵ

௜ୀଵ , and named it Laplacian-energy-like 
invariant (LEL for short). The motivation for initiating LEL is in its analogy [12] 
to the earlier much studied graph energy [10, 11, 16]. We refer to [17,18] for more 
details on LEL and encourage the interested readers to consult  papers [4, 9, 12, 14, 
25, 27, 29, 31] for mathematical properties of this graph invariant.  
 
2.  AN UPPER BOUND FOR LAPLACIAN−ENERGY−LIKE  
            INVARIANT 

In order to arrive at one of our main results, we begin by recalling a crucial lemma 
as follows. 

 
Lemma 1 ([20]). Let ܩ be a graph on ݊ vertices with at least one edge. Then 
ଵߤ ≥ ∆  +  1. Moreover, if ܩ is connected, then the equality holds if and only if 
∆ =  ݊ − 1. 

 
We are now in a position to formulate the lower and upper bounds on LEL 

in terms of ݊,݉ and ݀௜, ݅ =  1, 2,⋯ , ݊. 
 

Theorem 1. Suppose that ܩ is a simple connected graph on ݊ >  1 vertices and ݉ 
edges. Then the inequality 

ܮܧܮ  ≤ √∆ + 1 + (݊ − 2)ଷ ସൗ ට2݉ − (∆ + 1)ଶ + ∑ ݀௜
ଶ௡

௜ୀଵ
ర

                          (1) 

holds.  
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Proof. Let ߤଵ ≥ ଶߤ  ≥ ⋯ ≥ ௡ߤ = 0 be the eigenvalues of the Laplacian matrix 
with respect to the graph ܩ. Then, as is well-known, we have ߤଵ ≥ ∆  +  1 (see 
also Lemma 1). Moreover, since 

 
∑ ௜ଶ௡ߤ
௜ୀଵ = 2݉ + ∑ ݀௜

ଶ௡
௜ୀଵ                                            (2) 

must hold, we get ∑ ௜ଶ௡ିଵߤ
௜ୀଶ = 2݉ − ଵଶߤ + ∑ ݀௜

ଶ௡
௜ୀଵ . Using this together with the 

Cauchy-Schwarz inequality for twice, applied to the vectors (√ߤଶ,ඥߤଷ,⋯ ,ඥߤ௡ିଵ) 
and (1, 1,⋯ ,1) with ݊ − 2 entries, we derive the inequality 
 

 ∑ ඥߤ௜௡ିଵ
௜ୀଶ ≤ ට(݊ − 2)∑ ௜௡ିଵߤ

௜ୀଶ ≤ (݊ − 2)ଷ ସൗ ට∑ ௜ଶ௡ିଵߤ
௜ୀଶ

ర   

                                     = (݊ − 2)ଷ ସൗ ට2݉ − ଵଶߤ + ∑ ݀௜
ଶ௡

௜ୀଵ
ర

.         (3) 

Hence, we must have 

ܮܧܮ  ≤ ଵߤ√ + (݊ − 2)ଷ ସൗ ට2݉ − ଵଶߤ + ∑ ݀௜
ଶ௡

௜ୀଵ
ర

.                      (4) 

Now, consider the real function ݂(ݔ) = ݔ√ + ܤ√ܣ − ଶరݔ , where ܣ =
(݊ − 2)ଷ ସൗ  and ܤ = 2݉ + ∑ ݀௜

ଶ௡
௜ୀଵ . It is obvious that ݂ is decreasing on the 

interval  

ܫ  = ቈට
஻

஺
ర
యାଵ

 .ቇܤ√,

On the other hand, we claimට
஻

஺
ర
యାଵ

≤ ∆  +  1. Since ∆≤ ݊ − 1,  

ܤ                = 2݉ + ∑ ݀௜
ଶ௡

௜ୀଵ = ∑ ݀௜(݀௜ + 1)௡
௜ୀଵ ≤ ݊∆(∆ + 1) 

                                                ≤ (݊ − 1)(∆+ 1)ଶ = ܣ)
ర
య + 1)(∆+ 1)ଶ 

which proves our claim. Moreover, in view of Lemma 1 and Equations (2) and (4), 
we see that ∆ + 1 ≤ ଵߤ ≤  and hence ,ܤ√

ܮܧܮ  ≤ (ଵߤ)݂ ≤ ݂(∆+ 1) ≤ ݂ ቆට
஻

஺
ర
యାଵ

ቇ .                 (5) 

 
Remark 1. In virtue of the proof of Theorem 1, we can analyze the growth of the 
obtained bounds, i.e., (5), which can be fruitful for the investigation on the energy 
of hyperstructures, that is, the models with large size. 

ܮܧܮ  ≤ ݂ ቆට
஻

஺
ర
యାଵ

ቇ = √஻ర

√௡ିଵ
+ √஻ర ∙(௡ିଶ)

√௡ିଵర        

         ≤ ඥ௡∆(∆ାଵ)ర

√௡ିଵ
+ ඥ௡∆(∆ାଵ)ర ∙(௡ିଶ)

√௡ିଵర  ~ ඥ݊∆(∆+ 1)ర .ܱ(݊) 
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which yields an upper bound for LEL related to the graphs with high order and ∆ 
as a fixed parameter. We note that a same fashion with using (1) implies the same 
result: 
ܮܧܮ ≤ ݂(∆ + 1) ≤ √∆ + 1 + (݊ − 2)ଷ ସൗ ඥ݊∆(∆ + 1) − (∆+ 1)ଶర ~ ඥ∆(∆ + 1)ర .ܱ(݊). 

 
3. BOUNDS OF SPECTRAL RADIUS OF GRAPHS IN TERMS OF THE 
           NUMBER OF TRIANGLES 
 
For a given graph ܩ, let us suppose that ߣଵ ≥ ଶߣ ≥ ⋯ ≥  ௡ are the correspondingߣ
eigenvalues of the adjacency matrix ܣ which are called ܣ-eigenvalues and also let 
∆ீ  be the number of triangles in ܩ. Throughout this section, we give upper and 
lower bounds for ߣଵ such that each edge of ܩ belongs to at least ∆ீ  triangles. The 
goal is to utilize the upper bound obtained in order to result a lower bound for 
Laplacian-energy-like invariant. 
 
Theorem 2. Assume ܩ is a simple graph with ݊ vertices and ݉ edges. If each edge 
of ܩ belongs to at least ∆ீ  triangles, ∆ீ≥ 1, then 

|ଵߣ|  ≤ ඥ2݉− ߜ − ߜ)ீ∆ − 1).                                      (6) 
Proof. Suppose that ܣ௜ stands for the ݅-th row of ܣ. Clearly, ݀௜ is its row sum. 
Without loss of generality, let ࢛ = ⋯,ଶݑ,ଵݑ)   ,  ௡)் be a unit eigenvector ofݑ
ଵߣ corresponding to (ܩ)ܣ =  indicates the vector obtained (݅)࢛ Assume .(ܩ)ଵߣ
from ࢛ by replacing ݑ௝ with 0 if ݒ௜ is not adjacent to ݒ௝ where 1 ≤  ݆ ≤  ݊. Since 
= ࢛(ܩ)ܣ ݅ considering the ,࢛ଵߣ  −th component of the vectors in both sides of 
recent equality, we derive ߣଵݑ௜ = ࢛௜ܣ =  ,Therefore, by taking the |∙|ଶ .(݅)࢛௜ܣ
applying the well-known Lagrange identity and simplifying the right hand side we 
see for each ݅ that 
ଵߣ 

ଶݑ௜ଶ = ଶ|(݅)࢛௜ܣ| = ௜|ଶܣ| ∙ ଶ|(݅)࢛| − ∑ ൫ݑ௝ − ௞൯ݑ
ଶ

ଵஸ௝ழ௞ஸ௡
௔೔ೕୀ௔೔ೖୀଵ

 

                                  = ݀௜ ∑ ௝ଶଵஸ௝ஸ௡ݑ
௔೔ೕஷ଴

− ∑ ൫ݑ௝ − ௞൯ݑ
ଶ

ଵஸ௝ழ௞ஸ௡
௔೔ೕୀ௔೔ೖୀଵ

 

                                 = ݀௜ ൭1 −∑ ௝ଶଵஸ௝ஸ௡ݑ
௔೔ೕୀ଴

൱ − ∑ ൫ݑ௝ − ௞൯ݑ
ଶ

ଵஸ௝ழ௞ஸ௡
௔೔ೕୀ௔೔ೖୀଵ

. 

Summing over 1 ≤ ݅ ≤ ݊ in both sides we obtain, 
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ଵߣ 
ଶ = 2݉− ∑ ݀௜௡

௜ୀଵ ൭∑ ௝ଶଵஸ௝ஸ௡ݑ
௔೔ೕୀ଴

൱ − ∑ ∑ ൫ݑ௝ − ௞൯ݑ
ଶ

ଵஸ௝ழ௞ஸ௡
௔೔ೕୀ௔೔ೖୀଵ

௡
௜ୀଵ .           (7) 

On the other hand, one can notice that 

 ∑ ݀௜௡
௜ୀଵ ൭∑ ௝ଶଵஸ௝ஸ௡ݑ

௔೔ೕୀ଴
൱ ≥ ∑ ݀௜௡

௜ୀଵ ௜ଶݑ ≥  .ߜ

Moving forward, since each edge belongs to at least ∆ீ  triangles, then applying 
Cauchy-Schwarz inequality we derive the following  
                  ∑ ∑ ൫ݑ௝ − ௞൯ݑ

ଶ
ଵஸ௝ழ௞ஸ௡
௔೔ೕୀ௔೔ೖୀଵ

௡
௜ୀଵ ≥ ∆ீ ∑ ൫ݑ௝ − ௞൯ݑ

ଶ
ଵஸ௝ழ௞ஸ௡
௔ೕೖୀଵ

 

                                                              = ∆ீ ∑ ݀௜௡
௜ୀଵ ௜ଶݑ − 2∆ீ ∑ ௞ଵஸ௝ழ௞ஸ௡ݑ௝ݑ

௔ೕೖୀଵ
 

                                                              ≥ ߜீ∆ − ∆ீ ∑ หݑ௝ݑ௞ห௝ஷ௞  

                                                              ≥ ߜ)ீ∆ − 1). 

Now, viewing the equality (7) yields the following 

|ଵߣ| ≤ ඥ2݉ − ߜ − ߜ)ீ∆ − 1). 

3.1. CLOSED WALKS IN GRAPH 

Throughout this subsection, we aim to derive some results related to lower bound 
of spectral radius of graph by using the term of ∆ீ  which may be useful in further 
investigations. Before present the next result, we need some preliminaries. We 
recall that a closed walk in ܩ is a walk that ends where it begins. The number of 
closed walks in ܩ of length ℓ starting at ݒ௜ is thus given by ((ܩ)ܣℓ)௜௜, so the total 
number ݂ீ (ℓ) of closed walks of length ℓ is given by 

 ݂ீ (ℓ) = ∑ ௜௜௡(ℓ(ܩ)ܣ)
௜ୀଵ = tr((ܩ)ܣℓ) 

where tr denotes the trace (sum of the main diagonal entries). From the theory of 
matrices, we know that if the matrix ܣ has eigenvalues ߣଵ, ⋯,ଶߣ ,  ℓ hasܣ ௡ thenߣ
eigenvalues ߣଵℓ , ଶℓߣ ,⋯ , ௡ℓߣ . Therefore, 

 ݂ீ (ℓ) = ∑ ௜ℓ௡ߣ
௜ୀଵ .                                                         (8) 

Some immediate consequences of (8) are as follows: 
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i. For ℓ = 1,∑ ௜௡ߣ
௜ୀଵ =  0 which is deduced by noting that the sum of 

the eigenvalues is the trace of the adjacency matrix which is 0 since 
 .is 0 on the diagonal ܣ

ii. For ℓ = 2, ∑ ௜ଶ௡ߣ
௜ୀଵ = 2݉ which is followed by the fact that the 

sum of the squares of the eigenvalues is the same as the trace of ܣଶ. 
The diagonal entries of ܣଶ count the number of closed walks of 
length 2 (a closed walk is a walk that starts and ends at the same 
vertex; since we are on the diagonal the starting and ending vertices 
are the same), for which each edge is counted exactly twice. 

iii. For ℓ = 3, ∑ ௜ଷ௡ߣ
௜ୀଵ = 6∆ீ . This is obeyed by the fact that the sum 

of the cubes of the eigenvalues is the same as the trace of ܣଷ, i.e., 
the same as the number of closed walks of length 3. Each triangle 
will be counted exactly six times (i.e., a choice of 3 initial vertices 
and 2 directions for each triangle). 

 
One can continue this process but it becomes impractical to get some 

effective information about a graph. Next, using (iii) we study on bounds of ∆ீ  and 
then spectral radius of graph. Let the ܣ-eigenvalues of ܩ be in form of ߣଵ ≥ ⋯ ≥
௞ߣ ≥ 0 > ௞ାଵߣ ≥ ⋯ ≥ ௡ and Λାߣ = ∑ ௜ଷ௞ߣ

௜ୀଵ > 0, Λି = ∑ ௜ଷ௡ߣ
௜ୀ௞ାଵ < 0, Λ =

∑ ௜|ଷ௡ߣ|
௜ୀଵ . This implies that Λା + Λି = 6∆ீ , Λା − Λି = Λ,  which yields that 

36∆ீଶ  = Λଶ + 4Λା ∙ Λି.  Therefore, 
  

  Λ = ඥ36∆ீଶ − 4Λା ∙ Λି ≤ 6∆ீ + 2ඥ−Λା ∙ Λି ≤ 6∆ீ + |௡ߣଵߣ|2݊
య
మ.                  (9) 

 
On the other hand, by Hölder inequality one can see that  

෍|ߣ௜|ଶ
௡

௜ୀଵ

≤ Λ
మ
య ∙ √݊య  

which means that 

 ට଼௠య

௡
≤ Λ.                                                  (10) 

Equations (9) and (10) derive the following relation 

 ටଶ௠య

௡
≤ ஃ

ଶ
≤ 3∆ீ + |௡ߣଵߣ|݊

య
మ 

which shows ∆ீ  is bounded below by 

 ଵ
ଷ
ቆටଶ௠య

௡
− |௡ߣଵߣ|݊

య
మቇ. 
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The recent bound seems good for the graph with big size, i.e.,  ݉ → ∞. Now, to 
obtain a lower bound for the spectral radius of ܩ, inspired by (iii), we easily see 
that 

ଵߣ  ≥ ට଺∆ಸ
௡

య .                                                      (11) 

With the help of inequality (11), one can make some lower bounds only in terms of 
݉,݊ following some well-known results. 

 
∆ீ≥∗(Results in previous) Hypotheses ߣଵ ≥∗ 

∆ீ≥
൫ସ௠ି௡మ൯௠

ଷ௡
(Nordhaus et al. 

[22]) 

݊ଶ

4 ≤ ݉ ≤
݊ଶ

3  
ଵߣ ≥ ඨ2(4݉ − ݊2)݉

݊2

య
 

∆ீ≥
ଽ௠௡ିଶ௡యିଶ(௡మିଷ௠)

య
మ

ଶ଻
(Fisher 

[8]) 

݊ଶ

4 ≤ ݉ ≤
݊ଶ

3  
ଵߣ ≥ ඨ2(9݉݊− 2݊ଷ− 2(݊ଶ − 3݉)

య
మ)

9݊

య

 

∆ீ= (݉− ቔ௡
మ

ସ
ቕ) ቔ௡

ଶ
ቕ(Nikiforov et 

al. [21], Lovász et al. [19]) 
቞
݊ଶ

4 ቟ ≤ ݉ ≤ ቞
݊ଶ

4 ቟+ ቔ
݊
2ቕ 

ଵߣ ≥
ඨ6(݉− ቔ݊

2

4
ቕ) ቔ݊

2
ቕ

݊

య

 

∆ீ≥
൫ସ௠ି௡మ൯௡

ଽ
(Bollobás [2]) ݊ଶ

4 ≤ ݉ ≤
݊ଶ

3  
ଵߣ ≥ ඨ8݉− 2݊2

3

య
 

 
Table 1: A list of lower bounds of spectral radius 

 
Remark 2. Concentrating on Table 1, we observe that since the lower bound of ∆ீ  
obtained by Fisher [8] is the best bound in comparison with the others in the list 
above, hence the corresponding lower bound of spectral radius is the best in the 
list. 
 
4. LOWER BOUND ON LAPLACIAN−ENERGY−LIKE INVARIANT 

Throughout this section, applying a crucial lemma we derive a lower bound for 
Laplacian-energy-like invariant. 

The following result which is known as Weyl's inequalities, is concerned 
with the eigenvalues of sum of Hermitian matrices (see Theorem III.2.1, [1]). 
 
Lemma 2. Let ܤ,ܣ ∈ + ܣ and ܣ ௡ be Hermitian matrices and assume thatܯ  are ܤ 
arranged in non-increasing order. Then 

(ܣ)௞ߣ + (ܤ)௡ߣ ≤ ܣ)௞ߣ + (ܤ ≤ (ܣ)௞ߣ + ݇       ,(ܤ)ଵߣ = 1, 2,⋯ ,݊.              (12) 
 

Let us recall that algebraic connectivity of ܩ (called by Fiedler [7]) is 
denoted by ߤ௡ିଵ. Obviously, since ܩ is connected, ߤ௡ିଵ ≠ 0. Using the terms of 
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algebraic connectivity and edge connectivity of ܩ, i.e., ߟ =  we obtain a ,(ܩ)ߟ
lower bound for Laplacian-energy-like invariant as follows: 
 
Theorem 3. Assume ܩ is a simple connected graph with ݊ vertices and ݉ edges. 
Then, the following inequality holds 

ܮܧܮ  ≥ ∑ ට ௗೖ
ఈ1ߣ

௡
௞ୀଵ                                                  (13) 

where ߣଵ is the spectral radius of ܩ and 

ߙ = ට
݊

2݉ +
1

௡ିଵߤ
. 

 
Proof. Since (ܩ)ܦ  = (ܩ)ܣ   +  are Hermitian matrices, by Lemma ܤ,ܣ and (ܩ)ܮ 
2 we get  

(ܮ)௞ߣ + (ܣ)௡ߣ ≤ (ܦ)௞ߣ ≤ (ܮ)௞ߣ + ݇       ,(ܣ)ଵߣ = 1, 2,⋯ ,݊ 
which is simplified  as 

௞ߤ + ௡ߣ ≤ ݀௞ ≤ ௞ߤ + ݇       ,ଵߣ = 1, 2,⋯ ,݊. 
Let ߤ௞ + ଵߣ ≤ ߙ large enough such that ߙ ௞ for a proper constantߤଵߣߙ ≥ ට ݊

2݉ + 1
1−݊ߤ

. 

Indeed, for ݇ = 1, 2,⋯ ,݊ − 1 we see  

ට
݊

2݉
+

1
௞ߤ

≤ ට
݊

2݉
+

1
௡ିଵߤ

≤ ⟺  ߙ    
௞ߤ + ටଶ௠

 ௡

௞ටߤ
ଶ௠
 ௡

≤ ⟺   ߙ    
௞ߤ

௞ߤߙ − 1
≤ ඨ2݉

 ݊
≤  .1ߣ

Moving forward, ඥ݀݇ ≤ ඥ݇ߤ + 1ߣ ≤ ඥ݇ߤ1ߣߙ which shows that 

ܮܧܮ ≥෍ඨ
݀௞
1ߣߙ

௡

௞ୀଵ

 

for any ߙ ≥ ට ݊
2݉ + 1

1−݊ߤ
. 

Thus we get the required result by the value ߙ = ට ݊
2݉ + 1

1−݊ߤ
 in recent 

inequality. 
 

In the following we give some immediate consequences. 
 
Corollary 1. Suppose that ܩ is a simple connected graph with ݊ vertices and ݉ 
edges. Then, the following inequality holds 

ܮܧܮ ≥෍ඨ
݀௞
1ߣߙ

௡

௞ୀଵ
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where 

ߙ = ට
݊

2݉ +
1

1)ߟ2 − cos గ
௡

)
. 

 
Following the formula mentioned in Theorem 2 and the bounds below we have 

the following immediate consequences: 
a) ߣଵ ≤ √2݉− ݊ + 1, (see Hong [13]) 

b) ߣଵ ≤
√ଵା଼௠ିଵ

ଶ
, (see Stanley [23]) 

c) ߣଵ ≤ ඥ2݉− ߜ − ߜ)ீ∆ − 1), (Equation (6)). 
 
Theorem 4. Assume ܩ is a simple connected graph with ݊ vertices and ݉ edges. 
Then, the following inequalities hold   
 

i) ܮܧܮ ≥ ∑ ට ௗೖ
ఈ√ଶ௠ି௡ାଵ

௡
௞ୀଵ  

ii) ܮܧܮ ≥ ∑ ට ଶௗೖ
ఈ(√ଵା଼௠ିଵ)

௡
௞ୀଵ  

iii) ܮܧܮ ≥ ∑ ට
ௗೖ

ఈඥଶ௠ିఋି∆ಸ(ఋିଵ)
௡
௞ୀଵ  

where 

ߙ = ට
݊

2݉ +
1

1)ߟ2 − cos గ
௡

)
. 

Proof. Viewing (a)−(c) and Corollary 1, the results (i)−(iii) are clear. 
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1. INTRODUCTION  

All graphs considered in this paper are connected, undirected and finite without loops and 
multiple edges. Denoted by V(G) and E(G), we mean the set of vertices and the set of 
edges of graph G, respectively. 

A topological index is a kind of molecular descriptor which anticipates some 
properties of chemical compound. Many topological indices were defined and many 
properties are discovered. Furtula and Gutman[2] introduced the forgotten index which is 
a special case of general first Zagreb index and studied its basic properties. In this paper 
some application of forgotten index in chemistry is also presented and the authors proved 
that this index can significantly enhance the physico-chemical applicability of the first 
Zagreb index. We refer to [3] for more information about this graph invariant. 
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The real number λis called the eigenvalue of a graph Г with adjacency matrix Aif the 
equation Ax=λxhas a nonzero solution. A solution vfor this equation is called eigenvector 
corresponding to the eigenvalue λ. The characteristic polynomial of the matrix A is defined 
as(G) = det(A −I). It is easy to see that the eigenvalues of A are roots of(G).  

 
2. NOTATION AND DEFINITIONS 

There are two types of Zagreb indices introduced by Gutman and Trinajestic[12]: the first 
Zagreb index M1 and the second Zagreb index M2 defined as follows: 

ଵܯ = (ܩ)ଵܯ = ∑ (ீ)ଶ௨∈௏(ݑ)݀  and ܯଶ = (ܩ)ଶܯ = ∑ (ீ)௨௩∈ா(ݒ)݀(ݑ)݀ , 
where du denotes the degree of vertex u, see [1,4,7,9]. The first Zagreb index can be 
rewritten also as ܯଵ = (ܩ)ଵܯ = ∑ (ݑ)݀] + (ீ)௨௩∈ா[(ݒ)݀ . For more details on these 
topological indices we refer to [7, 14−16, 18]. With this notation, the F- index is defined 
as [2,3,11,13] 

ܨ = (ܩ)ܨ = ∑ (ீ)ଷ௨∈௏(ݑ)݀ = ∑ ଶ(ݑ)݀] + (ீ)ଶ]௨௩∈ா(ݒ)݀ . 
In [5] the following three topological indices are proposed: 

ଵܫܶ  = (ܩ)ଵܫܶ = ∑ (ீ)௩∈௏(ݒ)ଵܨ ଵܫܶ , = (ܩ)ଵܫܶ = ∑ .ݑ)ଶܨ (ீ)௨௩∈ா(ݒ ,   
ଵܫܶ  = (ܩ)ଵܫܶ = ∑ .ݑ)ଷܨ (ீ)௨ஷ௩.{௨.௩}⊆௏(ݒ                                                    (1) 

where F1, F2 and F3 are functions dependent of a vertex or on a pair of vertices of the 
molecular graph G and forgotten index is of the form Equation 1.  
 
3. BOUNDS OF FORGOTTEN INDEX 

Let G be a graph on n vertices with maximum degree ∆, where ݊ ≥ 3. It is clear that 
5݉ ≤ ݀௨ଶ + ݀௩ଶ ≤ 2∆ଶ and thus 5݉ ≤ (ܩ)ܨ ≤ 2∆ଶ݉. The aim of this section is to 
compute some bounds for (ܩ)ܨ and then we present some algebraic properties of this 
index. Let A be the adjacency matrix of G and B is a symmetric matrix with the following 
entries: 

ܾ௨௩ = ൝
ଶ(ݑ)݀ + ݒݑ ݂݅     ଶ(ݒ)݀ ∈ (ܩ)ܧ

݁ݏ݅ݓݎℎ݁ݐ݋                                  0
. 

Lemma 2. We have  
i) (ܩ)ܨ ≤ ඥݎݐ(ܣଶ)݉/2, 
ii) ∑ ݀௨ଶ݀௩ଶ௨௩∈ா(ீ) ≥ ଵܯ

ଶ(ܩ)/݊ , 
iii) (ܤ)ݎݐ = 2 and ∑ (݀௨ଶ + ݀௩ଶ)ଶ௨௩∈ா(ீ) , 

iv) (ܩ)ܨ ≥ ට௧௥(஻మ)
ଶ

, 
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v) If G is r-regular, then (ܩ)ܨ = ଵ
ସ௥మ

 .(ଶܤ)ݎݐ

Proof.  
i) It is not so difficult to see that  

(ܩ)ܨ = ∑ ൣ݀௨
ଶ + ݀௩

ଶ൧௨௩∈ா(ீ)  ≤ ට∑ ൫݀௨
ଶ + ݀௩

ଶ൯
ଶ

௨௩∈ா(ீ) ∙ ݉
భ
మ = ඥݎݐ(ܣଶ)݉/2, 

as desired. 
ii) According to geometrical-arithmetic inequality we have  

ଵܯ
ଶ(ܩ) = ൫∑ ݀௨ଶ௨∈௏(ீ) ൯ଶ ≥ ݊∑ ݀௨ଶ݀௩ଶ௨௩∈ா(ீ) . 

iii) Since every element in the main diagonal of B is 0, we obtain tr(B)=0 The i-th 

entry ௜ܾ௜ in the diagonal of ܤଶ is ௜ܾ௜ = ∑ ቂ݀௩೔
ଶ + ݀௩ೕ

ଶቃ
ଶ

௩೔௩ೕ∈ா(ீ) . Thus, ݎݐ(ܤଶ)  

= ∑ ௜ܾ௜
௡
௜ୀଵ = ∑ ∑ ቀ݀௩೔

ଶ + ݀௩ೕ
ଶቁ

ଶ
௨೔௩೔∈ா(ீ)

௡
௜ୀଵ = 2∑ ൫݀௨

ଶ + ݀௩
ଶ൯

ଶ
௨௩∈ா(ீ) . 

iv) By Lemma 1, ݎݐ(ܤଶ) = 2∑ ൫݀௨
ଶ + ݀௩

ଶ൯
ଶ

௨௩∈ா(ீ)  ≤ 2∑ ൫݀௨
ଶ +௨௩∈ா(ீ)

݀௩
ଶ൯∑ ൫݀௨

ଶ + ݀௩
ଶ൯௨௩∈ா(ீ) ≤  .(ܩ)ଶܨ2

v) If G is r-regular, then ܤ = (ଶܤ)ݎݐ and ܣଶݎ2 =  ,Hence .(ଶܣ)ݎݐସݎ4

(ܩ)ܨ = ଶ݉ݎ2 = ଶݎ2 × ଵ
ଶ
(ଶܣ)ݎݐ = ଵ

ସ௥మ
 .(ଶܤ)ݎݐ

 
Denote by ߪଶ the variance of the sequence of the terms ൛݀௨

ଶ + ݀௩
ଶൟ appearing in 

the definition of F(G).  
 
Lemma 3. For any graph G, (ܩ)ܨ = ඥ݉/2ݎݐ(ܤଶ) −݉ଶߪଶ. 
 

Proof. Lemma 2 gives ଵ
ଶ
(ଶܤ)ݎݐ = ∑ ൫݀௨

ଶ + ݀௩
ଶ൯

ଶ
௨௩∈ா(ீ) . By the definition of ߪଶ, we 

have 

ଶߪ =
1
݉ ෍ ൫݀௨

ଶ + ݀௩
ଶ൯

ଶ

௨௩∈ா(ீ)

− ൭
1
݉ ෍ ൫݀௨

ଶ + ݀௩
ଶ൯

௨௩∈ா(ீ)

൱
ଶ

=
1

(ଶܤ)ݎݐ2݉ −
1
݉ଶ  ଶ(ܩ)ܨ

and this equality yields the results. 
 
Lemma 4. Let ߤଵ ≥ ଶߤ ≥ ⋯ ≥  ௡ be all eigenvalues of B, then we haveߤ
i) ∑ ௜ଶ௡ߤ

௜ୀଵ ≥ ݊)/ଵଶߤ݊ − 1). 

ii) ට
௡

ଶ(௡ିଵ)
ଵߤ ≤ (ܩ)ܨ ≤ ଵ

ଶ
 .ଵ݊ߤ

 
Proof. Suppose  ߤଵ ≥ ଶߤ ≥ ⋯ ≥  .௡ are the eigenvalues of Bߤ
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i) Since ∑ ௜௡ߤ
௜ୀଵ = (ܤ)ݎݐ = 0, we have ߤଵ = −∑ ௜௡ߤ

௜ୀଶ  and Cauchy-Schwarz 
inequality gives 

ଵଶߤ = (∑ ௜௡ߤ
௜ୀଶ )ଶ ≤ (∑ ௜௡ߤ

௜ୀଶ )ଶ(݊ − 1).  
Hence,  

∑ ௜ଶ௡ߤ
௜ୀଵ = ଵଶߤ + ∑ ௜ଶ௡ߤ

௜ୀଶ ≥ ଵଶߤ + ఓభమ

௡ିଵ
= ௡ఓభమ

௡ିଵ
. 

ii) Suppose j is the vector ݆ = (1.1. … 1) ∈ ܴ௡. By Perron-Frobenius theorem we can 
conclude that ߤଵ ≥ หߤ௝ห, for every j, and then ߤଵ ≥ 0. Hence, Rayleigh quotient yields 

ଵߤ = ݔܽ݉ 〈஻௫.௫〉
‖௫‖మ

≥ 〈஻௝.௝〉
‖௝‖మ

= ଶி(ீ)
௡

. 

According to Part (i), we have 

ଶ(ܩ)ܨ  = ൫∑ ൫݀௨
ଶ + ݀௩

ଶ൯௨௩∈ா(ீ) ൯
ଶ
≥ ∑ ൫݀௨

ଶ + ݀௩
ଶ൯௨௩∈ா(ீ) ≥ ଵ

ଶ
∑ ௜ଶ௡ߤ
௜ୀଵ  

   = ଵ
ଶ

ଵଶߤ) + ∑ ௜ଶ௡ߤ
௜ୀଶ ) ≥ ଵ

ଶ
ቀߤଵଶ + ఓభమ

௡ିଵ
ቁ = ௡ఓభమ

ଶ(௡ିଵ)
. 

Assume now that G is a ∆-regular graph. Then ܤ = 2∆ଶܣ and ߤ௜ = 2∆ଶߣ௜. It is 
well know that the greatest eigenvalue of a ∆-regular graph is ∆ itself. Hence, ߤଵ = 2∆ଶߣଵ 
and then (ܩ)ܨ = 2∆ଶ݉ = ∆ଶ∆݊ = ݊∆ଶߣଵ = ௡

ଶ
  .ଵߤ

 
4. SPECTRAL PROPERTIES 

For given graph G, if the maximum degree of every vertex reaches to four, then G is called 
a molecular graph. The first inverse sum indeg index (ISI index) defined as follows [17]: 

(ܩ)ܫܵܫ = ∑ ௗೠௗೡ
ௗೠାௗೡ௨௩∈ா(ீ) . 

Let V(G)= {v1,v2,...,vn} be the vertex set of graph G. For 1, 2, ...,n, let di be the degree of 
the vertex vi. Then define the ISI adjacency matrix PA to be a matrix with entries bij as 
follows: 

௜ܾ௝ = ൞

ௗ೔ௗೕ
ௗ೔ାௗೕ

௝ݒ௜ݒ                        ∈ (ܩ)ܧ

݁ݏ݅ݓݎℎ݁ݐ݋                                  0

. 

If the graph G is regular of degree r, then ܲ(ܩ)ܣ = ௥
ଶ
 and (ܩ)ܣ

(ܩ)ଶܣܲ = ଵ
ସ
 (2)                                                  .(ܩ)ଶܣଶݎ

 
Example 1. Let Gbeanr-regular graph. Since ݎݐ(ܣଶ) = 2݉, we have ݎݐ(ܣଶ(ܩ)) =  .ݎ݊
This means that ݎݐ(ܲܣଶ(ܩ)) =   .ଷ/4ݎ݊
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Example 2. By using Equation 2, we have ݎݐ(ܲܣଶ(ܵ௡)) = 2(݊−1)ଷ/݊ଶ. Let ௡ܲ denote 
the path Pn, then  

)ܣܲ ௡ܲ) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 2/3 0
2/3 0 1

0 1 0
0 0

0 ⋱ 0

0 0
0 1 0
1 0 2/3
0 2/3 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

The diagonal elements of PA2 are ସ
ଽ

. ଵଷ
ଽ

. 2.2. … .2. ଵଷ
ଽ

. ସ
ଽ
. Therefore, 

)ଶܣ൫ܲݎݐ ௡ܲ)൯ = ଷସ
ଽ

+ 2(݊ − 4) = 2݊ − ଷ଼
ଽ

. 
 
Lemma 4. Let ܲ(ܩ)ܣ = ௥

ଶ
൯(ܩ)ܣthen ߯ఒ൫ܲ ,(ܩ)ܣ = (௥

ଶ
)௡߯మ

ೝఒ
൫(ܩ)ܣ൯. 

Proof. The proof is straightforward. 
 

For an example, ܲܣ(ܵ௡) = ௡ିଵ
௡
 ,and by using Lemma 4 (௡ܵ)ܣ

߯ఒ൫ܲܣ(ܵ௡)൯ = (௡ିଵ
௡

)௡߯ ೙ഊ
೙షభ
൫ܣ(ܵ௡)൯. 

It is not so difficult to see that ܲܣ(ܭ௠.௡) = ௠௡
௠ା௡

 and hence (௠.௡ܭ)ܣ

߯ఒ൫ܲܣ(ܭ௠.௡)൯ = ( ௠௡
௠ା௡

)௡߯(೘శ೙)ഊ
೘೙

൫ܣ(ܭ௠.௡)൯. 

 
Theorem 5. Let G be a graph with vertices set {1.2. … . ݊} and ISI matrix PA. Then 

i) (ܣܲ)ݎݐ = 0 

ii) ݎݐ(ܲܣଶ) =2∑ ൬ ௗ೔ௗೕ
ௗ೔ାௗೕ

൰
ଶ

௜~௝ . ௝௝(ଶܣܲ) = ݀௜ ௝݀ ∑
ௗೖ
మ

(ௗ೔ାௗೖ)(ௗೕାௗೖ).௞~௜.௞~௝ . 

iii) ݎݐ(ܲܣଷ) =2∑ ൫ௗ೔ௗೕ൯
మ

ௗ೔ାௗೕ
(∑ ௗೖ

మ

(ௗ೔ାௗೖ)൫ௗೕାௗೖ൯
)..௞~௜.௞~௝௜~௝  

iv) ݎݐ(ܲܣସ) = ∑ ൬∑ ቀ ௗ೔ௗ೗
ௗ೔ାௗ೗

ቁ
ଶ

௜~௟ ൰
ଶ

௡
௜ୀଵ + ∑ ݀௜ ௝݀(∑ ௗ೗

మ

(ௗ೔ାௗ೗)൫ௗೕାௗ೗൯
).௟~௜.௟~௝

ଶ

௜ஷ௝ . 

Proof. All parts can be proved as follows: 
i) The Part (i) is clear. 
ii) For i=j, (ܲܣଶ)௜௜ = ∑ ௞௜௡ܣ௜௞ܲܣܲ

௞ୀଵ = ∑ ଶ௡(௜௞ܣܲ)
௞ୀଵ = ∑ ଶ௜~௝(௜௝ܣܲ) = 

∑ ൬ ௗ೔ௗೕ
ௗ೔ାௗೕ

൰
ଶ

௜~௝ . Therefore, ݎݐ(ܲܣଶ) = ∑ ∑ ቀ ௗ೔ௗೖ
ௗ೔ାௗೖ

ቁ
ଶ

௜~௞
௡
௜ୀଵ = 2∑ ൬ ௗ೔ௗೕ

ௗ೔ାௗೕ
൰
ଶ

௜~௝ . 

Suppose i≠j. Then, (ܲܣଶ)௜௝ = ∑ ௞௝௡ܣ௜௞ܲܣܲ
௞ୀଵ = ∑ ௞௝.௞~௜.௞~௝ܣ௜௞ܲܣܲ = 

∑ ቀ ௗ೔ௗೖ
ௗ೔ାௗೖ

ቁ ൬ ௗೕௗೖ
ௗೕାௗೖ

൰.௞~௜.௞~௝  = ݀௜ ௝݀ ∑
ௗೖ
మ

(ௗ೔ାௗೖ)(ௗೕାௗೖ).௞~௜.௞~௝ . 
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iii) For the matrix PA3 we have (ܲܣଷ)௜௜ = ∑ ௝௞௡(ଶܣܲ)௜௝ܣܲ
௝ୀଵ =  

∑ ௗ೔ௗೕ
ௗ೔ାௗೕ

௝௞௜~௝(ଶܣܲ) = ∑ (∑ ௗೖ
మ

(ௗ೔ାௗೖ)൫ௗೕାௗೖ൯
).௞~௜.௞~௝௜~௝  and so we obtain 

(ଷܣܲ)ݎݐ = ෍෍
൫݀௜ ௝݀൯

ଶ

݀௜+ ௝݀
( ෍

݀௞ଶ

(݀௜+݀௞)൫ ௝݀+݀௞൯
)

.௞~௜.௞~௝௜~௝

௡

௜ୀଵ

 

           = 2∑ ൫ௗ೔ௗೕ൯
మ

ௗ೔ାௗೕ
(∑ ௗೖ

మ

(ௗ೔ାௗೖ)൫ௗೕାௗೖ൯
).௞~௜.௞~௝௜~௝ . 

iv) The trace of PA4 is 

(ସܣܲ)ݎݐ = ෍ ௜௝ଶ(ଶܣܲ)
௡

௜.௝ୀଵ

= ෍(ܲܣଶ)௜௝ଶ
௜ୀ௝

+ ෍(ܲܣଶ)௜௝ଶ
௜ஷ௝

 

                                         = ∑ ൬∑ ቀ ௗ೔ௗ೗
ௗ೔ାௗ೗

ቁ
ଶ

௜~௟ ൰
ଶ

௡
௜ୀଵ + ∑ ݀௜ ௝݀(∑ ௗ೗

మ

(ௗ೔ାௗ೗)൫ௗೕାௗ೗൯
).௟~௜.௟~௝

ଶ

௜ஷ௝ .

 
This completes our argument. 
 
5. ENERGY AND LAPLACIAN ENERGY 

One of branches of graph theory which has many applications in chemistry is spectral 
theory based on the eigenvalues of the adjacency matrix [6,10]. Let G be a simple graph 
on n vertices and ߣଵ. .ଶߣ … .  ௡ be the eigenvalues of its adjacency matrix. The energy E(G)ߣ
of the graph G is defined as the sum of the absolute values of its eigenvalues, i.e. ܧ =
(ܩ)ܧ = ∑ ௜|௡ߣ|

௜ୀଵ . Here, we define the ISI energy as the sum of absolute values of the 
eigenvalues of the ISI matrix. More formally: Let ߩଵ. .ଶߩ … .  ௡ be the eigenvalues of theߩ
ISI matrix PA(G). It is not difficult to see that these eigenvalues are real numbers and their 
sum is zero. Hence, the ISI energy can be defined as [8] ܲܧܣ = (ܩ)ܧܣܲ = ∑ ௜|௡ߩ|

௜ୀଵ . This 
definition is applicable to all graphs. 
 
Theorem 6. Let G be a graph with n vertices. Then ܲ(ܩ)ܧܣ ≤  .(ܩ)ܫܵܫ2݊√
 
Proof. The variance of the numbers |ߩ௜|, i=1,2,…,n is equal to 

1
݊෍

௜|ଶߩ|
௡

௜ୀଵ

− ൭
1
݊෍

|௜ߩ|
௡

௜ୀଵ

൱
ଶ

 

which is greater than or equal to zero. Now, ∑ ௜|ଶ௡ߩ|
௜ୀଵ = ∑ ௜ଶ௡ߩ

௜ୀଵ =  and (ଶܣܲ)ݎݐ
therefore ଵ

௡
(ଶܣܲ)ݎݐ − (ଵ

௡
ଶ(ܧܣܲ ≥ 0. Hence,  

(ܩ)ܧܣܲ ≤ ඥ݊ݎݐ(ܲܣଶ) ≤ ඥ2݊((ܩ)ܫܵܫ)ଶ =  .(ܩ)ܫܵܫ2݊√
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Theorem 7. Let G be a graph with n vertices and at least one edge. Then  

(ܩ)ܧܣܲ  ≥ 2∑ ௗ೔ௗೕ
ௗ೔ାௗೕ௜~௝

⎝

⎛
ଶ∑

೏೔೏ೕ
೏೔శ೏ೕ

೔~ೕ

∑ ൭∑ ቆ
೏೔೏ೕ
೏೔శ೏ೕ

ቇ
మ

೔~ೕ ൱
మ

೙
೔సభ ା∑ ௗ೔ௗೕ(∑

೏ೖ
మ

൫೏೔శ೏ೖ൯ቀ೏ೕశ೏ೖቁ
).ೖ~೔.ೖ~ೕ

మ

೔ಯೕ ⎠

⎞

భ
మ

. 

Proof. The Hölder inequality implies that 

෍ܽ௜ ௜ܾ

௡

௜ୀଵ

≤ ൭෍ܽ௜
௣

௡

௜ୀଵ

൱
ଵ/௣

൭෍ܽ௜
௤

௡

௜ୀଵ

൱
ଵ/௤

 

which holds for any non-negative real number ܽ௜, ௜ܾ(i = 1,2,…,n). Put ܽ௜ = |ߩ௜|ଶ ଷ⁄ , ௜ܾ = 
௜|ସߩ| ଷ⁄ , p = 3 2⁄  and q = 3, thus we have 

∑ ௜|ଶ௡ߩ|
௜ୀଵ = ∑ ଵ/ଷ௡(௜|ସߩ|)௜|ଶ/ଷߩ|

௜ୀଵ ≤ (∑ ௜ߩ| |௡
௜ୀଵ )ଶ/ଷ(∑ ௜|ସ௡ߩ|

௜ୀଵ )ଵ/ଷ.             (3) 
If G has at least one edge, then not all ߩ௜’s are equal to zero. Then ∑ หߩ௜ସห௡

௜ୀଵ ≠ 0 and 
Equation 3 can be rewritten as 

(ܩ)ܧܣܲ = ෍|ߩ௜|
௡

௜ୀଵ

≥
(∑ ௜|ଶ௡ߩ|

௜ୀଵ )
య
మ

൫∑ หߩ௜ସห௡
௜ୀଵ ൯

భ
మ

=
(∑ ௜ଶ௡ߩ

௜ୀଵ )
య
మ

(∑ ௜ସ௡ߩ
௜ୀଵ )

భ
మ

= ඨ
ଷ(ଶܣܲ)ݎݐ

(ସܣܲ)ݎݐ  

                                 = 2∑ ௗ೔ௗೕ
ௗ೔ାௗೕ௜~௝

⎝

⎛
ଶ∑

೏೔೏ೕ
೏೔శ೏ೕ

೔~ೕ

∑ ൭∑ ቆ
೏೔೏ೕ
೏೔శ೏ೕ

ቇ
మ

೔~ೕ ൱
మ

೙
೔సభ ା∑ ௗ೔ௗೕ(∑

೏ೖ
మ

൫೏೔శ೏ೖ൯ቀ೏ೕశ೏ೖቁ
).ೖ~೔.ೖ~ೕ

మ

೔ಯೕ ⎠

⎞

భ
మ

. 

 
Theorem 8. If G is a regular graph of degree r where r>0, then ܲ(ܩ)ܧܣ = ௥

ଶ
 If, in .(ܩ)ܧ

addition r = 0, then PAE = 0. 
 
Proof. If r = 0, then G is a graph without edges. Then directly from the definition of 
matrix PA, it follows that ܲܣ௜௝ = 0, for all ݅. ݆ = 1.2. … .݊ and consequently PA(G) = 0. 
Therefore, PAE(G) = 0. Suppose now that G is regular of degree ݎ ≥ 0 and ݀ଵ = ݀ଶ =
⋯ = ݀௡ = (ܩ)ܣܲ Then all none-zero terms in PA(G) are equal to r/2, implying that .ݎ =
௥
ଶ
௜ߩ ,Therefore .(ܩ)ܣ = ௥

ଶ
(ܩ)ܧܣܲ ௜ for i=1,2,…n and henceߣ = ∑ ௜|௡ߩ|

௜ୀଵ = ௥
ଶ
∑ ௜|௡ߣ|
௜ୀଵ =

௥
ଶ
 .which completes the proof ,(ܩ)ܧ
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1 INTRODUCTION 

All graphs in this paper are finite and simple. A graph G is an ordered pair (VG, EG) 
consisting of a set VG of vertices and a set EG, disjoint from VG, of edges, together 
with an incidence function fG that associates with each edge of G an unordered pair 
of (not necessarily G distinct) vertices of G. A path in a graph is a finite or infinite 
sequence of edges which connect a sequence of vertices which are all distinct from 
one another. The distance dG(u, v) between the vertices u and v of a graph G is 
equal to the length of a shortest path that connects u and v. 

The betweenness centrality, BG, was first introduced by Bavelas [3] as the 
number of times a node acts as a bridge along the shortest path between two other 
nodes. In other words, for a vertex vVG, (ݒ)ீܤ = ∑ ഑ಸ

ೡ (ೞ,೟)
഑ಸ(ೞ,೟)௦ஷ௩ஷ௧∈௏ಸ , where Gσ (s,t) 
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is total number of shortest paths from node s to node t and v
Gσ (s,t) is the number of 

those paths that pass through v [7]. 
This invariant has important role in Psychology to study on mental 

illnesses. We encourage readers to see [6, 8, 9, 12 − 17] for the role of betweenness 
centrality in analysis of social networks, computer networks, and many other types 
of network data models. 

The lexicographic product G[H] of graphs G and H, studied first by Felix 
Hausdor in 1914, is the graph with vertex set VG×VH and (g1, h1) is adjacent with 
(g2, h2) whenever (g1 is adjacent to g2) or (g1= g2 and h1 is adjacent to h2). We 
encourage the reader to consult the book Handbook of Product Graphs, written by 
Hammack, Imrich and Klavžar, for more information on results on this product. 

Suppose G and H are graphs with disjoint vertex sets, x  VG and y  VH. A 
link of G and H by vertices y and z is a graph operation defined as the graph 
(GH)(x; y) obtained by joining x and y by an edge in the union of these graphs, 
see [2, 5]. Let VG = {v1, v2, …, vn}. The adjacency matrix A(G) = [aij] is an n×n 
matrix for which aij=1 if vivj  EG and aij=0 otherwise [10]. 

The degree of a vertex v in G is denoted by degG(v). We use NG[v] to 
denote the ball of radius one centered at the vertex v in G. Also, we use the 
notations Pn, Cn and Kn to denote the path, cycle, complete graph with n vertices, 
respectively. Our other notations are standard and taken mainly from the standard 
books of graph theory such as [4]. 
 
2.  BETWEENNESS CENTRALITY UNDER LEXICOGRAPHIC AND 
            LINK PRODUCTS 

In this section, we compute the betweenness centrality of link and lexicographic 
products from the betweenness centrality of their initial factors. 
 
Theorem 2.1. Let (g, h) be a vertex of G[H]. Then  
 BG[H]((g,h)) = |VH|BG(g)+ భ

|ೇಹ|ቆቀ
|௏ಹ|
ଶ ቁି|ாಹ|ି∑ ூ(௔೔ೕ

(మ))భರ೔ಬೕರ|ೇಹ| ቇ∑ భ
೏೐೒ಸ(೒ᇲ)೒೒ᇲ∈ಶಸ  

                                    + ∑ భ
หೇಹห೏೐೒ಸ൫೒ᇲ൯శ഑ಹ(೓ᇲ,೓")௚ᇲ∈ேಸ[௚],ௗಹ(௛ᇲ,௛")ୀଶ  

where  2
ija  is ij-th entry of A2(G) and I(x) = 



 

otherwise1
0xif0 . 

 
Proof.  Let (g, h), (g1, h1) and (g2, h2) be three different vertices of G[H]. Thus, 
there are four cases in which ீߪ[ு]

(௚,௛)((݃ଵ,ℎଵ), (݃ଶ,ℎଶ)) ≠ 0, as follows: 
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1. g1= g2=g and dH(h1, h2) = 2. Then  HGσ ((g1, h1), (g2, h2)) = |VH|degG(g) +

Hσ (h1, h2) and ீߪ[ு]
(௚,௛)൫(݃ଵ, ℎଵ), (݃ଶ, ℎଶ)൯ = 1. Set  

ଵܤ                               = ∑ భ
หೇಹห೏೐೒ಸ(೒)శ഑ಹ(೓భ,೓మ)௛భ,௛మ∈௏ಹ,ௗಹ(௛భ,௛మ)ୀଶ . 

2. g1=g2, gg1EG and dH(h1, h2) = 2. Then  HGσ ((g1, h1), (g2, h2)) = 

|VH|degG(g1) + Hσ (h1, h2) and ீߪ[ு]
(௚,௛)൫(݃ଵ, ℎଵ), (݃ଶ, ℎଶ)൯ = 1. Set  

ଶܤ                               = ∑ భ
หೇಹห೏೐೒ಸ(೒ᇲ)శ഑ಹ(೓భ,೓మ)௛భ,௛మ∈௏ಹ ,ௗಹ(௛భ,௛మ)ୀଶ,௚௚ᇱ∈ாಸ . 

3. g1=g2, gg1EG and dH(h1, h2) > 2. Then  HGσ ((g1, h1), (g2, h2)) = 

|VH|degG(g1) and ீߪ[ு]
(௚,௛)൫(݃ଵ,ℎଵ), (݃ଶ, ℎଶ)൯ = 1. Set  

ଷܤ  = ∑ భ
หೇಹห೏೐೒ಸ(೒ᇲ)௛భ,௛మ∈௏ಹ ,ௗಹ(௛భ,௛మ)வଶ,௚௚ᇱ∈ாಸ

 
and so B3= భ

|ೇಹ|ቆቀ
|௏ಹ|
ଶ ቁି|ாಹ|ି∑ ூ(௔೔ೕ

(మ))భರ೔ಬೕರ|ೇಹ| ቇ∑ భ
೏೐೒ಸ(೒ᇲ)೒೒ᇲ∈ಶಸ . 

4. g1  g  g2 and dG(g1, g2)  2. Then 
|(g1, g2)ீߪ= ((g2, h2) ,(g1, h1))[ு]ீߪ ுܸ|ௗಸ(௚భ,௚మ)ିଵ,  
[ு]ீߪ

(௚,௛)((g1, h1), (g2, h2)) =ீߪ
௚(g1, g2) | ுܸ|ௗಸ(௚భ,௚మ)ିଶ

. 

Set B4=∑
഑ಸ
೒(೒ᇲ,೒")|ೇಹ|೏ಸ(೒ᇲ,೒")షమ

഑ಸ (೒ᇲ,೒")|ೇಹ|೏ಸ(೒ᇲ,೒")షభ{௛భ,௛మ}௏ಹ ,ௗಸ(௚ᇲ,௚")ஹଶ  
 
and so  B4=|VH|BG(g).  

Therefore, by summation of B1, B2, B3 and B4 , the result can be proved.                � 
 
Corollary 2.1. If (g, h) is a vertex of G[Cn] and n > 4, then 

൫(݃,ℎ)൯[஼೙]ீܤ = (݃)ீܤ݊ + ೙షఱ
మ ∑ భ

೏೐೒ಸ(೒ᇲ)
శ೙∑ భ

೙೏೐೒ಸ൫೒ᇲ൯శభ೒ᇲ∈ಿಸ[೒]೒೒ᇲ∈ಶಸ . 

Also, if G is a k-regular graph, we have 
൫(݃,ℎ)൯[஼೙]ீܤ = (݃)ீܤ݊ + ௡(௞ାଵ)

௡௞ାଵ
ା೙షఱమ . 

 
Corollary 2.2. Let (g, h) be a vertex of G[C4], then 

,݃)൫[஼ర]ீܤ ℎ)൯ = (݃)ீܤ4 + 2∑ భ
రౚ౛ౝ൫೒ᇲ൯శమ௚ᇱ∈ேಸ[௚] . 

Moreover, if G is a k-regular graph, then 
,݃)൫[஼ర]ீܤ ℎ)൯ = (݃)ீܤ4 + ௞ାଵ

ଶ௞ାଵ
. 

 
Corollary 2.3. If (g, h) is a vertex of G[C3], then ீܤ[஼య]൫(݃,ℎ)൯ =  .(݃)ீܤ3
 
Theorem 2.2. Let G and H be graphs with disjoint vertex sets, x  VG and y  VH. 
Then 
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(ݑ)(௫;௬)(ு~ீ)ܤ =

⎩
⎪
⎨

⎪
(ݑ)ீܤ⎧ + | ுܸ| ෍ ఙಸ

ೠ(௧,௫)
ఙಸ(௧,௫)

௧∈௏ಸ

ݑ ݂݅ ∈ ܸீ

(ݑ)ுܤ + |ܸீ | ෍ ఙಹ
ೠ(௧,௬)

ఙಹ(௧,௬)
௧∈௏ಹ

ݑ ݂݅ ∈ ுܸ

. 

 

Proof.  Supose u, s and t are three different vertices of (G ~ H)(x;y). There are two 
cases as follow: 
1. GVu . In this case, if s,t GV , then

ߪ(ீ~ு)(௫;௬)(ݏ, (ݐ = ,ݏ)ீߪ (௫;௬)(ு~ீ)ߪ and(ݐ
௨ ,ݏ) (ݐ = ,ݏ)௨ீߪ   (ݐ

and if s GV  and t HV , then  
ߪ(ீ~ு)(௫;௬)(ݏ, (ݐ = ,ݕ)ுߪ(ݔ,ݏ)ீߪ (௫;௬)(ு~ீ)ߪ and(ݐ

௨ ,ݏ) (ݐ = ,ݕ)ுߪ(ݔ,ݏ)௨ீߪ   .(ݐ
Note that if s,t HV , then ߪ(ீ~ு)(௫;௬)

௨ ,ݏ) (ݐ = 0. Therefore, 

B(G ~ H)(x;y)(u)=BG(u)+|VH|∑ ഑ಸ
ೠ(೟,ೣ)

഑ಸ(೟,ೣ)௦∈௏ಸ . 

2. u HV . Using a similar argument applied in the first case, we have 
B(G ~ H)(x;y)(u)=BH(u)+|VG|∑ ഑ಹ

ೠ (೟,೤)
഑ಹ(೟,೤)௧∈௏ಹ , 

which completes our proof.                                                                               � 
 
 

3. APPLICATIONS 

In this section, we apply our results to compute the betweenness centrality of some 
well-known graphs. 
 
Example 3.1. Consider the Catlin graph C5[C3] shown in Figure 1. Then 

∑ ቀܽ௜௝ܫ
(ଶ)ቁଵஸ௜ஸ௝ஸଷ = 0. On the other hand, by [20], ܤ஼೙(ݒ) = ቊ

భ
ఴ(௡ିଶ)మ       2|݊
భ
ఴ(௡ିଵ)(௡ିଷ) 2 ∤ ݊. 

Therefore, by Corollary 1.1, we have ܤ஼ఱ[஼య]൫(݃, ℎ)൯ = 3.  
 

 
 

Figure 1. The Catlin graph. 
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Example 3.2. Let G be the closed fence graph shown in Figure 2. It is clear that 
the lexicographic product of Cn and P2 is isomorphic to G. Then, by Theorem 1, 
we have 

(ݒ)ீܤ = (ݒ)஼೙[௉మ]ܤ = ቊ
భ
ర(௡ିଶ)మ       2|݊
భ
ర(௡ିଵ)(௡ିଷ) 2 ∤ ݊. 

 

 
 

Figure 2. Closed fence graph. 
 

Example 3.3. LetG be the open fence graph depicted in Figure 3. It is not 
difficult to check that G  Pn[P2] and ܤ௉೙(ݒଵ) = (݅ − 1)(݊ − ݅). Then, by 
Theorem 1, we have 

ீܤ ቀ൫݃௜, ℎ௝൯ቁ = ௉೙[௉మ]ܤ ቀ൫݃௜ ,ℎ௝൯ቁ = 2(݊ − ݅)(݅ − 1). 
 

 
 

Figure 3. Open fence graph. 
 

The Wiener index, W, is equal to the sum of the lengths of the shortest 
paths between all pairs of vertices. Kumar and Balakrishnan [11] gave the 
following relation between the Wiener index and the betweenness centrality index 
for a graph G:  
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W(G) = ∑ ௩∈௏ಸ(ݒ)ீܤ + ቀ|ܸீ |
2 ቁ. 

 
Thus, we can use betweenness centrality instade of Wiener index. 

Therefore, if B(v) = B(u) for each u,v  VG, then (ݒ)ீܤ =
ೈ(ಸ)షቀ|ೇಸ|

మ
ቁ

|ೇಸ| . For example, 

Since ܤ஼೙(ݒ) = for each u,v  (ݑ)஼೙ܤ nCV , then ܤ஼೙(ݒ) = ೈ(಴೙)షቀ೙మቁ

೙ . 
 
Example 3.4. Consider the dendrimer D1 shown in Figure 4. As one can see in this 
figure, D1 = (G ~ H)(x; y). On the other hand, if u is the vertex of G shown in 
Figure 4, it is not difficult to check that BG(u) = 2 and ∑ ഑ಸ

ೠ(೟,ೣ)
഑ಸ(೟,ೣ)௦∈௏ಸ = 0. Therefore, 

by Theorem 2, we have 1DB (u) = B(G~H)(x;y)(u) = 2. Also, by the previous 

argument, 

W(D1)=∑ ௨∈௏ವభ(ݑ)஽భܤ
+ ൬| ஽ܸభ|

2
൰. 

Using a similar argument, ܤ஽೙(ݑ) = 2, where u is the vertex of Dn shown in 
Figure 4. 
 

 
 

Figure 4. Dendrimers D1 and Dn. 
 
Example 3.5. A k-almost tree is a graph in which each biconnected component is 
obtained by adding at most k edges to a tree. Akutsu and Nagamochi [1] studied 
these graphs as an example of chemical graphs. 
 Consider graph G, graph H and the almost tree  shown in Figure 5. As one 
can see,  = (GH)(x;y). Then, by Theorem 2 and this fact that BG(u)= 2

1 , we have 

B(u)=B(GH)(x;y)(u)= 2
1 . 
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Figure 5. The almost tree . 
 
Example 3.6. For handcuffs graph Cn Cm, we have 
 
 

(ݑ)(௫;௬)(஼೙~஼೘)ܤ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

ଵ
଼

(௡ିଶ)మା௠ ෍
഑಴೙
ೠ (೟,ೣ)

഑಴೙(೟,ೣ)
೟∈ೇ಴೙

         

ଵ
଼

(௡ିଵ)(௡ିଷ)ା௠ ෍
഑಴೙
ೠ (೟,೤)

഑಴೙(೟,ೣ)
೟∈ೇ಴೙

   

ଵ
଼

(௠ିଶ)మ + ݊ ෍ ఙ಴೘
ೠ (௧,௫)

ఙ಴೘(௧,௫)
௧∈௏಴೘

 

ଵ
଼

(௠ିଵ)(௠ିଷ)ା௡ ෍ ఙ಴೘
ೠ (௧,௬)

ఙ಴೘(௧,௫)
௧∈௏಴೘

ݑ ݂݅ ∈ ஼ܸ೙   &  2|݊

ݑ ݂݅ ∈ ஼ܸ೙   &  2 ∤ ݊

ݑ ݂݅ ∈ ஼ܸ೘   &  2|݉

ݑ ݂݅ ∈ ஼ܸ೘   &  2 ∤ ݉

 

 
4. OPEN PROBLEMS 

In this section, we pose two open problems to develop the topic of betweenness 
centrality on other graph operations. The tensor product G  H of graphs G and H 
is the graph with vertex set VG × VH and (g1, h1) is adjacent with (g2, h2) whenever 
(g1 is adjacent to g2) and (h1 is adjacent to h2), see [10, 18] for details. The strong 
product G  H of graphs G and H is the graph with vertex set VG×VH and (g1, h1) 
is adjacent with (g2, h2) whenever (g1 is adjacent to g2 and h1 = h2) or (h1 is 
adjacent to h2 and g1 = g2) or (g1 is adjacent to g2 and h1 is adjacent to h2), see [10, 
19]. 
 We end this paper by the following two open questions: 
 

1. Let G and H be two graphs and (g, h) be a vertex of G  H. What is the 
value of BG H((g,h))? 
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2. Let G and H be two graphs and (g, h) be a vertex of G   H. What is the 
value of BG H((g,h))? 
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  هاي موجود الکتروشیمی روش -بسط
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 چکیده

ا با توجه به وابستگی ر)  DHT( هاکل -دباي ۀدر این مقاله، یک مدل جایگزین که امکان گسترش نظری
معرفی شده در  )EQS(  شبه ایستاي -از رویکرد الکترو. شود می، ارائه کند طور صریح فراهم می بهبه زمان 

و نیز  هدایت رسانه هابراي توصیف چندین پدیده بخصوص پتانسیل هاي وابسته به زمان مطالعات اخیر، 
 مفهوم معادلۀفرمولبندي  اصلاحاین، منجر به . مناسب هستند، در الکترولیتها) یونها( رفتار ذرات باردار
در نظر گرفته شود،  اگر غلظت و یا گرادیان شار ذرات .می شود) PBE(سمن بولت -غیرخطی پواسون

سوم تغییر داده خواهد  ۀاز مرتب) nPDE(دیفرانسیل جزئی غیرخطی  ۀمعادلیک ، به PBEساختار اصلی 
را براي تابع پتانسیل با استفاده از کاربرد گامهاي ها  جواباینکه چگونه یک نفر می تواند کلاسهاي . شد

ابزارهاي ریاضی مورد استفاده در  ةفاید. شود ه میدبه دست آورد، نشان دا یجبري محض به صورت تحلیل
بنابراین، روشهاي عددي لازم می توانند محاسبه شوند و  ها شکل بسته جواباینجا، این واقعیت است که 

  :قسمت معنادار است دوشامل مهم پژوهش حاضر،  ۀنتیج. نیست
ریاضی  فرآیند. 2 .دهد یونها را می ۀدر نظری توصیف مسائل وابسته به زماناجازة معادله،  مدل . 1 

استفاده  بالاتر ۀاه، به خصوص براي مرتبهاي دلخو nPDE هاي جوابتواند براي استنتاج کلاسهاي  می
  . شود

  )PBE( بولتسمن - پواسون ۀ، معادل)DHT(هاکل  -دباي ۀها، نظریnODE  ،هاnPDE :لغات کلیدي
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  به ترتیب به صورت Gنظمی تام نظمی و بی، بیGبراي یک گراف دلخواه 













)(

)(

|)()(|
2
1)(

|)()(|)(

GVuv
GGt

GEuv
GG

vdudGirr

vdudGirr

  

  

با دومین هاي اویلري در این مقاله، همه گراف .است uس أر ۀدرج dୋ(u) در آن، شوند کهف مییتعر
   .شوندنظمی تام تعیین میبی ۀنظمی و دومین و سومین کمین بی کمینۀ
  سأدرجه ر، نظمی تامبی، نظمیبی، اویلري هاي گراف :کلیديلغات 
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  هندسی-شاخص حسابی بارةکاتی درن

  
  داسلیک تومیسلاو : رابط ادیتور

 
 چکیده

و شاخص دورانی هندسی -بین شاخص حسابی اي رابطه هاي موثر، با استفاده از یک اتحاد براي مقاومت
-براي شاخص حسابی را بالایی و پایینی کران هاي مقید سازي، همچنین با کمک بیشینه .یابیم میجهانی 

  .آوریم میدست  بههندسی 
  جهانیشاخص دورانی  ،سازي بیشینه هندسی،- شاخص حسابی :کلیدي لغات
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  بینی توپولوژیکی مبتنی بر نوع اتم براي پیش هاي جدیدکنندهتوصیف

هاي اشباع بر روي هاي بازداري کروماتوگرافی گازي الکلزمان شاخصهم
  فازهاي ساکن مختلف

  اشرفی علیرضا : رابط ادیتور
  

  چکیده
 

-، به عنوان توصیفATهايهاي توپولوژیکی جدید مبتنی بر نوع اتم، به نام شاخصدر این کار، شاخص
ها با کنندهاین توصیف.ها در سطح اتمی ارائه شدندکننده براي رمزگذاري اطلاعات ساختاري مولکول

شباع بر روي فازهاي هاي االکل )QSRR( بازداري-سازي همزمان رابطه کمی ساختارموفقیت براي مدل
. مورد استفاده قرار گرفتند) OV-25و  SE ،3-OV ،7-OV،11-OV ،17-OV-30( ساکن مختلف

ها، با استفاده از الکل )RI( رگرسیونی خطی چندگانه براي شاخص بازداري کوواتس هايمدل ابتدا
طور جداگانه توسعه  بر روي هر فاز ساکن به )1χ(ندیک اول رو ارتباط مولکولی مرتبه ا ATهايشاخص

R2( ضریب همبستگی تعدیل شده. داده شد
adj( و خطاي استاندارد )SE(  براي مدل ها به ترتیب

اعتبارسنجی تقاطعی  ۀها، به وسیلاعتبار آماري مدل. قرار داشت 40/4– 90/8و 994/0–999/0گستره در
99/0R2( تأیید شد

cv>( .بعد، کل مقادیر ۀدر مرحل RI  ساکن براي ایجاد یک سري دادهبر روي فازهاي-
R2=995/0و  SE=55/8( هاي جدید، ترکیب شدند و نتایج رضایت بخش بودند

adj.(  اعتبارسنجی خارجی
بینی بندي و پیشدرجه ،هاي استانداردبه ترتیب براي انحراف 69/8و  29/8مدل منجر به مقادیر میانگین 

مولکولی وابسته به شاخص بازداري ترکیبات مدل را  هايبه خوبی ویژگی ،هاي توپولوژیکیشاخص. گردید
  .پوشش دادند

اشباع، هاي وپولوژیکی مبتنی بر نوع اتم، الکلهاي ت ، شاخصبازداري- کمی ساختار ۀرابط:لغات کلیدي
 سازيمدل
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= LEL = LEL(G) به صورت G ةلاپلاسی گراف همبند ساد -انرژي - شبه ෍ ݅ߤ√
௡

௜ୀଵ
تعریف  

در این مقاله،  .هستند Gگراف  لاپلاسی ةمقادیر ویژ  n(G)=0ߤ≤…≤(G)2ߤ≤(G)1ߤ  شود که  یم
براي شعاع طیفی پایینی  هاي کران از تعدادي همچنینو  LELهاي بالایی و پایینی براي  ن تعدادي از کرا

  .آوریم میبه دست  گراف
شوارتز، اتحاد لاگرانژ، شعاع  -پلاسی، نامساوي کوشیلا -يانرژ -شبه ثابت طیف لاپلاسی، :لغات کلیدي

  طیفی
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یفی ص طاخوارائۀ و سپس شده  هاي شاخص فراموش کرانتعدادي از محاسبۀ ، ابتدا ، درهدف این مقاله
را  ISI متناظر با شاخص ISIانرژي  با ناماز انرژي  ينوع جدیددر ادامه،  .ص توپولوژیکی استاخاین ش

  .کنیم یتعیین م ثابت جدیدتعدادي از کرانها را براي این گراف  رانجام،س. کنیم میتعریف 
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 اي نامه هاي خط و لغت در این مقاله، از ضرب .ها است  مبنا از گراف  - یکی از متغیرهاي فاصله بودن بین مرز
تعدادي مسأله باز در نهایت، . کنیم ها استفاده می هاي مهم گراف برخی از کلاس  مرز بین ۀبراي محاسب

  .کنیم مرتبط با این عنوان مطرح می
  ، خط، ضرب تنسور، ضرب قوياي نامه ضرب لغت، بودن بین مرز :لغات کلیدي
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