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1 INTRODUCTION 

A regular polyhedron is a polyhedron having congruent regular polygons as faces, arranged 
in the same manner around identical vertices; its symmetry group acts transitively on its 
flags, a regular polyhedron being vertex-, edge- and face-transitive [1]. They show three 
symmetry groups: tetrahedral; octahedral (or cubic) and icosahedral (or dodecahedral). 
Any shapes with icosahedral or octahedral symmetry will also include the tetrahedral 
symmetry. 

There are five regular polyhedra, known as Platonic polyhedral solids: tetrahedron 
(T), cube (C), octahedron (O), dodecahedron (D) and icosahedron (I), written as {3,3}; 
{4,3}; {3,4}; {5,3} and {3,5} by using the basic Schlӓfli [2] symbols {p,q} where p is the 
number of vertices in a given face while q is the number of faces containing a given vertex. 
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They show pair duals: (cube & octahedron) and (dodecahedron & icosahedron) while the 
tetrahedron is selfdual. 

Generalization of a polyhedron to n-dimensions is called a polytope [1,3]. Regular 4-
polytopes are written as {p,q,r} and have cells of the type {p,q}, faces {p}, edge figures 
{r} and vertex figures {q,r}; it means that r-polyhedra (of the type {p,q}) meet at any edge 
of the polytope. There are six regular 4-polytopes: 5-cell {3,3,3}; 8-cell {4,3,3}; 16-cell 
{3,3,4}; 24-cell {3,4,3}; 120-cell {5,3,3} and 600-cell {3,3,5}. Five of them can be 
associated to the Platonic solids but the sixth, the 24-Cell has no 3D equivalent. Among 
them, 5-cell and 24-cell are selfduals while the others are pairs: (8-cell & 16-cell); (120-cell 
& 600-cell). 

A 5-polytope is written as {p,q,r,s}, where {p,q,r} is the 4-face type, {p,q} is the 
cell type, {p} is the face type; {s} is the face figure, {r,s} is the edge figure and {q,r,s} is 
the vertex figure. The three types of convex regular polytopes in dimensions 5 and higher, 
are as follows. 

The n-simplex [1,4], with the Schlӓfli symbol {3n−1}, and the number of its k-faces 

 1
1

n
k

 ; it is a generalization of the triangle or tetrahedron to n-dimensions. A regular n-

simplex may be constructed from a regular (n − 1)-simplex by connecting a new vertex to 
all original vertices.  

The hypercube Qn is a generalization of the 3-cube to n-dimensions; it has the 
Schlӓfli symbol {4,3n−2} and the number of k-faces given by  2n k n

k
 . The hypercube can 

be constructed by the Cartesian product graph of n edges: 2( ) n
nP Q� ; the Q4 hypercube is 

called 8-cell or also tesseract. 
The n-orthoplex or cross-polytope [1] has the Schlӓfli symbol {3n−2,4} and k-faces 

 1
12k n

k


 ; it is the dual of n-cube. The cross-polytope faces are simplexes of the previous 

dimensions, while its vertex figures are other cross-polytopes of lower dimensions. 
For general surfaces, Euler [5] characteristic χ can be calculated as an alternating 

sum of figures of rank k [6−8]: 

0 1 2 3( ) ...,S f f f f       

It may be used for checking the consistency of a proposed structure.  
An abstract polytope is a structure which considers only the combinatorial properties 

of a classical polytope: angles and edge lengths are disregarded. No space, such as 
Euclidean space, is required to contain an abstract polytope [7], which is a partially ordered 
set (poset). Every polytope has a dual, of which partial order is reversed; the dual of a dual 
is isomorphic to the original. A polytope is self-dual if it is the same as (i.e. isomorphic to) 
its dual. Any abstract polytope may be realized as a geometrical polytope having the same 
topological structure. 
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[1,1,1]Propellane is an organic molecule, first synthesized in 1982 [9]; by IUPAC 
rules, it is named tricyclo[1.1.1.01,3]pentane, a hydrocarbon with formula C5H6. The length 
of central bond separating the triangles is 160 pm, much longer than 154 pm, the average 
length of sp3 C-C bond; this bond may be considered non-effective and the propellane 
consisting of squares/rhombs, a triangle-free structure. 

Rhombellation is a procedure enabling the design of generalized rhombellanes, 
performed as follows: join by a point (called “rbl-point”) the two vertices lying opposite 
diagonal in each rhomb of an all rhomb-map (considered the zero-generation, Rh0). Then, 
add new vertices opposite to the parent vertices and join each of them with the rbl-vertices 
lying in the proximity of each parent vertex, thus local Rh-cells being formed. The process 
can continue, considering the envelope Rhn as “Rh0” for Rhn+1, in this way shell by shell 
being added to the precedent structure. Since the two diagonals may be topologically 
different, each generation may consist of two isomers. 
 
Proposition [10]. A structure is a rhombellane if all the following conditions are obeyed:  

a) All strong rings are squares/rhombs;  
b) Vertex classes consist of all non-connected vertices;  
c) Omega polynomial has a single term: 1X^|E|;  
d) Line graph of the original graph shows a Hamiltonian circuit;  
e) Structure contains at least one K2.3 subgraph.  

 
A fast detected condition is Ω(x) = 1xe , in words: all the edges in G are topologically 

parallel. Omega polynomial is defined as: Ω(x) = Ʃsmxs, m being the number of opposite 
edge strips, ops, of length s, in a graph G. There are graphs with a single ops, which is a 
Hamiltonian circuit. For such graphs, omega polynomial has a single term: Ω(x) = 1xs ; s = 
e = |E(G)|. Hamiltonicity is an np-complete problem, being here a corollary of a single ops 
in the omega polynomial; however, not any graph having a Hamiltonian circuit has all the 
edges topologically parallel (see the case of cube and cuboctahedron). By construction, the 
rhombellanes have all classes of vertices not connected to each other within a same class. 
The smallest rhombellane is K2.3, i.e., the complete bipartite graph (corresponding to the 
[1,1,1]propellane molecule); any K2.n graph fulfills all the above conditions. A K2.n graph 
consists of n(n-1)(n-2)/6 K2.3 substructures. There are graphs with more than two vertex 
classes obeying the above conditions; the proposed rhombellation operation enables the 
design of such graphs. 

Rhombellanes represent n-partite graphs, both by topology and coloring [11,12]. Some 
crystal networks also fulfill the above criteria; among these, only the dia net is full 
rhombellanic. 
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2 BODY−CENTERED CLUSTERS 

Body centered clusters, derived from the Platonic solids (here denoted by MPn), represent 
cell-duals of polyhedra having n-cells around a central cell; they are objects of Euclidean 
4D-space [13]; this idea can be extended to objects other than Platonics (Figure 1); 
extension of P central point to a same cell leads to “cell-in-cell” clusters (Figure 2). Such 
body centered clusters have been used to design a plethora of polyhedral or non-polyhedral 
objects, and also periodic networks [14]. 
 

    
CP8.9 (bcu) CP4.9 (dia) Rh12P8.15 (bcu) COP12.13 (fcu) 

 

Figure 1. Seeds for some periodic networks. 
 

 

     

T@T.8 O@O.12 C@C.16 D@D.40 I@I.24 

Figure 2. Cell-in-cell clusters of the Platonic solids. 
 

3.  THE 24−CELL 

The 24-cell (Figure 3, left) is a convex regular 4-polytope, also called “icositetrachoron”, 
“octaplex”, or polyoctahedron”, as it consists of 24 octahedral cells, with six of them 
meeting at each vertex and three at each edge; its vertex figure is a cube. The 24-cell is the 
unique self-dual regular polytope, (of which dual is) neither a polygon nor a simplex; by 
this reason, it has no analogue in 3D. 

The vertex figure at a given vertex comprises all the figures incident on that vertex; 
edges, faces, etc. A vertex figure of an n-polytope is an (n−1)-polytope (e.g., the vertex 
figure of a 4-polytope is a 3-polytope, or a polyhedron) [14]. 

The first 8 vertices of 24-cell are the vertices of a regular 16-cell while the 
remaining 16 are the vertices of the dual 8-cell, or the tesseract, Q4.16. This suggests the 
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construction either by rectification of 16-cell (i.e., medial m(16-cell)) or by dualization of 
8-cell (i.e., d(8-cell)). There are several 3D projections of 24-cell, of which envelopes are 
the rhombic dodecahedron Rh12, cuboctahedron CO, hexagonal bi-antiprism, elongated 
hexagonal bipyramid or a tetrakis hexahedron (i.e., stellated cube st(C) – Figure 3, middle). 

Starting from the idea of MPn clusters, and keeping in mind the projection of 24-cell 
with a st(C) envelope, a construction of 24-cell as all-body-centered hypercube Q4.8CP8.24 
is proposed here, by joining eight CP8 units (Figure 3, right). In our best knowledge, this 
construction was not yet reported in literature. 

  
 

   
24-Cell.24 

Cuboctahedron  
orthogonal projection 

st(CP8).15 Q4.8CP8.24 

Figure 3. 24-Cell appearance. 
 

 
The figure count and topology sequence for Q4.8CP8.24 are given in Tables 1 and 2, 

respectively. As can be seen, both CP8 and Q4.8CP8.24 have the rank k = 4. There is a 
single class of vertices in 24-cell, thus a single sequence of connectivity (provided by the 
layer matrix of connectivity LC) and rings around vertices (in terms of layer of rings LR) 
will fully describe its topology [15,16]. Omega polynomial [17,18] Ω = 96X^1 shows that 
there are 96 f3 (i.e., triangles), counted as non-topologically parallel 96 edges. It means that 
24-cell is not a Rhombellane (cf. Proposition). 

 
 

 

Table 1. Figure count in Q4 related structures. 

Polytope v e f3 f4 f6 2 K2.3 K2.4 Ada(Py4) 3 4 χ k 

CP8 9 20 12 6 0 18 0 0 (6) 7 - 0 4 

Q4.8CP8 24 96 96 0 0 96 0 0 0 24 - 0 4 

CP4 9 16 0 18 0 18 10 0 0 11 - 0 4 

Q4.8CP4 24 64 0 120 8 128 80 12 2 94 8 2 5 
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4. A RHOMBELLANIC HYPERCUBE RELATIVE 

By deleting, in an alternating manner, four edges incident at each central point in 
Q4.8CP8.24 it results in a new structure, Q4.8CP4.24 (Figure 4), which is a rhombellane 
relative of the hypercube Q4 (see below). The repeating unit is now CP4.9, a 4-polytope (k 
= 4, see Table 1); it consists of ten simplest rhombellanes K2.3. There are eight CP4 facets 
(of rank k = 4) binding Q4.8CP4.24; each pair of CP4 facets shares a facet of rank k = 3, 
namely the rhombellane K2.4; thus, Q4.8CP4.24 is a 5-polytope (k = 5). In the figure count, 
two adamantine ada units (k = 3) and eight hexagons f6 were considered (Figure 4, middle 
and right); adamantane is not a polyhedron but a tile [19], similar to rhombellanes, from 
which it originates. Sequences of Q4.8CP4.24 topology are given in Table 2. There are two 
vertex classes, of degree 4 {16} and 8 {8}, respectively. Omega polynomial consists of a 
single term, Ω = 1X^64, saying that the edges of Q4.8CP4.24 are all topologically parallel 
and thus the structure is a rhombellane. The vertex classes have all non-connected points 
(as a bipartite structure), an additional proof supporting the rhombellanic nature of this 
structure of higher rank. About centrality, counted by our centrality index [15], the 16 
points class appears lying more central (C=0.1256396237) than the remaining 8 vertices 
(C= 0.1203238919). Computations have been done by our Nano-Studio software program 
[20]. 

 

   
Q4.8CP4.24 Ada.CP4.15 (inside) Ada.CP4.15 (outside) 

Figure 4. A rhombellanic hypercube Q4 relative (left); details of its inside (middle) and 
outside (right). 

 
Table 2. Sequence of connectivity (LC) and rings around vertex (LR) in all-centered 8-Cell 
(Tesseract) Q4.8CPn.24. 
 

Polytope LC LR Ω Degree Rings 
Q4.8CP8.24      

24 × 1 - 8 - 14 - 1 12 - 96 - 168 - 12  96X^1 8 3^12 
Q4.8CP4.24      

16 × 
8 × 

1 - 4 - 14 - 4 – 1 
1 - 8 - 6 - 8 - 1 

18 - 144 - 252 - 144 – 18 
36 - 144 - 216 - 144 - 36 

1X^64 4 
8 

4^18 
4^36 
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5. CONCLUSION 

The smallest rhombellane, [1,1,1]propellane, is a real chemical molecule; its associate 
graph is the complete bipartite graph, K2.3. Generalized rhombellanes are designed by 
Diudea’s rhombellation procedure. Rhombellanes have all the edges topologically parallel, 
as shown by the single term in Omega polynomial (further involving Hamiltonian circuits 
visiting their edges). Rhombellanes consist of at least one K2.3 subgraph. 

A new building way for the 4-polytope, 24-cell, from all-P8 body centered 
hypercube Q4 was proposed. Its P4 analogue, Q4.8CP4.24, is a 5-polytope. 

Structure representation in terms of small rhombellanes brings more structural 
insight and may unveil relations among structures apparently not related. Rhombellanes 
represent a new class of structures, with interesting properties, both in theory and 
applications. 
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1. INTRODUCTION: MATHEMATICAL BACKGROUND 

Let G be a graph representing the carbon–atom skeleton of a polycyclic conjugated π-
Electron system [7,9,21,34]. In what follows, we refer to G as to a molecular graph. Let G 
possess a total of t = t(G) cycles, and let these cycles be denoted by Z1, Z2, ..., Zt. 

In order to avoid any misunderstanding, in Fig 1 are indicated all the cycles 
contained in the molecular graph of triphenylene GTP. Thus, although GTP is classified 
among tetracyclic graphs (i.e., GTP has 4 independent cycles), it possesses a total of 11 
cycles, t(GTP ) = 11. 

In theoretical chemistry, it has been firmly established that the cycles in conjugated 
molecules have a profound influence on their physical and chemical properties, especially 
on those that are referred to as “aromaticity” and “local aromaticity” [27,6,30,28,13]. 

The considerations that follow are intimately related with the Sachs theorem and 
Its role in quantum chemistry. This theorem was published in its final form by Horst Sachs 

                                                
 Corresponding author (Email: gutman@kg.ac.rs). 
DOI: 10.22052/ijmc.2017.83263.1285 

Iranian Journal of Mathematical Chemistry 
 

Journal homepage: ijmc.kashanu.ac.ir 



10                                                                                                                              GUTMAN 

in 1964 [29], but remained fully unknown to the chemical community until the publication 
of the paper in 1972 [8]. Details of the Sachs theorem can be found in scores of books and 
review articles, for instance in [23,32,31,9,34,21,7,16]; for historical details see 
[11,12,35]. 

 
Figure 1. The molecular graph G TP of triphenylene and the cycles contained in it. 

 
Let G be a molecular graph and ϕ(G,λ) its characteristic polynomial. Let G has n 

vertices, which means that ϕ(G,λ) is a monic polynomial of degree n. 
A Sachs graph S is any graph whose components are cycles and/or 2-vertex 

Complete graphs. Denote by n(S), p(S), and c(S) the number of vertices, number of 
components, and number of cyclic components, respectively of the Sachs graph S. Denote 
by S(G) the set of all Sachs graphs that are as subgraphs contained in the graph G. Then 
the Sachs theorem reads, 

휙(퐺, 휆) = 휆 + ∑ (−1) ( )
∈ ( ) 2 ( )휆 ( )                   (1) 

Important for the present consideration is that the Sachs theorem relates the 
Characteristic polynomial with the structure of the underlying graph. Furthermore, it 
clearly and explicitly shows how the characteristic polynomial depends on the cycles 
Contained in the graph. 
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By solving the equation ϕ(G,λ) = 0, one obtains the eigenvalues of the graphs G, 
denoted by λ1 ≥ λ2 ≥ ··· ≥ λn . Within the framework of the tight-binding Hüuckel 
molecular orbital (HMO) approximation, the total π-electron energy of the underlying 
conjugated molecule can then be calculated as [9, 21] 

퐸(퐺) = ∑ 휔 휆                                                                   (2) 
where ωi is the occupation number of the i-th molecular orbital, ωi ∈ {0,1,2}. Thus, the 
Sachs theorem in an implicit manner reveals how the total π-electron energy depends on 
the cycles contained in the molecular graph. 

In order to measure the effect of cycles, a quasi-energy E(G,ref) needs to be 
constructed in an analogous manner as E(G), using not the zeros of the characteristic 
polynomial, but the zeros of a suitably constructed “reference polynomial”. Then the 
difference 퐸(퐺) − 퐸(퐺, 푟푒푓) provides a desired measure of the respective energy-effect, 
and can be directly related with the physical and chemical properties of the underlying 
conjugated π-electron systems. 
 
2. MODELING THE ENERGY−EFFECTS 

Let Z1, Z2, ..., Zt be the cycles contained in the molecular graph G. For i = 1,2,...,t, 
associate a variable gi to the cycle Zi . Let g = (g1 ,g2 ,...,gt ) be a t-dimensional vector. If 
g1 = g2 = ··· = gt = 0, then we write g = 0. If g1 = g2 = ··· = gt = 1, then g = 1. By ei we 
denote the g-vector in which all components are equal to zero, except the i-th component, 
which is equal to unity. Thus, 푔 = ∑ 푔 푒 .  

Bearing in mind Eq. (1), we define an auxiliary polynomial 

휙(퐺,푔, 휆) = 휆 + (−1) ( )

∈ ( )

2 ( )푍(푆) 휆 ( )  

where Z(S) is the product of gi-values of all cycles contained in the Sachs graph S. If the 
Sachs graph S is acyclic, then Z(S) = 1. 

It is evident that ϕ(G,1,λ) ≡ ϕ(G,λ), i.e., ϕ(G,1,λ) coincides with the ordinary 
characteristic polynomial. In addition, ϕ(G,0,λ) is equal to the matching polynomial, 
whose theory has been studied in due detail [5,15]. 

By solving the equation ϕ(G,g,λ) = 0, one obtains the quasi-eigenvalues λ1(g), 
λ2(g), ..., λn(g). Based on them, it is possible to compute a quasi-energy E(G,g) in the same 
manner as the total π-electron energy E(G) is calculated from the ordinary graph 
eigenvalues (as specified in the preceding section). Then, in particular, E(G,1) coincides 
with the ordinary total π-electron energy E(G), Eq. (2). 

The quasi-energy E(G,g) has to be understood as a total-π-electron-energy-like 
quantity, in which the parameter gi controls the effect of the i-th cycle contained in the 



12                                                                                                                              GUTMAN 

molecular graph. If gi = 1, then the effect of this cycle of total π-electron energy has the 
usual, normal value. If gi = 0 then the effect of the i-th cycle is completely neglected. 

Based on this simple observation, by means of the difference E(G,1) − E(G,g), and 
by a pertinent choice of the g-vector, it was possible to extract a variety of chemically 
relevant information contained in the HMO total π-electron energy. In what follows, we 
list a few such cases that earlier have been studied in the chemical literature. In the 
subsequent section, we point out other options that our general Theory makes possible. 
 
2.1. THE TOPOLOGICAL RESONANCE ENERGY  
 
Using the above introduced formalism, the “it topological resonance energy” is defined as 

TRE(G) = E(G,1) − E(G,0)                                 (3) 
It represents the effect on total π-electron energy of all cycles contained in the molecular 
graph G. This idea was first put forward in 1975 by Nenad Trinajstić and two of his 
students [18], and eventually elaborated in 1977, in the papers [33,19]. In the same time 
Aihara arrived at the very same idea [1]. Details and an extensive bibliography of the 
theory and numerous applications of the TRE model can be found in the survey [14], 
whereas a few interesting historical data in Trinastić’s autobiography [35]. 
 
2.2. MODELS OF ENERGY−EFFECT INDIVIDUAL CYCLES 

Whereas TRE represents the simultaneous effect of all cycles of total π-electron energy, an 
analogous reasoning lead to the expression 

푒푓(퐺,푍 ) = 퐸(퐺, 1)− 퐸(퐺, 1 − 푒 )                         (4) 
which would provide a measure of the effect of the individual cycle Zi. This model was 
proposed in 1977, in the paper [4]. The idea came from Gutman, whereas Slobodan 
Bosanac provided the software by means of which the ef-values could be efficiently 
calculated. The first chemical applications of this model were communicated in [17], and 
were followed by many dozens of publications; mathematical details and bibliography can 
be found in the survey [13]. 

In the same year 1977, Aihara introduced an alternative model for measuring the 
energy-effect of individual cycles [2]. In our symbolism, this energy-effect can be 
expressed as 

푒푓 (퐺,푍 ) = 퐸(퐺, 푒 )− 퐸(퐺, 0)                                      (5) 
In the case of unicyclic graphs, 푒푓 (퐺) = 푒푓(퐺) , whereas in the case of graphs 

with more than one cycle, the two ef-values differ. Worth mentioning is that for all graphs 
G and all i = 1,2,...,t, the quasi-eigenvalues λ1(ei), λ2 (ei), ..., λn(ei), i.e., the zeros of the 
polynomial 훽(퐺,푍 , 휆) = 휙(퐺, 푒 , 휆) are all real-valued. This fact was first established on 
a large number of examples [24,25] and eventually proved for the general case [26].  
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In a later article [3], Aihara himself came to the conclusion that the ef-model, Eq. 
(4), is superior to its ef A -version, Eq. (5). 

Formula (4) can be directly extended to measure the collective energy-effect of a 
pair of cycles Zi, Zj, 푒푓 퐺,푍 ,푍 = 퐸(퐺, 1)− 퐸(퐺, 1 − 푒 − 푒 ) of a triplet of cycles Zi 
,Zj, Zk , 푒푓 퐺,푍 ,푍 ,푍 = 퐸(퐺, 1)− 퐸(퐺, 1 − 푒 − 푒 − 푒 ) etc. However, to the present 
author’s best knowledge, these multiple-energy-effects have been considered in just a 
single paper [22]. 
 
3. MORE POSSIBILITIES OF THE GENERAL THEORY 

The choice g = 1−ei in Eq. (4) means that we completely neglect the influence of the cycle 
Zi on the value of the quasi-energy E(G,g). Analogously, the choice g = 0 in Eq. (3) means 
that we completely neglect the influence of all cycles on the value of the quasi-energy 
E(G,g). 

However, we may only partially diminish the effect of cycles (by choosing 0 < gi 
<1). In this case, a resonance energy of the form, 

푇푅퐸 (퐺, 휀) =
1
휀 [퐸(퐺, 1) −  퐸(퐺, (1 − 휀)1)] 

would be conceived, in which case TREa (G,ε) = TRE(G) if ε = 1. For instance, by setting 
ε = 1/2, we would get a kind of “half-way” resonance energy. Anyway, ε could be viewed 
as a variable parameter, whose value could then be optimized (so that TREa best agrees 
with experimentally observed facts). 

Another development beyond the standard TRE model would be to increase the 
effect of cycles above their usual value. The resonance energy obtained in this way would 
be, 

푇푅퐸 (퐺, 휀) = [퐸(퐺, (1 + 휀)1)− 퐸(퐺, 1)]                                   (7)  
in which case TREb (G,ε) = TRE(G) if ε = −1. It can be shown that 

lim → 푇푅퐸 (퐺, 휀) = lim → 푇푅퐸 (퐺, 휀) = ( , ) |푥 = 1                 (8) 
The partial derivative on the right–hand side of (8) was earlier studied in [10,20], where it 
was shown to be equal to the sum of contributions of individual cycles contained in the 
molecular graph G. 

Analogous extensions could be done also with the individual energy-effect ef(G), 
Eq. (4). Thus, one might consider 

푒푓 (퐺,푍 , 휀) = [퐸(퐺, 1)− 퐸(퐺, 1 − 휀푒 )]                            (9) 
or 

푒푓 (퐺,푍 , 휀) = [퐸(퐺, 1 + 휀푒 ) − 퐸(퐺, 1)]                           (10) 
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which evidently become equal to ef(G,Zi) for ε = +1 and ε = −1, respectively. In 
connection with this, it can be shown that, 

lim → 푒푓 (퐺,푍 , 휀) = lim → 푒푓 (퐺,푍 , 휀) = ( , ) |푔 = 1. 

 
4. CONCLUDING REMARKS 

The fact is that the variable-parameter energy-effects defined via Eqs. (6) , (7), (9) , (10), 
and similar have never been studied in theoretical chemistry. Their “ordinary” versions, 
Eqs. (3)–(5), were put forward in the 1970s, when the interest for HMO-based aromaticity 
criteria might have been at a maximum. In the meantime, the usage of HMO-based 
theories gradually lost their attractiveness, and nowadays it is unlikely that the models 
mentioned in the preceding section will be further elaborated and attempted to find 
chemical applications. Therefore, the present paper should be considered as a summary of 
what the research group of Nenad Trinajstić achieved in the study of cycle-effects in 
polycyclic conjugated molecules, and what could have had achieved, but did not. Sincere 
congratulations and best wishes to N.T.’s 80th birthday. 
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1. INTRODUCTION 

Let 퐺 = (푉,퐸) be a finite simple connected graph with vertex set 푉 = {1, 2, … , 푛},  
degrees 푑 ≥  푑 ≥ ⋯ ≥  푑 , and 푑 = | |  the average degree. Let 퐴 be the adjacency 
matrix of 퐺, 퐷 the diagonal matrix having the degrees of 퐺 in its diagonal and 퐿 = 퐷 − 퐴 
the Laplacian matrix of 퐺, with characteristic values 휆 ≥ 휆 ≥ ⋯ ≥ 휆 ≥ 휆 = 0.  
There exist many indices in Mathematical Chemistry expressed in terms of these 
characteristic values that we shall look at; among them the Laplacian energy like invariant 
put forward in [13]: 

퐿퐸퐿(퐺) = ∑ 휆 ,                                                        (1) 
and its generalization (see [4], [7]) 

퐿퐸퐿 (퐺) = ∑ 휆                                                            (2) 
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for arbitrary 훽 ≠  0,1; we shall also be concerned with the Kirchhoff index (see [12]) 
푅(퐺) = ∑ 푅  , where 푅  represents the effective resistance, as computed by Ohm’s 
and Kirchhoff’s laws, between the vertices i and j, and equal also to (see [8] and [18]) 

푅(퐺) = 푛∑ .                                                       (3) 

We shall also discuss the Laplacian energy put forward in [9] as 
퐿퐸(퐺) = ∑ |휆 − 푑 |.                                              (4) 

And finally we will consider the Laplacian Resolvent Energy of a graph, proposed by 
Cafure et al. in [3] as an alternative to the Resolvent Energy (see [11]) defined as 

푅퐿(퐺) = ∑ .                                                  (5) 

 The main ideas around majorization (for more details the reader is referred to [14]) 
may be briefly exposed thus: for any 푛-tuples 푥 =  (푥  , . . . ,푥  ) and 푦 =  (푦  , . . . , 푦 ) 
with 푥 ≥  푥 ≥  . . .≥  푥  and  푦  ≥  푦  ≥. . .≥ 푦  , 푥 majorizes 푦, written x ≻ y, if 

∑ 푥  ≥ ∑ 푦 ,                                               (6) 
for 1 ≤  푘 ≤  푛 −  1 and 

∑ 푥 = ∑ 푦 ,                                                 (7) 
A real function 훷 ∶ ℝ →  ℝ is a Schur-convex function in case it maintains the 

majorization inequality, that is, if 훷(푥)  ≥  훷(푦) whenever x ≻  y. Similarly, a Schur-
concave function inverts the inequality: 훷(푥)  ≤  훷(푦) whenever 푥 ≻  푦. A Schur-
convex (resp.Schur-concave) function can be simply constructed considering 훷(푥) =
∑ 푓(푥 ) , for any one-dimensional convex (resp. concave) real function 푓 ∶  ℝ →  ℝ. 
 The main idea for finding bounds through majorization for a molecular index is to 
express such index as a Schur-convex or Schur-concave function, and then to identify 
maximal and minimal elements, 푥∗ and  푥∗ respectively, that is, elements in the subspace 
of interest of the 푛-dimensional real space (which can be a set of n-tuples of degrees of 
vertices, or eigenvalues, or effective resistances, etc.) such that 푥∗ ≻ 푥 ≻ 푥∗, for all 푛-
tuples x in the subspace of interest, and then if 훷 is Schur-convex we will have 훷(푥∗) ≥
훷(푥) ≥ 훷(푥∗), for all 푥, having thus found the upper and lower bounds of interest, 훷(푥∗) 
and 훷(푥∗), respectively. A similar conclusion follows, exchanging the words ’’upper” and 
“lower”, if 훷 is Schur-concave. 

Several indices in Mathematical Chemistry such as (1), (2), (3), (4) and (5) are 
con-structed using Schur-convex or Schur-concave functions, and this fact has been used 
in a collection of articles (such as [2], [6], [13], [15], [16], for example) to find a 
cornucopia of upper and lower bounds for the indices. Specifically, in [15] we used the 
fact that the Laplacian eigenvalue sequence majorizes the degree sequence, i.e.: 

(휆 , 휆 , … , 휆 ) ≻ (푑 + 1,푑 , … , 푑 − 1),                                 (8) 
with the purpose of finding lower (resp. upper) bounds, expressed in terms of the degree 
sequence, for descriptors defined through Schur-convex (resp. concave) functions. 
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Interestingly enough, there is a companion formula for (8), perhaps not so well 
known, where the eigenvalue sequence is majorized by another set of numbers, the 
conjugate degree sequence. In general, given a finite sequence 푎  , 푎  , . . . ,푎  of non-
negative numbers, its conjugate sequence a 푎′  , 푎′  , . . . , 푎′   is defined by 푎′ =
|{푖 ∶ 푎 ≥ 푗}|. 

The conjugate sequence does not depend on the order of the original sequence and 
it is always a decreasing sequence, with  푎′ ≤ 푛  and 푎′ = 0 for 푗 >  푚푎푥{푎  , . . . ,푎 }. 
For the sequence of degrees 푑  , . . . , 푑  of any graph  퐺 it should be noted that we have 
푑′ = 푛  and 푑′ = 0. For more details on conjugate sequences, the reader can consult [14]. 

Here is the important fact that was conjectured by Grone and Merris in [7] and that 
was finally proven by Bai in [1]: 
 
Lemma 1. Given an arbitrary 퐺 we have 

푑′ , … , 푑′ ≻ (휆 , … , 휆 )                                                  (9) 
 

It is clear that equation (9) (incidentally, since 푑′ = 휆 = 0 this equation can be 
rewritten as 푑′ , … ,푑′ ≻ (휆 , … , 휆 ))  can be used to find upper (resp. lower) 
bounds, in terms of the conjugate degree sequence, for Laplacian descriptors defined 
through Schur- convex (resp. concave) functions. This is precisely what Das et al. did in 
[5], where they worked with the Laplacian descriptors 퐿퐸(퐺) and 퐿퐸퐿(퐺), among other 
descriptors, and found some bounds in terms of the 푑′s. In this article we will obtain 
additional bounds for the other Laplacian descriptors mentioned here in terms of the 
conjugate degree sequence, and then with a maximality argument used in majorization, we 
will find tight general bounds expressed in terms of the size of the vertex index 푛 and the 
average degree d . We will also find some particular tight bounds given in terms of usual 
graph parameters. 
 
2. THE INEQUALITIES 

We begin with the general inequalities in the following 
 
Proposition 1. For any 퐺  and d′  its conjugate degree sequence we have 

퐿퐸퐿(퐺) ≥  ∑ 푑′ ,                                                                   (10) 

퐿퐸퐿 (퐺) ≤  ∑ 푑′ ,        for  훽 >  1 표푟 훽 <  0                  (11) 

퐿퐸퐿 (퐺) ≥  ∑ 푑′ ,    for  0 < 훽 <  1                                (12) 
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푅(퐺) ≤  푛∑ ′  ,                                                                  (13) 

퐿퐸(퐺) ≤  ∑ 푑′ − 푑 + 푑 ,                                               (14) 

푅퐿(퐺) ≤ ∑ ′ + .                                                   (15) 

Proof. Apply (9) and the facts that 푅(퐺), LE(G), 퐿퐸퐿 (퐺) for 훽 <  0 or 훽 >  1 and 
푅퐿(퐺) are Schur-convex, while 퐿퐸퐿(퐺) and 퐿퐸퐿 (퐺) for 0 <  훽 <  1 are Schur-
concave. 
 Inequality (10) was proven in [5]. One may ask how informative these inequalities 
are. For example, if any of the 푑′s are zero, (13) provides no information. On the other 
hand, from the trivial observation that 푑′ ≤ 푛, for 1 ≤  푖 ≤  푛 −  1, we can prove with a 
straightforward argument - worth comparing with the methods used in [17] and [3] to 
prove these facts - a couple of maximal results in the next 
 
Proposition 2. For arbitrary 퐺 the following holds 

퐿퐸퐿 (퐺) ≤ 퐿퐸퐿 (퐾 ) = (푛 − 1)푛       for    훽 > 0 ,                 (16) 
and 

푅퐿(퐺) ≤ 푅퐿(퐾 ) = 푛 − 1 + .                                              (17) 

Proof. Since the real functions 푓(푥)  =  푥  for 훽 >  0 and 푓(푥)  =   are increasing 

we obtain from (11) and (15) that 퐿퐸퐿 (퐺) ≤ ∑ (푑 ) ≤ ∑ 푛 = (푛 − 1)푛 , and 

푅퐿(퐺) ≤ ∑ ′ +  ≤ ∑ 1 + = 푛 − 1 + . 

 
Since the Laplacian eigenvalues of the complete graph 퐾  are 0 and 푛 with 

multiplicity 푛 − 1, it is readily seen that the equalities in (16) and (17) are attained by 퐾 . 
We present now the following result, found in section 2.3 of [2] (corollary 2.3.2) as 

a lemma which will be used in the next proposition 
 
Lemma 2. Let 푆  be the set of real 푛-tuples 푥 =  (푥  , 푥  , . . . ,푥  ) such that 푥  ≥  푥  ≥
 . . .≥  푥  and ∑ 푥 = 푎, which additionally satisfy 푀 ≥  푥  ≥  푚. Then the maximal 
element 푥∗ of  푆  , that is, the element such that for any other 푥 we have 푥∗ ≻ 푥 , is given 
by 푥∗ = (푀,푀, … ,푀, 휃,푚,푚, … ,푚), where 푀 appears 푘 times, m appears 푛 −  푘 −  1 
times, 푘 =  ⌊  ⌋ and 휃 =  푎 −  푀푘 −푚(푛 −  푘 −  1).  
 
Now we can prove our main result in the following 
 
Proposition 3. For any 퐺 we have  

퐿퐸퐿(퐺) ≥ ⌊푑 ⌋ + 푑 − ⌊푑 ⌋ √푛,                                                     (18) 
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퐿퐸퐿 (퐺) ≤ [⌊푑 ⌋+ 푑 − ⌊푑 ⌋ 푛 ,    for   훽 > 1 표푟 훽 < 0                (19) 
LEL (퐺) ≥ [⌊푑 ⌋ + 푑 − ⌊푑 ⌋ 푛 ,    for  0 <  훽 < 1                         (20) 

푅퐿(퐺) ≤ ⌊푑 ⌋ +
( ⌊ ⌋)

+ ⌊ ⌋ ,                                            (21) 

퐿퐸(퐺) ≤ 2⌊푑 ⌋(푛 − 푑 )     if   푑 ≥ 푛(푑 − ⌊푑 ⌋).                               (22) 
퐿퐸(퐺) ≤ 2푑 (푛 − ⌊푑 ⌋ − 1)     if   푑 ≤ 푛(푑 − ⌊푑 ⌋).                        (23) 

 
All the equalities in (18) through (22) are attained by the complete graph 퐾   
 
Proof. We prove only (22), since all the other inequalities have a similar proof. Consider 
the set 푆 | | of all 푛-tuples 푥 =  (푥  ,푥  , . . .푥 ) of non-negative numbers such that 
∑ 푥 = 2|퐸| and 푛 ≥ 푥 ≥ 0. With the notation of the lemma, 푀 =  푛 and 푚 =  0. Then 

k =  ⌊ | | ⌋  = ⌊푑 ⌋ and 휃 =  푛(푑  −  ⌊푑 ⌋). That means that the maximal element of 
푆 | | is 푥∗ = (푛, 푛, … ,푛,푛(푑 − ⌊푑 ⌋), 0, … ,0), where the coordinate 푛 appears ⌊푑 ⌋ 
times. Since 푥∗  ≻  푑′ , … , 푑′  and the function that defines 퐿퐸(퐺) is Schur-convex, the 
following holds: 

퐿퐸(퐺) ≤ ∑ 푑′ − 푑 ≤∑ (푛 − 푑 ) + |푛(푑 − ⌊푑 ⌋)− 푑 |⌊ ⌋  +∑ 푑⌊ ⌋   
            = (푛 − 푑 )⌊푑 ⌋ +|푛(푑 − ⌊푑 ⌋) −푑 | + (푛 − ⌊푑 ⌋ − 1)푑   
            = (n − d )⌊d ⌋ + 푑 − 푛(푑 − ⌊푑 ⌋) +(푛 − ⌊푑 ⌋ − 1)푑  

                        = 2⌊푑 ⌋(푛 − 푑 ). 
 The reader may verify for the case of the complete graph 퐾  that both the value of 
퐿퐸(퐾 ) and the upper bound are equal to 2(푛 −  1). 

The following corollary is immediate from the previous proposition, but worth 
being expressed explicitly. 
 
Corollary 1. If the average degree 푑  is an integer then 

퐿퐸퐿(퐺) ≥  푑 √푛 ,                                                                         (24) 
퐿퐸퐿 (퐺)  ≤  푑 푛  ,      for 훽 >  1 표푟 훽 <  0,                              (25) 
퐿퐸퐿  (퐺)  ≥  푑 푛  ,    for 0 <  훽 <  1,                                       (26) 

푅퐿(퐺) ≤ (   ).                                                                          (27) 

퐿퐸(퐺)  ≤  2푑  (푛 – 푑  ).                                                              (28) 
 
Remarks. The corollary holds, in particular, if the graph is 푑-regular. The proof of the 
lower bound (24), valid for all 퐺, can be tracked down to [10]. Notice that our bound (18) 
is stronger than (24) in general, since  

푑 √푛  = (⌊푑  ⌋ + 푑 − ⌊푑  ⌋)√푛  ≤ (⌊푑  ⌋ + 푑 − ⌊푑  ⌋)√푛, 
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because 0 ≤  푑  − ⌊푑  ⌋ ≤ 1. The same is valid for (20)−(22) with respect to (26)−(28). 
Of all these, perhaps the only one worth a couple of lines is the proof that (21) is always 
better than (27), and this, after some algebra is equivalent to proving that 

 
(   )     

≤
  

 ,                                                       (29) 

for 훼 =  푑  −  ⌊푑 ⌋, which satisfies 0 ≤  훼 ≤  1, and makes the truth of (29) obvious. 
As for (19), it is better than (25) only for 훽 >  1. 
 
 In the next propositions, we explore other ways to handle the 푛-tuple of conjugate 
degrees that yield inequalities in terms of the usual graph parameters for certain classes of 
graphs. 
 
Proposition 4. For a graph possessing 푘 vertices with maximal degree 푛 −  1 we have 

      퐿퐸퐿  (퐺) ≤  푛  +  (푛 −  2)푘      for 훽 <  0, and 푅(퐺) ≤  1 + ( ).               (30) 
The equalities in both cases are attained by the star graph 푆  and the complete graph 퐾  .  
 
Proof. We prove only the second half of (30) as the other proof is similar. We know that 
 푑′ = 푛, and by the hypothesis 푑′ ≥ 푘 for 2 ≤  푖 ≤  푛 −  1. Given that the function 

푓(푥) =   decreases in the interval (0,∞), by (13) we can write 푅(퐺) ≤ 푛 + ∑ =

1 + ( ). In the case of the star graph it is well known that 푅(푆 ) =  (푛 −  1)  which 
coincides with the upper bound when k = 1; in the case of the complete graph it is also 
well known that 푅(퐾  )  =  푛 −  1 which coincides with the value of the upper bound 
when 푘 =  푛. 
  
Proposition 5. If 퐺 has 푘 pendent vertices then 

퐿퐸퐿  (퐺) ≤  푛  +  푛 –  2 푛 –  푘  for 훽 >  1 and 푅퐿(퐺) ≤  1 + + .          (31) 
The equalities are attained by the star graph 푆   
 
Proof. We prove the second half of (31). The hypothesis implies that d′ ≤ n − k  for 
2 ≤  푖 ≤  푛 − 1. Also the real function f (푥) =   is increasing, and therefore 

푅퐿(퐺) ≤ ∑ ′ = 1 + ∑ ′ + ≤ 1 + ∑
( )

+ . Now for the 

푛-star graph 푆  its eigenvalues are 푛, 1 with multiplicity 푛 −  2 and 0 and therefore 
푅퐿(푆  ) =  1 + + , which coincides with the upper bound when 푘 =  푛 –  1. 
 
Proposition 6. If 퐺 is a chemical graph then 
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                               퐿퐸퐿 (퐺)  ≤  4푛 , for 훽 >  1 and 푅퐿(퐺) ≤  4 +  .                   (32) 
The equalities are attained by the complete graph 퐾 . 
 
Proof. We prove the second half of (32). The hypothesis implies that 푑′ ≤ 푛  for 1 ≤ i ≤ 4 
and 푑′ = 0 for 푖 >  4. Therefore, with the same arguments as in the previous proposition 
푅퐿(퐺) ≤ ∑ ′ ≤ ∑ 1 + ∑ = 4 + .  Combining the hypotheses of the 

last two propositions we obtain the next proposition with an obvious proof. 
 
Proposition 7. If 퐺 is a chemical graph with 푘 pendent vertices then 

퐿퐸퐿 (퐺)  ≤  푛  +  3(푛 −  푘)  ,   for 훽 >  1 and 푅퐿(퐺) ≤ 1 + + . 
The equalities are attained by the star graph 푆  . 
 
3. CONCLUSIONS 

The fact that the 푛-tuple of Laplacian eigenvalues of a graph is majorized by the conjugate 
sequence of its degrees allows to find easily general bounds for some Laplacian 
descriptors in terms of the conjugate sequence. We have shown here how to handle the 
conjugate sequence with a maximality argument, in order to express these bounds in terms 
of 푛 and the average degree 푑  , and with basic arguments for graphs with vertices of 
maximal or minimal degrees, in order to exhibit bounds given in terms of the number of 
these special vertices. We expect that in the future, as more relationships are uncovered for 
the conjugate sequence of the degrees of a graph, better bounds will be obtained in a 
similar way to those found here. 
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1. INTRODUCTION 

Physical, chemical and adsorption properties of adsorbents depend on its surface. The 
highly inhomogeneous surface structure of solid particles is difficult to characterize using 
simple geometry. Fractals, whose structures repeat themselves in all dimensions and on all 
length scales, are often used to depict the structure of solid particles and their surfaces. 
Adsorption is a method frequently used to determine the surface fractal dimension of 
porous media. It can be expected that adsorption processes involving solid–liquid 
interfaces could be of high heterogeneity.  

The wide applicability of the fractal approach to adsorption systems and at the 
same time its limited utility in almost every case, brings one to the following conclusion: 
solid surfaces are never perfectly regular or irregular. Real solid surfaces represent an 
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intermediate case. Several different theories have been developed to analyze adsorption 
data and obtain the surface fractal dimension [1, 2]. Avnir and Pfeifer [3] applied fractal 
geometry concepts to describe the general features of surface geometric heterogeneity in 
adsorption systems showing a small degree of surface organization. Ismail and Pfeifer [4] 
demonstrated three variants of the gas adsorption method for measurement of the surface 
fractal dimension, using carbon fibers as a test material. Ozek [5] provided methods to 
estimate pore and surface structures of activated carbon fiber by adsorption of dyes on the 
surface of and determined its fractal dimension. Lopez et al [6] presented a fractal kinetic 
model for adsorption at solid/solution interface. 
 
2. PROBLEM STATEMENT 

Carbon nanotube has brought on plenty of research in different scientific fields due to its 
special physical and chemical properties. The purpose of this study is to use this rate 
equation to analyze adsorption data of ions on some modified multi-walled carbon 
nanotubes. We are going to obtain the spectral dimension of some modified multi-walled 
carbon nanotubes by analysis of kinetic data. 
 
3. PRELIMINARIES  

There are famous kinetics model to describe rate of adsorption including pseudo-first-
order, pseudo-second-order and Langmuir models. The Langmuir equation is the simplest 
adsorption isotherm with sound theoretical foundations that is considered a good 
approximation of the real adsorption systems. The Langmuir model is based on a kinetic 
principle. This model took into account the limited capacity of a flat and homogeneous 
surface as well as both adsorption and desorption processes [7]. The Langmuir rate 
equation is: 
              = 푘   푐 (1 − 휃) −  푘  휃                                                                                   (1) 
where ka is the adsorption rate coefficient, kd is the desorption rate coefficient, θ =q/qm is 
the relative surface coverage, qm is the adsorption capacity and c is the concentration. By 
equating the rates of adsorption and desorption, the famous Langmuir isotherm will be 
obtained.  

In 1998, Kopelman [8] considered that in most heterogeneous phases, the rate 
constant 푘  of reaction depends on reaction time: 
                푘 = 푘′ 푡                   0 ≤ ℎ ≤ 1                           (t ≥ 1)                                  (2) 
where 푘′ is a constant not dependent on time and h is a parameter measuring the degree of 
local heterogeneity [9]. When h=0, kobs is time-independent; however, when ℎ ≠ 0, kobs is 
time-dependent at all times.  
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The rate constant and the order of reaction are associated with the spectral 
dimension ds. The spectral dimension ds for fractal objects is a kind of dimension. It means 
the degree of local heterogeneity. Increase of ds value implies more local heterogeneous, 
more remarkable time-dependent rate coefficient. For a single reactant bimolecular 
reaction (A+A), there should be the following relation: 
            ℎ = 1 −                                                                                                                (3) 
The adsorption of the molecules on the active surface sites on can be written as: 
            B + mA → B–mA                                                                                                   (4) 
where B is the adsorbate, A is the active site on surface and B−mA is the product of above 
reaction. Wang et al [10] developed the relations among the parameters of m, h and ds to 
the adsorption kinetics of molecules onto fractal surfaces as: 
            푑 = 2(1− )                                                                                                  (5) 

Recently, we developed a fractal-like kinetics equation for adsorption according to the 
Langmuir kinetic equation and fractal-like kinetics model [11]. This model studied the 
adsorption of some ions onto graphene surface, successfully. 
 
4. PROPOSED METHOD  

We proposed that rate coefficient of adsorption is time-dependent but rate coefficient of 
desorption is not [11]. This new rate equation is: 

       = 푘 푡 푐(1 − 휃) − 푘 휃                                                                                      (6) 

The value of ka푡  changes over time until equilibrium that the rate constant of adsorption 
reaches to k'

a: 
       푘 ′ =  푘 푡                                                                                                           (7) 

where te is the time in which system reaches to equilibrium. Therefore, the Langmuir 
constant (KL) equals to: 

        퐾 =                                                                                                             (8) 

The analytical solution of equation (6) led to a complex expression. One powerful 
technique for numerical simulations is stochastic simulation. For this purpose, we applied 
the CKS package developed by Houle and Hinsberg [12]. Recently, we have used it to 
solve some rate equations, numerically [13, 14]. 

In this method, the adsorption mechanism is considered as reaction (4). Since 
fractal-like Langmuir equation was used, the value of “m” in this reaction was considered 
equals to one. The input data for simulation are the rate constants, the value of h, and the 
initial concentrations of adsorbates in the bulk and the active sites on carbon nanotube. 
The rates of adsorption and desorption steps (Ri), are taken to be proportional to the 
probability, Pi, and calculated based on equation (6). The time step Δt between 
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occurrences of any of the reaction steps is the mean time for a system obeying Poisson 
statistics: 

     




iR

t ln                                                                                                                     (9) 

where  is a random number between 0 and 1. The simulation is propagated by 
repetitively selecting at random among the probability-weighted steps in the mechanism, 
and updating the reactant and product populations according to the stoichiometry of the 
selected step, system state variables, and reaction rates. The result is a set of concentration 
versus time curves that may be compared directly to experiment.  

In the next section, this numerical solution method will be used to obtain the 
spectral dimension of multi-walled carbon nanotubes. 
 
5. ILLUSTRATIVE EXAMPLES  

In this section, the fractal-like Langmuir equation (equation (6)) will be used to determine 
the spectral dimension of multi-walled carbon nanotube. In addition, equation (6) will be 
compared with Langmuir kinetic model, pseudo-first-order and pseudo-second-order 
kinetic models. In order to determine the spectral dimension of multi-walled carbon 
nanotube, some experimental systems that have studied ion adsorption on the carbon 
nanotube were chosen [15, 16]. 

As an example, we have selected the system adsorption of Pb2+ on modified multi-
walled carbon nanotube. Vukovic et al [15] studied Pb2+ ion adsorption on 
diethylenetriamine and triethylenetetramine modified multi-walled carbon nanotubes (e-
MWCNT and d-MWCNT, respectively), experimentally. The experimental data were 
analyzed according to the Langmuir isotherm and the obtained values of KL and qm are 
shown in Table 1. Equilibrium data agree well with Langmuir isotherm. From the results, 
it is clearly seen that the equilibrium adsorption is much close to the experimental data, 
suggesting application of the kinetic Langmuir model. The curve fitting and statistical 
analyses were performed with CKS package. Having determined the parameters of 
Langmuir kinetic model, we used input data (temperature, concentration of adsorbent in 
solution and qm) to fit the experimental kinetic plots by adjusting the value of the 
parameter ka. The kinetic constants and correlation coefficient of this model were 
calculated and given in Table 2. Empirical (open diamond) and calculated data by kinetic 
Langmuir model (solid line) of Pb2+ ion adsorption on d-MWCNT are shown in Figure 
1(a). As seen in Figure 1(a), the calculated data by kinetic Langmuir model are not in good 
agreement with empirical data. 
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Table 1: The initial concentration and Langmuir parameters for the adsorption of Pb2+ and 
Ni(II) onto modified multi-walled carbon nanotube.  

 

Systems c (mol/ℓ) qm (mg/g) KL (ℓ/mg) R2 

Pb/d-MWCNT 2.40×10-5 4.80×101 1.35 0.9879 

Pb/e-MWCNT 2.40×10-5 3.02×101 0.43 0.9885 

Ni/MWCNT 1.00×10-3 1.01×101 0.22 0.9879 

 
The worse agreement between theory and experiment can be related to the fractal 

dimension of surface. Equation (6) was solved by CKS package and the values of ka and h 
were obtained as adjustable parameters. The value of kd was calculated by using equation 
(8). Figure 1(b) shows the agreement between theory and experiment, along with the 
values of the best-fit parameters (Table 2). There is noise in this fitting because of limited 
performance of the software. Figures 1(a) and 1(b) show the comparison of empirical 
kinetic data and calculated kinetic data fitted equations (1) and (6). A good fitting quality 
is obvious by equation (6) (see Table 2).  
 
Table 2: The constant parameters of Langmuir and fractal-like Langmuir rate equations 
for the adsorption of Pb2+ and Ni(II) onto modified multi-walled carbon nanotube at 298 
K. 

 

Systems 
Langmuir rate equation Fractal-like Langmuir rate equation 

ka 
(ℓ/mol.min) 

kd  
(1/min) R2 ka 

(ℓ/mol.min) 
kd  

(1/min) h ds R2 

Pb/d-MWCNT 4.00×104 0.14 0.9695 1.58×104 0.39×10-1 0.67×10-1 1.87 0.9899 

Pb/e-MWCNT 2.70×104 0.30 0.9144 7.30×103 0.19×10-1 0.28 1.44 0.9808 

Ni/MWCNT 8.00×102 0.61×10-1 0.9228 5.68×102 0.27×10-1 0.10 1.80 0.9848 

 
The pseudo-first-order and pseudo-second-order models are extensively used in the 

literatures. Azizian [17] showed that both pseudo-first- and pseudo-second-order equations 
are treated as special cases of Langmuir kinetic model. The pseudo-first-order equation is 
[18]: 

     = 푘 (푞 − 푞)                                                                                                  (10) 
where k1 is the pseudo-first-order rate coefficient. 
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Figure 1. Kinetic data of Pb2+ adsorption on d-MWCNT surface; empirical [15] 
(diamonds) and calculated data (line) by a) Langmuir and b) the fractal-like Langmuir rate 
equations. 
 
The pseudo-second-order kinetic equation is [19]: 

      = 푘 (푞 − 푞)                                                                                                (11) 
where k2 is the pseudo-second-order rate coefficient.  

To compare equation (6) with pseudo-first-order and pseudo-second-order 
equations, empirical data of Pb2+ ion adsorption on d-MWCNT were fitted by them. 
Kinetic parameters along with correlation coefficients of the kinetic models are shown in 
Table 3. As can be seen from Tables 2 and 3, higher correlation coefficients (R2) of 
equation (6) indicates that this kinetic model is suitable to describe adsorption of Pb2+ ion 
adsorption on d-MWCNT. Therefore, the fractal-like Langmuir equation was used to 
determine the spectral dimension of d-MWCNT and the result was shown in Table 2. 
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Table 3: The pseudo-first-order and pseudo-second-order parameters for the adsorption of 
Pb2+ and Ni(II) onto modified multi-walled carbon nanotube at 298 K.  

 

Systems 
Pseudo-first-order Pseudo-second-order 

k1(1/min) R2 qe(mg/g) k2(g/mg.min) R2 

Pb/d-MWCNT 7.92×10-2 0.8400 3.88×101 4.04×10-2 0.9675 

Pb/e-MWCNT 7.48×10-2 0.9053 2.87×101 1.35×10-2 0.9775 

Ni/MWCNT 1.80×10-1 0.9362 5.14 2.98×10-2 0.9291 

 
Now let us consider the experimental data of Pb2+ ion adsorption on e-MWCNT. 

For this purpose, we have applied the procedure described in the previous sections. The 
results of that fitting are shown in Figures 2(a) and 2(b) (solid lines), whereas the related 
best-fit parameters are collected in Table 2. When looking through Figures 2(a) and 2(b) 
one can state that equation (6) offers a better fit of kinetic data than kinetic Langmuir 
model. 

A comparison of the kinetic models and the empirical kinetic data of Pb2+ ion 
adsorption on e-MWCNT was best described by equation (6). The obtained parameters of 
kinetic models are presented in Table 3. It was found that equation (6) is superior to other 
three ones for the description of kinetic data. Thus, the fractal-like Langmuir equation was 
used to determine the spectral dimension of e-MWCNT (Table 2). 

In continuous, another experimental system was studied. This empirical system 
was presented by Chen et al [16] has studied Ni(II) adsorption on a kind of modified 
multi-walled carbon nanotube. In the first step, we fitted the empirical kinetic data by 
using equations (1) and (6) (Tables 2 and 3). The calculated data by equation (1) are 
shown in Figure 3(a). Figure 3(b) shows that equation (6) can correlate very well the 
behavior Ni(II) adsorption on modified multi-walled carbon nanotube. By looking at 
Figures 3(a) and 3(b), we observe a good suitability of equation (6) rather the kinetic 
Langmuir equation. 

Finally, empirical data Ni(II) adsorption on modified multi-walled carbon 
nanotube were studied by pseudo-first-order and pseudo-second-order equations. The 
estimated model parameters with the correlation coefficient (R2) for the different models 
are shown in Table 3. The correlation coefficients, R2, given in the Tables 2 and 3 also 
show that equation (6) can be satisfactorily described empirical data of Ni(II) adsorption 
on a modified multi-walled carbon nanotube. The obtained value of spectral dimension of 
modified multi-walled carbon nanotube was shown in Table 2. 
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Figure 2. Kinetic data of Pb2+ adsorption on e-MWCNT surface; empirical [15] 
(diamonds) and calculated data (line) by a) Langmuir and b) the fractal-like Langmuir rate 
equations. 
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Figure 3. Kinetic data of Ni(II) adsorption on MWCNT surface; empirical [16] 
(diamonds) and calculated data (line) by a) Langmuir and b) the fractal-like Langmuir rate 
equations. 
 
 In summary, the presented model investigation seems to suggest that equation (6) 
is a very good equation to correlate kinetic data of adsorption on carbon nanotube surfaces 
and can be used to obtain the spectral dimension of surfaces. 
 
6. CONCLUSION 

By applying empirical data of Pd(II) and Ni(II) adsorption on carbon nanotube surfaces, it 
was shown that the fractal-like Langmuir model can be applied with good success in many 
adsorption systems. The best description of kinetics was obtained with the fractal-like 
Langmuir equation corresponding to Langmuir, pseudo-first-order and pseudo-second-
order rate equations. By using of empirical data of ion adsorption on multi-walled carbon 
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nanotube, the fractal degree of adsorption (h) was obtained. The spectral dimensions of 
some multi-walled carbon nanotubes were obtained. 
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1 INTRODUCTION AND PRELIMINARIES 

Let G  be a simple graph with vertex set 푉(퐺) and edge set 퐸(퐺). For any vertex 푣 ∈
푉(퐺), the set of neighbors of v  is the set 푁 (퐺) = {푢 ∈ 푉(퐺)| 푢푣 ∈ 퐸(퐺)}. We say that 
푣 ∈ 푉(퐺) is an isolated vertex if 푁 (푣) is an empty set. The distance between the vertices 
푢 and 푣 of 퐺 denoted by 푑 (푢, 푣). (푑(푢, 푣)for short), is defined as the length of the shortest 
path connecting u and v . 
 The complement of a graph G  is a graph H  on the same vertices such that two 
vertices of H  are adjacent if and only if they are not adjacent in 퐺. The graph 퐻 is usually 
denoted by 퐺̅.The minimum length of a cycle in a graph G is called the girth of G . We 
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now define several kinds of products of pairs of graphs; see [14] for details.The union of 
the simple graphs G  and H is the graph 퐺⋃퐻 with vertex set 푉(퐺) ∪ 푉(퐻) and edge set 
퐸(퐺) ∪ 퐸(퐻). If 퐺 and 퐻 are disjoint, then we refer to their union as a disjoint union. 
Suppose that 퐺 and 퐻 are two graphs with disjoint vertex sets. Their Cartesian product 
퐺 × 퐻 is a graph such that 푉(퐺 × 퐻) = 푉(퐺) × 푉(퐻), and two vertices (푢 ,푣 ) and 
(푢 , 푣 ) are adjacent in 퐺 × 퐻  if and only if either 푢 = 푢  and 푣  is adjacent with 푣 , or 
푣 = 푣  and 푢  is adjacent with 푢 . The join 퐺 + 퐻 of the graphs G  and H  is the graph 
union 퐺 ∪ 퐻 together with all the edges joining 푉(퐺) and 푉(퐻). The tensor product 퐺⨂퐻 
of the graphs 퐺 and 퐻 is the graph with vertex set 푉(퐺) × 푉(퐻) in which (푢 , 푣 ) is 
adjacent with (푢 , 푣 ) whenever 푢 푢 ∈ 퐸(퐺) and 푣 푣 ∈ 퐸(퐻). The strong product 퐺Ω퐻 
of 퐺 and 퐻 has the vertex set 푉(퐺Ω퐻) = 푉(퐺) × 푉(퐻) and two distinct vertices ),( 11 vu  

and ),( 22 vu  of 퐺Ω퐻 are adjacent if 푢 = 푢  and 푣 푣 ∈ 퐸(퐺)., or 푢 푢 ∈ 퐸(퐺) and 
푣 = 푣 , or 푢 푢 ∈ 퐸(퐺) and 푣 푣 ∈ 퐸(퐻).. For given vertices 푦 ∈ 푉(퐺) and 푧 ∈ 푉(퐻), a 
splice of 퐺 and 퐻 by vertices 푦 and 푧, (퐺.퐻)(푦, 푧), is defined by identifying the vertices 푦 
and 푧 in the union of 퐺 and 퐻 [10]. Hou and Shiu [13] introduced an edge version of 
corona product as follows. 
 Let 퐺 and 퐻 be two graphs on disjoint sets of 푛 ,푛  vertices and 푚 , 푚  edges, 
respectively. The edge corona 퐺 ◊ 퐻 is defined as the graph obtained by taking one copy of 
G  and 푚  copies of 퐻, then joining two end-vertices of the i -th edge of 퐺 to every vertex 
in the i -th copy of 퐻. 
 Now, we define the Hajós join which is introduced in [11]. Let 퐺 and 퐻 be two 
graphs, 푣푤 ∈ 퐸(퐺), and 푥푦 ∈ 퐸(퐻). Then the Hajós join of these two graphs, which is 
denoted by 퐺∆퐻 ,is a new graph that combines the two graphs by identifying vertices 푣 and 
푥 into a single vertex, removing the two edges 푣푤 and 푥푦, and adding a new edge 푤푦. For 
example, if 퐺 and 퐻 are cycles of length 푝 and 푞 respectively, then the Hajós join of these 
two cycles is itself a cycle, of length 푝 + 푞 − 1. 

Let 퐺 be a simple graph with vertex set {푣 , 푣 , … ,푣 }. The common neighborhood 
graph (congraph) of G , denoted by 푐표푛(퐺), is a graph with the vertex set {푣 , 푣 , … ,푣 }.  
in which two vertices are adjacent if and only if they have at least one common neighbor in 
the graph G  [1, 2]. 

Congraphs have been investigated in several earlier works [1, 2, 6, 12, 15]. In [12], 
we obtained some results on congraphs of graph products. In this paper we continue this 
study and report additional results along these lines. 

It should be noted that in two earlier works [3, 4] the so-called derived graph 퐺  of 
the graph G  was considered. The derived graph 퐺   has the same vertex set as the parent 
graph G , and two vertices of 퐺  are adjacent if and only if their distance in G  is equal to 
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two. It is immediately seen that 퐺 = 푐표푛(퐺) if and only if the parent graph G  does not 
contain triangles. Thus, in particular, 퐺 = 푐표푛(퐺) holds whenever G  is bipartite. 
The notations used in this paper is standard and taken mainly from [5, 14]. In what follows, 
the graphs considered are assumed to be simple. If a graph has parallel edges, we consider 
these as a single edge. 
 
2 COMMON NEIGHBORHOOD GRAPHS OF SOME GRAPH OPERATIONS 

In this section we obtain 푐표푛(퐺) for some operations on two graphs. We begin with the 
tensor product. To do this, we state the following lemma which immediately follows from 
the definition of the operation . 

 
Lemma 2.1. Let (푣 , 푢 ) and (푣 ,푢 ) be two vertices of 퐺⨂퐻. Then (푣 , 푢 ) ∈
푁 ⨂ (푣 ,푢 )⋂푁 ⨂ (푣 ,푢 ) if and only if )()( rvGNivGNkv   and 

.)()( suHNjuHNtu   

 
Theorem 2.2. Let G  and H  be two graphs without isolated vertices. Then  
 .)()(=)( HconGconHGcon   
Proof.  Let (푣 , 푢 ) and (푣 , 푢 ) be two vertices of 퐺⨂퐻 such that 푣 ≠ 푣  and 푢 ≠ 푢 . If 
(푣 , 푢 )(푣 ,푢 ) is an edge of 푐표푛(퐺⨂퐻), then there is a vertex (푣 , 푢 ) ∈ 푉(퐺⨂퐻) such 
that (푣 , 푢 ) ∈ 푁 ⨂ (푣 ,푢 )⋂푁 ⨂ (푣 ,푢 So by Lemma 2.1, 푣 ∈ 푁 (푣 )⋂푁 (푣 ) and 
푢 ∈ 푁 (푢 )⋂푁 (푢 ). Therefore 푣 푣 ∈ 퐸(푐표푛(퐺)) and 푢 푢 ∈ 퐸(푐표푛(퐻)). This means 
that for 푣 ≠ 푣  and 푢 ≠ 푢 it holds that 푣 ,푢 (푣 , 푢 ) is an edge of 푐표푛(퐺⨂퐻) if and 
only if 푣 푣 ∈ 퐸(푐표푛(퐺)) and 푢 푢 ∈ 퐸(푐표푛(퐻)).. 
 Assume that 푣 = 푣 = 푣. If 푣,푢 (푣, 푢  ) is an edge of 푐표푛(퐺⨂퐻), then there is a 
vertex (푣 , 푢 ) such that (푣 , 푢 ) ∈ 푁 ⨂ (푣,푢 )⋂푁 ⨂ (푣, 푢 ). By Lemma 2.1, we have 
푣 ∈ 푁 (푣) and 푢 ∈ 푁 (푢 )⋂푁 (푢 ). So if 푣 = 푣 , then 푢 푢 ∈ 퐸(푐표푛(퐻)). Therefore, 
for 푣 = 푣  it holds that 푣 ,푢 (푣 ,푢 ) is an edge of 푐표푛(퐺⨂퐻) if and only if 푣 = 푣  and 
푢 푢 ∈ 퐸(푐표푛(퐻)). Similarly if 푢 = 푢 , then 푣 , 푢 (푣 , 푢 ) is an edge of 푐표푛(퐺⨂퐻) if 
and only if 푢 = 푢  and 푣 푣 ∈ 퐸(푐표푛(퐺)). 

Hence )( HGcon  =  ))()(( HconGcon     ))()(( HconGcon   =  )(Gcon   
)(Hcon  and this completes the proof.                                                                                   ▄ 
 
In the following theorem, we determine the congraph of Hajós join. 
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Theorem 2.3.  Let G  and H  be two graphs with the girth at least 5. Then  
))(())(())((),))(()(()( yNxEvNwExNyExvHconGconHGcon HGH 

                              ))((})){)((}){)((())(( ywNEyxNwvNEwNvE GHGG    

                  ,))(( wyHNE   
where for two vertices r, s, the notation E(r + N(s)) denotes the edges of the join of the 
vertex r and the neighbors of s. 

 
Proof. In the structure of Hajós join, if we don’t remove two edges 푣푤 and 푥푦, and don’t 
add a new edge 푤푦, we can arrive to splice of two graphs 퐺 and 퐻. So we consider the 
graph 푐표푛(퐺). 푐표푛(퐻) (푣, 푥) as the base of the common neighborhood graph of the Hajós 
join of 퐺 and 퐻. Then we investigate the effect of removing the two edges 푣푤 and 푥푦, and 
adding a new edge 푤푦. 

Since the girth of the graph G  is at least 5, when we remove the edge 푣푤, all the 
edges 푤푟 and 푣푠 in 푐표푛(퐺), 푟 ∈ 푁 (푣) and 푠 ∈ 푁 (푤), that have v  and w  as the common 
neighbor, respectively, will be deleted. Similarly when we eliminate the edge 푥푦, all the 
edges 푦푎 and xb  in 푐표푛(퐻), 푎 ∈ 푁 (푥) and 푏 ∈ 푁 (푦), that have 푥 and 푦  as the common 
neighbor, respectively, will be deleted. Continuing this argument, when we identify the 
vertices 푣 and 푥  into a single vertex, then 푁 (푣) −푤 and 푁 (푥)− 푦  will have a common 
neighbor. So each vertex in 푁 (푣)− 푤 will be adjacent to each vertex in 푁 (푥)− 푦. By 
adding the new edge 푤푦, 푤 will become the common neighbor between 푦  and 푁 (푤) and 
푦 the common neighbor between 푤 and 푁 (푦).                                                                    ▄ 

Applying the Hajós join to two copies of 퐾  by identifying a vertex from each copy 
into a single vertex, deleting an edge incident to the combined vertex within each subgraph, 
and adding a new edge connecting the endpoints of the deleted edges, produces the Moser 
spindle, see Fig. 1. As an application we characterize the common neighborhood graph of 
the Moser spindle. 

 

 
Figure 1. The Moser Spindle Graph. 

 
Corollary 2.4. The common neighborhood graph of the Moser spindle is eK 7 . 
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 In the next theorem, we compute the common neighborhood graph of the edge 
corona product of graphs. One can see that the edge corona product of 퐺 with a complete 
graph 퐾 , and the common neighborhood graph of 퐺 are subgraphs of 퐺 ◊ 퐻. 

 
Theorem 2.5. Let 퐺 be a graph with 푛 vertices and 푚 edges and 퐻 be a graph with 푡 
vertices. Then  

   ))()(()()(=)( = kjGiGjvivket HvNvNGconKGHGcon    

 )).(( =,= jiqvlvjeqvlvie HH 



 

Proof. Let 푉 = {푣 , … ,푣 }, 퐸(퐺) = {푒 , … , 푒 }, and 푉(퐻) = {푢 , … ,푢 }. Denote the i -th 
copy of H  in 퐺 ◊ 퐻, by 퐻 . Each two vertices of 퐻  have the end vertices of 푒  as common 
neighbors, So the induced subgraph of 푐표푛(퐺 ◊ 퐻) on each 퐻  is a complete graph. On the 
other hand, a vertex in 퐻  has a common neighbor with a vertex in 퐻  if and only if the 
edges 푒  and 푒  are adjacent. So the induced subgraph of 퐺 ◊ 퐻  on the vertices 퐻 ⋃퐻  is 
퐻 + 퐻  if and only if 푒  and 푒  are adjacent in 퐺 and there is no edge between 퐻  and 퐻  if 
푒  and 푒  are not adjacent in  퐺. 
 We now consider the vertices {푣 , … , 푣 }. Clearly, 푣  and 푣  have a common 
neighbor 푣  in 퐺 ◊ 퐻  if and only if 푣  is their common neighbor in 퐺. Also 푣   and 푣  have 
a common neighbor 푢  in 퐺 ◊ 퐻, if and only if 푣 푣  is an edge of G . 
 Finally, a vertex 푣  in 퐺 has a common neighbor with a vertex 푢  in 퐻  if and only 
if 푣  is in 푁 (푣 )⋃푁 푣 , where 푒 = 푣 푣  . This completes the proof.                             ▄ 
 

By definition, the edge corona 푇 ◊ 푆  of a tree 푇 of order 푛 and 푆  is the graph 
obtained by taking one copy of 푇 and 푛 − 1 copies of 푆  and then joining two end-vertices 
of the i -th edge of 푇  to every vertex in the i -th copy of 푆 . 
 
Corollary 2.6. The common neighborhood graph of the edge corona product of graphs 퐾  
and 푆  satisfies .=)( 22  nn KSKcon  

 
3.  RELATION BETWEEN SOME SPECIAL GRAPHS AND THEIR  
           CONGRAPHS 

In this section we compute the common neighborhood graphs of the central graph, line 
graph, shadow graph, and Mycielski graph.So we should first define these graphs. 

For a given graph 퐺, the line graph of 퐺 is denoted by 퐿(퐺) and the vertices of 
퐿(퐺)  are the edges of 퐺. Two edges of 퐺  that share a vertex are considered to be adjacent 
in 퐿(퐺). The subdivision graph of the graph 퐺  is denoted by 푆(퐺) and is the graph 
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obtained by inserting an additional vertex in each edge of 퐺. Equivalently, each edge of 퐺 
is replaced by a path of length 2. 

For a given graph 퐺, we do an operation on 퐺  by subdividing each edge exactly 
once and joining each pair of vertices of the original graph which were previously non-
adjacent. The graph obtained by this process is said to be the central graph of 퐺, denoted by 
퐶(퐺), [17, 18, 19]. 

The shadow graph 퐷 (퐺) of a connected graph 퐺  is constructed by taking two 
copies of 퐺 say 퐺′ and 퐺"  and joining each vertex 푢′ in 퐺′ to the neighbors of the 
corresponding vertex 푢ʺ in 퐺". For example, 퐷 (퐶 ) is depicted in Fig. 2. 

 

 
Figure 2. The Shadow Graph )( 42 CD .  

 
The Mycielski graph of G  was introduced by J. Mycielski [16] for the purpose of 

constructing triangle–free graphs with arbitrarily large chromatic number. This graph has 
been much studied [7, 8, 9]. 

Let 퐺 be a graph with vertex set {푣 , 푣 , … ,푣 }. The Mycielski graph 휇(퐺) of 퐺 
contains 퐺 itself as an isomorphic subgraph, together with 푛 + 1 additional vertices: a 
vertex 푢 which corresponds to each vertex 푣  of 퐺, and another vertex 푤. Each vertex 푢  is 
connected by an edge to 푤, so that these vertices form a subgraph in the form of a star 퐾 , . 
In addition, for each edge 푣 푣  of 퐺, the Mycielski graph includes two edges, 푢 푣  and 푣 푢 . 
In Fig. 3 we shows Mycielski’s construction applied to a 5-vertex cycle. The resulting 
Mycielskian is the Grötzsch graph, an 11-vertex graph with 20 edges. The Grötzsch graph 
is the smallest triangle–free 4-chromatic graph. 

 
Theorem 3.1. Let G  be a graph. Then  

  .)))]()(()(([)()(=))(( )(= vNuNGVvGconGLGGCcon GGeGEuve    
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Figure 3. The Grötzsch Graph.  

 
Proof. Let 푉(퐺) = {푣 , … ,푣 } and 퐸(퐺) = {푒 , … , 푒 }. So the set of vertices of 퐶(퐺) is 
푉 퐶(퐺) = {푣 , … , 푣 ,푣 , … ,푉 }, where 푣  is the vertex inserted in the edge 푒 , 

)(1 mi  . We determine the graph 푐표푛(퐶(퐺)) in three steps: 
(i) We find the edges between the vertices of {푣 ,푣  … , 푣 }. The vertices 푣  and 푣  

have a common neighbor in the set {푣 , … ,푉 },  of graph 퐶(퐺) if and only if 푣 푣  is an 
edge in the graph 퐺. Also the vertices 푣  and 푣  have a common neighbor in the set 
{푣 , … , 푣 } of the graph 퐶(퐺) if and only if 푣  and 푣  have a common neighbor in the graph 
퐺̅. So the subgraph induced by the vertices 푣 , … ,푣  in the graph 퐶(퐺) is 퐺⋃푐표푛(퐺̅). 

(ii) We consider the subgraph of )(GC  induced by the set {푣 , … ,푉 },. It is easy 
to see that 푣  and 푣  do not have common neighbors in {푣 , … ,푉 },. On the other hand, 
푣  and 푣  have the vertex 푣  as common neighbor in {푣 , 푣  … ,푣 }.  if and only if the 
edges 푒  and 푒  have the vertex 푣   as the common vertex in 퐺. Therefore the respective 
induced subgraph is 퐿(퐺). 

(iii) We find the edges between },,,{ 21 nvvv   and },,{
1 mee vv  . Let sri vve =  be an 

edge of G . So 푁 ( ) 푣 = {푣 , 푣 } and this means that 푣  is adjacent in 푐표푛(퐶(퐺)) to 
the vertices that are neighbors of 푣  and 푣 . By the definition of 퐶(퐺), the edges between 

{푣 ,푣 , … ,푣 } and {푣 , … ,푣 } are ⋃ [푣 + 푉(퐺)− 푁 (푢)⋃푁 (푣) ]∈ ( ) . 

Combining (i), (ii), and (iii), the theorem follows.                                                                ▄ 
 
In the graph 퐺, let {푒 , … , 푒 } be all of the edges incident to vertex 푢. We denote the 

set of {푣 , … ,푣 } in the graph 퐿(퐺) by 푁 (푢). That 푣  is a vertex of 퐿(퐺) corresponding 
to an edge ie  of G. 
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Theorem 3.2. Let G  be a graph. Then .))()((=))(( ''
)(= vNuNGLcon GGGEuve   

 
Proof. Consider the vertices {푣 , … ,푣 } in 퐿(퐺). If 푒 = 푣 푣  is an edge in 퐺, then 푣  
can be as the common neighbor of the sets 푁′ (푣 ) and 푁′ (푣 ). So for each 푒 = 푣 푣  in 
퐺, 푁 (푣 ) + 푁 (푣 ) is the subgraph of 푐표푛(퐿(퐺)).                                                            ▄ 

 
Theorem 3.3. Let G  be a graph without isolated vertices and G  and G   be two copies of 
G . Then .|})(|),1(),(|{))((=))(( "'"'

22 GViGVvGVvvvGconDGDcon iiii   
 

Proof. Suppose that 푉(퐺) = {푣 ,푣 , … ,푣 }, 푉(퐺′) = {푣′ ,푣′ , … , 푣′ }, and 푉(퐺′′) =
{푣′′ ,푣′′ , … ,푣′′ },. By definition of the shadow graph, it is easy to see that 푣 ∈
푁 (푣 )⋂푁 (푣 ) if and only if 푣 ∈ 푁 (푣 )⋂푁 (푣 ). Similarly, 
푣 ∈ 푁 (푣 )⋂푁 (푣 ) if and only if 푣 ∈ 푁 (푣 )⋂푁 (푣 ). Therefore, the subgraph 
of 푐표푛(퐷 (퐺)) induced on 푉(퐺 ) is 푐표푛(퐺 ) and induced on 푉(퐺′′) is 푐표푛(퐺 ).              ▄ 
 
 We now determine the edges between 푉(퐺 ) and 푉(퐺 ). To do this, for two 
vertices 푣  and 푣 , 푖 ≠ 푗, we use the following facts resulting from the definition of shadow 
graph: 

1) )()( "''
jGiGk vNvNv    if and only if )()( "'"

jGiGk vNvNv   . 

2) )()( '''
jGiGk vNvNv    if and only if )()( "''

jGiGk vNvNv   . 

Therefore, 푢푣 is an edge of 푐표푛(퐺) if and only if 푢 푣 ′ and 푣 푢 ′ are edges of 푐표푛(퐷 (퐺)). 
On the other hand, since G  has no isolated vertices, for each i , 1 ≤ 푖 ≤ |푉(퐺)|, 푣 푣  are 
edges of 푐표푛(퐷 (퐺)). and the proof is completed.                                                              ▄ 
 
Corollary 3.4. For path Pn and complete graph K2 the following equality holds: 

 .)(=))(( 22 KPconPDcon nn   
 
Theorem 3.5. Let 퐺 be a graph with 푛 vertices. Then the congraph of its Mycielski graph 
contains 푐표푛(퐺) as an isomorphic subgraph, together with 푛 + 1 additional vertices: a 
vertex 푢  corresponding to each vertex 푣  of 푐표푛(퐺) such that the induced graph of 휇(퐺) 
on them is 퐾  and another vertex 푤. Each vertex 푣  is connected by an edge to 푤, so that 
these vertices form a subgraph in the form of a star 퐾 , . In addition, for each edge 푣 푣  of 
푐표푛(퐺), the common neighborhood graph of the Mycielski graph includes two edges,푢 푣   
and 푣 푢 . 
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Proof. Since in the Mycielski graph, each vertex 푢  is connected by an edge to 푤, so vertex 
푤 is the common neighborhood of vertices 푢 , … ,푢  in the graph 휇(퐺) and this implies 
that the subgraph of 휇(퐺) induced on these vertices is 퐾  . It is clear that 푣 ∈
푁 ( )(푣 )⋂푁 ( )(푣 ) if and only if 푢 ∈ 푁 ( )(푣 )⋂푁 ( )(푣 ), so the subgraph of 휇(퐺) 
induced on {푣 , … , 푣 } is 푐표푛(퐺). Also by the definition of Mycielski graph, since 퐺 has 
not isolated vertices, the vertices 푢  are common neighborhoods of the vertices 푣  and 푤. 
This implies that,푣 푤 mi 1 are edges of 푐표푛(휇(퐺) ). 
 Now we obtain the edges between {푣 , … , 푣 }  and {푢 , … ,푢 }. Let the vertex 푣  be 
the common neighbor of the vertices 푣  and 푣 . By the definition of Mycielski graph, we 
have the following cases: 

Case 1. The vertex 푣  is in the common neighborhood of vertices 푣  and 푢  in graph 
퐺. This implies that 푣 푢  , 1 ≤ 푗 ≤ 푚are edges of the congraph. 

Case 2. The vertex kv  is in the common neighborhood of the vertices 푣  and 푢 , 푣  
and 푢  in graph 퐺. This implies that for each edge 푣 푣  of 푐표푛(퐺), the common 
neighborhood graph of 휇(퐺) includes two edges 푢 푣  and 푣 푢  and this completes the 
proof.                                                                                                                                      ▄ 

 
 As an application we compute the common neighborhood graph of Grötzsch graph. 
 
Corollary 3.6. Let 1543215 : vvvvvvC  . Then the common neighborhood graph of the Grötzsch 

graph is determined via .4}1|{4}1|{)( 15511155 uvuviuviuvKCw iiii     
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1 INTRODUCTION 

Throughout this paper, G will denote a simple connected graph with n  vertices (labeled by 

1 2, ,..., nv v v  ). Moreover, for 1 i n  ,  the neighbor and the degree of each  vertex iv  will 

be denoted by ( )iN v  and 
ivd , respectively. For two vertices u  and v  in ( )V G , we denote 

by ( , )d u v  the distance between u  and v  i.e. the length of the shortest u v  path in G . 
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A pendant vertex is a vertex of degree 1 and a pendant edge is an edge incident to a 
pendant vertex. Denote by PV  the set of pendant vertices of a graph G . 

The eccentricity of a vertex u  in a graph G , denoted by ue , is the maximum 

distance from u  to any vertex. That is, max{ ( , ) : }.ue d u v v V   
A matching M  of a graph G  is a subset of ( )E G  such that no two edges in M  

share a common vertex. The matching number of G, denoted by m , is the number of edges 
of a maximum matching in G .  If every vertex of G incident with an edge of M ,  then the 
matching M  is perfect. 

Denote by nC  the cycle on n  vertices. A unicyclic graph is a connected graph with 
a unique cycle. Other undefined terminologies and notations of graphs may refer to [2]. 

Molecular descriptors have found a wide application in QSPR / QSAR studies [15]. 
Among them, topological indices have a prominent place. 

Sharma, Goswami and Madan [14] introduced a distance-based topological index 
which named eccentric connectivity index ( )c G  as follows:

 
( )

( ) .c
u u

u V G
G d e



   

The eccentric connectivity index has been employed successfully for the development of 
numerous mathematical models of biological activities of diverse nature [7,8,13,14]. 

Recently Ashrafi et. al. [1] obtained exact formulas for the eccentric connectivity 
index of 4 8TUC C (s)  nanotube and 4 8TC C (s)  nanotorus. Ilič and Gutman [6] examined the 
eccentric connectivity index of chemical trees. In [18], Zhou et al. gave mathematical 
properties of eccentric connectivity index. Also in [11], the authors investigated the 
eccentric connectivity index of trees. Moreover, in [17], Zhang investigated the eccentric 
connectivity index of unicyclic graphs. Recall that in mathematical chemistry a unicyclic 
graph with perfect matching is known as conjugated unicyclic graphs. We may refer [9,10] 
for more and some other details on conjugated unicyclic graphs. 

In this paper, we present upper and lower bounds on the eccentric connectivity 
index of unicyclic graphs with perfect matchings. Also we give lower bounds on the 
eccentric connectivity index of unicyclic graphs with given matching numbers. 

Throughout this paper, Un denote unicyclic graphs with n  vertices and ( , )U n m  
denote unicyclic graphs with n  vertices and m  matchings. Let (2 , )U m m  be the set of 
unicyclic graphs with perfect matching and 2m vertices. We make use of the following 
results in this paper. 
 
Lemma 1.1. [3] Let (2 , ),G U m m where 3m , and let T be a branch of G with the root 

.r  If ( )u V T  is a pendant vertex furthest from the root r  with ( , ) 2,Gd u r   then u is 
adjacent to a vertex v of degree two. 
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Lemma 1.2. [12] Let (2 , ).G U m m  If ,PV    then for any vertex ( ),u V G  

( ) 1.N u PV   

 
Lemma 1.3. [16] Let G be a graph in ( , )U n m  and ,nG C®  where ( 2 ).n m  Then  there 
is an m matching M and a pendant vertex v such that M does not saturate v. 
 
Theorem 1.4. [6] Let w  be a vertex of a nontrivial connected graph G. For non-negative 
integers p and q, let G(p,q) denote the graph obtained from G by attaching to the vertex w 
pendent paths 1 2... pP wv v v  and 1 2... qQ wu u u  of lengths p and  q, respectively. If 

1,p q   then 

( ( , )) ( ( 1, 1)).c cG p q G p q     
 

Let 3
nP  denote the unicyclic graph obtained from 3C  by identifying one of its 

vertices with a pendant vertex of the path 2.nP   Let , ( )a bC l  denote the unicyclic graph 

obtained from ( )C l  by attaching the path aP  at one vertex and the path bP  at another 

vertex. Let , ( )a bC l  and 3
nN  denote unicyclic graphs of the forms as depicted in Figure 1. 

 
Lemma 1.5. [17] Let G be a graph in nU  with 5n   vertices. If , ( )a bG C l   and 3,nG N®  

then  3 3( ) ( ) ( ).c c c
n nP N G     

 
Theorem 1.6. [17] Let G be a graph in nU , 5.n   Then 

2

3

2

1 (3 4 6) ,       
2( ) ( )
1 (3 4 5) ,       ,
2

c c
n

n n n is even
G P

n n n is odd
 

    
  

 

where the equality holds if and only if 3.nG P®  

2 MAIN RESULTS  
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After all above material, we are ready to present our results on the bounds for the eccentric 
connectivity index of unicyclic graphs. Let 1

mH  be the graph on 2m  vertices obtained from 

3C  by attaching a pendant edge together with 2m paths of length 2 at one vertex. Let 

2
mH  be the graph on 2m  vertices obtained from 3C  by attaching a pendant edge and 3m  

paths of length 2 at one vertex, and single pendant edges at the other vertices. Let 3
mH  be 

the graph on 2m  vertices obtained from 3C  by attaching a pendant edge at one vertex and 

2m  paths of length 2 at another vertex. Let 4
mH  be the graph on 2m  vertices obtained 

from 4C  by attaching 2m  paths of length 2 at one vertex. 

Let 5
mH  be the graph on 2m  vertices obtained from 4C  by attaching a pendant edge 

atone vertex and 3m  paths of length 2 at another vertex. 1 2 3 4 5,  ,  ,    and  m m m m mH H H H H  are 
shown in Figure 2. 

 

 
 

Figure 2 
 
 

Theorem 2.1. Let  1 2 3(2 , ) \ , ,m m mG U m m H H H , where 5.m  Then ( ) 12 .c G m   The 

equality holds if and only if 4
mG H  or 5 .mG H  

 
Proof. We prove the result by induction on .m  By direct calculation, we see that the result 
is provided for 5.m   Let 5.m  We assume that the result holds for graphs in 

(2 2, 1).U m m   
Case 1. G has a pendant vertex u which is adjacent to a vertex v of degree two. Let 

w be adjacent of v different from u. In this case, .uv M  Let ' .G G u v    Then 
' (2 2, 1).G U m m    Obviously, if ,ue e  then 1ve e   and 2we e   since 5.m  Also 
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since 5,  4.m e   We know that '
t te e  or ' 1t te e   or ' 2t te e   for  ( ) , , .t V G u v w   

Therefore, we write 

 

 

 

' '
' '

 ( ) , ,

'

 ( ) , ,

'

 ( ) , ,

( ) ( )

                       .1 2( 1) ( 2) ( 1)( 2)

                      4 4 .   

c c
u u v v w w t t tw w

t V G u v w

w w t t t
t V G u v w

t t t
t V G u v w

G G e d e d e d e d d e e

e e d e d e d e e

e d e e

 
 

 

 

        

           

     





                                                                   (1) 

 

Using the equality (1), we get the following inequality '( ) ( ) 4 4.c cG G e     
Using the induction hypothesis and the fact 4,e   we have 

( ) 12( 1) 4.4 4 12 .c G m m       This is the required result. 
 

Case 2. G is a cycle kC  together with some pendant edges attached to some vertices 

on .kC  If  퐺 ≅ 퐶  then 휉(퐺) = 4푚 ≥ 12푚 for 5.m  Let 2 .mG C®  Let p and q denote 
the number of pendant vertices and the number of vertices with degree two in G , 
respectively. Therefore, the number of vertices with degree three be p. Note that we have 
2 2p q m   and .p m  Let 푉 (퐺) = {푢 ∈ 푉(퐺) ∶  푑 = 1}, 푉 (퐺) = {푣 ∈ 푉(퐺):푑 = 2}  

and 푉 (퐺) = {푡 ∈ 푉(퐺):푑 = 3}. If u is a pendant vertex, 푒 ≥ + 1, if v is a vertex 

with degree two, 푒 ≥  and if t  is a vertex with three degree, 푒 ≥ . Thus 

1 2 3

1 2 3

( ) ( ) ( )

( ) ( ) ( )

( ) 1. 2. 3.

1 1 1         1. 1 2. 3.
2 2 2

1 1 1        1 2(2 2 ) 3
2 2 2

c
u v t

u V G v V G t V G

u V G v V G t V G

G e e e

m m m

m m mp m p p


  

  

  

                                    

                             

  

  

1 1        4 4 1.
2 2

m mm p m

 
  

             

 

If m is odd, then since 5m ,  
21( ) 4 1 2 2 1 12 .

2
c mG m m m m

       
   

If m is  even, then since 5m ,  
2( ) 4 1 2 1 12 .

2
c mG m m m       

 
 

The proof  is now completed.  
 

The next corollaries are the consequences of Theorem 2.1. 
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Corollary 2.2. Let  1(2 , ) \ mG U m m H , where  5.m  Then ( ) 12 1.c G m    The 

equality holds if and only if 2
mG H   or  3 .mG H  

 
Corollary 2.3. Let (2 , )G U m m , where 5.m  Then ( ) 12 3.c G m    The equality holds 

if and only if 1 .mG H  
 
Let 1

mA  denote the graph on n vertices obtained from 3C  by attaching 2 1n m   
pendant edges and 2m  paths of length 2 together to one of three vertices of 3.C  Let 2

mA

denote the graph on n vertices obtained from 3C  by attaching 2 1n m   pendant edges and 
3m  paths of length 2 together to one of three vertices, and two pendant edges to the other 

two vertices of 3,C  respectively. Let 3
mA  denote the graph on n vertices obtained from 3C

by attaching 2n m  pendant edges and 2m  paths of length 2 together to one of three 
vertices, and a pendant edge to another vertex of 3C ,  respectively. Let 4

mA  denote the 

graph on n vertices obtained from 4C by attaching 2 1n m   pendant edges and 3m  paths 
of length 2 together with one of the three vertices, and a pendant edge to another vertex of 

4 ,C  respectively.  

Let 5
mA  denote the graph on n vertices obtained from 4C  by attaching 2n m  

pendant edges and 2m  paths of length 2 together to one of three vertices of 3.C 1
mA , 2

mA , 

3
mA , 4

mA  and 5
mA are shown in Figure 3. 

 
Theorem 2.4. Let   1 2 3( , ) \ , ,m m mG U n m A A A  2 ,  5 .n m m    Then ( ) 5 2 .c G n m    
The equality holds if and only if  4

mG A   or  5 .mG A  
 
Proof. We prove the result by induction on .m  If 2 ,n m  then by Theorem 2.1, the result 
is clear. We assume that 2 .n m  If ,nG C  then 2 1,n m   since G has an matching.m   
So, since 5m   

2

( )

2 1( ) 2 4 2 5 2 .
2

c

u V G

mG m m n m


       
  

We assume that .nG C®  By Lemma 1.3, G has an matchingm  M and pendant 

vertex v such that M does not saturate v. Let ' .G G v   Then ' ( 1, ).G U n m   Let ve e  
and u be unique neighbor of v pendant vertex. Since 4,m   then 3.e   Thus, we have 
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'

( ) ,

'

( ) ,

( ) ( ') 1 ( 1) ( 1)( 1)

                        = 2 1 .                                                                     (2)

c c
u u t t t

t V G u v

t t t
t V G u v

G G e d e d e d e e

e d e e

 
 

 

          

    




 

Also, we have '0 2.t te e    Using the equality (2), we get the following inequality 
'( ) ( ) 2 1.c cG G e     

 
Using the induction hypothesis and the fact 3,e   we have 

( ) 5( 1) 2 2 1
         5 2 2 6
          5 2 .

c G n m e
n m e
n m

     
   
 

 

This is the required result. 
 

The next corollaries are the consequences of Theorem 2.4. 
 
Corollary 2.5. Let  1( , ) \{ } 2 ,  5 .mG U n m A n m m    Then ( ) 5 2 1.c G n m     The 

equality holds if and only if 2
mG A  or 3 .mG A  

 
Corollary 2.6. Let   1( , ) \{ } 2 ,  5 .mG U n m A n m m    Then ( ) 5 2 3.c G n m     The 

equality holds if and only if 1 .mG A  
 

Let 1
mU be the graph on 2m  vertices obtained from 3C  by attaching a path of length

2 3m   at one vertex. Let 2
mU  be the graph on 2m  vertices obtained from 4C  by attaching 
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a path of length 2 4m   one vertex. Let 3
mU be the graph on 2m vertices obtained from 3C

by attaching a pendant edge at one vertex and a path of length 2 4m   at one vertex. Denote 
by 1 2 3,   and m m mU U U  the graphs shown in Figure 2. 
 

 
 
Theorem 2.7. Let  1 2(2 , ) \ ,m mG U m m U U , where 4.m  Then 2( ) 6 4 7c G m m     
with equality if and only if 3 .mG U  
 
Proof. If ,nG C then 2 2( ) 4 6 4 7c G m m m      for 4.m   Let .nG C®  Let 'G be a 
graph obtained from G by using Theorem 1.4. In this case, we obtain '

, ( ).a bG C l  Then
'( ) ( ).c cG G   By applying Lemma 1.5, we get ' 2

1( ) ( ) ( ) 6 4 7.c c c mG G U m m        
The proof is completed. 
 

The next corollaries are the consequences of Theorem 2.7. 
 
Corollary 2.8. Let  1(2 , ) \ mG U m m U , where  4.m  Then 2( ) 6 4 6c G m m     with 

equality if and only if 2 .mG U  
 

In Theorem 1.6, taking 2 ,n m we have the following corollary. 
 
Corollary 2.9. Let  (2 , )G U m m  , where 4.m  Then 2( ) 6 4 3c G m m     with equality 
if and only if 1 .mG U  
 
Remark 2.10. If 퐺 ∈ 푈(2푚 + 1,푚)  By Theorem 1.6, 휉 (퐺) ≤ 6푚 + 2푚 − 3 with 
equality if and only if 퐺 ≅ 푃   When 퐺 ∈ 푈(푛,푚)(푛 ≥ 2푚 + 2) we do not know upper 
bounds on 휉 (퐺). The case maybe much more complicated. 
 
Remark 2.11. We note that Theorem 2.7 and Corollary 2.9 hold in 푈(6,3) from the table 
of connected graphs on six vertices in [4]. But Corollary 2.8 does not hold in case of 
equality, since 휉 (푈 ) = 휉 (퐶 ) are in (6,3).U  
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From the table of unicyclic graphs on eight vertices in [5], we also see that Theorem 
2.1 and Corollary 2.3 hold in 푈(8,4).  But Corollary 2.2 does not hold in case of equality, 
since 휉 (퐻 ) = ξ (퐻 ) = 휉 (퐶∗) are in 푈(8,4) where  퐶∗  is as in Figure 5. 
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Let 퐺 be a finite and simple graph with edge set E(퐺). The 
revised Szeged index is defined as  
푆푧∗(퐺) = ∑ (푛 (푒|퐺) + ( ))(푛 (푒|퐺) + ( ))( ) ,  

where 푛 (푒|퐺) denotes the number of vertices in 퐺lying closer 
to u than to v and 푛 (푒) is the number of equidistant vertices 
of e in 퐺. In this paper, we compute the revised Szeged index 
of the join and corona product of graphs. 
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1 INTRODUCTION 

Let 퐺 be a finite and simple graph with vertex set 푉 = 푉(퐺) and edge set 퐸 = 퐸(퐺). The 
integers n = n(퐺) = |푉(퐺)| and m = m(퐺) = |퐸(퐺)| are the order and the size of the graph 
퐺, respectively. For a vertex 푣 ∈ 푉(퐺), the open neighborhood of v, denoted by 푁 (푣) =
푁(푣) is the set {푢 ∈ 푉(퐺)| 푢푣 ∈ 퐸(퐺)}. The degree of 푣 ∈ 푉(퐺), denoted by 푑 (푣), is 
defined by 푑 (푣) = |푁 (푣)|. Let 푢, 푣 ∈ 푉(퐺), then the distance 푑 (푢, 푣) between u and v 
is defined as the length of any shortest path in 퐺 connecting u and v. We consult [14] for 
notation and terminology which are not defined here. 

The first and second Zagreb indices are defined as 푀 (퐺) = ∑ 푑 (푢)∈ ( )  and 
푀 (퐺) = ∑ 푑 (푢)푑 (푣)∈ ( ) , respectively. Furtula and Gutman [5] defined the 
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forgotten topological index as 퐹(퐺) = ∑ (푑 (푢) + 푑 (푣)∈ ( ) ). The interested readers 
are referred to [3,7] for more information on this topic. 

A vertex 푤 ∈ 푉(퐺), is said to be equidistant from the edge e = uv of 퐺 if 
푑 (푢,푤) = 푑 (푣,푤). The number of equidistant vertices of e is denoted by 푛 (푒). Let uv 
be an edge of 퐺. Define the sets 푁(푢,퐺) = {푥 ∈ 푉(퐺)|푑 (푢, 푥) < 푑 (푣,푥)} and 
푁(푣,퐺) = {푥 ∈ 푉(퐺)|푑 (푣,푥) < 푑 (푢, 푥)} consisting, respectively, of vertices of 퐺 lying 
closer to u than to v, and lying closer to v than to u. The number of such vertices is then 
푛 (푒|퐺) = |푁(푢,퐺)| and 푛 (푒|퐺) = |푁(푣,퐺)|. Note that vertices equidistant to u and v 
are not included into either 푁(푢,퐺) or 푁(푣,퐺). It also worth noting that 푢 ∈ 푁(푢,퐺) and 
푣 ∈ 푁(푣,퐺), which implies that 푛 (푒|퐺) ≥ 1 and 푛 (푒|퐺) ≥ 1. The Szeged index 푆푧(퐺) 
was introduced by Gutman [6]. It is defined as  푆푧(퐺) = ∑ 푛 (푒|퐺)푛 (푒|퐺).( )  

The Szeged index in graphs is well studied in the literature, see for example [9,10]. 
Randić [13] observed that the Szeged index does not take into account the contributions of 
the vertices at equal distances from the endpoints of an edge, and so he conceived a 
modified version of the Szeged index which is named as the revised Szeged index. The 
revised Szeged index of a connected graph 퐺 is defined as  
푆푧∗(퐺) = ∑ (푛 (푒|퐺) + ( ))(푛 (푒|퐺) + ( ))( ) . Nagarajan et al. [11] obtained 
the revised Szeged index of the Cartesian product of two connected graphs. In this paper 
we compute the revised Szeged index of the join and corona product of graphs. Readers 
interested in more information on computing topological indices of graph operations can be 
referred to [1,2,4,8,12]. 
 
2.  MAIN RESULTS 

In this section, we compute the revised Szeged index of the join and corona product of 
graphs. We let for every edge 푒 = 푢푣 ∈ 퐸(퐺), 푡 (퐺) = |푁 (푢)  ∩  푁 (푣)|. 
 
2.1. THE JOIN OF GRAPHS 

The join 퐺 = 퐺 + 퐺  of graphs 퐺  and 퐺  with disjoint vertex sets 푉  and 푉  and edge sets 
퐸  and 퐸  is the graph union 퐺 ∪ 퐺  together with all the edges joining 푉  and 푉 . 
Obviously, |푉(퐺)| = |푉 | + |푉 | and |퐸(퐺)| = |퐸 |+|퐸 | + |푉 ||푉 |. 
 
Theorem 1. Let 퐺  be a graph of order 푛  and of size 푚  and let 퐺  be a graph of order 푛  
and of size 푚 . If 퐺 = 퐺 + 퐺 , then 

 푆푧∗(퐺) = ( )  ( )  ( ) ( )  ( )  ( )  

             + ( ). 
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Proof. By definition, 푆푧∗(퐺) = ∑ (푛 (푒|퐺) + ( ))(푛 (푒|퐺) + ( ))( ) . We partition 
the edges of 퐺 in to three subset 퐸 , 퐸  and 퐸 , as 퐸 = {푒 = 푢푣 | 푢, 푣 ∈ 푉(퐺 )}, 퐸 =
{푒 = 푢푣 | 푢,푣 ∈ 푉(퐺 )} and  퐸 = {푒 = 푢푣 | 푢 ∈ 푉(퐺 ),푣 ∈ 푉(퐺 )}. 

Let 푒 = 푢푣 ∈ 퐸 . If   푤 ∈ 푉(퐺 ) or 푤 ∈ 푁 (푢)  ∩  푁 (푣), then 푑 (푢,푤) =
푑 (푣,푤) = 1 and if 푤 ∉ 푁 (푢)  ∪  푁 (푣), then 푑 (푢,푤) = 푑 (푣,푤) = 2. Hence 
푛 (푒|퐺) = 푑 (푢)− 푡 (퐺 ) + 1,푛 (푒|퐺) = 푑 (푣) − 푡 (퐺 ) + 1 and 푛 (푒) = 푛 +

푛 + 2푡 (퐺 ) − 푑 (푢) + 푑 (푣) − 2. Then for every edge 푒 = 푢푣 ∈ 퐸 , 

 푛 (푒|퐺) + ( ) 푛 (푒|퐺) + ( ) =
( ) ( ) ( ) ( )

 

                                                               = ( ) +
( ) ( )

−
( ) ( )

. 
 
Therefore 
 
 ∑ 푛 (푒|퐺) + ( ) 푛 (푒|퐺) + ( ) = ∑ ( ) + ∑ ( ) ( )

 

                                                                          −∑
( ) ( )

 

                                                                          = ( ) 푚 + ( ) − ( ) .                  (1)  
 
Similarly, 

 
 ∑ 푛 (푒|퐺) + ( ) 푛 (푒|퐺) + ( ) = ( ) 푚 + ( ) − ( )  .              (2) 

 
Let 푒 = 푢푣 ∈ 퐸  such that 푢 ∈ 푉(퐺 ) and 푣 ∈ 푉(퐺 ). If 푤 ∈ 푁 (푢)  ∪  푁 (푣), 

then 푑 (푢,푤) = 푑 (푣,푤) = 1. Hence 푛 (푒|퐺) = 푛 − 푑 (푣) + 1,푛 (푒|퐺) =
푛 − 푑 (푢) + 1 and 푛 (푒) = 푑 (푢) + 푑 (푣) − 2.  Then for every edge 푒 = 푢푣 ∈ 퐸 , 
 
 푛 (푒|퐺) + ( ) 푛 (푒|퐺) + ( ) =

( ) ( ) ( ) ( )
 

                                                              = 푛 푛 + 푑 (푢) + 푑 (푣) 

                                                              −
( )

−
( )

+
( ) ( )

. 
 
Set 푌 =  ∑ 푛 (푒|퐺) + ( ) 푛 (푒|퐺) + ( ) . Then, 
 

 푌 = ∑ 푛 푛 + ∑ 푑 (푢)  + ∑ 푑 (푣) − ∑ ( )
∈  

     −∑
( )

   + ∑ ( ) ( )
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     = 푛 푛 + 푚 푛 (푛 − 푛 )  + 푚 푛 (푛 − 푛 ) + 2푚 푚  − ( ) − ( ).          (3) 
 

By Equations (1), (2) and (3), we have: 
 

 푆푧∗(퐺) = ( ) 푚 + ( ) − ( ) + ( ) 푚 + ( ) − ( ) + 푛 푛  + 2m1m2   

              − ( ) + 푚 푛 (푛 − 푛 ) +푚 푛 (푛 − 푛 ) − ( ) 

              = ( )  ( )  ( ) ( )  ( )  ( ) 

              + ( ). 
 

Let 푃 , 푛 ≥ 2 and 퐶 , 푛 ≥ 3 denote the path and the cycle on 푛 vertices, 
respectively. 
 
Corollary 2. The following equalities are hold: 

1. 푆푧∗(푃 + 푃 )= . 

2. 푆푧∗(푃 + 퐶 )= . 

3. 푆푧∗(퐶 + 퐶 )= . 
 

2.2. THE CORONA PRODUCT OF GRAPHS 

The corona product 퐺 = 퐺 휊퐺  of graphs 퐺  and 퐺  with disjoint vertex sets 푉  and 푉  and 
edge sets 퐸  and 퐸  is as the graph obtained by taking one copy of 퐺  and |푉 | copies of 퐺  
and joining the i-th vertex of 퐺  to every vertex in i-th copy of 퐺 . Obviously, |푉(퐺)| =
|푉 | + |푉 ||푉 |  and |퐸(퐺)| = |퐸 |+|푉 ||퐸 | + |푉 ||푉 |. 
 
Theorem 3. Let 퐺  be a graph of order 푛  and of size 푚  and let 퐺  be a graph of order 푛  
and of size 푚 . If 퐺 = 퐺 휊퐺 , then 
 
          푆푧∗(퐺) = ( ) (푚 + 푚 ) + 푛 푛 (푛 푛 + 푛 − 1) 

   +푛 푚 (푛 푛 + 푛 − 2) − ( ) ∑ (푛 (푒|퐺 ) + 푛 (푒|퐺 ))∈  

                      + ( ) ( ) ( ) ( )  ( ). 
 

Proof. By definition, 푆푧∗(퐺) = ∑ (푛 (푒|퐺) + ( ))(푛 (푒|퐺) + ( ))( ) . We partition 
the edges of 퐺 in to three subsets 퐸 , 퐸  and 퐸 , as 퐸 = {푒 = 푢푣 | 푢,푣 ∈ 푉(퐺 )}, 퐸 =
{푒 = 푢푣 | 푢,푣 ∈ 푉(퐺 )} and 퐸 = {푒 = 푢푣 | 푢 ∈ 푉(퐺 ),푣 ∈ 푉(퐺 )}. Let 푒 = 푢푣 ∈ 퐸 . 
Then for each vertex 푤 closer to 푢 than 푣, the vertices of the copy of 퐺  attached to 푤 are 
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also closer to 푢 than 푣. Since each copy of 퐺  has exactly 푛  vertices, then 푛 (푒|퐺) =
(푛 + 1)푛 (푒|퐺 ). Similarly 푛 (푒|퐺) = (푛 + 1)푛 (푒|퐺 ). Then 푛 (푒) = 푛 푛 + 푛 −
(푛 + 1)푛 (푒|퐺 ) − (푛 + 1)푛 (푒|퐺 ). Hence for every edge 푒 = 푢푣 ∈ 퐸 ,  

푛 (푒|퐺) + ( ) 푛 (푒|퐺) + ( ) = ( ) + ( ) ( | ) ( | ) 

                                                                      − ( ) ( ( | ) ( | )). 

Define 푍 =  ∑ 푛 (푒|퐺) + ( ) 푛 (푒|퐺) + ( ) . Then, 
 

 푍 = ∑ ( )   + ∑ ( ) ( | ) ( | ) − ∑ ( ) ( ( | ) ( | )) 

     = ( ) 푚 + ( ) ( ) − ( ) ∑ (푛 (푒|퐺 ) + 푛 (푒|퐺 )).                 (4) 
 

Let 푒 = 푢푣 ∈ 퐸 . If  푤 ∈ 푉(퐺 ) and 푤 ∈ 푁 (푢)  ∩  푁 (푣), then 푑 (푢,푤) =
푑 (푣,푤) = 1 and if 푤 ∉ 푁 (푢)  ∪  푁 (푣), then 푑 (푢,푤) = 푑 (푣,푤) = 2. Hence 
푛 (푒|퐺) = 푑 (푢)− 푡 (퐺 ) + 1, 푛 (푒|퐺) = 푑 (푣) − 푡 (퐺 ) + 1 and 푛 (푒) = 푛 푛 +

푛 + 2푡 (퐺 ) − 푑 (푢) + 푑 (푣) − 2. Hence for every edge 푒 = 푢푣 ∈ 퐸 , 
 
 푛 (푒|퐺) + ( ) 푛 (푒|퐺) + ( ) =

( ) ( ) ( ) ( )
 

                                                               = ( ) +
( ) ( )

−
( ) ( )

.     
 
Therefore 

 ∑ 푛 (푒|퐺) + ( ) 푛 (푒|퐺) + ( ) = ∑ ( )  + ∑ ( ) ( )
 

                                                                                −∑
( ) ( )

 

                                                                                = ( ) 푚  + ( ) − ( ) .         (5) 
 

Let 푒 = 푢푣 ∈ 퐸  such that 푢 ∈ 푉(퐺 ) and 푣 ∈ 푉(퐺 ). Hence 푛 (푒|퐺) = 푛 푛 +
푛 − 푑 (푣) − 1. Since 푣 ∈ 푁(푣,퐺), we have 푛 (푒|퐺) = 1 and so 푛 (푒) = 푑 (푣). Hence 
 
 푛 (푒|퐺) + ( ) 푛 (푒|퐺) + ( ) =

( ) ( ) ( )
 

                                                         = (푛 푛 + 푛 − 1) + 푑 (푣) −
( )

. 
 
Therefore, 
 

 ∑ 푛 (푒|퐺) + ( ) 푛 (푒|퐺) + ( ) = ∑ (푛 푛 + 푛 − 1)− ∑ ( )
 

                                                    +∑ 푑 (푣) 
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                                                               = 푛 푛 (푛 푛 + 푛 − 1)− ( ) 
                                                                             +푛 푚 (푛 푛 + 푛 − 2).                            (6) 
 
By Equations (4), (5) and (6), we have: 
 
 푆푧∗(퐺) = ( ) 푚 + ( ) ( ) − ( ) ∑ (푛 (푒|퐺 ) + 푛 (푒|퐺 )) 

              + ( ) 푚 + ( ) − ( ) + 푛 푛 (푛 푛 + 푛 − 1) 

              +푛 푚 (푛 푛 + 푛 − 2)− ( ) 

              = ( ) (푚 + 푚 ) + 푛 푛 (푛 푛 + 푛 − 1) 

              +푛 푚 (푛 푛 + 푛 − 2) − ( ) ∑ (푛 (푒|퐺 ) + 푛 (푒|퐺 ))∈  

              + ( ) ( ) ( ) ( )  ( ). 
 

Corollary 4. The following equalities are hold: 
 

1.  푆푧∗(푃 휊푃 )= . 

2.  푆푧∗(푃 휊퐶 )=  . 

3.  푆푧∗(퐶 휊푃 )= . 

4.  푆푧∗(퐶 휊퐶 )= . 
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1 INTRODUCTION 

Hyperstructures represent a natural extension of algebraic structures and they were 
introduced in 1934 by F. Marty [14]. He generalized the notion of groups by 
defining hypergroups. Where in a group, the operation's result of two elements is 
again an element while in a hypergroup, the hyperoperation's result of two 
elements is a non-void set. Since then, hundred of books and papers discussed and 
studied hyperstructures from the theoretical point of view and for their applications 
to many subjects of pure and applied mathematics. In [5], Corsini presented some 
of hyperstructures' applications to several subjects such as, geometry, fuzzy sets, 
automata, hypergraphs, and so on. 
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The largest class of hyperstructures is the one that satisfies weak axioms, 
i.e., the non-empty intersection replaces the equality. These are called Hv-
structures and they were introduced in 1990. The latter hyperstructures have many 
applications to different disciplines like Biology, Chemistry, Physics, and so on. In 
[1, 2], the authors analyzed the second generation phenotypes and genotypes of n-
hybrid cross with a mathematical structure. They used the concepts of cyclic 
hypergroup and Hv-semigroup in the F2-phenotypes and F2-genotypes respectively 
with mating as a hyperoperation. Another motivation for the study of 
hyperstructures comes from chemical reactions. In [3, 6, 7, 8], redox, chain and 
dismutation reactions were provided as different examples of weak 
hyperstructures. 
 In our paper, we consider a new chemical hyperstructure using Galvanic 
and Electrolytic cells. And it is organized as follows: after an introduction, Section 
2 presents some definitions that are used throughout the paper. Section 3 defines 
binary hyperstructures related to Galvanic cells,  Electrolytic cells and proves that 
they are isomorphic. Moreover, it defines a binary hyperstructure related to both 
Galvanic and Electrolytic cells at the same time and investigate its properties. 
 
2.  WEAK HYPERSTRUCTURES 

In this section, we present some definitions related to hyperstructures (see [4, 9, 
10, 11, 12, 13]) that are used throughout the paper. 

Let H be a non-empty set. Then, a mapping ∘ : 퐻 ×  퐻 → 푃∗(퐻) is called a 
binary hyperoperation on H, where 푃∗(퐻) is the family of all non-empty subsets of 
H. The couple (퐻,∘) is called a hypergroupoid. In the above definition, if A and B 
are two non-empty subsets of H and 푥 ∈  퐻, then we define: 퐴 ∘  퐵 = ⋃ 푎∈ , ∈ ∘
푏, 푥 ∘ 퐴 =    {푥} ∘ 퐴 and 퐴 ∘  푥 =    퐴 ∘ {푥}. 

Hv-structures were introduced by T. Vougiouklis as a generalization of the 
well-known algebraic hyperstructures. Some axioms of classical algebraic 
hyperstructures are replaced by their corresponding weak axioms in Hv-structures. 
Most of Hv-structures are used in representation theory. 

A hypergroupoid (퐻,∘) is called an Hv-semigroup if for all 푥,푦, 푧 ∈  퐻,  
푥 ∘ (푦 ∘  푧) ∩  (푥 ∘  푦) ∘ 푧 ≠ ∅. 

A subset K of an Hv-semigroup is an Hv-subsemigroup if K is an Hv-semigroup. An 
element 푥 ∈  퐻 is called idempotent if 푥 = 푥 ∘  푥 = 푥 and an element 푒 ∈  퐻 is 
called an identity of (H,∘) if 푥 ∈  푥 ∘  푒 ∩  푒 ∘  푥, for all 푥 ∈  퐻. The latter is called 
strong identity if 푒 ∘ 푥 = 푥 ∘ 푒 ⊆ {푒, 푥} for all 푥 ∈  퐻. A hypergroupoid (퐻,∘) is 
called a semihypergroup if for every 푥, 푦, 푧 ∈  퐻, we have 푥 ∘  (푦 ∘  푧) = (푥 ∘  푦) ∘
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 푧  and is called a quasihypergroup if for every 푥 ∈  퐻, 푥 ∘ 퐻 = 퐻 = 퐻 ∘  푥. The 
latter condition is called the reproduction axiom. The couple (퐻,∘) is called a 
hypergroup if it is a semihypergroup and a quasi-hypergroup. Two hypergroupoids 
(퐻,∘) and (퐾,∗) are said to be isomorphic hypergroupoids, written as 퐻 ≅  퐾, if 
there exists a bijective function 푓:퐻 →  퐾 such that 푓(푥 ∘  푦) = 푓(푥) ∗  푓(푦) for 
all 푥, 푦 ∈ 퐻. 
 
3. MAIN RESULTS 

This section is divided into three subsection as Galvanic Cells , Electrolytic Cells 
and Galvanic/Electrolytic Cells. Each section will be separately discussed in what 
follows: 
 
3.1. GALVANIC CELLS 

Chemical reactions involving the transfer of electrons from one reactant to another 
are called oxidation-reduction reactions or redox reactions. In a redox reaction, two 
half-reactions occur; one reactant (with less electronegativity) gives up electrons 
(undergoes oxidation) and another reactant (with higher electronegativity) gains 
electrons (undergoes reduction). For example, a piece of zinc going into a solution 
as zinc ions, with each Zn atom giving up 2 electrons, is an example of an 
oxidation half-reaction. 

푍푛 → 푍푛 + 2푒 . 
In contrast, the reverse reaction, in which Zn2+ ions gain 2 electrons to become Zn 
atoms, is an example of a reduction half-reaction. 

푍푛 + 2푒 → 푍푛. 
A redox reaction result when an oxidation and reduction half-reaction are 
combined to complete a transfer of electrons as in the following example: 

푍푛 + 퐶푢 → 푍푛 + 퐶푢. 
The electrons are not shown in the above redox reaction because they are neither 
reactants nor products but have simply been transferred from one species to 
another (from Zn to Cu2+ in this case). In this redox reaction, the Zn is referred to 
as the reducing agent because it causes the Cu2+ to be reduced to Cu. The Cu2+ is 
called the oxidizing agent because it causes the Zn to be oxidized to Zn2+. 

A Galvanic cell or voltaic cell is a device in which a redox reaction 
spontaneously occurs and produces an electric current. In order for the transfer of 
electrons in a redox reaction to produce an electric current and be useful, the 
electrons are made to pass through an external electrically conducting wire instead 
of being directly transferred between the oxidizing and reducing agents. The 
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design of a Galvanic cell allows this to occur. In a Galvanic cell, two solutions, 
one containing the ions of the oxidation half-reaction and the other containing the 
ions of the reduction half-reaction, are placed in separated compartments called 
half-cells. For each half-cell, the metal, which is called an electrode, is placed in 
the solution and connected to an external wire. The electrode at which oxidation 
occurs is called the anode (Zn in the above example) and the electrode at which 
reduction occurs is called the cathode (Cu in the above example). The two half-
cells are connected by a salt-bridge that allows a “current” of ions from one half-
cell to the other to complete the circuit of electron current in the external wires. 
When the two electrodes are connected to an electric load (such as a light bulb or 
voltmeter) the circuit is completed, the oxidation-reduction reaction occurs, and 
electrons move from the anode (-) to the cathode (+), producing an electric current. 

Galvanic cell consists of two half-cells, such that the electrode of one half-
cell is composed of metal A (with larger electronegativity) and the electrode of the 
other half-cell is composed of metal B (with smaller electronegativity). The redox 
reactions for the two separate half-cells are given as follows: 

퐴 + 푛푒 → 퐴, 
퐵 → 퐵 + 푚푒 . 

The two metals A and B can react with each other according to the following 
balanced equation: 

푛퐵 + 푚퐴 → 푚퐴 + 푛퐵 . 
Having the element Cu with greater electronegativity than that of Zn, we get that 
푍푛 + 퐶푢 → 푍푛 + 퐶푢 is an example of a redox reaction occurring in a 
Galvanic cell. For more details about Galvanic cells, see [16]. 

Next, we present a commutative hyperstructure related to Galvanic cell and 
investigate its properties. We consider the set H = {A, B, An+, Bm+} and we define 
a hyperoperation ⊕  on H as follows: 푥 ⊕ 푦 is the result of a possible reaction 
between x and y in a Galvanic cell. If x and y do not react in a Galvanic cell then 
we set 푥 ⊕ 푦 = {푥,푦}. All possible spontaneous redox reactions of {A, B, An+, 
Bm+} in a Galvanic cell are summarized in the following commutative table: 

 
⊕  A B An+ Bm+ 
A A {A,B} {A, An+} {A, Bm+} 
B {A, B} B {A, Bm+} {B, Bm+} 

An+ { A, An+} {A, Bm+} An+ { An+, Bm+} 
Bm+ {A, Bm+} {B, Bm+} { An+, Bm+} Bm+ 

 
In above table, if we change the names from A, B, An+, Bm+ to a, b, c, d 

respectively, then the following theorem holds. 
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Theorem 1. Let H={a, b, c, d}, ⊕  be the hyperoperation on H and consider the 
following table corresponding to (퐻,⊕ ): 
 

⊕  a b c d 
a a {a, b} {a, c} {a, d} 
b {a, b} b {a, d} {b, d} 
c {a, c} {a, d} c {c, d} 
d {a, d} {b, d} {c, d} d 

 
Then (퐻,⊕ ) is a commutative Hv-semigroup. 
 
Proof. It is clear from the above table that (퐻,⊕ ) is a commutative 
hypergroupoid. We need to show that (퐻,⊕ ) is a weak associative 
hypergroupoid, i.e, 푥 ⊕ (푦 ⊕  푧)⋂(푥 ⊕ 푦) ⊕  푧 ≠ ∅ for all (푥,푦, 푧) ∈ 퐻 . 
We have three cases for x; 푥 = 푎 표푟 푑, 푥 = 푏 and 푥 = 푐: 

 Case 푥 = 푎 표푟 푑. We have that 푥 ∈ 푥 ⊕ (푦 ⊕  푧)⋂(푥 ⊕ 푦) ⊕  푧 ≠
∅. 

 Case 푥 = 푏. We have that  푏 ⊕ (푐 ⊕ 푐)=푏 ⊕ 푐 = {푎, 푑} and that 
(푏 ⊕ 푐) ⊕ 푐 = {푎, 푑} ⊕ 푐 = {푎, 푐, 푑}. Thus, 

푏 ⊕ (푐 ⊕ 푐)(푏⊕ 푐) ⊕ 푐 ≠ ∅. 
Moreover, one can easily check that  푏 ⊕ (푐 ⊕ 푧) ∩ (푏 ⊕ 푐) ⊕ 푧 ≠
∅, and that 푏 ⊕ (푦⊕ 푐) ∩ (푏 ⊕ 푦) ⊕ 푐 ≠ ∅. If 푦 ≠ 푐 and 푧 =  푐 then 
푏 ∈ 푏 ⊕ (푦 ⊕  푧)⋂(푏 ⊕ 푦) ⊕  푧. 

 Case 푥 = 푐. This case is similar to that of Case 푥 = 푏. 
 
Remark 1. Since 푎 ⊕ (푏⊕ 푐) = {푎,푑} ≠ (푎 ⊕ 푏)⊕ 푐 = {푎, 푐, 푑}, it follows 
that (퐻,⊕ ) is not a semihypergroup. 
 
Remark 2. (퐻,⊕ ) admits two identities; a and d. Moreover, a and d are strong 
identities. 
 
3.2. ELECTROLYTIC CELLS 

Voltaic cells are driven by a spontaneous chemical reaction that produces an 
electric current through an outside circuit. These cells are important because they 
are the basis for the batteries that fuel modern society. But they aren't the only kind 
of electrochemical cells. The reverse reaction in each case is non-spontaneous and 
requires electrical energy to occur. It is possible to construct a cell that does work 
on a chemical system by driving an electric current through the system. These cells 
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are called electrolytic cells (or reverse Galvanic cells), and operate through 
electrolysis. 

Electrolysis is used to drive an oxidation-reduction reaction in a direction 
in which it does not occur spontaneously by driving an electric current through the 
system while doing work on the chemical system itself, and therefore is non-
spontaneous. Electrolytic cells, like Galvanic cells, are composed of two half-cells; 
one is a reduction half-cell, the other is an oxidation half-cell. The direction of 
electron flow in electrolytic cells, however, may be reversed from the direction of 
spontaneous electron flow in Galvanic cells, but the definition of both cathode and 
anode remain the same, where reduction takes place at the cathode and oxidation 
occurs at the anode. Because the directions of both half-reactions have been 
reversed, the sign, but not the magnitude, of the cell potential has been reversed. 

Electrolytic cells consist of two half-cells, such that the electrode of one 
half-cell is composed of metal A (with larger electronegativity) and the electrode of 
the other half-cell is composed of metal B (with smaller electronegativity). The 
redox reactions for the two separate half-cells are given as follows: 

퐴 → 퐴 + 푛푒 , 
퐵 + 푚푒 → 퐵. 

The two metals A and B can react with each other according to the following 
balanced equation: 

푚퐴 + 푛퐵 → 푛퐵 + 푚퐴 . 
An example of a reaction in an Electrolytic cell is: 

퐶푢 + 푍푛 → 푍푛 + 퐶푢  
which is the reverse of the reaction described before. For more details about 
Electrolytic cells, see [16]. 

Next we present a hyperstructure related to Electrolytic cells and 
investigate its properties. We consider the set H= {A, B, An+, Bm+} and we define a 
hyperoperation ⊕  on H as follows: 푥 ⊕ 푦  is the result of a possible reaction 
between x and y in an Electrolytic cell. If x and y do not react in an electrolytic cell 
then we set 푥 ⊕ 푦 = {푥,푦}. 

All possible spontaneous redox reactions of {A, B, An+, Bm+} in an 
electrolytic cell are summarized in the following commutative table: 
 

⊕  A B An+ Bm+ 
A A {A, B} {A, An+} { An+, B} 
B {A, B} B { An+, B} {B, Bm+} 

An+ {A, An+} { An+, B} An+ { An+, Bm+} 
Bm+ { An+, B} {B, Bm+} { An+, Bm+} Bm+ 
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In the above table, if we change the names from A, B, An+, Bm+ to a, b, c, d 
respectively, then the following theorem holds. 
 
Theorem 2. Let H={a, b, c, d}, ⊕  be the hyperoperation on H and consider the 
following table corresponding to (퐻,⊕ ): 
 

⊕  a b c d 
a a {a, b} {a, c} {b, c} 
b {a, b} b {b, c} {b, d} 
c {a, c} {b, c} c {c, d} 
d {b, c} {b, d} {c, d} d 

 
Then (퐻,⊕ ) is a commutative Hv-semigroup. 
 
Proof. Let 푓: (퐻,⊕ ) → (퐻,⊕ ) defined as follows: 

푓(푎) = 푏,푓(푏) = 푎, 푓(푐) =  푑 and 푓(푑) = 푐. 
It is easy to see that f is an isomorphism and thus,(퐻,⊕ ) ≅ (퐻,⊕ ). The latter 
and Theorem 1 imply that (퐻,⊕ ) is a commutative Hv-semigroup. 
 
Remark 3. (퐻,⊕ ) admits two identities; b and c. Moreover, b and c are strong 
identities. 
 
3.3. GALVANIC/ELECTROLYTIC CELLS 

We present a commutative hyperstructure related to Galvanic/Electrolytic cells and 
investigate its properties. We consider the set H={A, B, An+,  Bm+ } and we define 
a hyperoperation ⊕ on H as follows: 푥 ⊕ 푦  is the result of a possible reaction 
between x and y in either a Galvanic cell or in an Electrolytic cell. If x and y 
neither react in a Galvanic cell nor in an Electrolytic cell then we set 푥 ⊕ 푦 =
{푥, 푦}. 
 

All possible spontaneous redox reactions of {A, B, An+, Bm+} in a 
Galvanic/Electrolytic cell are summarized in the following commutative table: 
 

⊕ A B An+ Bm+ 
A A {A, B} {A, An+} {An+, B} 
B { A, B} B {A, Bm+} {B, Bm+} 

An+ {A, An+} {A, Bm+} An+ {An+, Bm+} 
Bm+ { An+, B} {B, Bm+} {An+, Bm+} Bm+ 
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Remark 4. We can define (퐻,⊕) as follows: 
 

푥 ⊕ 푦 =
푥 ⊕ 푦  if 푥 ⊕ 푦 = {푥,푦};
푥 ⊕ 푦  if 푥 ⊕ 푦 = {푥,푦};

   {푥, 푦}     if 푥 ⊕ 푦 = 푥 ⊕ 푦.
 

 
In the above table, if we change the names from A, B, An+, Bm+ to a, b, c, d 

respectively, then the following theorem holds. 
 
Theorem 3. Let H={a, b, c, d}, ⊕ be the hyperoperation on H and consider the 
following table corresponding to (퐻,⊕): 
 

⊕ a b c d 
a a {a, b} {a, c} {b, c} 
b {a, b} b {a, d} {b, d} 
c {a, c} {a, d} c {c, d} 
d {b, c} {b, d} {c, d} d 

 
Then (퐻,⊕) is a commutative Hv-semigroup. 
 
Proof. It is clear from the above table that (퐻,⊕) is a commutative hypergroupoid. 
We need to show that (퐻,⊕)is a weak associative hypergroupoid. Let (푥,푦, 푧) ∈
퐻 . We have four cases for x; x=a, x=b, x=c and x=d: 

 Case 푥 = 푎. We have that  푎 ⊕ (푑 ⊕  푑) = 푎 ⊕ 푑 = {푏, 푐} and that 
(푎 ⊕푑)⊕푑 = {푏, 푐} ⊕푑 = {푏, 푐, 푑}. Thus, 푎 ⊕ (푑 ⊕  푑) ∩
(푎 ⊕푑)⊕푑 ≠ ∅. Moreover, one can easily check that 푎 ⊕ (푑 ⊕  푧) ∩
(푎 ⊕푑)⊕ 푧 and that 푎 ⊕ (푦 ⊕  푑) ∩ (푎 ⊕푦) ⊕푑 ≠ ∅. If 푦 ≠ 푑 and 
푧 ≠ 푑 then 푎 ∈ 푎 ⊕ (푦 ⊕푧) ∩ (푎 ⊕푦) ⊕ 푧. 

 Case 푥 = 푏. We have that 푏 ⊕ (푐 ⊕ 푐) = 푏 ⊕ 푐 = {푎, 푑} and that 
(푏 ⊕ 푐)⊕ 푐 = {푎, 푑} ⊕ 푐 = {푎, 푐, 푑}. Thus, 푏 ⊕ (푐 ⊕ 푐) ∩ (푏⊕ 푐) ⊕
푐 ≠ ∅. Moreover, one can easily check that 푏 ∈ 푏 ⊕ (푐 ⊕  푧) ∩
(푏 ⊕ 푐)⊕ 푧 ≠ ∅ and that 푏 ⊕ (푦 ⊕ 푐) ∩ (푎 ⊕푦) ⊕ 푐 ≠ ∅. If 푦 ≠ 푐 
and 푧 ≠ 푐  then 푏 ∈ 푏 ⊕ (푦 ⊕ 푧) ∩ (푏 ⊕ 푦) ⊕ 푧. 

 Case 푥 = 푐. We have that 푐 ⊕ (푏 ⊕ 푏) = 푐 ⊕ 푏 = {푎, 푑} and that 
(푐 ⊕ 푏) ⊕푏 = {푎,푑} ⊕푏 = {a, b, d}. Thus, 푐 ⊕ (푏 ⊕ 푏) ∩ (푐 ⊕ 푏)⊕
푏 ≠ ∅. Moreover, one can easily check that 푐 ⊕ (푏⊕ 푧) ∩ (푐 ⊕ 푏) ⊕
푧 ≠ ∅ and that 푐 ⊕ (푦 ⊕푏) ∩ (푐 ⊕ 푦)⊕푏 ≠ ∅. If 푦 ≠ 푏 and 푧 ≠ 푏 
then 푐 ∈ 푐 ⊕ (푦 ⊕ 푧) ∩ (푐 ⊕ 푦)⊕ 푧. 

 Case 푥 = 푑. We have that 푑 ⊕ (푎 ⊕ 푎) = 푑 ⊕ 푎 = {푏, 푐} and that 
(푑 ⊕ 푎) ⊕푎 = {푏, 푐} ⊕푎 = {푎,푏, 푐}. Thus, 푑 ⊕ (푎 ⊕ 푎) ∩ (푑 ⊕ 푎) ⊕
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푎 ≠ ∅. Moreover, one can easily check that 푑 ⊕ (푎⊕ 푧) ∩ (푑 ⊕ 푎) ⊕
푧 ≠ ∅ and that 푑 ⊕ (푦 ⊕푎) ∩ (푑 ⊕ 푦)⊕푎 ≠ ∅. If 푦 ≠ 푎 and 푧 ≠ 푎 
then 푑 ∈ 푑 ⊕ (푦 ⊕ 푧) ∩ (푑 ⊕ 푦)⊕ 푧. 
 

Remark 5. Every element in (퐻,⊕) is idempotent. This is trivial from chemical 
point of view as no reaction exists in an electrochemical cell between two identical 
elements, so, the element is unchanged. 
 
Proposition 4. (퐻,⊕) is not a quasi-hypergroup nor a semihyperegroup. 
 
Proof. Since d is not an element in 푎 ⊕  퐻, it follows that (퐻,⊕) is not a quasi-
hypergroup. Having 푎 ⊕ (푑 ⊕  푑) = {푏, 푐} ≠ (푎 ⊕  푑)⊕푑 = {푏, 푐} ⊕푑 =
{푏, 푐,푑} implies that (퐻,⊕) is not a semihypergroup. 

 
Proposition 5. (퐻,⊕) does not admit an identity element. 
 
Proof. Since 푎, 푏, 푐,푑 are not elements of 푎 ⊕  푑, 푏 ⊕  푐, 푐 ⊕  푏,푑 ⊕  푎, it 
follows that none of our elements is an identity. 
 
Remark 6. Proposition 5 implies that there exists no element x in H (in a 
Galvanic/Electrolytic cell) such that the following reaction occurs for all y in H 
and some z in H: 

푥 + 푦 → 푦 + 푧. 
 

Remark 7. Remark 2, Theorem 2 and Proposition 5 imply that (퐻,⊕) is not 
isomorphic to (퐻,⊕ ) nor to (퐻,⊕ ). 
 

Proposition 6. There are only two Hv-subsemigroups of (퐻,⊕) up to 
isomorphism. 
 

Proof. It is easy to see that ({푎},⊕ ) and ({푎,푏},⊕ ) are the only Hv-
subsemigroups of (퐻,⊕) up to isomorphism. Moreover, ({푎},⊕) and ({푎, 푏},⊕) 
are hypergroups. 
 

Definition 7. Let (퐻,∘) be an Hv-semigroup and A be a non-empty subset of H. A 
is a complete part of H if for any natural number n and for all hyperproducts 
푃 ∈ 퐻 (푛), the following implication holds: 

퐴 ∩ 푃 ≠ ∅ → 푃 ⊆  퐴. 
 

Proposition 8. (퐻,⊕) has no proper complete parts. 
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Proof. Let 퐴 ≠ ∅ be a complete part of (퐻,⊕). We consider the following cases 
for A: 

 Case 푎 ∈ 퐴.  Having 푎 ∈  푎 ⊕  푥, 푥 ∈  푎 ⊕ 푥 for all 푥 ∈ {푎, 푏, 푐} imply 
that 푥 ∈  푎 ⊕  푥 ⊆  퐴. We get now that 푏 ∈ 퐴. Since 푏 ∈ 푏 ⊕  푑 and 
푑 ∈ 푏 ⊕  푑, it follows that 푑 ∈  푏 ⊕  푑 ⊆ 퐴. Thus, 퐴 = 퐻. 

 Case 푏 ∈ 퐴.  Having 푏 ∈  푏 ⊕  푎 implies that 푎 ∈  푏 ⊕ 푎 ⊆ 퐴. The latter 
implies that 푎 ∈ 퐴 and thus 퐴 = 퐻 by the first case. 

 Case 푐 ∈ 퐴.  Having 푐 ∈  푐 ⊕  푎 implies that 푎 ∈  푐 ⊕  푎 ⊆  퐴. The latter 
implies that 푎 ∈ 퐴 and thus 퐴 = 퐻 by the first case. 

 Case 푑 ∈ 퐴.  Having 푑 ∈  푐 ⊕  푑 implies that 푐 ∈ 푐 ⊕  푑 ⊆ 퐴. The latter 
implies that 푐 ∈  퐴 and thus 퐴 = 퐻 by the previous case. 

Therefore, (퐻,⊕) has no proper complete part. 
 

The main tools connecting the class of hyperstructures with the classical 
algebraic structures are the fundamental relations. The fundamental relation has an 
important role in the study of semihypergroups and especially of hypergroups. 
 

Definition 9. For all 푛 > 1, we define the relation 훽  on an Hv-semigroup (퐻,∘) as 
follows: 

 푥훽  푦 푖푓 푡ℎ푒푟푒 푒푥푖푠푡 푎 ,⋯  , 푎 ∈ 퐻 푠푢푐ℎ 푡ℎ푎푡 {푥, 푦} ⊆ ∏ 푎 . 
and we set 훽 = ⋃ 훽 , where 훽 = {(푥,푥)|  푥 ∈ 퐻} is the diagonal relation on H. 
 

This relation was introduced by Koskas [13] and studied mainly by Corsini 
[4], Davvaz [9], Davvaz and Leoreanu-Fotea [11], Freni [12], Vougiouklis [15], 
and many others. Clearly, the relation 훽 is reflexive and symmetric. Denote by 훽∗ 
the transitive closure of 훽. 

The 훽∗is called the fundamental equivalence relation on H and it is the 
smallest strongly regular relation on H. If H is a hypergroup then 훽 = 훽∗  [12] and 
퐻/훽∗ is called the fundamental group. 
 

Proposition 10. (퐻,⊕) has a trivial fundamental group. 
 

Proof. Since {푎, 푏} ⊆  푎 ⊕  푏, it follows that 푎훽  푏. Similarly, we obtain 푎훽  c, 
b훽 d, c훽 d. Having 훽∗ the transitive closure of 훽, one can easily see that 푥훽∗푦 for 
all (푥, 푦) ∈ 퐻 . Thus, |퐻/훽∗| = 1. 
 
4. CONCLUSION 

This paper provided a new chemical hyperstructure on electrochemical cells that is 
not equivalent to any of the studied chemical hyperstructures before. 
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 شده يسگد بازنگر شاخص .باشد (ܩ)ܧهاي  مجموعه یال با متناهی و ساده گرافی ܩفرض کنید 
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فاصله از  هم تعداد رئوس (݁)ீ݊و  هستندv  نزدیکتر از u به که است ܩدر  تعداد رئوسی (ܩ|݁)௨݊که 
ها  کرونا در گرافضرب عملگرهاي اتصال و را براي  شده يسگد بازنگر شاخص ،در این مقاله. است ܩدر  ݁
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