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1 INTRODUCTION

A regular polyhedron is a polyhedron having congruent regular polygons as faces, arranged
in the same manner around identical vertices; its symmetry group acts transitively on its
flags, a regular polyhedron being vertex-, edge- and face-transitive [1]. They show three
symmetry groups: tetrahedral; octahedral (or cubic) and icosahedral (or dodecahedral).
Any shapes with icosahedral or octahedral symmetry will also include the tetrahedral
symmetry.

There are five regular polyhedra, known as Platonic polyhedral solids: tetrahedron
(T), cube (C), octahedron (O), dodecahedron (D) and icosahedron (I), written as {3,3};
{4,3}; {3,4}; {5,3} and {3,5} by using the basic Schléfli [2] symbols {p,q} where p is the
number of vertices in a given face while q is the number of faces containing a given vertex.

* Corresponding Author (Email address: diudea@gmail.com)
DOI: 10.22052/ijmc.2017.101019.1318
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They show pair duals: (cube & octahedron) and (dodecahedron & icosahedron) while the
tetrahedron is selfdual.

Generalization of a polyhedron to n-dimensions is called a polytope [1,3]. Regular 4-
polytopes are written as {p,q,r} and have cells of the type {p,q}, faces {p}, edge figures
{r} and vertex figures {q,r}; it means that r-polyhedra (of the type {p,q}) meet at any edge
of the polytope. There are six regular 4-polytopes: 5-cell {3,3,3}; 8-cell {4,3,3}; 16-cell
{3,3,4}; 24-cell {3,4,3}; 120-cell {5,3,3} and 600-cell {3,3,5}. Five of them can be
associated to the Platonic solids but the sixth, the 24-Cell has no 3D equivalent. Among
them, 5-cell and 24-cell are selfduals while the others are pairs: (8-cell & 16-cell); (120-cell
& 600-cell).

A 5-polytope is written as {p,q,r,s}, where {p,q,r} is the 4-face type, {p,q} is the
cell type, {p} is the face type; {s} is the face figure, {r,s} is the edge figure and {q,r,s} is
the vertex figure. The three types of convex regular polytopes in dimensions 5 and higher,
are as follows.

The n-simplex [1,4], with the Schlifli symbol {3"'}, and the number of its k-faces

(Eﬁ); it is a generalization of the triangle or tetrahedron to n-dimensions. A regular n-

simplex may be constructed from a regular (n — 1)-simplex by connecting a new vertex to
all original vertices.
The hypercube Q, is a generalization of the 3-cube to n-dimensions; it has the

Schlifli symbol {4,3" %} and the number of k-faces given by 2" (E ) . The hypercube can

be constructed by the Cartesian product graph of n edges: (P,) " =Q, ; the Q4 hypercube is

called 8-cell or also tesseract.
The n-orthoplex or cross-polytope [1] has the Schlifli symbol {3" 2,4} and k-faces

Zk*l(ﬂﬂ); it is the dual of n-cube. The cross-polytope faces are simplexes of the previous

dimensions, while its vertex figures are other cross-polytopes of lower dimensions.
For general surfaces, Euler [5] characteristic y can be calculated as an alternating
sum of figures of rank k [6-8]:

xS)="f,-f,+f,—f,+..,

It may be used for checking the consistency of a proposed structure.

An abstract polytope is a structure which considers only the combinatorial properties
of a classical polytope: angles and edge lengths are disregarded. No space, such as
Euclidean space, is required to contain an abstract polytope [7], which is a partially ordered
set (poset). Every polytope has a dual, of which partial order is reversed; the dual of a dual
is isomorphic to the original. A polytope is self-dual if it is the same as (i.e. isomorphic to)
its dual. Any abstract polytope may be realized as a geometrical polytope having the same
topological structure.
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[1,1,1]Propellane is an organic molecule, first synthesized in 1982 [9]; by IUPAC
rules, it is named tricyclo[1.1.1.0"*]pentane, a hydrocarbon with formula CsHe. The length
of central bond separating the triangles is 160 pm, much longer than 154 pm, the average
length of sp® C-C bond; this bond may be considered non-effective and the propellane
consisting of squares/rhombs, a triangle-free structure.

Rhombellation is a procedure enabling the design of generalized rhombellanes,
performed as follows: join by a point (called “rbl-point”) the two vertices lying opposite
diagonal in each rhomb of an all rhomb-map (considered the zero-generation, Rhy). Then,
add new vertices opposite to the parent vertices and join each of them with the rbl-vertices
lying in the proximity of each parent vertex, thus local Rh-cells being formed. The process
can continue, considering the envelope Rh, as “Rhy” for Rhy.1, in this way shell by shell
being added to the precedent structure. Since the two diagonals may be topologically
different, each generation may consist of two isomers.

Proposition [10]. A structure is a rhombellane if all the following conditions are obeyed:
a) All strong rings are squares/rhombs;
b) Vertex classes consist of all non-connected vertices;
c) Omega polynomial has a single term: 1X"|E|;
d) Line graph of the original graph shows a Hamiltonian circuit;
e) Structure contains at least one K 3 subgraph.

A fast detected condition is Q(x) = 1x°, in words: all the edges in G are topologically
parallel. Omega polynomial is defined as: Q(x) = Zsmx®, m being the number of opposite
edge strips, ops, of length s, in a graph G. There are graphs with a single ops, which is a
Hamiltonian circuit. For such graphs, omega polynomial has a single term: Q(x) = 1x°; s =
e = |E(G)|. Hamiltonicity is an np-complete problem, being here a corollary of a single ops
in the omega polynomial; however, not any graph having a Hamiltonian circuit has all the
edges topologically parallel (see the case of cube and cuboctahedron). By construction, the
rhombellanes have all classes of vertices not connected to each other within a same class.
The smallest rhombellane is K3, i.e., the complete bipartite graph (corresponding to the
[1,1,1]propellane molecule); any K3, graph fulfills all the above conditions. A K, graph
consists of n(n-1)(n-2)/6 K3 substructures. There are graphs with more than two vertex
classes obeying the above conditions; the proposed rhombellation operation enables the
design of such graphs.

Rhombellanes represent n-partite graphs, both by topology and coloring [11,12]. Some
crystal networks also fulfill the above criteria; among these, only the dia net is full
rhombellanic.
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2 BoDY-CENTERED CLUSTERS

Body centered clusters, derived from the Platonic solids (here denoted by MP"), represent
cell-duals of polyhedra having n-cells around a central cell; they are objects of Euclidean
4D-space [13]; this idea can be extended to objects other than Platonics (Figure 1);
extension of P central point to a same cell leads to “cell-in-cell” clusters (Figure 2). Such
body centered clusters have been used to design a plethora of polyhedral or non-polyhedral
objects, and also periodic networks [14].

CP®.9 (bcu) CP*.9 (dia) Rh;,P®.15 (bcu) COP*.13 (fcu)

Figure 1. Seeds for some periodic networks.

T@T.8 O0@0.12 C@C.16 D@D.40

Figure 2. Cell-in-cell clusters of the Platonic solids.

3. THE 24-CELL

The 24-cell (Figure 3, left) is a convex regular 4-polytope, also called “icositetrachoron”,
“octaplex”, or polyoctahedron”, as it consists of 24 octahedral cells, with six of them
meeting at each vertex and three at each edge; its vertex figure is a cube. The 24-cell is the
unique self-dual regular polytope, (of which dual is) neither a polygon nor a simplex; by
this reason, it has no analogue in 3D.

The vertex figure at a given vertex comprises all the figures incident on that vertex;
edges, faces, etc. A vertex figure of an n-polytope is an (n—1)-polytope (e.g., the vertex
figure of a 4-polytope is a 3-polytope, or a polyhedron) [14].

The first 8 vertices of 24-cell are the vertices of a regular 16-cell while the
remaining 16 are the vertices of the dual 8-cell, or the tesseract, Q4.16. This suggests the
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construction either by rectification of 16-cell (i.e., medial m(16-cell)) or by dualization of
8-cell (i.e., d(8-cell)). There are several 3D projections of 24-cell, of which envelopes are
the rhombic dodecahedron Rhj,, cuboctahedron CO, hexagonal bi-antiprism, elongated
hexagonal bipyramid or a tetrakis hexahedron (i.e., stellated cube st(C) — Figure 3, middle).

Starting from the idea of MP" clusters, and keeping in mind the projection of 24-cell
with a st(C) envelope, a construction of 24-cell as all-body-centered hypercube Q4.8CP8.24
is proposed here, by joining eight CP? units (Figure 3, right). In our best knowledge, this
construction was not yet reported in literature.

24-Cell.24 st(CP?).15 Q4.8CP%.24
Cuboctahedron
orthogonal projection

Figure 3. 24-Cell appearance.

The figure count and topology sequence for Q4.8CP®.24 are given in Tables 1 and 2,
respectively. As can be seen, both CP® and Q,.8CP®.24 have the rank k = 4. There is a
single class of vertices in 24-cell, thus a single sequence of connectivity (provided by the
layer matrix of connectivity LC) and rings around vertices (in terms of layer of rings LR)
will fully describe its topology [15,16]. Omega polynomial [17,18] Q = 96X"1 shows that
there are 96 f3 (i.e., triangles), counted as non-topologically parallel 96 edges. It means that
24-cell is not a Rhombellane (cf. Proposition).

Table 1. Figure count in Qq related structures.

P0|yt0pe Vv e f3 f4 f5 2 Kzlg K2.4 Ada(Py4) 3 4 X k
cp? 9 20 12 6 0 18 0 0 (6) 7 0 4
Q,.8CP? 24 96 96 0 0 96 0 0 0 24 0 4
cp* 9 16 0 18 0 18 10 0 0 11 0 4
Q..8CP* 24 64 0 120 8 128 80 12 2 94 8 2 5
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4. A RHOMBELLANIC HYPERCUBE RELATIVE

By deleting, in an alternating manner, four edges incident at each central point in
Q4.8CP%.24 it results in a new structure, Q4.8CP*.24 (Figure 4), which is a rhombellane
relative of the hypercube Q. (see below). The repeating unit is now CP*.9, a 4-polytope (k
= 4, see Table 1); it consists of ten simplest rhombellanes K 3. There are eight CP* facets
(of rank k = 4) binding Q4.8CP*.24; each pair of CP* facets shares a facet of rank k = 3,
namely the rhombellane Ka.; thus, Q4.8CP*.24 is a 5-polytope (k = 5). In the figure count,
two adamantine ada units (k = 3) and eight hexagons fs were considered (Figure 4, middle
and right); adamantane is not a polyhedron but a tile [19], similar to rhombellanes, from
which it originates. Sequences of Q,.8CP*.24 topology are given in Table 2. There are two
vertex classes, of degree 4 {16} and 8 {8}, respectively. Omega polynomial consists of a
single term, Q = 1X”64, saying that the edges of Q4.8CP*.24 are all topologically parallel
and thus the structure is a rhombellane. The vertex classes have all non-connected points
(as a bipartite structure), an additional proof supporting the rhombellanic nature of this
structure of higher rank. About centrality, counted by our centrality index [15], the 16
points class appears lying more central (C=0.1256396237) than the remaining 8 vertices
(C=0.1203238919). Computations have been done by our Nano-Studio software program
[20].

Q4.8CP*.24 Ada.CP*.15 (inside) Ada.CP*.15 (outside)
Figure 4. A rhombellanic hypercube Q, relative (left); details of its inside (middle) and
outside (right).

Table 2. Sequence of connectivity (LC) and rings around vertex (LR) in all-centered 8-Cell
(Tesseract) Q4.8CP".24.

Polytope LC LR Q Degree Rings
Q..8CP%.24

24 x 1-8-14-1 12 - 96 - 168 - 12 96X"1 8 3nM2
Q..8CP*24

16 x 1-4-14-4-1 18 - 144 - 252 - 144 - 18 1X"64 4 4718

8 x 1-8-6-8-1 36 -144 - 216 - 144 - 36 8 4136
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5. CONCLUSION

The smallest rhombellane, [1,1,1]propellane, is a real chemical molecule; its associate
graph is the complete bipartite graph, K;3. Generalized rhombellanes are designed by
Diudea’s rhombellation procedure. Rhombellanes have all the edges topologically parallel,
as shown by the single term in Omega polynomial (further involving Hamiltonian circuits
visiting their edges). Rhombellanes consist of at least one K3 subgraph.

A new building way for the 4-polytope, 24-cell, from all-P® body centered
hypercube Q4 was proposed. Its P*analogue, Q4.8CP*.24, is a 5-polytope.

Structure representation in terms of small rhombellanes brings more structural
insight and may unveil relations among structures apparently not related. Rhombellanes
represent a new class of structures, with interesting properties, both in theory and
applications.

ACKNOWLEDGMENT. Computer support from Dr. Csaba Nagy is highly
acknowledged.
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1. INTRODUCTION: MATHEMATICAL BACKGROUND

Let G be a graph representing the carbon-atom skeleton of a polycyclic conjugated =-
Electron system [7,9,21,34]. In what follows, we refer to G as to a molecular graph. Let G
possess a total of t = t(G) cycles, and let these cycles be denoted by Z;, Z5, ..., Z.

In order to avoid any misunderstanding, in Fig 1 are indicated all the cycles
contained in the molecular graph of triphenylene Grp. Thus, although G+ is classified
among tetracyclic graphs (i.e., Grp has 4 independent cycles), it possesses a total of 11
cycles, t(Grp ) = 11.

In theoretical chemistry, it has been firmly established that the cycles in conjugated
molecules have a profound influence on their physical and chemical properties, especially
on those that are referred to as “aromaticity” and “local aromaticity” [27,6,30,28,13].

The considerations that follow are intimately related with the Sachs theorem and
Its role in quantum chemistry. This theorem was published in its final form by Horst Sachs

* Corresponding author (Email: gutman@Kkg.ac.rs).
DOI: 10.22052/ijmc.2017.83263.1285



10 GUTMAN

in 1964 [29], but remained fully unknown to the chemical community until the publication
of the paper in 1972 [8]. Details of the Sachs theorem can be found in scores of books and
review articles, for instance in [23,32,31,9,34,21,7,16]; for historical details see
[11,12,35].

f‘
\_.r

@%GS

Figure 1. The molecular graph G TP of triphenylene and the cycles contained in it.

Let G be a molecular graph and ¢(G,A) its characteristic polynomial. Let G has n
vertices, which means that ¢(G,\) is a monic polynomial of degree n.

A Sachs graph S is any graph whose components are cycles and/or 2-vertex
Complete graphs. Denote by n(S), p(S), and c(S) the number of vertices, number of
components, and number of cyclic components, respectively of the Sachs graph S. Denote
by S(G) the set of all Sachs graphs that are as subgraphs contained in the graph G. Then
the Sachs theorem reads,

(G, 1) = A" + Yses(6)(—1)PE) 2665) gn=nis) )

Important for the present consideration is that the Sachs theorem relates the
Characteristic polynomial with the structure of the underlying graph. Furthermore, it
clearly and explicitly shows how the characteristic polynomial depends on the cycles
Contained in the graph.
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By solving the equation ¢(G,L) = 0, one obtains the eigenvalues of the graphs G,
denoted by A > A, > -+ > A, . Within the framework of the tight-binding Huuckel
molecular orbital (HMQO) approximation, the total m-electron energy of the underlying
conjugated molecule can then be calculated as [9, 21]

E(G) = XL wiky (2)
where ; IS the occupation number of the i-th molecular orbital, ®; € {0,1,2}. Thus, the
Sachs theorem in an implicit manner reveals how the total m-electron energy depends on
the cycles contained in the molecular graph.

In order to measure the effect of cycles, a quasi-energy E(G,ref) needs to be
constructed in an analogous manner as E(G), using not the zeros of the characteristic
polynomial, but the zeros of a suitably constructed “reference polynomial”. Then the
difference E(G) — E(G,ref) provides a desired measure of the respective energy-effect,
and can be directly related with the physical and chemical properties of the underlying
conjugated n-electron systems.

2. MODELING THE ENERGY-EFFECTS

Let Zi, Z, ..., Z: be the cycles contained in the molecular graph G. For i = 1,2,....t,
associate a variable g; to the cycle Z; . Let g = (91 ,92 ,...,.0t ) be a t-dimensional vector. If
g1=02=--=0t=0,thenwe write g =0. Ifg1 =g2=-- =gt =1,theng = 1. By e; we
denote the g-vector in which all components are equal to zero, except the i-th component,
which is equal to unity. Thus, g = X7, g;e;.

Bearing in mind Eq. (1), we define an auxiliary polynomial

¢(G,g, ) =21+ Z (=2)P) 2¢(9) 7 () An—n(S)
SES(G)
where Z(S) is the product of g;-values of all cycles contained in the Sachs graph S. If the
Sachs graph S is acyclic, then Z(S) = 1.

It is evident that ¢(G,1,0) = d(G,A), i.e., d(G,1,1) coincides with the ordinary
characteristic polynomial. In addition, ¢(G,0,A) is equal to the matching polynomial,
whose theory has been studied in due detail [5,15].

By solving the equation ¢(G,g,A) = 0, one obtains the quasi-eigenvalues A1(Q),
22(9), ..., A\n(g). Based on them, it is possible to compute a quasi-energy E(G,g) in the same
manner as the total m-electron energy E(G) is calculated from the ordinary graph
eigenvalues (as specified in the preceding section). Then, in particular, E(G,1) coincides
with the ordinary total -electron energy E(G), Eq. (2).

The quasi-energy E(G,g) has to be understood as a total-n-electron-energy-like
quantity, in which the parameter g; controls the effect of the i-th cycle contained in the
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molecular graph. If gi = 1, then the effect of this cycle of total w-electron energy has the
usual, normal value. If g; = 0 then the effect of the i-th cycle is completely neglected.
Based on this simple observation, by means of the difference E(G,1) — E(G,g), and
by a pertinent choice of the g-vector, it was possible to extract a variety of chemically
relevant information contained in the HMO total w-electron energy. In what follows, we
list a few such cases that earlier have been studied in the chemical literature. In the
subsequent section, we point out other options that our general Theory makes possible.

2.1. THE TOPOLOGICAL RESONANCE ENERGY

Using the above introduced formalism, the “it topological resonance energy” is defined as

TRE(G) = E(G,1) — E(G,0) 3)
It represents the effect on total w-electron energy of all cycles contained in the molecular
graph G. This idea was first put forward in 1975 by Nenad Trinajsti¢ and two of his
students [18], and eventually elaborated in 1977, in the papers [33,19]. In the same time
Aihara arrived at the very same idea [1]. Details and an extensive bibliography of the
theory and numerous applications of the TRE model can be found in the survey [14],
whereas a few interesting historical data in Trinasti¢’s autobiography [35].

2.2. MODELS OF ENERGY-EFFECT INDIVIDUAL CYCLES

Whereas TRE represents the simultaneous effect of all cycles of total n-electron energy, an
analogous reasoning lead to the expression

ef(G,Z;) =E(G,1)—E(G 1—¢) 4)
which would provide a measure of the effect of the individual cycle Z;. This model was
proposed in 1977, in the paper [4]. The idea came from Gutman, whereas Slobodan
Bosanac provided the software by means of which the ef-values could be efficiently
calculated. The first chemical applications of this model were communicated in [17], and
were followed by many dozens of publications; mathematical details and bibliography can
be found in the survey [13].

In the same year 1977, Aihara introduced an alternative model for measuring the
energy-effect of individual cycles [2]. In our symbolism, this energy-effect can be
expressed as

ef4(G,Z;) = E(G,e;) — E(G,0) )

In the case of unicyclic graphs, ef,(G) = ef(G) , whereas in the case of graphs
with more than one cycle, the two ef-values differ. Worth mentioning is that for all graphs
G and all i = 1,2,...,t, the quasi-eigenvalues A1(€i), A2 (€i), ..., An(€i), 1.€., the zeros of the
polynomial B(G,Z;, 1) = ¢(G,e;, A) are all real-valued. This fact was first established on
a large number of examples [24,25] and eventually proved for the general case [26].



General Theory of Cycle-Dependence of Total m—Electron Energy 13

In a later article [3], Aihara himself came to the conclusion that the ef-model, Eq.
(4), 1s superior to its ef A -version, Eqg. (5).

Formula (4) can be directly extended to measure the collective energy-effect of a
pair of cycles Z;, Zj, ef(G,Z;,Z;) = E(G,1) — E(G,1 — e; — ¢;) of a triplet of cycles Z;
Zi, Zx , ef (G, 2, Z;,Z;) = E(G,1) — E(G,1 — e; — e; — ;) etc. However, to the present
author’s best knowledge, these multiple-energy-effects have been considered in just a
single paper [22].

3. MORE POSSIBILITIES OF THE GENERAL THEORY

The choice g = 1—¢; in Eq. (4) means that we completely neglect the influence of the cycle
Z; on the value of the quasi-energy E(G,g). Analogously, the choice g =0 in Eq. (3) means
that we completely neglect the influence of all cycles on the value of the quasi-energy
E(G,0).

However, we may only partially diminish the effect of cycles (by choosing 0 < g;
<1). In this case, a resonance energy of the form,

TRE,(G, ¢) = %[E(G, 1) — E(G, (1 - £)1)]

would be conceived, in which case TRE; (G,e) = TRE(G) if € = 1. For instance, by setting
e = 1/2, we would get a kind of “half-way” resonance energy. Anyway, € could be viewed
as a variable parameter, whose value could then be optimized (so that TRE, best agrees
with experimentally observed facts).

Another development beyond the standard TRE model would be to increase the
effect of cycles above their usual value. The resonance energy obtained in this way would
be,

TRE,(G,€) = = [E(G, (1 + £)1) — E(G, 1)] @)
in which case TREy (G,e) = TRE(G) if e = —1. It can be shown that
lim,_o TRE, (G, &) = lim,_, TRE, (G, &) = ZE&* D |y = 1 (8)

X

The partial derivative on the right—hand side of (8) was earlier studied in [10,20], where it
was shown to be equal to the sum of contributions of individual cycles contained in the
molecular graph G.
Analogous extensions could be done also with the individual energy-effect ef(G),

Eq. (4). Thus, one might consider

efu(G.Z;,8) = [E(G,1) — E(G,1 - ge;)] 9
or

efy (G, Z;, £) = Z[E(G, 1+ ge;) — E(G, 1)] (10)
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which evidently become equal to ef(G,Zj) for ¢ = +1 and &€ = —1, respectively. In
connection with this, it can be shown that,

. . 9E(G,
lim,_,ef, (G, Z;, ) =lim._ef,(G,Z;,€) :%lg =1.

4. CONCLUDING REMARKS

The fact is that the variable-parameter energy-effects defined via Egs. (6) , (7), (9) , (10),
and similar have never been studied in theoretical chemistry. Their “ordinary” versions,
Egs. (3)—-(5), were put forward in the 1970s, when the interest for HMO-based aromaticity
criteria might have been at a maximum. In the meantime, the usage of HMO-based
theories gradually lost their attractiveness, and nowadays it is unlikely that the models
mentioned in the preceding section will be further elaborated and attempted to find
chemical applications. Therefore, the present paper should be considered as a summary of
what the research group of Nenad Trinajsti¢ achieved in the study of cycle-effects in
polycyclic conjugated molecules, and what could have had achieved, but did not. Sincere
congratulations and best wishes to N.T.’s 80th birthday.
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1. INTRODUCTION

Let G = (V,E) be a finite simple connected graph with vertex set V ={1,2,...,n},

degrees d; > d, > -+ > d,,, and d; = @ the average degree. Let A be the adjacency

matrix of G, D the diagonal matrix having the degrees of G in its diagonaland L =D — A
the Laplacian matrix of G, with characteristic values 4, >4, =>-->1,_4 =241, =0.
There exist many indices in Mathematical Chemistry expressed in terms of these
characteristic values that we shall look at; among them the Laplacian energy like invariant
put forward in [13]:

LEL(G) = X= /A, 1)
and its generalization (see [4], [7])
LELg(G) = X1 4P )
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for arbitrary f # 0,1; we shall also be concerned with the Kirchhoff index (see [12])
R(G) = Xi<jRij, where R;; represents the effective resistance, as computed by Ohm’s
and Kirchhoff’s laws, between the vertices i and j, and equal also to (see [8] and [18])

R(G) =nEi . (3)
We shall also discuss the Laplacian energy put forward in [9] as
LE(G) = Xi-414; — dgl. 4)

And finally we will consider the Laplacian Resolvent Energy of a graph, proposed by
Cafure et al. in [3] as an alternative to the Resolvent Energy (see [11]) defined as

RL(G) = Sir i (5)

The main ideas around majorization (for more details the reader is referred to [14])
may be briefly exposed thus: for any n-tuples x = (xq,....,.x,)and y = (y1,...,Vn)
withx; = x, > ...> x,and y; = y, =>...> y,,x majorizes y, written x >y, if

Lix 22X (6)

forl <k <n-1land
i=1%i = Liz1 Vis (7)

A real function @ : R,, - R is a Schur-convex function in case it maintains the
majorization inequality, that is, if @(x) > @(y) whenever x > y. Similarly, a Schur-
concave function inverts the inequality: @(x) < &(y) whenever x > y. A Schur-
convex (resp.Schur-concave) function can be simply constructed considering ®(x) =

* ., f(x;), for any one-dimensional convex (resp. concave) real function f : R - R.

The main idea for finding bounds through majorization for a molecular index is to
express such index as a Schur-convex or Schur-concave function, and then to identify
maximal and minimal elements, x* and x, respectively, that is, elements in the subspace
of interest of the n-dimensional real space (which can be a set of n-tuples of degrees of
vertices, or eigenvalues, or effective resistances, etc.) such that x* > x > x,, for all n-
tuples x in the subspace of interest, and then if @ is Schur-convex we will have ®(x*) >
®(x) = @(x,), for all x, having thus found the upper and lower bounds of interest, @ (x*)
and @(x,), respectively. A similar conclusion follows, exchanging the words *’upper” and
“lower”, if @ is Schur-concave.

Several indices in Mathematical Chemistry such as (1), (2), (3), (4) and (5) are
con-structed using Schur-convex or Schur-concave functions, and this fact has been used
in a collection of articles (such as [2], [6], [13], [15], [16], for example) to find a
cornucopia of upper and lower bounds for the indices. Specifically, in [15] we used the
fact that the Laplacian eigenvalue sequence majorizes the degree sequence, i.e.:

A4, 42, ..., 4,) > (dy + 1,dy,...,d, — 1), (8)
with the purpose of finding lower (resp. upper) bounds, expressed in terms of the degree
sequence, for descriptors defined through Schur-convex (resp. concave) functions.
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Interestingly enough, there is a companion formula for (8), perhaps not so well
known, where the eigenvalue sequence is majorized by another set of numbers, the
conjugate degree sequence. In general, given a finite sequence a, ,a,,...,a, of non-
negative numbers, its conjugate sequence a a'’y,a',,...,a’, is defined by a]'- =
I{i : a; = j}I.

The conjugate sequence does not depend on the order of the original sequence and
it is always a decreasing sequence, with a; <n and a; =0 for j > max{a; ,...,a,}.
For the sequence of degrees d, ,...,d, of any graph G it should be noted that we have
d, =n and d,, = 0. For more details on conjugate sequences, the reader can consult [14].

Here is the important fact that was conjectured by Grone and Merris in [7] and that
was finally proven by Bai in [1]:

Lemma 1. Given an arbitrary G we have
(dy, o dn) > Qe A) )

It is clear that equation (9) (incidentally, since d, = 4,, = O this equation can be
rewritten as (dy, ..., dp_1) > (A, ...,4,_1)) can be used to find upper (resp. lower)
bounds, in terms of the conjugate degree sequence, for Laplacian descriptors defined
through Schur- convex (resp. concave) functions. This is precisely what Das et al. did in
[5], where they worked with the Laplacian descriptors LE(G) and LEL(G), among other
descriptors, and found some bounds in terms of the d;s. In this article we will obtain
additional bounds for the other Laplacian descriptors mentioned here in terms of the
conjugate degree sequence, and then with a maximality argument used in majorization, we
will find tight general bounds expressed in terms of the size of the vertex index n and the
average degree di;. We will also find some particular tight bounds given in terms of usual
graph parameters.

2. THE INEQUALITIES

We begin with the general inequalities in the following

Proposition 1. For any G and {d;} its conjugate degree sequence we have

LEL(G) > ¥, \/; (10)
LELy(G) < ¥i=i(d)’ . for p > 10rp <0 (11)

LELg(G) = Z?;ll(dlf)ﬁ, for0<p <1 (12)
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R(G) < nzr:li,, (13)
LE(G) < ¥™t|d; — dg| + dg, (14)
RL(G) < Tht——+— (15)

n+1-d; n+1

Proof. Apply (9) and the facts that R(G), LE(G), LELg(G) for < Oorp > 1 and
RL(G) are Schur-convex, while LEL(G) and LELg(G) for 0 < B < 1 are Schur-
concave.

Inequality (10) was proven in [5]. One may ask how informative these inequalities
are. For example, if any of the d;s are zero, (13) provides no information. On the other
hand, from the trivial observation that d; <n, for1 < i < n — 1, we can prove with a
straightforward argument - worth comparing with the methods used in [17] and [3] to
prove these facts - a couple of maximal results in the next

Proposition 2. For arbitrary G the following holds

LELg(G) < LELg(K,) = (n—1)nf for >0, (16)
and

RL(G) <RL(K,) =n—1+— (17)

n+1’

Proof. Since the real functions f(x) = x# for § > 0and f(x) = 1_x are increasing
we obtain from (11) and (15) that LELg(G) < X1 (d})F < X7 nﬁ = (n—-1)n#, and
RL(G) < ¥t <yrii+t=p-o14+-L1

n+1- d n+1 n+1 n+1

Since the Laplacian eigenvalues of the complete graph K, are 0 and n with
multiplicity n — 1, it is readily seen that the equalities in (16) and (17) are attained by K,,.

We present now the following result, found in section 2.3 of [2] (corollary 2.3.2) as
a lemma which will be used in the next proposition

Lemma 2. Let S, be the set of real n-tuples x = (x;,x,,...,x, ) such that x; > x, >

.= x, and X, x; = a, which additionally satisfy M > x; = m. Then the maximal
element x* of S, , that is, the element such that for any other x we have x* > x , is given
by x*=(M,M,..,M,0,m,m,..,m), where M appears k times, m appears n — k — 1
times, k = [‘Ilwnmjande a—Mk—m(n—k—l).

Now we can prove our main result in the following

Proposition 3. For any G we have

LEL(G) = (l_dGJ +/dg — ldGJ)\/ﬁ, (18)
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LELg(G) < [ld¢l + (dg — ldglP]nP, for p>1orp <0 (19)
LELg(G) > [ldg] + (dg — ldglP|nf, for 0< p<1 (20)
RL(G) < ldg] + n(1—dGJ1r[dGJ)+1 * n_lldﬂ_l’ (21)
LE(G) <2ld;|(n—d;) if dg=n(dg —ldgl). (22)
LE(G) <2d;(n—d;] —1) if d; <n(dg—ldg)). (23)

All the equalities in (18) through (22) are attained by the complete graph K,

Proof. We prove only (22), since all the other inequalities have a similar proof. Consider
the set S,z of all n-tuples x = (x;,x;,...x,) of non-negative numbers such that
Y.ix; = 2|E] and n = x; = 0. With the notation of the lemma, M = nand m = 0. Then
k=122
Sy is x* = (n, ..., n,n(dg —|ds]),0,...,0), where the coordinate n appears |dg]|
times. Since x* > (d;, ..., d,) and the function that defines LE(G) is Schur-convex, the
following holds:
LE(G) < Z?ﬂldlr - dGl SZﬁ‘f(n —dg) + In(dg — ldg]) — dgl +Z?=[dcj+2 dg
= (n —dg)ldgl +In(dg — 1dgl) —dg| + (n — ldg] — 1)d;
= (n—dg)ldgl + dg —n(dg — ldgl) +(n — ldgl — 1)d;
=2|dgl(n —dg).
The reader may verify for the case of the complete graph K,, that both the value of
LE(K,) and the upper bound are equal to 2(n — 1).
The following corollary is immediate from the previous proposition, but worth
being expressed explicitly.

| =|dgland 8 = n(d; — |dg]). That means that the maximal element of

Corollary 1. If the average degree d;; is an integer then

LEL(G) = dVn, (24)
LELg(G) < dgnf, forp > lorp <0, (25)
LELg (G) = dgnP, for0 < g < 1, (26)
RL(G) < Mt D) 27)
LE(G) < 2d; (n—d;). (28)

Remarks. The corollary holds, in particular, if the graph is d-regular. The proof of the
lower bound (24), valid for all G, can be tracked down to [10]. Notice that our bound (18)
is stronger than (24) in general, since

devn = (ldg | +dg — |dg )Wn < (ldg | + Vde — ldg Dvn,
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because 0 < d; — |d; | < 1. The same is valid for (20)-(22) with respect to (26)-(28).
Of all these, perhaps the only one worth a couple of lines is the proof that (21) is always
better than (27), and this, after some algebra is equivalent to proving that

nz(l—a)1a+n+1sn-1l-1’ (29)
for « = d; — |dg], which satisfies 0 < a < 1, and makes the truth of (29) obvious.
As for (19), it is better than (25) only for g > 1.

In the next propositions, we explore other ways to handle the n-tuple of conjugate
degrees that yield inequalities in terms of the usual graph parameters for certain classes of
graphs.

Proposition 4. For a graph possessing k vertices with maximal degree n — 1 we have
LELg (6) < nf + (n — 2)kP forf < 0,andR(G) < 1 +22 (30)
The equalities in both cases are attained by the star graph S,, and the complete graph K, .

Proof. We prove only the second half of (30) as the other proof is similar. We know that
d, =n, and by the hypothesis d; >k for 2 < i < n — 1. Given that the function

flx) = i decreases in the interval (0, ), by (13) we can write R(G) < n( +yn-t ’t)

n(n-2)

1+ . In the case of the star graph it is well known that R(S,) = (n — 1)?which

coincides with the upper bound when k = 1; in the case of the complete graph it is also
well known that R(K,, ) = n — 1 which coincides with the value of the upper bound
when k = n.

Proposition 5. If G has k pendent vertices then

LEL; (G) < nf + (n-2)(n- k)" forp > Land RL(G) < 1 +2e— (3])

+1 n+1

The equalities are attained by the star graph S,,

Proof. We prove the second half of (31). The hypothesis implies that d; < n—k for
2 <i <n-1. Also the real function f(x):ﬁ is increasing, and therefore

RL(G) <Y ) i T I 2 )

n+1-— d n+1 n+1—-(n-k)
n-star graph S,, its eigenvalues are n,1 with multiplicity n — 2 and 0 and therefore

1
e + ——. Now for the
n+1-d; n+i

RL(S,) =1+ ”T_Z + n—il which coincides with the upper bound when k = n - 1.

Proposition 6. If G is a chemical graph then
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LELG(G) < 4nf, for § > 1and RL(G) < 4 +2= (32)
The equalities are attained by the complete graph K.

Proof. We prove the second half of (32). The hypothesis implies that d; <n for1<i<4
and d; = Ofor i > 4. Therefore, with the same arguments as in the previous proposition

RL(G) <YM, ——<¥* 1+ Z?Lsn—il =4+ Z—: Combining the hypotheses of the

i=1n+1—d£

last two propositions we obtain the next proposition with an obvious proof.

Proposition 7. If G is a chemical graph with k pendent vertices then
LELg(G) < nf + 3(n — k)#, forg > 1and RL(G) < 1+ ——+"—,

k+1 n+1

The equalities are attained by the star graph S; .

3. CONCLUSIONS

The fact that the n-tuple of Laplacian eigenvalues of a graph is majorized by the conjugate
sequence of its degrees allows to find easily general bounds for some Laplacian
descriptors in terms of the conjugate sequence. We have shown here how to handle the
conjugate sequence with a maximality argument, in order to express these bounds in terms
of n and the average degree d; , and with basic arguments for graphs with vertices of
maximal or minimal degrees, in order to exhibit bounds given in terms of the number of
these special vertices. We expect that in the future, as more relationships are uncovered for
the conjugate sequence of the degrees of a graph, better bounds will be obtained in a
similar way to those found here.
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The fractal degree of adsorption on the carbon nanotube has been
investigated. The fractal-like Langmuir kinetics model has been used to
obtain the fractal degree of ion adsorption on carbon nanotube. The
behavior of the fractal-like kinetics equation was compared with some
famous rate equations like Langmuir, pseudo-first-order and pseudo-
second-order equations. It is shown that the kinetic of adsorption onto
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1. INTRODUCTION

Physical, chemical and adsorption properties of adsorbents depend on its surface. The
highly inhomogeneous surface structure of solid particles is difficult to characterize using
simple geometry. Fractals, whose structures repeat themselves in all dimensions and on all
length scales, are often used to depict the structure of solid particles and their surfaces.
Adsorption is a method frequently used to determine the surface fractal dimension of
porous media. It can be expected that adsorption processes involving solid-liquid
interfaces could be of high heterogeneity.

The wide applicability of the fractal approach to adsorption systems and at the
same time its limited utility in almost every case, brings one to the following conclusion:
solid surfaces are never perfectly regular or irregular. Real solid surfaces represent an
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intermediate case. Several different theories have been developed to analyze adsorption
data and obtain the surface fractal dimension [1, 2]. Avnir and Pfeifer [3] applied fractal
geometry concepts to describe the general features of surface geometric heterogeneity in
adsorption systems showing a small degree of surface organization. Ismail and Pfeifer [4]
demonstrated three variants of the gas adsorption method for measurement of the surface
fractal dimension, using carbon fibers as a test material. Ozek [5] provided methods to
estimate pore and surface structures of activated carbon fiber by adsorption of dyes on the
surface of and determined its fractal dimension. Lopez et al [6] presented a fractal Kinetic
model for adsorption at solid/solution interface.

2. PROBLEM STATEMENT

Carbon nanotube has brought on plenty of research in different scientific fields due to its
special physical and chemical properties. The purpose of this study is to use this rate
equation to analyze adsorption data of ions on some modified multi-walled carbon
nanotubes. We are going to obtain the spectral dimension of some modified multi-walled
carbon nanotubes by analysis of kinetic data.

3. PRELIMINARIES

There are famous kinetics model to describe rate of adsorption including pseudo-first-
order, pseudo-second-order and Langmuir models. The Langmuir equation is the simplest
adsorption isotherm with sound theoretical foundations that is considered a good
approximation of the real adsorption systems. The Langmuir model is based on a kinetic
principle. This model took into account the limited capacity of a flat and homogeneous
surface as well as both adsorption and desorption processes [7]. The Langmuir rate

equation is:

e =kac(1—0)— kq 0 (1)

where Kk is the adsorption rate coefficient, kq is the desorption rate coefficient, 8 =q/qm IS
the relative surface coverage, g is the adsorption capacity and c is the concentration. By
equating the rates of adsorption and desorption, the famous Langmuir isotherm will be
obtained.

In 1998, Kopelman [8] considered that in most heterogeneous phases, the rate
constant k¢ of reaction depends on reaction time:

kops = k' t™1 0<h<l1 (t=1) 2

where k' is a constant not dependent on time and h is a parameter measuring the degree of
local heterogeneity [9]. When h=0, kqps is time-independent; however, when h # 0, Kops IS
time-dependent at all times.
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The rate constant and the order of reaction are associated with the spectral
dimension ds. The spectral dimension d for fractal objects is a kind of dimension. It means
the degree of local heterogeneity. Increase of ds value implies more local heterogeneous,
more remarkable time-dependent rate coefficient. For a single reactant bimolecular
reaction (A+A), there should be the following relation:

h=1-2 (3)
The adsorption of the molecules on the active surface sites on can be written as:
B + mA — B-mA 4)

where B is the adsorbate, A is the active site on surface and B—mA is the product of above
reaction. Wang et al [10] developed the relations among the parameters of m, h and d; to
the adsorption kinetics of molecules onto fractal surfaces as:

dy =2(1-) (5)
Recently, we developed a fractal-like Kinetics equation for adsorption according to the

Langmuir kinetic equation and fractal-like kinetics model [11]. This model studied the
adsorption of some ions onto graphene surface, successfully.

4. PROPOSED METHOD

We proposed that rate coefficient of adsorption is time-dependent but rate coefficient of
desorption is not [11]. This new rate equation is:

= kot (1 - 0) — ky6 (6)
The value of kat =" changes over time until equilibrium that the rate constant of adsorption
reaches to K :

ky, = kyt;" (7

where t. is the time in which system reaches to equilibrium. Therefore, the Langmuir
constant (K.) equals to:

kgtsh
K == (8)

The analytical solution of equation (6) led to a complex expression. One powerful
technique for numerical simulations is stochastic simulation. For this purpose, we applied
the CKS package developed by Houle and Hinsberg [12]. Recently, we have used it to
solve some rate equations, numerically [13, 14].

In this method, the adsorption mechanism is considered as reaction (4). Since
fractal-like Langmuir equation was used, the value of “m” in this reaction was considered
equals to one. The input data for simulation are the rate constants, the value of h, and the
initial concentrations of adsorbates in the bulk and the active sites on carbon nanotube.
The rates of adsorption and desorption steps (R;), are taken to be proportional to the
probability, P;, and calculated based on equation (6). The time step At between
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occurrences of any of the reaction steps is the mean time for a system obeying Poisson
statistics:

—Inp
At = Z R 9)

where p is a random number between 0 and 1. The simulation is propagated by
repetitively selecting at random among the probability-weighted steps in the mechanism,
and updating the reactant and product populations according to the stoichiometry of the
selected step, system state variables, and reaction rates. The result is a set of concentration
versus time curves that may be compared directly to experiment.

In the next section, this numerical solution method will be used to obtain the
spectral dimension of multi-walled carbon nanotubes.

5. ILLUSTRATIVE EXAMPLES

In this section, the fractal-like Langmuir equation (equation (6)) will be used to determine
the spectral dimension of multi-walled carbon nanotube. In addition, equation (6) will be
compared with Langmuir kinetic model, pseudo-first-order and pseudo-second-order
kinetic models. In order to determine the spectral dimension of multi-walled carbon
nanotube, some experimental systems that have studied ion adsorption on the carbon
nanotube were chosen [15, 16].

As an example, we have selected the system adsorption of Pb** on modified multi-
walled carbon nanotube. Vukovic et al [15] studied Pb? ion adsorption on
diethylenetriamine and triethylenetetramine modified multi-walled carbon nanotubes (e-
MWCNT and d-MWCNT, respectively), experimentally. The experimental data were
analyzed according to the Langmuir isotherm and the obtained values of K. and g, are
shown in Table 1. Equilibrium data agree well with Langmuir isotherm. From the results,
it is clearly seen that the equilibrium adsorption is much close to the experimental data,
suggesting application of the kinetic Langmuir model. The curve fitting and statistical
analyses were performed with CKS package. Having determined the parameters of
Langmuir kinetic model, we used input data (temperature, concentration of adsorbent in
solution and qn) to fit the experimental Kkinetic plots by adjusting the value of the
parameter k,. The kinetic constants and correlation coefficient of this model were
calculated and given in Table 2. Empirical (open diamond) and calculated data by kinetic
Langmuir model (solid line) of Pb* ion adsorption on d-MWCNT are shown in Figure
1(a). As seen in Figure 1(a), the calculated data by kinetic Langmuir model are not in good
agreement with empirical data.
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Table 1: The initial concentration and Langmuir parameters for the adsorption of Pb** and
Ni(I1) onto modified multi-walled carbon nanotube.

Systems ¢ (mol/t) gm (Mg/g) K. (¢/mg) R?
Pb/d-MWCNT 2.40x10° 4.80x10" 1.35 0.9879
Pb/e-MWCNT 2.40x10° 3.02x10* 0.43 0.9885

Ni/MWCNT 1.00x10° 1.01x10* 0.22 0.9879

The worse agreement between theory and experiment can be related to the fractal
dimension of surface. Equation (6) was solved by CKS package and the values of k, and h
were obtained as adjustable parameters. The value of kq was calculated by using equation
(8). Figure 1(b) shows the agreement between theory and experiment, along with the
values of the best-fit parameters (Table 2). There is noise in this fitting because of limited
performance of the software. Figures 1(a) and 1(b) show the comparison of empirical
kinetic data and calculated kinetic data fitted equations (1) and (6). A good fitting quality
is obvious by equation (6) (see Table 2).

Table 2: The constant parameters of Langmuir and fractal-like Langmuir rate equations
for the adsorption of Pb** and Ni(ll) onto modified multi-walled carbon nanotube at 298
K.

Langmuir rate equation Fractal-like Langmuir rate equation
Systems
Y k. ks =2 k. ks A . | r
(£/mol.min) (1/min) (£/mol.min) (1/min) i
Pb/d-MWCNT 4.00x10* 0.14 0.9695 1.58x10* 0.39x10" | 0.67x107 | 1.87 | 0.9899
Pb/e-MWCNT 2.70x10* 0.30 0.9144 7.30x10° 0.19x10% 0.28 1.44 | 0.9808
Ni/MWCNT 8.00x10? 0.61x107" | 0.9228 5.68x10? 0.27x10% 0.10 1.80 | 0.9848

The pseudo-first-order and pseudo-second-order models are extensively used in the
literatures. Azizian [17] showed that both pseudo-first- and pseudo-second-order equations
are treated as special cases of Langmuir kinetic model. The pseudo-first-order equation is

[18]:

dq

dt

= kl(Qe - q)

where k; is the pseudo-first-order rate coefficient.

(10)
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Figure 1. Kinetic data of Pb?* adsorption on d-MWCNT surface; empirical [15]
(diamonds) and calculated data (line) by a) Langmuir and b) the fractal-like Langmuir rate
equations.

The pseudo-second-order kinetic equation is [19]:
= ky(qe — ) (12)
where k is the pseudo-second-order rate coefficient.

To compare equation (6) with pseudo-first-order and pseudo-second-order
equations, empirical data of Pb®* ion adsorption on d-MWCNT were fitted by them.
Kinetic parameters along with correlation coefficients of the kinetic models are shown in
Table 3. As can be seen from Tables 2 and 3, higher correlation coefficients (R?) of
equation (6) indicates that this kinetic model is suitable to describe adsorption of Pb** ion
adsorption on d-MWCNT. Therefore, the fractal-like Langmuir equation was used to
determine the spectral dimension of d-MWCNT and the result was shown in Table 2.
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Table 3: The pseudo-first-order and pseudo-second-order parameters for the adsorption of
Pb* and Ni(l1) onto modified multi-walled carbon nanotube at 298 K.

Pseudo-first-order Pseudo-second-order
Systems

ky(L/min) | R* | q(mglg) | ki(g/mg.min) | R
POIA-MWENT | 7 92x102 | 0.8400 | 3.88x10" | 4.04x10% | 09675
PO/e-MWENT 1 7 4gx10? | 0.9053 | 2.87x10'  1.35x102 | 0.9775
NUMWENT | gox10m | 0.9362 | 514 2.98x10? | 0.9291

Now let us consider the experimental data of Pb** ion adsorption on e-MWCNT.
For this purpose, we have applied the procedure described in the previous sections. The
results of that fitting are shown in Figures 2(a) and 2(b) (solid lines), whereas the related
best-fit parameters are collected in Table 2. When looking through Figures 2(a) and 2(b)
one can state that equation (6) offers a better fit of kinetic data than kinetic Langmuir
model.

A comparison of the kinetic models and the empirical kinetic data of Pb?* ion
adsorption on e-MWCNT was best described by equation (6). The obtained parameters of
kinetic models are presented in Table 3. It was found that equation (6) is superior to other
three ones for the description of kinetic data. Thus, the fractal-like Langmuir equation was
used to determine the spectral dimension of e-MWCNT (Table 2).

In continuous, another experimental system was studied. This empirical system
was presented by Chen et al [16] has studied Ni(ll) adsorption on a kind of modified
multi-walled carbon nanotube. In the first step, we fitted the empirical kinetic data by
using equations (1) and (6) (Tables 2 and 3). The calculated data by equation (1) are
shown in Figure 3(a). Figure 3(b) shows that equation (6) can correlate very well the
behavior Ni(ll) adsorption on modified multi-walled carbon nanotube. By looking at
Figures 3(a) and 3(b), we observe a good suitability of equation (6) rather the kinetic
Langmuir equation.

Finally, empirical data Ni(ll) adsorption on modified multi-walled carbon
nanotube were studied by pseudo-first-order and pseudo-second-order equations. The
estimated model parameters with the correlation coefficient (R?) for the different models
are shown in Table 3. The correlation coefficients, R?, given in the Tables 2 and 3 also
show that equation (6) can be satisfactorily described empirical data of Ni(ll) adsorption
on a modified multi-walled carbon nanotube. The obtained value of spectral dimension of
modified multi-walled carbon nanotube was shown in Table 2.
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Figure 2. Kinetic data of Pb* adsorption on e-MWCNT surface; empirical [15]
(diamonds) and calculated data (line) by a) Langmuir and b) the fractal-like Langmuir rate
equations.
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Figure 3. Kinetic data of Ni(ll) adsorption on MWCNT surface; empirical [16]
(diamonds) and calculated data (line) by a) Langmuir and b) the fractal-like Langmuir rate
equations.

In summary, the presented model investigation seems to suggest that equation (6)
IS a very good equation to correlate kinetic data of adsorption on carbon nanotube surfaces
and can be used to obtain the spectral dimension of surfaces.

6. CONCLUSION

By applying empirical data of Pd(I1) and Ni(ll) adsorption on carbon nanotube surfaces, it
was shown that the fractal-like Langmuir model can be applied with good success in many
adsorption systems. The best description of Kinetics was obtained with the fractal-like
Langmuir equation corresponding to Langmuir, pseudo-first-order and pseudo-second-
order rate equations. By using of empirical data of ion adsorption on multi-walled carbon
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nanotube, the fractal degree of adsorption (h) was obtained. The spectral dimensions of
some multi-walled carbon nanotubes were obtained.
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1 INTRODUCTION AND PRELIMINARIES

Let G be a simple graph with vertex set V(G) and edge set E(G). For any vertex v €
V(G), the set of neighbors of v is the set N,(G) = {u € V(G)| uv € E(G)}. We say that
v € V(@) is an isolated vertex if N;(v) is an empty set. The distance between the vertices
u and v of G denoted by d; (u, v). (d(u, v)for short), is defined as the length of the shortest
path connecting u and v.

The complement of a graph G is a graph H on the same vertices such that two
vertices of H are adjacent if and only if they are not adjacent in G. The graph H is usually
denoted by G.The minimum length of a cycle in a graph Giis called the girth of G. We
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now define several kinds of products of pairs of graphs; see [14] for details.The union of
the simple graphs G and H is the graph GUH with vertex set V(G) U V(H) and edge set
E(G)UV E(H). If G and H are disjoint, then we refer to their union as a disjoint union.
Suppose that G and H are two graphs with disjoint vertex sets. Their Cartesian product
G < H is a graph such that V(G x H) = V(G) x V(H), and two vertices (u,,v;) and
(u,, v,) are adjacent in G x H if and only if either u; = u, and v, is adjacent with v,, or
v; = v, and u, is adjacent with u,. The join G + H of the graphs G and H is the graph
union G U H together with all the edges joining V(G) and V(H). The tensor product GQH
of the graphs G and H is the graph with vertex set V(G) x V(H) in which (uy,v,) is
adjacent with (u,, v,) whenever u,u, € E(G) and v,v, € E(H). The strong product GQH
of G and H has the vertex set V(GQH) =V (G) x V(H) and two distinct vertices (u,V;)
and (u,,v,) of GQH are adjacent if u; =u, and v,v, € E(G)., or u,u, € E(G) and
V1 = vy, OFr u u, € E(G) and vyv, € E(H).. For given vertices y € V(G) and z € V(H), a
splice of G and H by vertices y and z, (G. H)(y, z), is defined by identifying the vertices y
and z in the union of ¢ and H [10]. Hou and Shiu [13] introduced an edge version of
corona product as follows.

Let G and H be two graphs on disjoint sets of n,,n, vertices and m,, m, edges,
respectively. The edge corona G ¢ H is defined as the graph obtained by taking one copy of
G and m, copies of H, then joining two end-vertices of the i-th edge of G to every vertex
in the i-th copy of H.

Now, we define the Hajés join which is introduced in [11]. Let G and H be two
graphs, vw € E(G), and xy € E(H). Then the Hajos join of these two graphs, which is
denoted by GAH ,is a new graph that combines the two graphs by identifying vertices v and
x into a single vertex, removing the two edges vw and xy, and adding a new edge wy. For
example, if G and H are cycles of length p and g respectively, then the Hajos join of these
two cycles is itself a cycle, of length p +q — 1.

Let G be a simple graph with vertex set {v;, vy, ..., v,}. The common neighborhood
graph (congraph) of G, denoted by con(G), is a graph with the vertex set {v;, vy, ..., v, }.
in which two vertices are adjacent if and only if they have at least one common neighbor in
the graph G [1, 2].

Congraphs have been investigated in several earlier works [1, 2, 6, 12, 15]. In [12],
we obtained some results on congraphs of graph products. In this paper we continue this
study and report additional results along these lines.

It should be noted that in two earlier works [3, 4] the so-called derived graph GT of
the graph G was considered. The derived graph GT has the same vertex set as the parent
graph G, and two vertices of GT are adjacent if and only if their distance in G is equal to
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two. It is immediately seen that GT = con(G) if and only if the parent graph G does not
contain triangles. Thus, in particular, GT = con(G) holds whenever G is bipartite.

The notations used in this paper is standard and taken mainly from [5, 14]. In what follows,
the graphs considered are assumed to be simple. If a graph has parallel edges, we consider
these as a single edge.

2 CoMMON NEIGHBORHOOD GRAPHS OF SOME GRAPH OPERATIONS

In this section we obtain con(G) for some operations on two graphs. We begin with the
tensor product. To do this, we state the following lemma which immediately follows from
the definition of the operation ®.

Lemma 2.1. Let (v;u;) and (v, us) be two vertices of G®H. Then (vy, u.) €
Neon (i, uj))NNegu (v us) if  and  only if vk eNg(vj)(ING(v) and
ut € NH (Uj)NNRH (Us).

Theorem 2.2. Let G and H be two graphs without isolated vertices. Then
con(G®H) =con(G)Q2 con(H) .

Proof. Let (v;,u;) and (v, u,) be two vertices of G®H such that v; # v and u; # u,. If
(vi, u;) (v, us) is an edge of con(G®H), then there is a vertex (vy, u;) € V(G®H) such
that (vk, ue) € Nogn (Vi uj)NNgou (v, usSo by Lemma 2.1, v, € Ng(v;)NNg(v,) and
u; € Ny(u;)NNy(us). Therefore v;v,. € E(con(G)) and w;us € E(con(H)). This means
that for v; # v, and w; # it holds that (v;,u;) (v, us) is an edge of con(G®H) if and
only if v;v, € E(con(G)) and uju, € E(con(H))..

Assume that v; = v, = v. If (v, ;) (v, u, ) is an edge of con(G®H), then there is a
vertex (v, u,) such that (vy, u;) € Negu(v,u;)NNgeu (v, us). By Lemma 2.1, we have
v, € Ng(v) and u, € Ny (u;) NNy (us). So if v; = v,, then u;ju; € E(con(H)). Therefore,
for v; = v, it holds that (v;,w;) (v, us) is an edge of con(G®H) if and only if v; = v, and
ujus € E(con(H)). Similarly if u; = uy, then (vi,uj)(vr,us) is an edge of con(G®H) if
and only if u; = us and v;v, € E(con(G)).

Hence con(G®H) = (con(G)®con(H)) U (con(G)xcon(H)) = con(G) Q

con(H) and this completes the proof. u

In the following theorem, we determine the congraph of Hajés join.
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Theorem 2.3. Let G and H be two graphs with the girth at least 5. Then
con(GAH) = (con(G)-con(H))(v,x) —E(y + N, (X)) —E(w+ N (v)) - E(x+ N, (y))
—E(V+Ng(W)UE((Ng (v) —{w}) + (N, () —{y}) U E(Ng (W) +y)
UE(NH (y)+Ww),

where for two vertices r, s, the notation E(r + N(s)) denotes the edges of the join of the
vertex r and the neighbors of s.

Proof. In the structure of Hajos join, if we don’t remove two edges vw and xy, and don’t
add a new edge wy, we can arrive to splice of two graphs G and H. So we consider the
graph (con(G).con(H))(v, x) as the base of the common neighborhood graph of the Hajos
join of G and H. Then we investigate the effect of removing the two edges vw and xy, and
adding a new edge wy.

Since the girth of the graph G is at least 5, when we remove the edge vw, all the
edges wr and vs in con(G), r € N;(v) and s € N;(w), that have v and w as the common
neighbor, respectively, will be deleted. Similarly when we eliminate the edge xy, all the
edges ya and xb in con(H), a € Ny(x) and b € Ny(v), that have x and y as the common
neighbor, respectively, will be deleted. Continuing this argument, when we identify the
vertices v and x into a single vertex, then N;(v) —w and Ny (x) —y will have a common
neighbor. So each vertex in N;(v) —w will be adjacent to each vertex in Ny(x) — y. By
adding the new edge wy, w will become the common neighbor between y and N;(w) and

y the common neighbor between w and Ny (y). [

Applying the Hajos join to two copies of K, by identifying a vertex from each copy
into a single vertex, deleting an edge incident to the combined vertex within each subgraph,
and adding a new edge connecting the endpoints of the deleted edges, produces the Moser
spindle, see Fig. 1. As an application we characterize the common neighborhood graph of
the Moser spindle.

Figure 1. The Moser Spindle Graph.

Corollary 2.4. The common neighborhood graph of the Moser spindle is K, —e .
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In the next theorem, we compute the common neighborhood graph of the edge
corona product of graphs. One can see that the edge corona product of G with a complete
graph K;, and the common neighborhood graph of G are subgraphs of G ¢ H.

Theorem 2.5. Let G be a graph with n vertices and m edges and H be a graph with ¢t
vertices. Then

con(GOH) = (GOK,)Ucon(G) U (Uek:ViVj (Ne (v)UNg (V,-))+ Hy)
UWUe g (Hi +H ).

Proof. Let V = {vy,...,v,}, E(G) ={eq,...,en}, and V(H) = {uy, ..., u;}. Denote the i-th
copy of H in G 0 H, by H;. Each two vertices of H; have the end vertices of e; as common
neighbors, So the induced subgraph of con(G ¢ H) on each H; is a complete graph. On the
other hand, a vertex in H; has a common neighbor with a vertex in H; if and only if the

edges e; and e; are adjacent. So the induced subgraph of G ¢ H on the vertices H; UH; is
H; + H; if and only if e; and e; are adjacent in G and there is no edge between H; and H; if
e; and e; are not adjacent in G.

We now consider the vertices {vy,...,v,}. Clearly, v; and v; have a common
neighbor v, in G ¢ H if and only if v, is their common neighbor in G. Also v; and v; have
a common neighbor u, in G ¢ H, if and only if v;v; is an edge of G.

Finally, a vertex v, in G has a common neighbor with a vertex u,. in H, if and only
if v is in Ng(v;)UNg(v;), where e, = v;v; . This completes the proof. m

By definition, the edge corona T ¢ S,, of a tree T of order n and S,, is the graph
obtained by taking one copy of T and n — 1 copies of S,, and then joining two end-vertices
of the i-th edge of T to every vertex in the i-th copy of S,,.

Corollary 2.6. The common neighborhood graph of the edge corona product of graphs K,
and S,, satisfies con(K,0S,)=K,,, .

3. RELATION BETWEEN SOME SPECIAL GRAPHS AND THEIR
CONGRAPHS

In this section we compute the common neighborhood graphs of the central graph, line
graph, shadow graph, and Mycielski graph.So we should first define these graphs.

For a given graph G, the line graph of G is denoted by L(G) and the vertices of
L(G) are the edges of G. Two edges of G that share a vertex are considered to be adjacent
in L(G). The subdivision graph of the graph G is denoted by S(G) and is the graph
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obtained by inserting an additional vertex in each edge of G. Equivalently, each edge of G
is replaced by a path of length 2.

For a given graph G, we do an operation on G by subdividing each edge exactly
once and joining each pair of vertices of the original graph which were previously non-
adjacent. The graph obtained by this process is said to be the central graph of G, denoted by
C(G), [17, 18, 19].

The shadow graph D,(G) of a connected graph G is constructed by taking two
copies of G say G' and G" and joining each vertex u' in G’ to the neighbors of the
corresponding vertex u" in G". For example, D,(C,) is depicted in Fig. 2.

Figure 2. The Shadow Graph D,(C,).

The Mycielski graph of G was introduced by J. Mycielski [16] for the purpose of
constructing triangle—free graphs with arbitrarily large chromatic number. This graph has
been much studied [7, 8, 9].

Let G be a graph with vertex set {v;,v,,...,v,}. The Mycielski graph u(G) of G
contains G itself as an isomorphic subgraph, together with n + 1 additional vertices: a
vertex u;which corresponds to each vertex v; of G, and another vertex w. Each vertex u; is
connected by an edge to w, so that these vertices form a subgraph in the form of a star K ,,.
In addition, for each edge v;v; of G, the Mycielski graph includes two edges, u;v; and v;u;.
In Fig. 3 we shows Mycielski’s construction applied to a 5-vertex cycle. The resulting
Mycielskian is the Grotzsch graph, an 11-vertex graph with 20 edges. The Grotzsch graph
is the smallest triangle—free 4-chromatic graph.

Theorem 3.1. Let G be a graph. Then
con(C(G)) = GUL(G)Ucon(G) U (U epneeey Ve + (V (G) = (Ng (W)U N (v)))])
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Figure 3. The Grotzsch Graph.

Proof. Let V(G) = {vy, ..., v} and E(G) = {eq, ..., e, }. S0 the set of vertices of C(G) is
V(C(G)) ={vy, ... vn,Ve,, ... Vo }, Where v, is the vertex inserted in the edge e;,
(1<i<m). We determine the graph con(C(G)) in three steps:

(i) We find the edges between the vertices of {vy, v, ..., v,}. The vertices v; and v;
have a common neighbor in the set {v, ...,V }, of graph C(G) if and only if v;v; is an
edge in the graph G. Also the vertices v; and v; have a common neighbor in the set
{v1,..., v} of the graph C(G) if and only if v; and v; have a common neighbor in the graph
G. So the subgraph induced by the vertices vy, ..., v, in the graph C(G) is GUcon(G).

(ii) We consider the subgraph of C(G) induced by the set {v,,,..., V. _}. It is easy
to see that v,, and Ve, do not have common neighbors in {v,,, ..., V. _},. On the other hand,
v,, and Ve, have the vertex v, as common neighbor in {v;,v, ...,v,}. if and only if the
edges e; and e; have the vertex v, as the common vertex in G. Therefore the respective
induced subgraph is L(G).

(iif) We find the edges between {v,,v,,...,v,} and {vel,...,vem}. Let e =v,v, be an

edge of G. S0 N¢()(ve,) = {vr v} and this means that v,, is adjacent in con(C(G)) to
the vertices that are neighbors of v, and v,. By the definition of C(G), the edges between
{v1, vz, ..., v} and {v,,, ..., v} are Uecyper(g)lve + (V(G) — (Ng(W)UNg (v)))].

Combining (i), (i), and (iii), the theorem follows. [

In the graph G, let {e4, ..., e, } be all of the edges incident to vertex u. We denote the
set of {v,,, ..., v, } in the graph L(G) by Ng(u). That v,, is a vertex of L(G) corresponding
to an edge ¢; of G.
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Theorem 3.2. Let G be a graph. Then con(L(G)) = U -yyce ) (Ng (U) + N (V) .

Proof. Consider the vertices {v.,, ..., v, } in L(G). If e; = v,v5 is an edge in G, then v,,
can be as the common neighbor of the sets N';;(v,.) and N’ (vs). So for each e; = v,vg in
G, N'¢(v,.) + NZ(v,) is the subgraph of con(L(G)). ]

Theorem 3.3. Let G be a graph without isolated vertices and G" and G" be two copies of
G. Then con(D,(G)) = D,(con(G)) U{v,v, |v, eV(G"),v, eV (G"),1<i<|V(G)[}.

Proof. Suppose that V(G) = {vy,v,,...,v,}, V(G) ={'1,v'5, ...V}, and V(G") =
", v, .., v}, By definition of the shadow graph, it is easy to see that v, €
Ng(vp))NNg(v)) if and only if v’y € Nor(v)NN g (v)). Similarly,
v’y € Noo(v)/)NN(v)) if and only if v’y € N (v.)NN;r(vl). Therefore, the subgraph
of con(D,(G)) induced on V(G") is con(G") and induced on V(G") is con(G"). ]

We now determine the edges between V(G') and V(G'). To do this, for two
vertices v; and v;, i # j, we use the following facts resulting from the definition of shadow
graph:

1)v, € Ng (v)) N Ng. (v;) ifand only if v, € Ng, (v;) I Ng. (v)) -

2) v, € Ng. (v))N NG (v;) ifand only if v, e Ng (v;) " Ng. (V).

Therefore, uv is an edge of con(G) if and only if u'v'" and v'u’’ are edges of con(D,(G)).
On the other hand, since G has no isolated vertices, for each i, 1 < i < |V(G)|, v{v;" are
edges of con(D,(G)). and the proof is completed. u

Corollary 3.4. For path P, and complete graph K; the following equality holds:
con(D,(P,)) = con(P,)xK, .

Theorem 3.5. Let G be a graph with n vertices. Then the congraph of its Mycielski graph
contains con(G) as an isomorphic subgraph, together with n + 1 additional vertices: a
vertex u; corresponding to each vertex v; of con(G) such that the induced graph of u(G)
on them is K,, and another vertex w. Each vertex v; is connected by an edge to w, so that
these vertices form a subgraph in the form of a star K, ,,. In addition, for each edge v;v; of
con(G), the common neighborhood graph of the Mycielski graph includes two edges,u;v;
and v;u;.



On Common Neighborhood Graphs Il 45

Proof. Since in the Mycielski graph, each vertex u; is connected by an edge to w, so vertex
w is the common neighborhood of vertices uy, ..., u, in the graph u(G) and this implies
that the subgraph of u(G) induced on these vertices is K,, . It is clear that v, €
Nyey(vr) NN,y (vs) if and only if u; € Ny (v-) NNy (v5), so the subgraph of u(G)
induced on {v4,...,v,} is con(G). Also by the definition of Mycielski graph, since G has
not isolated vertices, the vertices u; are common neighborhoods of the vertices v; and w.
This implies that,v;w1<i<mare edges of con(u(G) ).

Now we obtain the edges between {v,, ..., v,} and {uy,...,u,}. Let the vertex v, be
the common neighbor of the vertices v; and v;. By the definition of Mycielski graph, we
have the following cases:

Case 1. The vertex vy is in the common neighborhood of vertices v; and w; in graph
G. This implies that vju;, 1 < j < mare edges of the congraph.

Case 2. The vertex v, is in the common neighborhood of the vertices v; and u;, v;

and w; in graph G. This implies that for each edge v;v; of con(G), the common

neighborhood graph of u(G) includes two edges u;v; and v;u; and this completes the

J ]
proof. [

As an application we compute the common neighborhood graph of Grétzsch graph.

Corollary 3.6. Let C, :v,v,v,v,V.v, . Then the common neighborhood graph of the Grotzsch
graph is determined via (W+C,) UK, U{v,u;,; |1<i <43U{v,,u; [1<i <4}Uv,u Uvey, .
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1 INTRODUCTION

Throughout this paper, G will denote a simple connected graph with n vertices (labeled by
v, V,,...,V, ). Moreover, for 1<i<n, the neighbor and the degree of each vertex v, will

be denoted by N(v;) and d, , respectively. For two vertices u and v in V(G), we denote
by d(u,v) the distance between u and v i.e. the length of the shortest u—v pathin G.
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A pendant vertex is a vertex of degree 1 and a pendant edge is an edge incident to a
pendant vertex. Denote by PV the set of pendant vertices of a graph G .
The eccentricity of a vertex u in a graph G, denoted by e,, is the maximum

distance from u to any vertex. That is, e, = max{d(u,v):veV}.

A matching M of a graph G is a subset of E(G) such that no two edges in M

share a common vertex. The matching number of G, denoted by m, is the number of edges
of a maximum matching inG . If every vertex of G incident with an edge of M, then the
matching M is perfect.

Denote by C, the cycle on n vertices. A unicyclic graph is a connected graph with

a unique cycle. Other undefined terminologies and notations of graphs may refer to [2].
Molecular descriptors have found a wide application in QSPR / QSAR studies [15].
Among them, topological indices have a prominent place.
Sharma, Goswami and Madan [14] introduced a distance-based topological index

which named eccentric connectivity index &°(G) as follows:
ESG)= D deg,.
uev (G)
The eccentric connectivity index has been employed successfully for the development of
numerous mathematical models of biological activities of diverse nature [7,8,13,14].
Recently Ashrafi et. al. [1] obtained exact formulas for the eccentric connectivity
index of TUC,C,(s) nanotube and TC,C,(s) nanotorus. Ili¢ and Gutman [6] examined the

eccentric connectivity index of chemical trees. In [18], Zhou et al. gave mathematical
properties of eccentric connectivity index. Also in [11], the authors investigated the
eccentric connectivity index of trees. Moreover, in [17], Zhang investigated the eccentric
connectivity index of unicyclic graphs. Recall that in mathematical chemistry a unicyclic
graph with perfect matching is known as conjugated unicyclic graphs. We may refer [9,10]
for more and some other details on conjugated unicyclic graphs.

In this paper, we present upper and lower bounds on the eccentric connectivity
index of unicyclic graphs with perfect matchings. Also we give lower bounds on the
eccentric connectivity index of unicyclic graphs with given matching numbers.

Throughout this paper, U, denote unicyclic graphs with n vertices and U (n,m)

denote unicyclic graphs with n vertices and m matchings. Let U(2m,m) be the set of

unicyclic graphs with perfect matching and 2mvertices. We make use of the following
results in this paper.

Lemma 1.1. [3] Let G eU(2m,m), where m>3, and let T be a branch of G with the root
r. If ueV(T) is a pendant vertex furthest from the root r with d.(u,r)>2, then uis
adjacent to a vertex v of degree two.
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Lemma 1.2. [12] Let GeU(@2m,m). If PV =, then for any vertex ueV(G),
IN(U)NPV|<1.

Lemma 1.3. [16] Let G be a graph in U(n,m) and G®C_, where (n>2m). Then there
is an m-matching M and a pendant vertex v such that M does not saturate v.

Theorem 1.4. [6] Let w be a vertex of a nontrivial connected graph G. For non-negative
integers p and g, let G(p,q) denote the graph obtained from G by attaching to the vertex w
pendent paths P=wvyv,..v, and Q=wuu,..u, of lengths p and g, respectively. If

p>q=>1 then
&°(G(p,@)=&°(G(p+Lq-1).

Let P’ denote the unicyclic graph obtained from C, by identifying one of its
vertices with a pendant vertex of the path P,_,. Let C, (I) denote the unicyclic graph
obtained from C(l) by attaching the path P, at one vertex and the path P, at another

vertex. Let C,_ (I) and N°® denote unicyclic graphs of the forms as depicted in Figure 1.
a _,"'_ _h‘\" b i i
HH () ——s --—.
N
Cap(l) where a,b = 1 N
Figure 1
Lemma 1.5. [17] Let G be a graph in U, with n>5 vertices. If GeC,,(I) and G® N,
then &°(R’) >&°(N;) > &°(G).
Theorem 1.6. [17] Let G be agraphin U , n>5. Then
;(an —4n—-6), n is even
g(G) <& (R) =

;(3n2—4n—5), n is odd,

where the equality holds if and only if G ® P’

2 MAIN RESULTS
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After all above material, we are ready to present our results on the bounds for the eccentric
connectivity index of unicyclic graphs. Let H," be the graph on 2m vertices obtained from

C, by attaching a pendant edge together with m—2paths of length 2 at one vertex. Let
H,' be the graph on 2m vertices obtained from C, by attaching a pendant edge and m—3
paths of length 2 at one vertex, and single pendant edges at the other vertices. Let H;' be
the graph on 2m vertices obtained from C, by attaching a pendant edge at one vertex and
m—2 paths of length 2 at another vertex. Let H," be the graph on 2m vertices obtained
from C, by attaching m—2 paths of length 2 at one vertex.

Let H;' be the graph on 2m vertices obtained from C, by attaching a pendant edge

atone vertex and m—3 paths of length 2 at another vertex. H,", H;', H;", H," and H;" are
shown in Figure 2.

HP" Hy Hy

Hp Hr

Figure 2

Theorem 2.1. Let G eU(2m,m)\{H,",H], H]'}, where m>5. Then £°(G)>12m. The
equality holds if and only if G= H," or G= H;'.

Proof. We prove the result by induction on m. By direct calculation, we see that the result
is provided for m=5. Let m>5. We assume that the result holds for graphs in
U((2m-2,m-1).

Case 1. G has a pendant vertex u which is adjacent to a vertex v of degree two. Let
w be adjacent of v different from u. In this case, uve M. Let G =G —-u-v. Then
G eU(2m-2,m-1). Obviously, if €, =€, then e, =e—1 and e, =e—2 since m>5. Also
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since m>5, e >4. We know that e =¢, or e, =¢e,+1 or e, =¢ +2 for teV(G)—{u,v,w}.
Therefore, we write
£(G)-£°(G)=ed, +ed, +e,d,—e.d + >  d[e-¢]

te V (G)—{u,v,w}

—el+2(e-1)+d,(e-2)—(d,~D(e-2)+ Y d|g-¢]

te V(G)—{u,v,w}

=4e—4+ Z d, [et —EJ. 1)

te V(G)—{u,v,w}
Using the equality (1), we get the following inequality £°(G)=>é&°(G)+4e—4.
Using  the  induction  hypothesis and the  fact e>4, we  have
E9(G) 212(m—1)+4.4—4 =12m. This is the required result.

Case 2. G isacycle C, together with some pendant edges attached to some vertices
on C,. If G = C,,y, then é(G) = 4m? = 12m for m>5. Let G®C,,.. Let p and g denote

the number of pendant vertices and the number of vertices with degree two in G,
respectively. Therefore, the number of vertices with degree three be p. Note that we have
2p+q=2m and p<m. LetV;(G) ={u e V(G): d, =1}, V,(G) ={v € V(G):d, = 2}

and V5(G) = {t e V(G):d, = 3}. If u is a pendant vertex, e, = [mT“J + 1, if v is a vertex

with degree two, e, > [mT“J and if t is a vertex with three degree, e, > [mT“J Thus

E(G)= D le,+ Y 2e+ ). 3g

uev, (G) veV, (G) teV;(G)

IRl A o S ()
Qm”ﬁ R S
|y oz T2 ot

If m is odd, then since m>5,

£°(G) > 4m ( 2+1J+1 2m? 4+ 2m +1>12m.

Ifmis even, then since m>5,
5°(G)24m(%)+1:2m2 11>12m.

The proof is now completed.

The next corollaries are the consequences of Theorem 2.1.
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Corollary 2.2. Let GeU(2m,m)\{H}, where m>5. Then &°(G)>12m-1. The
equality holds if and only if G= H," or G=H".

Corollary 2.3. Let G eU (2m,m), where m>5. Then £°(G) >12m—3. The equality holds
ifand only if G=H/".

Let A" denote the graph on n vertices obtained from C, by attaching n—2m+1
pendant edges and m—2 paths of length 2 together to one of three vertices of C;. Let AT

denote the graph on n vertices obtained from C, by attaching n—2m+1 pendant edges and
m—3 paths of length 2 together to one of three vertices, and two pendant edges to the other
two vertices of C;, respectively. Let A;' denote the graph on n vertices obtained from C,
by attaching n—2m pendant edges and m—2 paths of length 2 together to one of three
vertices, and a pendant edge to another vertex of C,, respectively. Let A;' denote the
graph on n vertices obtained from C, by attaching n—2m+1 pendant edges and m—3 paths
of length 2 together with one of the three vertices, and a pendant edge to another vertex of
C,, respectively.

Let A" denote the graph on n vertices obtained from C, by attaching n—2m
pendant edges and m—2 paths of length 2 together to one of three vertices of C,. A", A},
A, A and A'are shown in Figure 3.

Theorem 2.4. Let GeU(n, m)\{Aim, A, AS”‘} (n>2m, m>5). Then &°(G)>5n+2m.
The equality holds if and only if G= A" or G= A

Proof. We prove the result by induction on m. If n=2m, then by Theorem 2.1, the result
is clear. We assume thatn > 2m. If G=C_, then n=2m+1, since G has an m - matching.
So, since m>5

J=4m2+2m25n+2m.

£©G)= ) 2

uev (G)

[2m+1

We assume that G®C .. By Lemma 1.3, G has an m-matching M and pendant

vertex v such that M does not saturate v. Let G' =G —v. Then G eU(n—1,m). Let e, =€
and u be unique neighbor of v pendant vertex. Since m > 4, then e > 3. Thus, we have
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n — 2m + n—2m41
- .-'_P_'\.

"

ifm—2 ifm—3

_Jlii.'! _4.?::'! _4;;!

n—2m41
--------- _—

t— 2 - ifmo— 3

Figure 3

£°(G)-&°(G) =le+d,(e-D)-(d,-De-D+ Y. d[e—g]

teV (G)—{u,v}

=2e-1+ Y d[e-¢] )

teV (G)—{u,v}
Also, we have 0<e, —e, <2. Using the equality (2), we get the following inequality
ENG) = E5(G)+2e-1.

Using the induction hypothesis and the fact e > 3, we have
E(G)=5(n-1)+2m+2e-1
=5n+2m+2e-6

>5n+2m.
This is the required result.

The next corollaries are the consequences of Theorem 2.4.

Corollary 2.5. Let GeU(n,m)\{A"}n>=2m, m>5). Then &°(G)=5n+2m-1. The
equality holds if and only if G= A or G = A;".

Corollary 2.6. Let GeU(n,m)\{A"}(n>2m, m>5). Then £°(G)=5n+2m-3. The
equality holds if and only if G = A™.

Let U," be the graph on 2m vertices obtained from C, by attaching a path of length

2m -3 at one vertex. Let U, be the graph on 2m vertices obtained from C, by attaching
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a path of length 2m -4 one vertex. Let U;" be the graph on 2m vertices obtained from C,
by attaching a pendant edge at one vertex and a path of length 2m — 4 at one vertex. Denote
by U;", U and U the graphs shown in Figure 2.

2m 3 2m i 2m i

j!'._-'ii‘.' I[_.'.i;.'! E.‘r::;li

Figure 4

Theorem 2.7. Let G eU(2m,m)\{U,U;}, where m>4. Then &°(G)<6m’—4m-7
with equality if and only if G=U,".

Proof. If G=C ,then &°(G)=4m><6m’—4m—7 for m>4. LetG®C . Let G'be a
graph obtained from G by using Theorem 1.4. In this case, we obtain G €C,,(l). Then
E9(G) <E°(G). By applying Lemma 1.5, we get £°(G) < &°(G)) <&°(U.") =6m* —4m—7.
The proof is completed.

The next corollaries are the consequences of Theorem 2.7.

Corollary 2.8. Let G eU(2m,m)\{U"}, where m>4. Then £°(G)<6m’—4m—6 with
equality if and only if G=U.".

In Theorem 1.6, taking n = 2m, we have the following corollary.

Corollary 2.9. Let G €U (2m,m) , where m>4. Then £°(G) <6m” —4m—3 with equality
ifand only if G=U,".

Remark 2.10. If G e U(2m+ 1,m) By Theorem 1.6, £¢(G) < 6m? +2m — 3 with
equality if and only if G = B3 When G € U(n,m)(n = 2m + 2) we do not know upper
bounds on £¢(G). The case maybe much more complicated.

Remark 2.11. We note that Theorem 2.7 and Corollary 2.9 hold in U(6,3) from the table
of connected graphs on six vertices in [4]. But Corollary 2.8 does not hold in case of
equality, since £€(U3) = &°(C,) are in U (6,3).
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From the table of unicyclic graphs on eight vertices in [5], we also see that Theorem
2.1 and Corollary 2.3 hold in U(8,4). But Corollary 2.2 does not hold in case of equality,

since £€(H}) = &C(Hg*) = &°(C2) are in U(8,4) where C: is as in Figure 5.

T
C.-l
Figure 5
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Let G be a finite and simple graph with edge set E(G). The
revised Szeged index is defined as

52°(6) = Zcuver (0 (Mu(e]G) + £ (n, (el 6) + <),
where n,, (e|G) denotes the number of vertices in Glying closer
to u than to v and ng(e) is the number of equidistant vertices
of e in G. In this paper, we compute the revised Szeged index

of the join and corona product of graphs.
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1 INTRODUCTION

Let G be a finite and simple graph with vertex set V = V(G) and edge set E = E(G). The
integers n = n(G) = |V(G)]| and m = m(G) = |E(G)| are the order and the size of the graph
G, respectively. For a vertex v € V(G), the open neighborhood of v, denoted by N;(v) =
N(v) is the set {u € V(G)| uv € E(G)}. The degree of v € V(G), denoted by d;(v), is
defined by d;(v) = |N;(v)|. Let u, v € V(G), then the distance d;(u, v) between u and v
is defined as the length of any shortest path in G connecting u and v. We consult [14] for
notation and terminology which are not defined here.

The first and second Zagreb indices are defined as M;(G) = ¥,ev(c)dé(u) and

M,(G) = Yver) de(u)dg (v), respectively. Furtula and Gutman [5] defined the

* Corresponding Author (Email address: n.dehgardi@sirjantech.ac.ir)

DOI: 10.22052/ijmc.2017.58647.1228
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forgotten topological index as F(G) = Xyper(c)(dé(uw) + dg(v)). The interested readers
are referred to [3,7] for more information on this topic.

A vertex w € V(G), is said to be equidistant from the edge e = uv of G if
d;(u, w) = dg(v,w). The number of equidistant vertices of e is denoted by n;(e). Let uv
be an edge of G. Define the sets N(u,G) ={x € V(G)|d;(u,x) < d;(v,x)} and
N@w,G) ={x e V(G)|d;(v,x) < dg(u,x)} consisting, respectively, of vertices of G lying
closer to u than to v, and lying closer to v than to u. The number of such vertices is then
n,(e|lG) = |N(u,G)| and n,(e|G) = |[N(v,G)|. Note that vertices equidistant to u and v
are not included into either N(u, G) or N(v, G). It also worth noting that u € N(u, G) and
v € N(v, G), which implies that n,(e|G) = 1 and n,(e|G) = 1. The Szeged index Sz(G)
was introduced by Gutman [6]. It is defined as Sz(G) = Y.—uver(c) Mu(elG)n, (el G).

The Szeged index in graphs is well studied in the literature, see for example [9,10].
Randi¢ [13] observed that the Szeged index does not take into account the contributions of
the vertices at equal distances from the endpoints of an edge, and so he conceived a
modified version of the Szeged index which is named as the revised Szeged index. The
revised Szeged index of a connected graph G is  defined as

52*(G) = Teocuver(e)(nu(elG) + n‘;z(e))(nv(eIG) + nGT@). Nagarajan et al. [11] obtained

the revised Szeged index of the Cartesian product of two connected graphs. In this paper
we compute the revised Szeged index of the join and corona product of graphs. Readers
interested in more information on computing topological indices of graph operations can be
referred to [1,2,4,8,12].

2. MAIN RESULTS

In this section, we compute the revised Szeged index of the join and corona product of
graphs. We let for every edge e = uv € E(G), t,,(G) = |N;(w) n N;(v)|.

2.1. THE JOIN OF GRAPHS

The join G = G, + G, of graphs G, and G, with disjoint vertex sets V; and V, and edge sets
E; and E, is the graph union G; U G, together with all the edges joining V; and V.
Obviously, [V(G)| = [Vi| + |V,| and [E(G)] = |Ey|+|E;| + V3| V2.

Theorem 1. Let G, be a graph of order n, and of size m; and let G, be a graph of order n,

and of size m,. If G = G, + G, then
sz*(G) = 2M5(G1)+ 2M3(G2)— n2M1(G41)—n1M1(Gz)— F(G1)- F(G2)
4n§n§+8m1m2+m1(n§+6n1n2—3n§)+m2(n§+6n1n2—3n§)
2 .

+
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ng

Proof. By definition, Sz*(G) = Yyper(e)(nu(elG) + ;e))(nv(eIG) + nGT@). We partition
the edges of G in to three subset E;, E, and E;, as E; ={e =uv | u,v € V(G)}, E, =
{e=w|u,veV(Gy)}and E; ={e =uv |u e V(G,),v € V(G,)}

Let e=uv€E,. If weV(G,) or we Ng (u) n Ng,(v), then dg(u,w) =
de(v,w) =1 and if w & Ng (u) U Ng, (v), then d;(u,w) =ds(v,w) =2. Hence

nu(elG) = d61 (u) - tuv(Gl) + 1,nv(e|G) = dGl(v) - tuv(Gl) +1 and nG(e) =ng +

n, + 2t,,(G,) — (dG1 (w) + dg, (v)) — 2. Then for every edge e = uv € Ej,
ng(e) ng(e)\ _ (Mitnzt+dg, (W)—dg, (V)\ (ni+nz+dg, (v)-dg, (u)
(nu(elG) 7, )(nv(elG) 7, ) o ( 2 )( 2 )
_ (utny)? | d6,(Wdg, () _ g, (w)+d% (v)
T4 2 4 '

Therefore

(e) (e _ (ny+ny)? dg, (W)dg, (v)
Suver, (1 (el6) + 52 (1, (el6) +"42) = 5 cp, B2 4 5, 200D

2 4 2 2
- ZuveEl dGl(u)+dGl(v)
4
_ (n1+ny)? M3(G1) F(Gy)
_1—2m1+%_ 41. (1)
Similarly,
+n;)? M(G F(G
Yuvek, (nu(el(;) + nGT@) (ny(€|G) + n(;z(e)) — (ny 4nz) m, + z; 2) (42) . 2)

Let e = uv € E3 such that u € V(G,) and v € V(G,). If w € N5 (u) U Ng, (v),
then de(u,w) =dg(v,w) = 1. Hence ny,(elG) =n, —dg,(v) + 1,n,(elG) =
ny —dg, (u) + 1 and ng(e) = dg, (u) + dg,(v) — 2. Then for every edge e = uv € E,

(nu(eIG) + HGT@) (nv(eIG) . nGT(e)) _ (2nz+d61(;i)—dcz(v)) (2n1+d62 (:)—dGl(u))

=nn, + n1;n2 dg, (u) + = ;nl dg,(v)

_ A6, dg,() | dg,(Wdg, ()
4 4 2 '

_ © ©
SetY = Yuver, (nu(elG) + %) (nv(elG) + %) Then,

_ ni—n n,—-n dé (u)
Y = ZuveE3 nn; + ZuveE3 12 : d61 (u) + ZuveE3 22 : dGZ (U) - Z‘LLUEEg 1
g, (v) dg, (Wdg, (V)
- ZuveE3 i + ZuveE3 . 2 2
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_ naMy(G1)  nyiMy(Gz) (3)
4 4

=nfns + myny(ny — ny) +myny(n, —ny) +2mym,
By Equations (1), (2) and (3), we have:

My(Gp)  F(Gz)
2
nyM;(G1)

4

? 2
SZ*(G) = (Tl1:-n2) my + Mng1) . F(Zl) + (n1+ny)
_ 1aMi(Gp)

m, + +n2n3 + 2mm,

+myny(ng —ny) +myn (n, —ny) —

— 2M3(G1)+ 2M5(Gz)— naM; (G1)—ny M1 (G2) — F(G1)~ F(Gz)
4

4n§n§+8m1m2 +m1(n§+6n1n2—3n§)+m2 (n§+6n1n2—3n§)

" :

Let B,, n>2 and C,, n >3 denote the path and the cycle on n vertices,
respectively.

Corollary 2. The following equalities are hold:
1. SZ*(Pn + Pm):4-n2m2+n3+m3+3nm2+3mn2+2n2+2m2—2n—2m—12nm+4.

4
2. Sz*(P,+ Cp)=

An2m24+n3+m3+3nm2+3mn2-n2+3m2-2m—-6nm-2
* fa—
3. Sz*(C, + Cp)=

4
4n?m2+n3+m3+3nm243mn?
2 .

2.2. THE CORONA PRODUCT OF GRAPHS

The corona product G = G,0G, of graphs G, and G, with disjoint vertex sets I/, and V, and
edge sets E; and E, is as the graph obtained by taking one copy of G, and |V;| copies of G,
and joining the i-th vertex of G, to every vertex in i-th copy of G,. Obviously, |V(G)| =
Vil + [VilIV2| and [E(G)| = |Exl+|VAIE,| + Vi [Val.

Theorem 3. Let G, be a graph of order n, and of size m; and let G, be a graph of order n,
and of size m,. If G = G,0G,, then

2
Sz*(G) = M("k +m,) + nyn,(nyn, +ny — 1)
(np+1)2

4
+nymy(nyn, +ny —2) — " Yuver, (né(elGy) +ni(elGy))
+ 2(n2+1)252(G1) +2M3(G2)—n1 My (G2)— F(Gz)

” .

Proof. By definition, Sz*(G) = Yyper(e)(nu(elG) + n‘;z(e))(nv(eIG) + nGT@). We partition
the edges of G in to three subsets E;, E, and E;, as E; ={e =uv |u,v € V(G))}, E, =
{e=uwv|uveV(G,)} and E;={e =uv|u€eV(G,),v €V(G,)} Let e=uv €E,.
Then for each vertex w closer to u than v, the vertices of the copy of G, attached to w are
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also closer to u than v. Since each copy of G, has exactly n, vertices, then n,(e|G) =
(n, + Dn,(elG,). Similarly n,(elG) = (n, + 1)n,(e|lG,). Then n;(e) =nyn, +n, —
(n, + Dn,(elGy) — (n, + 1)n,(e|G,). Hence for every edge e = uv € Ej,
ng(e) ng(e)\ _ (ninz+ny)? | (np+1)*ny(elGi)ny(elG1)
(nu(elG)+T) (nv(elG)+ 2 ) o 4 * 2
_ (n2+1)*(nd (el G1)+nF(elG1))
" :

- (e) (e)
Define Z = Yypes, (nu(elG) + ”GT) (nv(elG) + ”GT) Then,

(nang+mny)? (n2+1)*ny(elG1)ny(elG1) (n2+1)*(nfi(elG1)+n3(elG1))

Z= ZuveEl 4 + ZuveEl 5 - ZuveEl 4
( +ny)? (na+1)%52(G61)  (np+1)?
= Tl1n24 n m, + n; . z(G1) Tl24 Ze:uveEl (ni(elGl) + n12;(€|61)) (4)

Let e=uv €E,. If weV(G,) and w € Ng,(u) n Ng,(v), then dg(u,w) =
de(v,w) =1 and if w & Ng,(u) U Ng,(v), then dg(u,w) =ds(v,w) =2. Hence
nu(elG) = dGZ (u) - tuv(GZ) + 1,nv(e|G) = dGZ (U) - tuv(GZ) +1 and nG(e) =nn, +

ny + 2t,,(G,) — (dGZ (w) + dg, (v)) — 2. Hence for every edge e = uv € E,,

(nu(elG) +252) (n, (el 6) + 269 = (Mrrmaries <u>—daz<v>) (Lanztnasde, (v)—d(;z(u))

_ (n1n2+n1)2 + dGZ (u)dGZ (U) _ déz (u)+déz (U)

4 2 4
Therefore
N _ ( +1n4)? dg, (Wdeg., (v)
Suvers (1 (el6) + "62) (n, (el6) + 22D) = 3, ., Otz 1y L0,
- ZuUEEz déz (u):déz 2
2
— (ninp+n,) m, + MZZGZ) _ F(ZZ)- (5)

Let e = uv € E5 such that u € V(G,) and v € V(G,). Hence n,(e|G) = n,;n, +
ny —dg,(v) — 1. Since v € N(v, G), we have n,(e|G) = 1 and so ns(e) = d;, (v). Hence

(nu(EIG) + nGT@) (ny(eIG) + ”GT@) = (2(”1”2+”12‘1)‘d62(”)) (2+dt2;z(v))

nqin,+n,—2 dz_(v)
=(n, +n, — 1)+ %daz (v) —GZT-

Therefore,

g, )
ZUUEEs (nu(elG) + nG(E)) (nv(elG) + nG(E)) = ZuveE3 (n1n2 + n; — 1) - ZuveEg GZT

2 2
nqinz+ns—2
+Ze=uveE3 : 22 : dGZ(v)
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n1M4(G>)
4
+n,my(nyn, +ny — 2). (6)

=nny(nn, +ny — 1) —

By Equations (4), (5) and (6), we have:

2

My(G2)  F(G)
— = tmun(nyn, +ny — 1)

n1M;(Gz)
+nymy(nyn, +ny — 2) — .

. 2 1)25z(G 1)2
§2'(G) = Tl gy, + D SHE) MLy, (nE(elGy) + (el 1))

+14)2
+(n1n2 ni) m, +

2
= @ (my +my) + nyny(nyn, +ny — 1)
+1)?
+nymy (nyng + 1y — 2) = P Y (3 (el 6y) + 3 (el 64))
4 2(n2+1)?52(G1)+2M5(G5)—11 M4 (G) ~ F(Ga)
" :

Corollary 4. The following equalities are hold:

2n3m243n2m3+24n?m2+4n3m-2nm2+2n3+15mn?-15n2440n-52nm—=6

1. Sz*(P,0P,)=
2. Sz*(P,0C,,)=
3. Sz*(C,0P,)=
4. S7*(C,0C,p)=

2n3m24+2n2m3+28n?m2+4n3m-2nm?+2n3+26mn?-2n-52nm

4
n3m24+n2m3+an?m2+2n3m+n3+3mn2-5n2-16nm-2n-2

4
n3m24+n2m3+10n?m2+2n3m+nd3+9mn2-16nm
2 .
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1 INTRODUCTION

Hyperstructures represent a natural extension of algebraic structures and they were
introduced in 1934 by F. Marty [14]. He generalized the notion of groups by
defining hypergroups. Where in a group, the operation's result of two elements is
again an element while in a hypergroup, the hyperoperation's result of two
elements is a non-void set. Since then, hundred of books and papers discussed and
studied hyperstructures from the theoretical point of view and for their applications
to many subjects of pure and applied mathematics. In [5], Corsini presented some
of hyperstructures' applications to several subjects such as, geometry, fuzzy sets,

automata, hypergraphs, and so on.
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The largest class of hyperstructures is the one that satisfies weak axioms,
i.e., the non-empty intersection replaces the equality. These are called Hv-
structures and they were introduced in 1990. The latter hyperstructures have many
applications to different disciplines like Biology, Chemistry, Physics, and so on. In
[1, 2], the authors analyzed the second generation phenotypes and genotypes of n-
hybrid cross with a mathematical structure. They used the concepts of cyclic
hypergroup and H,-semigroup in the F,-phenotypes and F,-genotypes respectively
with mating as a hyperoperation. Another motivation for the study of
hyperstructures comes from chemical reactions. In [3, 6, 7, 8], redox, chain and
dismutation reactions were provided as different examples of weak
hyperstructures.

In our paper, we consider a new chemical hyperstructure using Galvanic
and Electrolytic cells. And it is organized as follows: after an introduction, Section
2 presents some definitions that are used throughout the paper. Section 3 defines
binary hyperstructures related to Galvanic cells, Electrolytic cells and proves that
they are isomorphic. Moreover, it defines a binary hyperstructure related to both
Galvanic and Electrolytic cells at the same time and investigate its properties.

2. WEAK HYPERSTRUCTURES

In this section, we present some definitions related to hyperstructures (see [4, 9,
10, 11, 12, 13]) that are used throughout the paper.

Let H be a non-empty set. Then, a mapping o: H x H — P*(H) is called a
binary hyperoperation on H, where P*(H) is the family of all non-empty subsets of
H. The couple (H,°) is called a hypergroupoid. In the above definition, if A and B
are two non-empty subsets of H and x € H, then we define: Ao B = Ugeapep @ ©
b,xeA= {x}ocAand Ao x = Ao{x}

Hy-structures were introduced by T. Vougiouklis as a generalization of the
well-known algebraic hyperstructures. Some axioms of classical algebraic
hyperstructures are replaced by their corresponding weak axioms in H-structures.
Most of Hy-structures are used in representation theory.

A hypergroupoid (H,) is called an H,-semigroup if for all x,y,z € H,

(xo(yo z))n ((xo y)oz) #* Q.
A subset K of an H,-semigroup is an Hy-subsemigroup if K is an Hy-semigroup. An
element x € H is called idempotent if x2 = x o x = x and an element e € H is
called an identity of (H,0) if x € xo e N eo x, forall x € H. The latter is called
strong identity if eox = x oe € {e,x} for all x € H. A hypergroupoid (H,°) is
called a semihypergroup if for every x,y,z € H,we have x o (yo z) =(xo y)o
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z and is called a quasihypergroup if for every x € H, xcH =H = H o x. The
latter condition is called the reproduction axiom. The couple (H,°) is called a
hypergroup if it is a semihypergroup and a quasi-hypergroup. Two hypergroupoids
(H,0) and (K,*) are said to be isomorphic hypergroupoids, written as H = K, if
there exists a bijective function f: H — K such that f(x o y) = f(x) * f(y) for
allx,y € H.

3. MAIN RESULTS

This section is divided into three subsection as Galvanic Cells , Electrolytic Cells
and Galvanic/Electrolytic Cells. Each section will be separately discussed in what
follows:

3.1. GALVANIC CELLS

Chemical reactions involving the transfer of electrons from one reactant to another
are called oxidation-reduction reactions or redox reactions. In a redox reaction, two
half-reactions occur; one reactant (with less electronegativity) gives up electrons
(undergoes oxidation) and another reactant (with higher electronegativity) gains
electrons (undergoes reduction). For example, a piece of zinc going into a solution
as zinc ions, with each Zn atom giving up 2 electrons, is an example of an
oxidation half-reaction.

Zn - Zn*t + 2e".
In contrast, the reverse reaction, in which Zn** ions gain 2 electrons to become Zn
atoms, is an example of a reduction half-reaction.

Zn®*t +2e~ - Zn.
A redox reaction result when an oxidation and reduction half-reaction are
combined to complete a transfer of electrons as in the following example:

Zn + Cu?*t - ZIn?** + Cu.

The electrons are not shown in the above redox reaction because they are neither
reactants nor products but have simply been transferred from one species to
another (from Zn to Cu?* in this case). In this redox reaction, the Zn is referred to
as the reducing agent because it causes the Cu®* to be reduced to Cu. The Cu®* is
called the oxidizing agent because it causes the Zn to be oxidized to Zn**.

A Galvanic cell or voltaic cell is a device in which a redox reaction
spontaneously occurs and produces an electric current. In order for the transfer of
electrons in a redox reaction to produce an electric current and be useful, the
electrons are made to pass through an external electrically conducting wire instead
of being directly transferred between the oxidizing and reducing agents. The
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design of a Galvanic cell allows this to occur. In a Galvanic cell, two solutions,
one containing the ions of the oxidation half-reaction and the other containing the
ions of the reduction half-reaction, are placed in separated compartments called
half-cells. For each half-cell, the metal, which is called an electrode, is placed in
the solution and connected to an external wire. The electrode at which oxidation
occurs is called the anode (Zn in the above example) and the electrode at which
reduction occurs is called the cathode (Cu in the above example). The two half-
cells are connected by a salt-bridge that allows a “current” of ions from one half-
cell to the other to complete the circuit of electron current in the external wires.
When the two electrodes are connected to an electric load (such as a light bulb or
voltmeter) the circuit is completed, the oxidation-reduction reaction occurs, and
electrons move from the anode (-) to the cathode (+), producing an electric current.

Galvanic cell consists of two half-cells, such that the electrode of one half-
cell is composed of metal A (with larger electronegativity) and the electrode of the
other half-cell is composed of metal B (with smaller electronegativity). The redox
reactions for the two separate half-cells are given as follows:

A" +ne” - A,

B - B™ +me".
The two metals A and B can react with each other according to the following
balanced equation:

nB + mA™"t - mA + nB™*,

Having the element Cu with greater electronegativity than that of Zn, we get that
Zn+ Cu?*t - Zn** + Cuis an example of a redox reaction occurring in a
Galvanic cell. For more details about Galvanic cells, see [16].

Next, we present a commutative hyperstructure related to Galvanic cell and
investigate its properties. We consider the set H = {A, B, A", B™} and we define
a hyperoperation @, on H as follows: x @, y is the result of a possible reaction
between x and y in a Galvanic cell. If x and y do not react in a Galvanic cell then
we set x @; y = {x,y}. All possible spontaneous redox reactions of {A, B, A",
B™} in a Galvanic cell are summarized in the following commutative table:

D, A B AT B™
A A {A,B} {A, A"} {A,B™}
B {A, B} B {A,B™} {B,B™}
AT {A A"} | {A,B™} AT {A™ B™}
B™ {A,B™} | {B,B™} | {A™ B™} B™

In above table, if we change the names from A, B, A", B™ to a, b, ¢, d
respectively, then the following theorem holds.
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Theorem 1. Let H={a, b, c, d}, &, be the hyperoperation on H and consider the
following table corresponding to (H,®,):

D, a b C d
a a {a, b} {a, c} {a, d}
b {a, b} b {a, d} {b, d}
c {a, c} {a, d} c {c, d}
d {a, d} {b, d} {c, d} d

Then (H,@,) is a commutative H,-semigroup.

Proof. It is clear from the above table that (H,®,)is a commutative
hypergroupoid. We need to show that (H,@®,)is a weak associative
hypergroupoid, i.e, x @&, (v ®; z) N(x B, y) B, z# 0 for all (x,y,z) € H3.
We have three cases for X, x =aord,x = b and x = c:
e Case x=aord. Wehavethat xex @&, (y &, 2)N(x P, y) D, z #
@.
e Case x=b. We have that b P, (c D;c)=b P, c ={a,d} and that
(b®,c) P,c={ad} P, c={a,cd} Thus,
b®;(c®1c)(bBic)Dic+0.
Moreover, one can easily check that b @, (c®,2) N (b B, c) P,z #
@,andthat b @, (y D, )N (b P, y) Pic+0.Ify#cand z= cthen
beb®,(y 1 2) N D,y) D, z
e Case x = c. This case is similar to that of Case x = b.

Remark 1. Since a @, (b &, ¢) ={a,d} # (a ®, b) ®, c =A{a, c,d}, it follows
that (H,&,) is not a semihypergroup.

Remark 2. (H,@,) admits two identities; a and d. Moreover, a and d are strong
identities.

3.2. ELECTROLYTIC CELLS

Voltaic cells are driven by a spontaneous chemical reaction that produces an
electric current through an outside circuit. These cells are important because they
are the basis for the batteries that fuel modern society. But they aren't the only kind
of electrochemical cells. The reverse reaction in each case is non-spontaneous and
requires electrical energy to occur. It is possible to construct a cell that does work
on a chemical system by driving an electric current through the system. These cells
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are called electrolytic cells (or reverse Galvanic cells), and operate through
electrolysis.

Electrolysis is used to drive an oxidation-reduction reaction in a direction
in which it does not occur spontaneously by driving an electric current through the
system while doing work on the chemical system itself, and therefore is non-
spontaneous. Electrolytic cells, like Galvanic cells, are composed of two half-cells;
one is a reduction half-cell, the other is an oxidation half-cell. The direction of
electron flow in electrolytic cells, however, may be reversed from the direction of
spontaneous electron flow in Galvanic cells, but the definition of both cathode and
anode remain the same, where reduction takes place at the cathode and oxidation
occurs at the anode. Because the directions of both half-reactions have been
reversed, the sign, but not the magnitude, of the cell potential has been reversed.

Electrolytic cells consist of two half-cells, such that the electrode of one
half-cell is composed of metal A (with larger electronegativity) and the electrode of
the other half-cell is composed of metal B (with smaller electronegativity). The
redox reactions for the two separate half-cells are given as follows:

A - A" +ne”,

B™* +me~ - B.
The two metals A and B can react with each other according to the following
balanced equation:

mA +nB™t - nB + mA™t,
An example of a reaction in an Electrolytic cell is:
Cu+ Zn?** > ZIn + Cu?*

which is the reverse of the reaction described before. For more details about
Electrolytic cells, see [16].

Next we present a hyperstructure related to Electrolytic cells and
investigate its properties. We consider the set H= {A, B, A™, B™} and we define a
hyperoperation @, on H as follows: x @, y is the result of a possible reaction
between x and y in an Electrolytic cell. If x and y do not react in an electrolytic cell
thenwe set x @, y = {x,y}.

All possible spontaneous redox reactions of {A, B, A™, B™} in an
electrolytic cell are summarized in the following commutative table:

D, A B AT B™
A A {A, B} {A, A"} {A™ B}
B {A, B} B {A™ B} {B,B™}
AT T{A AT} | {A™, B} AT {A™ B™}
B™ | {A™,B}| {B,B™} | {A™,B™} B™
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In the above table, if we change the names from A, B, A", B™ to a, b, ¢, d
respectively, then the following theorem holds.

Theorem 2. Let H={a, b, c, d}, @, be the hyperoperation on H and consider the
following table corresponding to (H,@,):

@D, a b C d
a a {a, b} {a, c} {b, c}
b {a, b} b {b, c} {b, d}
c {a, c} {b, c} c {c, d}
d {b, c} {b, d} {c, d} d

Then (H,&@,) is a commutative Hy-semigroup.

Proof. Let f: (H,©,) — (H,@,) defined as follows:

f(@)=b,f(b) =a,f(c) = dand f(d) = c.
It is easy to see that f is an isomorphism and thus,(H,®;) = (H,&,). The latter
and Theorem 1 imply that (H,&,) is a commutative H,-semigroup.

Remark 3. (H,@,) admits two identities; b and c. Moreover, b and c are strong
identities.

3.3. GALVANIC/ELECTROLYTIC CELLS

We present a commutative hyperstructure related to Galvanic/Electrolytic cells and
investigate its properties. We consider the set H={A, B, A™, B™ } and we define
a hyperoperation @ on H as follows: x @ y is the result of a possible reaction
between x and y in either a Galvanic cell or in an Electrolytic cell. If x and y
neither react in a Galvanic cell nor in an Electrolytic cell then we set x @ y =

{x, y}.

All possible spontaneous redox reactions of {A, B, A™, B™} in a
Galvanic/Electrolytic cell are summarized in the following commutative table:

® A B AT B™

A A {A, B} {A,A™} | {A"™ B}
B {A, B} B {A,B™} | {B,B™}
AT T{A AT} | {A B™} AT {A™ B™}
B™ | {A™,B}Y | {B,B™} | {A™,B™} B™
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Remark 4. We can define (H,@®) as follows:

x@,y ifx®;y ={x v}

x@,y ifx D,y ={x, v}
x@Py=
fx@P,y=xP,y.

{x,y}

In the above table, if we change the names from A, B, A", B™ to a, b, ¢, d

respectively, then the following theorem holds.

Theorem 3. Let H={a, b, c, d}, @ be the hyperoperation on H and consider the
following table corresponding to (H,@):

(a5 a b c d
a a {a, b} {a, c} {b, c}
b {a, b} b {a, d} {b, d}
c {a, c} {a, d} c {c, d}
d {b, c} {b, d} {c, d} d

Then (H,@) is a commutative H,-semigroup.

Proof. It is clear from the above table that (H,&@) is a commutative hypergroupoid.
We need to show that (H,@)is a weak associative hypergroupoid. Let (x,y,z) €
H3. We have four cases for x; x=a, x=b, x=c and x=d:

Case x =a. We have that a @ (d @ d) =a® d ={b,c} and that
(@a@®d)Dd={ct®d=4{b,c,d}. Thus, a@®(d®®@d)n
(a ® d) @ d # @. Moreover, one can easily check that a @ (d @ z) n
(a ®d)Dzandthata B (y & d)n(a By)Hd=+0o.I1fy+dand
z#+dthenac€ea @y ®z)n(a By) Pz

Case x =h. We have that bP (cBc) =b® c={a,d} and that
bBc)Dc={a,d}®dc={a,c,d} Thus, bB(cPBc)n(bDc)D
c # @. Moreover, one can easily check that beb @ (cP z)n
bBc)Pz+0andthat hB(y Dc)n(a ®y)Dc+0. If y+c
andz#c thenbeb®(y ®z)n(bDy) & z

Case x =c. We have that c@® (b @ b) =c D b ={a,d} and that
(c®b)Db={a,d}®db={abd}) Thus, cBBLBb)N(cHb) D
b # @. Moreover, one can easily check that c (b B z) N (c @ b) B
z+@ and that cB(y ®b)N(cDy)Db+@. If y+b and z+#b
thencec®(y ®z)Nn(cPy) Pz

Case x =d. We have that d@® (a P a) =d P a=1{b,c} and that
dBa)da={b,c}®da={ab,c} Thus,dPB (aPa)n(dPa) D
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a # @. Moreover, one can easily check that d  (a @ z) n (d & a) B
z+@0and that dB(y Ba)n(dPy)Pa+0. f y+aand z+#a
thended ®(y Bz)ndDy)dz

Remark 5. Every element in (H,@) is idempotent. This is trivial from chemical
point of view as no reaction exists in an electrochemical cell between two identical
elements, so, the element is unchanged.

Proposition 4. (H,@) is not a quasi-hypergroup nor a semihyperegroup.

Proof. Since d is not an element in a @ H, it follows that (H,&@) is not a quasi-
hypergroup. Having a® (d @ d)=1{b,c}#(a ® d)Dd=1{b,c}Pd =
{b, c, d} implies that (H,®) is not a semihypergroup.

Proposition 5. (H,&@) does not admit an identity element.

Proof. Since a,b,c,d are not elements of a @ d,b @ c,c @ b,d D aq, it
follows that none of our elements is an identity.

Remark 6. Proposition 5 implies that there exists no element x in H (in a
Galvanic/Electrolytic cell) such that the following reaction occurs for all y in H
and some z in H:

x+y->y+z

Remark 7. Remark 2, Theorem 2 and Proposition 5 imply that (H,&@) is not
isomorphic to (H,,) nor to (H,®,).

Proposition 6. There are only two H,-subsemigroups of (H,®) up to
isomorphism.

Proof. It is easy to see that ({a},®) and ({a, b}, ) are the only H,-
subsemigroups of (H,@) up to isomorphism. Moreover, ({a},®) and ({a, b},P)
are hypergroups.

Definition 7. Let (H,°) be an Hy-semigroup and A be a non-empty subset of H. A
is a complete part of H if for any natural number n and for all hyperproducts
P € Hy(n), the following implication holds:

ANP+Q0->PC A

Proposition 8. (H,&@) has no proper complete parts.
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Proof. Let A + @ be a complete part of (H,@). We consider the following cases
for A:
o Casea€A Havinga€ a @ x,x€ a@ x for all x € {a,b,c} imply
that x € a @ x & A. We get now that b € A. Since be b @ d and
deb @ d,itfollowsthatd € b @ d € A. Thus, A = H.
o Casebe€e A Havingb€ b @ aimpliesthata € b @ a € A. The latter
implies that a € A and thus A = H by the first case.
e Casec€e A Havingc € ¢ @ aimpliesthata € ¢ @ a S A. The latter
implies that a € A and thus A = H by the first case.
e Cased e A. Havingd € ¢ @ d impliesthatc € c @ d < A. The latter
implies that c € A and thus A = H by the previous case.
Therefore, (H,&@) has no proper complete part.

The main tools connecting the class of hyperstructures with the classical
algebraic structures are the fundamental relations. The fundamental relation has an
important role in the study of semihypergroups and especially of hypergroups.

Definition 9. For all n > 1, we define the relation S,, on an H,-semigroup (H,°) as
follows:

xBn y if there exist ay, - ,a, € H such that {x,y} € [T, a;.
and we set f = U1 Bn, Where B; = {(x,x)| x € H} is the diagonal relation on H.

This relation was introduced by Koskas [13] and studied mainly by Corsini
[4], Davvaz [9], Davvaz and Leoreanu-Fotea [11], Freni [12], Vougiouklis [15],
and many others. Clearly, the relation g is reflexive and symmetric. Denote by S~
the transitive closure of S.

The B*is called the fundamental equivalence relation on H and it is the
smallest strongly regular relation on H. If H is a hypergroup then g = g* [12] and
H/B* is called the fundamental group.

Proposition 10. (H,@) has a trivial fundamental group.

Proof. Since {a,b} S a @ b, it follows that af, b. Similarly, we obtain af, c,
bp,d, cf,d. Having B* the transitive closure of 8, one can easily see that x5y for
all (x,y) € H%. Thus, |H/B*| = 1.

4, CONCLUSION

This paper provided a new chemical hyperstructure on electrochemical cells that is
not equivalent to any of the studied chemical hyperstructures before.
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