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A graph G of order n is said to be borderenergetic if its energy is 
equal to 2n − 2 and if G differs from the complete graph Kn. The first 
such graph was discovered in 2001, but their systematic study started 
only in 2015. Until now, the number of borderenergetic graphs of 
order n was determined for n  11. We now establish that there exist 
exactly 572 connected borderenergetic graphs of order 12. 
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1. INTRODUCTION  

Let G be a simple graph of order n, possessing m edges. Let the eigenvalues of G (i.e., the 
eigenvalues of the adjacency matrix of G) be 1 2, , , n    [1] The energy of the graph G is 
defined as 

1
( ) | |

n

i
i

E E G 


  . 

This graph-spectrum-based invariant has been extensively studied. Details of its 
mathematical theory can be found in the book [2] whereas details of its chemical 
applications in [3]. 

The upper bound 
2E mn  

was established by McClelland in the early 1970s [4]. In the same paper [4], an 
approximate formula was proposed: 

                                                
Corresponding author (Email: furtula@kg.ac.rs) 
DOI: 10.22052/ijmc.2017.87093.1290 

Iranian Journal of Mathematical Chemistry 
 

Journal homepage: ijmc.kashanu.ac.ir 



340                                                                                                    FURTULA AND GUTMAN 

 

2 , 0.9E a mn a      (1) 
which was eventually demonstrated to be highly accurate in the case of molecular graphs 
[5,6]. An additional corroboration of this formula was the analogous lower bound 
 

16 2
27

E mn  

 
that holds for certain molecular graphs, in particular, for benzenoid systems [7]. 

According to formula (1), the energy of a graph would be a monotonically 
increasing function of the number m of edges. If this formula could be applied to all 
graphs, then among graphs with a fixed number n of vertices, the complete graph Kn 
would have the greatest energy, equal to ( ) 2 2nE K n  . Counterexamples for this naive 
conjecture were soon discovered [8]. Somewhat later [9], the first systematic construction 
of graphs with the property ( ) ( )nE G E K were reported. 

Graphs of order n with the property ( ) 2 2E G n   were named hyperenergetic 
[10]. Numerous classes of hyperenergetic graphs have been recognized; for details see the 
survey [11]. The search for hyperenergetic graphs became purposeless after Nikiforov 
proved in 2007 [12] that for almost all n-vertex graphs 

3/24 ( )
3

E o n n


   
 

 

implying that almost all graphs are hyperenergetic. 
The question that remained open was if there exist graphs of order n, other than Kn, 

satisfying the equality 
( ) 2 2E G n  . 

In 2015, such graphs were named borderenergetic [13]. It is understood that the complete 
graph is not borderenergetic. 

The first borderenergetic graph was discovered by Yaoping Hou and one of the 
present authors already in 2001 [14], but in that time it did not attract much attention. The 
first systematic research of borderenergetic graphs is reported in the paper [13], which was 
then continued in [15-19]. By means of computer-aided checking, the following was 
established. 

 
Theorem 1. 

1. There are no borderenergetic graphs of order 6n   [13].  
2. There exists a unique borderenergetic graph of order 7 [13]. 
3. For any 7n  , there exist borderenergetic graphs of order n [13]. 
4. There are exactly 6 borderenergetic graphs of order 8 [13]. 
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5. There are exactly 17 borderenergetic graphs of order 9 [13]. 
6. There are exactly 49 borderenergetic graphs of order 10 [15,18]. 
7. There are exactly 158 borderenergetic graphs of order 11 [18], of which 157 are 

connected. 
 

We now can extend Theorem 1 by establishing: 
 
Theorem 2. There are exactly 572 connected borderenergetic graphs of order 12. 

 
2. NUMERICAL WORK 

Determining computationally the borderenergetic graphs of order 12 is not an easy task to 
be done. This could be illustrated by the fact that the total number of such graphs is 
164059830476. In order to reduce the number of investigated graphs, the fact that the size 
of the borderenergetic species must be greater than 2 3n   is incorporated. Such 
intervention decreased the total number of 12-vertex connected graphs by 343198848. 

The geng tool from the nauty package was employed for the generation of the 
dataset containing 163716631628 graphs stored in 100000 files [20]. The total size of 
these files is more than 2 TB. All these files are moved to the cluster having 4 nodes with 
32 CPUs per node. A Python program was developed for filtering borderenergetic graphs. 
Using PySpark for processing large datasets, the jobs were distributed over cluster using in 
total 80 CPUs simultaneously. The computations took about a month or so and finally, we 
obtained the result that there were exactly 572 connected twelve-vertex borderenergetic 
graphs. 

Table 1 shows the distribution of 12-vertex borderenergetic graphs by the number 
of edges. Their size varies from 25 to 58. It should be noted that there are no 12-vertex 
borderenergetic graphs with 49, 53, and 59-65 edges.  
 

3. CONCLUSION 

In this note, we reported the preliminary results on searching for and studying of 
connected borderenergetic graphs with twelve vertices. There are 572 such species, and 
these provide a class of equienergetic graphs suitable for examining the structural factors 
on which graph energy does depend or does not depend. In addition, the distribution of 
these graphs with regard to the number of edges is presented in Table 1, indicating that 
equienergetic graphs may significantly differ in their edge counts. 
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Table 1. The distribution of twelve-vertex borderenergetic graphs by the number of edges. 

Number of Edges Number of Graphs 
25 2 
26 5 
27 1 
28 8 
29 7 
30 42 
31 20 
32 62 
33 58 
34 50 
35 44 
36 43 
37 37 
38 27 
39 25 
40 24 
41 20 
42 26 
43 12 
44 14 
45 14 
46 7 
47 4 
48 7 
50 2 
51 1 
52 4 
54 1 
55 2 
56 1 
57 1 
58 1 

 
 
REFERENCES 

1. D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph 
Spectra, Cambridge Univ. Press, Cambridge, 2010. 

2. X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012. 



Borderenergetic graphs of order 12                                                                                           343 

 

3. I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, 
Springer, Berlin, 1986. 

4. B. J. McClelland, Properties of the latent roots of a matrix: The estimation of π-
electron energies, J. Chem. Phys. 54 (1971) 640−643. 

5. I. Gutman, Total π-electron energy of benzenoid hydrocarbons, Topics Curr. 
Chem. 162 (1992) 29−63. 

6. I. Gutman, T. Soldatović, (n,m)-Type approximations for total π-electron energy of 
benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 44 (2001) 
169−182. 

7. I. Gutman, McClelland-type lower bound for total π-electron energy, J. Chem. Soc. 
Faraday Trans. 86 (1990) 3373−3375. 

8. D. Cvetković, I. Gutman, The computer system GRAPH: A useful tool in chemical 
graph theory, J. Comput. Chem. 7 (1986) 640−644. 

9. H. B. Walikar, H. S. Ramane, P. R. Hampiholi, On the energy of a graph, in: R. 
Balakrishnan, H. M. Mulder, A. Vijayakumar (Eds.), Graph Connections, Allied 
Publishers, New Delhi, 1999, pp. 120−123. 

10. I. Gutman, Hyperenergetic molecular graphs, J. Serb. Chem. Soc. 64 (1999) 
199−205. 

11. I. Gutman, Hyperenergetic and hypoenergetic graphs, in: D. Cvetković, I. Gutman 
(Eds.), Selected Topics on Applications of Graph Spectra, Math. Inst., Belgrade, 
2011, pp. 113−135. 

12. V. Nikiforov, Graphs and matrices with maximal energy, J. Math. Anal. Appl. 327 
(2007) 735−738. 

13. S. Gong, X. Li, G. Xu, I. Gutman, B. Furtula, Borderenergetic graphs, MATCH 
Commun. Math. Comput. Chem.74 (2015) 321−332. 

14. Y. Hou, I. Gutman, Hyperenergetic line graphs, MATCH Commun. Math. Comput. 
Chem. 43 (2001) 29−39. 

15. X. Li, M. Wei, S. Gong, A computer search for the borderenergetic graphs of order 
10, MATCH Commun. Math. Comput. Chem. 74 (2015) 333−342. 

16. B. Deng, X. Li, I. Gutman, More on borderenergetic graphs, Lin. Algebra Appl. 
497 (2016) 199−208. 

17. Y. Hou, Q. Tao, Borderenergetic threshold graphs, MATCH Commun. Math. 
Comput. Chem. 75 (2016) 253−262. 

18. Z. Shao, F. Deng, Correcting the number of borderenergetic graphs of order 10, 
MATCH Commun. Math. Comput. Chem. 75 (2016) 263−265. 

19. X. Li, M. Wei, X. Zhu, Borderenergetic graphs with small maximum or large 
minimum degrees, MATCH Commun. Math. Comput. Chem. 77 (2017) 25−36. 



344                                                                                                    FURTULA AND GUTMAN 

 

20. B. D. McKay, A. Piperno, Practical graph isomorphism II, J. Symb. Comput. 60 
(2013) 94−112. 



Iranian J. Math. Chem. 8 (4) December (2017) 345 − 364 

 

 

A Numerical Study of Fractional Order Reverse 
Osmosis Desalination Model using Legendre Wavelet 
Approximation 
 
OMAR BELHAMITI1, AND BELKACEM ABSAR2 

1Laboratory of Pure and Applied Mathematics, Abdelhamid Ibn Badis University, 
Mostaganem 27000, Algeria 
 
2Laboratory of Science and Technology of the Environment and Promotion, University of 
Mostaganem, Mostaganem 27000, Algeria 
 
ARTICLE INFO  ABSTRACT 
Article History: 
Received: 20 May, 2017 
Accepted: 8 June 2017  
Published online 6 July 2017 
Academic Editor:  Ivan Gutman 

The purpose of this study is to develop a new approach in modeling 
and simulation of a reverse osmosis desalination system by using 
fractional differential equations. Using the Legendre wavelet method 
combined with the decoupling and quasi-linearization technique, we 
demonstrate the validity and applicability of our model. Examples are 
developed to illustrate the fractional differential technique and to 
highlight the broad applicability and the efficiency of this method. 
The fractional derivative is described in the Caputo sense.  
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1. INTRODUCTION  

In recent few decades, fractional calculus has caught much attention due to its ability to 
provide an accurate description of different nonlinear phenomena. Moreover, the fractional 
differential equations have gained considerable popularity of many researchers due to their 
applications in many engineering and scientific disciplines such as control theory, signal 
processing, information sciences, and many other physical and chemical processes and also 
in medical sciences, see [15−18, 20, 21, 24]. These equations are also used in the modeling 
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of physical processes running in dynamic mode [23, 22]. In this way, this work deals with 
the application of fractional derivatives for the desalination phenomenon. 

On the other hand, desalination of sea water appears as a strategic solution adopted 
by several countries to cope with drinking water availability problem. This process was 
intended only for industrial purposes due to the constraints of high desalination costs [1−5]. 
However, technological advances in the field of manufacture of membranes have reduced 
these costs and thus enable more countries to use this alternative as a freshwater resource. 
Actually, re-verse osmosis, due to its lower energy consumption and simplicity has gained 
much wider acceptance than the thermal alternatives. Reverse osmosis is based on a 
physical property called semi-permeability. Certain polymeric materials (membranes) 
allow water to pass more quickly than some substances such as dissolved salts. The 
principle is to apply a high enough pressure to overcome the osmotic pressure and reverse 
the flow of water. 

Many mathematical models have been proposed to describe the performance of 
reverse osmosis unit. For more details, we cite [1−5]. But, since the memory of phenomena 
plays a key role in mechanics, so a possible generalization of the classic desalination model 
would be a system with fractional order derivative. In this line of thought, Du et al. [11] 
found that a physical meaning of the fractional order is an index of memory. Then, 
Atangana et al. [8] proved that a fractional operator can provide a better interpretation of 
both physical and engineering processes. 

The authors in [30, 31] studied the overall performance of hollow fiber membranes 
by using the interplay of fiber productivity (defined as the fraction of feed recovered as 
permeate) and fiber selectivity or rejection. Two flow configuration modules for reverse 
osmosis hollow fiber membranes are considered: co-current and counter-current flow. 
Productivity and selectivity were plotted as functions of fiber length. It is found that at the 
entrance of the module, the term of productivity is equal to zero. This trend (flattening of 
the curve of productivity) is observed in the neighborhood of the entrance to the tube for 
the two cases: Co-current and Cross-current. This phenomenon is explained by the fact that 
the feed rate is constant and therefore the first derivative is equal to zero. 

In this paper, we will focus on the use of the fractional differential operator in the 
sense of Caputo for modeling a seawater desalination module using the reverse osmosis 
process. The numerical solution of the fractional differential model (FDM) is obtained by 
using the Legendre wavelet method combined with the decoupling and quasi-linearization 
technique. For more information about this new approach, we refer the reader to [6,7,9,14]. 
In this approach the Block-Pulse functions (BPFs) and the operational matrix of integration 
are used, FDM can be transformed to lower triangular system of algebraic equations. Then 
the solution of this system is used to determine a new numerical solution of FDM. At the 
end, and since the approach is not yet tested sufficiently on FDEs, some other problems are 
studied. 
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This work is organized as follows: Section 2 gives the fundamental equations to 
describe the transport phenomena in reverse osmosis by using the fractional model. Section 
3 introduces some necessary definitions of the Legendre wavelet method. We present a new 
operational fractional matrix of integration and we give the description of the proposed 
method. Section 4 gives the numerical investigations of the analytical findings. At the end, 
a conclusion follows. 

 
2. MODELING OF REVERSE OSMOSIS DESALINATION SYSTEM  

2.1. CLASSICAL MODEL OF REVERSE OSMOSIS DESALINATION SYSTEM 

Sea water desalination has become an inevitable alternative for many countries to 
overcome the shortage of natural fresh water. Among desalination technology, reverse 
osmosis is the most used method. This is mainly due to its simplicity, their costs, reduced 
compared to thermal processes. No heating or phase separation change is necessary. The 
major energy required for desalting is for pressurizing the seawater feed [19]. Reverse 
osmosis is a method of separation and concentration in the liquid phase. This process is 
applied to purify water for laboratory. The process consists in passing aqueous solution 
under pressure through an appropriate membrane and withdrawing the membrane permeate 
at atmospheric pressure and ambient temperature. The product obtained is enriched in one 
of the mixture components. The other components are recovered in the retentate with 
higher concentration in the high-pressure side of the membrane. Reverse osmosis 
membranes are generally mounted on supports called modules. Currently, the most used 
modules are: hollow fiber, tubular and spiral wound modules. Tubular modules are 
constituted of two concentric tubes designed to separate a given feed into a higher pressure 
stream (retentate) and a low pressure stream (permeate) see figure 1. According to the 
direction of the feed flow rate, there are two types of flow pattern: the co-current and 
counter-current flow pattern. 

Figure 1: Hollow fiber membrane. 

 
 
 
 
 
 
 
 
 

Sea Water 

Retenta

PermeaMembran
Shel

Tub
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A mathematical model was developed to predict the performance of hollow fiber 
reverse osmosis membrane with co-current flow pattern. The mass transfer model 
employed in this study is the solution-diffusion model. The solvent and salt mass flux are 
expressed by Fick's law. This model is developed by the author [1, 2]. It consists of a set of 
four strongly nonlinear differential equations. This system is found, according to material 
balance principle: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ ௗொೞೢ

ௗ௫
= ஺ೢ ߨ− 

ఙೢ
௠ܦ  ቆ∆ܲ − ߢ  ൬ ொ̇ೞೞ

ொೞೢ
−  ொ̇೑ೞ

ொ೑ೢ
൰ቇ

ௗொ೑ೢ
ௗ௫

= ஺ೢ ߨ 
ఙೢ

௠ܦ  ቆ∆ܲ − ߢ  ൬ ொ̇ೞೞ
ொೞೢ

−  ொ̇೑ೞ
ொ೑ೢ

൰ቇ

ௗொ̇ೞೞ
ௗ௫

= ௠ܦ ௦ܤ ߨ−  ൬
ொ̇ೞೞ
ொೞೢ

−  ொ̇೑ೞ
ொ೑ೢ

൰                          

ௗொ̇೑ೞ
ௗ௫

= ௠ܦ ௦ܤ ߨ  ൬
ொ̇ೞೞ
ொೞೢ

−  ொ̇೑ೞ
ொ೑ೢ

൰,                       

                                          (1) 

where  

ܳ௦௪ : is the water volumetric flow rate in the shell side, 

ܳ௙௪ : is the water volumetric flow rate in the fiber side, 

ܳ̇௦௦ : represents the solute mass flow rate in the shell side, 

ܳ̇௦௦ : is the solute mass flow rate in the fiber side, 

 ,is a proportionality coefficient ߢ

௪ܣ   is the water permeability coefficient (a function of salt diffusivity through the 
membrane), 

∆ܲ is the transmembrane pressure (a function of the feed, concentrate and permeate 
concentrations), 

 ,௪ is the water densityߪ

 ,௦ is the solute permeability coefficientܤ

The osmotic pressure is approximately represented by a linear function of solute 
concentrations ߨ =  .ܥ ߢ 

 

2.2. REVERSE OSMOSIS DESALINATION MODEL 

Lately, it has frequently been observed that the mathematical models represented by 
fractional order derivatives [11, 12, 13, 20] can provide better agreement between 
measured and simulated data than classical models based on integer order derivatives. In 
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classical desalination model [1, 2, 7], instead of a variation of order one, we consider, in 
this study, a variation of the order 1 < α < 2. Taking into account normalized variables, 

௦௪ࡽ =  ொೞೢ
ொೞೢబ

௙௪ࡽ , =  ொ೑ೢ
ொೞೢబ

௦௦̇ࡽ , =  ொ̇ೞೞ
ொ̇ೞೞబ

௙௦̇ࡽ ,  =  ொ̇೑ೞ
ொ̇ೞೞబ

 , 

if we replace the first order derivatives by fractional derivatives in (1), then a simple 
dimensional analysis shows that the left-hand sides of the equations have the dimension of 
(space)-α. But an examination of the right-hand sides shows that they have the dimension of 
(space)-1, so, we need to modify the right-hand sides to adjust the dimensions [12]. Thus, 
we formulate the fractional model of reverse osmosis desalination using Caputo fractional 
derivatives of order, 1 < α < 2 [10], the model is described by the non-linear Caputo 
fractional differential system: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ ଴ܦ ௫

ఈܳ௦௪ = −ܿଵ + ܿଶ ൬
ொ̇ೞೞ
ொೞೢ

−  ொ̇೑ೞ
ொ೑ೢ

൰

଴ܦ ௫
ఈܳ௙௪ = ܿଵ − ܿଶ ൬

ொ̇ೞೞ
ொೞೢ

−  ொ̇೑ೞ
ொ೑ೢ

൰

଴ܦ ௫
ఈܳ௙௪ = −ܿଷ ൬

ொ̇ೞೞ
ொೞೢ

−  ொ̇೑ೞ
ொ೑ೢ

൰           

଴ܦ ௫
ఈܳ௙௪ = ܿଷ ൬

ொ̇ೞೞ
ொೞೢ

−  ொ̇೑ೞ
ொ೑ೢ

൰,           

                                                 (2) 

where  

ܿଵ = ൬ ߨ 
௪ܣ
௪ߪ

 
௠ܦ
ܳ௦௪଴

∆ܲ൰
ఈ

     

ܿଶ = ቆ ߨ 
௪ܣ
௪ߪ

 
௠ܦ
ܳ௦௪଴

 
ܳ̇௦௦
ܳ௦௪଴

ቇ
ఈ

ܿଷ = ൬ ܤ ߨ௦  
௠ܦ
ܳ௦௪଴

൰
ఈ

.             

 

Note that in the limit case ߙ → 1, the system (2) reduces to the classical system (1). 

3. LEGENDRE WAVELET METHOD 

In this section, we present some definitions and properties of fractional calculus. Then, we 
introduce some preliminaries on Legendre wavelets that are used throughout this paper. 
This section is ended by presenting some definitions, notations and basic facts of block 
pulse functions, [25−27]. 
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Let (݊ − 1)  ≤ ߙ < ݊, ݊ ∈ ℕ∗, a function ݂ ∈ ௡ܥ   (ܽ, ܾ). The Caputo derivative of 
order ߙ ≥ 0 is defined by 

଴஼ܦ     ௧
ఈ (ݐ)݂  =  

1
Γ(݊ − න(ߙ ݐ) − ߬)௡ିఈିଵ ݂(௡)(߬) ݀߬

௧

ఈ

= ௧௡ିఈܫ ൭
݀௡

௡ݐ݀ ݂
               ,൱(ݐ)

 

where 

Γ(ߙ): =  න ݁ି௨ {ߙ}ܴ݁   ,ݑఈିଵ݀ݑ 
ஶ

଴
> 0 

We note that the Caputo derivative of a constant function is zero. For more details 
on fractional calculus, we refer the reader to [10, 13]. 

3.1. LEGENDRE WAVELETS 

On the other hand, the wavelets are a family of functions constructed from dilatations and 
translations of a single function called the mother wavelet. We have the following family of 
continuous wavelets 

߰௔,௕(ݐ) =  |ܽ|ି
ଵ
ଶ ߰൬

ݐ − ܾ
ܽ ൰ , ܽ, ܾ ℝ, ܽ ≠ 0, 

where ߰(ݐ)  ∈  ଶ(ℝ) , a and b represent the dilation and the translation parametersܮ
respectively. If a and b have discrete values as 

ቐ
ܽ = ܽ଴ି௞ ,ܽ଴ > 1                                 
                                             ݊, ݇ ∈ ℕ,
ܾ = ݊ ܾ଴ ܽ଴ି௞ , ܾ଴ > 1                      

 

for n and m positive integers, we have the following family of discrete wavelets: 

߰௠,௡(ݐ) =  |ܽ଴|
௠
ଶ  ߰(ܽ଴௠ݐ −  ݊ ܾ଴) 

where ߰௠,௡(ݐ)  forms a wavelet basis for ܮଶ(ℝ). In particular, when a0 = 2 and b0 = 1,  
߰௠,௡(ݐ) forms an orthonormal basis. That is 〈߰௠,௡ ,߰௟,௞ 〉 = ௠,௟ߜ  .〉 ௡,௞ in whichߜ  , . 〉 
denotes the inner product in ܮଶ([0,1]). 

In this work, the mother wavelet is the Legendre polynomials. We de ne the 
orthogonal Legendre polynomials of order m by the following Rodriguez recurrence 
formula: 
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൞

(ݐ)଴ܮ = 1
(ݐ)ଵܮ = ݐ

(ݐ)௠ାଶܮ = ൬
2 ݉ + 3
݉ + 2 ൰ (ݐ)௠ାଵܮ ݐ −  ൬

݉ + 1
݉ + 2൰ ,(ݐ)௠ܮ 

 

with m = 0,1,2,3,… and t varies into [-1,1]. 

The Legendre wavelets are defined in [0; 1] by the following formula 

߰௠,௡(ݐ) =  ൝ඥ݉ + 1/2 2
ଵ
ଶ ܮ௠൫2௝ݐ − 2݊ + 1൯   if 

݊ − 1
2௝ିଵ ≤ ݐ ≤

݊
2௝ିଵ

0,   otherwise,                             
           

where ݊ = 1, … , 2௝ିଵ (݆ ∈  ℕ \{0}), ݉ = 0, … ,݊௖ − 1  (݊௖  ∈  ℕ \{0}) is the order of the 
Legendre polynomials and nc is the number of collocation points. However, the dilatation 
parameter is a = 2j/2 and the translation parameter is b = (2n−1)2j/2. 

The family  

൛߰௠,௡(ݐ)ൟ ௡ୀଵ,…,ଶೕషభ
௠ୀ଴,…,௡௖ିଵ

 

forms an orthonormal basis of ܮଶ([0,1]) [26]. Then, any function ݂ ∈  ଶ([0,1]) mayܮ

be decomposed as 

(ݐ)݂ =  ∑ ∑ ௡,௠ܥ  ߰௡,௠(ݐ)ାஶ
௠ୀ଴

ାஶ
௡ୀଵ ,                                                  (3) 

where ܥ௡,௠ =  〈݂,Ψ〉; in which 〈. , . 〉  denoted the inner product in ܮଶ([0,1]). 

The function in (3) can be approached by 

(ݐ)݂ =  ∑ ∑ ௡,௠ܥ  ߰௡,௠(ݐ) = ்ܥ  Ψ(ݐ)௡௖ିଵ
௠ୀ଴

ଶೕషభ
௡ୀଵ ,                                    (4) 

where  ܥ and Ψ(ݐ) are 2௝ିଵ ݊ܿ vectors given by  

ܥ = ଶೕషభ,௡௖ିଵ ൧ܥ,…,ଶೕషభ,ଵܥ,…,ଶ,௡௖ିଵܥ,…,ଶ,଴ܥ,ଵ,௡௖ିଵܥ,…,ଵ,଴ܥൣ 
்
                                            (5) 

Ψ(ݐ) =  ൣ߰ଵ,଴(ݐ), … ,߰ଵ,௡௖ିଵ(ݐ),߰ଶ,଴(ݐ), … ,߰ଶ,௡௖ିଵ(ݐ), … ,߰ଶೕషభ,଴(ݐ), … ,߰ଶೕషభ,௡௖ିଵ(ݐ) ൧
்       (6) 

The following property of the product of two Legendre wavelet vector functions will 
also be used 

(ݐ)Ψ் (ݐ)Ψ்ܣ =  Ψ்(ݐ) ̅(7)                                                  ,ܣ 

where  
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A =  ൣܽଵ,଴, … ,ܽଵ,௡௖ିଵ, ܽଶ,଴, … , ܽଶ,௡௖ିଵ, … ,߰ଶೕషభ,଴(ݐ), … ,߰ଶೕషభ,௡௖ିଵ(ݐ) ൧
்
 

and ̅ܣ is a 2௝ିଵ ݊ܿx2௝ିଵ ݊ܿ matrix [26]. 

3.2. BLOCK PULSE FUNCTION 

The block functions form a complete set of orthogonal functions which can be defined over 
[0;T] by 

௜ܾ(ݐ) =  ቊ1 ,     if ௜ିଵ
ଶೕషభ௡௖

ܶ ≤ ݐ < ௜
ଶೕషభ௡௖

 ܶ
0,                   otherwise,

                                              (8) 

where, ݅ = 1, … , 2௝ିଵ݊ܿ [27]. There are some properties for block pulse functions: the 
most important properties are disjointness and orthogonality. 

The disjointness property follows 

ܸ (ݐ)்ܾ (ݐ)ܾ = ෨ܸ  (ݐ)ܾ 

and 

෨ܸ = ൭
ଵܸ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ଶܸೕషభ ௡௖

൱ , 

where V is an 2௝ିଵ݊ܿ-vector. The block-pulse functions are orthogonal 

න ௜ܾ(ݐ),
்

଴
 ௜ܾ(ݐ) ݀ݐ =  ൝

ܶ
2௝ିଵ݊ܿ , ݅ = ݆

0, otherwise
 

where i; j = 1, 2,…, 2௝ିଵ݊ܿ. 

3.3. OPERATIONAL FRACTIONAL MATRIX OF INTEGRATION 

In the following section, we introduce new arguments for deriving the fractional Legendre 
wavelets operational matrix of integration. 

Let ݐ ∈ [0;  1] we define the Legendre wavelets operational matrix of integration as 
in [6, 26], 

∫ Ψ(ݔ) ݀ݔ = ܲ ௧
଴ Ψ(ݐ),                                                  (9) 

where 
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ܲ =  ଵ
ଶೕషభ

 ൮

ܮ ܨ ⋯ ܨ
0 ܮ ⋱ ⋮
⋮ ⋱ ⋱ ܨ
0 ⋯ 0 ܮ

൲, 

is the 2௝ିଵ݊ܿ x 2௝ିଵ݊ܿ operational matrix of integration, and L and F are nc x nc matrices. 
It is not difficult to see that 

൫ ଴ܫ ௧
଴ Ψ൯ (ݐ) =  Ψ(ݐ),                                                                                                                       

൫ ଴ܫ ௧
ଵ Ψ൯ (ݐ) =  න Ψ(ݔ) ݀ݔ = ܲ 

௧

଴
Ψ(ݐ),                                                                                      

൫ ଴ܫ ௧
ଶ Ψ൯ (ݐ) =  න ቆන Ψ(ݔ) ݀ݔ

௦

଴
ቇ݀ݏ = න ܲΨ(ݏ) ݀ݏ = 

௧

଴
P x P x Ψ(ݐ) =  Pଶ  Ψ(ݐ),

௧

଴
          

⋮

൫ ଴ܫ ௧
௡  Ψ൯ (ݐ) =  න ቆන Ψ(ݔ) ݀ݔ

௦

଴
ቆන Ψ(ݔ) ݀ݔ…

ఛ

଴
ቇ݀ݏቇ = P x P x … x Ψ(ݐ) =  P௡   Ψ(ݐ),

௧

଴

  

On the other hand, we have 

൫ ଴ܫ ௧
௡  Ψ൯ (ݐ) =  ଵ

Γ(௡)∫ ݐ) − ߬)௡ିଵΨ௧
଴ ݐ        ,߬݀ (߬) ∈  [0,1]. 

Using the convolution product, we can write 

൫ ଴ܫ ௧
௡  Ψ൯ (ݐ) =  (Ψ x ߶)(ݐ), 

where 

(ݐ)߶ =  (௧ିఛ)೙షభ

Γ(௡)
, (a causal function). 

The continuous character of the function Γ(α) is used to release Γ(n) and to define 
the integral operator of order α>0.This operator is defined as 

଴ܫ ௧
ఈ Ψ(ݐ) = ቐ

1
Γ(ߙ)න ݐ) − ߬)ఈିଵΨ

௧

଴
ߙ     ,߬݀ (߬) > 0

Ψ(ݐ),    ߙ = 0,
   

so 

൫ ଴ܫ ௧
ఈ Ψ൯(ݐ) = ܲఈΨ(ݐ) , ߙ > 0.                                                       (10) 

Now, to define the fractional Legendre wavelets operational matrix of integration, 
we give a result, in the transition matrix of the base B to the base Ψ(ݐ). 
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Proposition 3.3.1. For m = 0,1,…, nc-1, the relation between the Legendre wavelet vector 
and m-set of block-pulse functions can be written as 

Ψ(ݐ) =  (11)                                                               ,(ݐ)ܤ ܪ

where H is the  ൫2௝ିଵ݊ܿ൯ x ൫2௝ିଵ݊ܿ൯ passage matrix 

ܪ =  

⎝

⎜
⎜
⎜
⎛

ℎଵ,଴ … ℎଵ,௡௖ିଵ
⋮ ⋱ ⋮

ℎ௡௖,଴ … ℎ௡௖,௡௖ିଵ

… 0

⋮ ⋱ ⋮

0 …
ℎଵ,଴ … ℎଵ,௡௖ିଵ
⋮ ⋱ ⋮

ℎ௡௖,଴ … ℎ௡௖,௡௖ିଵ⎠

⎟
⎟
⎟
⎞

, 

and  

ℎ௜,௠ =  √2݉ + 1  ෍ (−1)௠ା௞  
(݉ + ݇)!

(݉− ݇)! (݇!)ଶ ݊ܿ௞  
(݅)௞ାଵ −  (݅ − 1)௞ାଵ

(݇ + 1)

௠ିଵ

௞ୀ଴

 

Proof. Let 

ℎ௜,௠ = න Ψ௡,௠(ݐ) ௜ܾ(ݐ) ݀ݐ = 
ଵ

଴
 ඨ݉ +  

1
2 2௝/ଶ  න ௠ܮ  ൫2௝ݐ − 2 ݊ + 1൯ 

௜
௤

௜ିଵ
௤

 .ݐ݀

On the first level n = 1, this formula becomes 

ℎ௜,௠ =  ට݉ +  ଵ
ଶ

 2௝/ଶ  ∫ ௠ܮ  ൫2௝ݐ − 1൯ 
೔
೜
೔షభ
೜

 .ݐ݀

Assuming that 2௝ݐ − 1, we obtain 

ℎ௜,௠ =  ඥ݉ + 1/2  2௝/ଶ  න ௠ܮ  (ݔ) 
ଶ௜
௡௖ିଵ

ଶ௜ିଶ
௡௖ ିଵ

                                                                                       ݔ݀

=  ඥ݉ + 1/2 2௝/ଶ  න ෍ (−1)௠ା௞
௠ିଵ

௞ୀ଴

ଶ௜
௡௖ିଵ

ଶ௜ିଶ
௡௖ ିଵ

ቀ݉݇ ቁ ቀ
݉ + ݇
݉ ቁ                        ݔ௞݀ݔ

                         

=  ඥ݉ + 1/2 2௝/ଶ  ෍ (−1)௠ା௞  
(݉ + ݇)!

(݉− ݇)! (݇!)ଶ ݊ܿ௞ ݍ

௠ିଵ

௞ୀ଴

 
(݅)௞ାଵ −  (݅ − 1)௞ାଵ

(݇ + 1)  ,

  

 We need also the following result [27]: 
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Proposition 3.3.2. Let α>0. The fractional integral of block-pulse function vector can be 
written as  

(ݐ) (ܤ ఈܫ) =  (12)                                                           ,(ݐ)ܤ ఈܨ

where Fα is the ൫2୨ିଵnc൯ x ൫2୨ିଵnc൯ matrix given by 

ఈܨ =  ቀ ்
ଶೕషభ௡௖

ቁ
ఈ ଵ

Γ(ఈାଶ)

⎝

⎜⎜
⎛

ଵ݂ ଶ݂ ଷ݂ ⋯ ݂ଶೕషభ௡௖
ଵ݂ ଶ݂ ⋯ ݂ଶೕషభ௡௖ିଵ

ଵ݂ ⋯ ݂ଶೕషభ௡௖ିଶ
0 ⋱ ⋮

ଵ݂ ⎠

⎟⎟
⎞

, 

and  

ቊ ଵ݂ = 1,
௣݂ = ఈାଵ݌ − ݌) 2 − 1)ఈାଵ + ݌)  − 2)ఈାଵ, ݌ = 2,3, … , 2௝ିଵ݊ܿ − ݅ + 1, 

with  ݅ = 1,2,3, … , 2௝ିଵ݊ܿ. 

Now, we prove the following result for the fractional matrix of integration: 

Theorem 3.3.3. The Legendre wavelets operational matrix P of fractional integration is 
given by 

ܲఈ =  ଵ.                                                                 (13)ିܪ ఈܨ ܪ

Proof. Using (10) and (11), we can write 

൫ ଴ܫ ௧
ఈ Ψ൯(ݐ) = (ݐ)(ܤ ܪ ఈܫ)  =  (14)                                           .(ݐ)(ܤ  ఈܫ)ܪ 

Thanks to (10) and (14), yields 

ܲఈΨ (ݐ) = ఈܨܪ     (15)                                                        .(ݐ)ܤ  

  By (11) and (15), we get 

ܲఈ(ݐ)ܤܪ =   .(ݐ)ܤఈܨ ܪ  

Therefore, 

ܲఈ =  .ఈିଵܨ ܪ  

3.4. ILLUSTRATION OF THE APPROACH 

In this subsection, we will describe our approach to solve numerically the system (2). We 
start with the decoupling and quasi-linearization iterative technique. It is summarized as 
follows: 
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Given initial proϐile for each solution:ࡽ௦௪
(଴)(ݔ),ࡽ௙௪

(଴)(ݔ) , ௦௦̇ࡽ
(଴)(ݔ), ௙௦̇ࡽ

(଴)(ݔ)

଴ܦ ௫
ఈࡽ௦௪

(௞ାଵ) = −ܿଵ + ܿଶ ൭
௦௦̇ࡽ

(௞ାଵ)

௦௪ࡽ
(௞ାଵ) −  

௙௦̇ࡽ
(௞ାଵ)

௙௪ࡽ
(௞ାଵ)൱                                                   

଴ܦ ௫
ఈࡽ௙௪

(௞ାଵ) = ܿଵ − ܿଶ ൭
௦௦̇ࡽ

(௞ାଵ)

௦௪ࡽ
(௞ାଵ) −  

௙௦̇ࡽ
(௞ାଵ)

௙௪ࡽ
(௞ାଵ)൱                                                      

଴ܦ ௫
ఈܳ௙௪ = −ܿଷ ൭

௦௦̇ࡽ
(௞ାଵ)

௦௪ࡽ
(௞ାଵ) −  

௙௦̇ࡽ
(௞ାଵ)

௙௪ࡽ
(௞ାଵ)൱                                                                 

଴ܦ ௫
ఈܳ௙௪ = ܿଷ ൭

௦௦̇ࡽ
(௞ାଵ)

௦௪ࡽ
(௞ାଵ) −  

௙௦̇ࡽ
(௞ାଵ)

௙௪ࡽ
(௞ାଵ)൱,                                                                    

 

where U(k+1) and U(k) are the approximations of the solution at the current and the preceding 
iteration, respectively. 

To find a solution of (2), we apply the method described above for each equation 
and we calculate the decoupling and quasi-linearization error by using the following 
formula 

஽ொ௅்ܧ
(௞ାଵ) = ݔܽ݉ ቀቛࡽ௦௪

(௞ାଵ) − ௦௪ࡽ 
(௞) ቛ

ଶ
,ቛࡽ௙௪

(௞ାଵ) − ௙௪ࡽ 
(௞) ቛ

ଶ
 , … ,ቛ̇ࡽ௦௦

(௞ାଵ) − ௦௦̇ࡽ 
(௞) ቛ

ଶ
 ቁ      (16) 

where ‖ .  ‖ଶ represents the Euclidian norm. This procedure gives the solution of the 
problem when the error is less than a given small epsilon. 

For ݑ ∈   ଶ ([0,1]), we develop our method for the problemܥ

ఈܦ (ݐ)ݑ  = (ݐ)ݑ (ݐ)݃ + ,(ݐ)݂ ∋ ݐ  ]0,1], 0 < ߙ ≤ 2                                     (17) 

such that  

൜ݑ
(0) = ଴ݑ

(0)′ݑ = ଵݑ
                                                                    (18) 

The condition (0)′ݑ = ଵ is only for 1ݑ < ߙ ≤ 2, where ݂,݃ ∈  ଶ([0,1]). Weܮ
approximate the derivative ܦఈ  : and the functions g and f as in (4) as follows ݑ 

 ቐ
ఈܦ (ݐ)ݑ  = ்ܷ  Ψ(ݐ)
(ݐ)݃ = ்ܩ  Ψ(ݐ)
(ݐ)݂ = ்ܨ  Ψ(ݐ)

                                                            (19) 

Using (10), we can write 
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(ݐ)ݑ = ఈܦఈ ൫ܫ ൯(ݐ)ݑ  + (0)ݑ +                        ݐᇱ(0)ݑ
= ఈ ൫்ܷܫ   Ψ(ݐ)൯ + ଴்݀ݑ  Ψ(ݐ) + ்ܧଵݑ  Ψ(ݐ) 
=  ்ܷܲఈ  Ψ(ݐ) + ଴்݀ݑ  Ψ(ݐ) + ்ܧଵݑ  Ψ(ݐ) ,

 

so  
(ݐ)ݑ =  (்ܷܲఈ  + ଴்݀ݑ  +  (20)                                      (ݐ)Ψ (்ܧଵݑ

where ݀ =  〈1,Ψ(ݐ)〉௅మ([଴,ଵ]) and ܧ =  ,௅మ([଴,ଵ]). Substituting (19) and (20) into (17)〈(ݐ)Ψ,ݐ〉 

we have 

்ܷΨ(ݐ) = ఈ்ܷܲ) (ݐ)Ψ்ܩ  + ଴்݀ݑ  + (ݐ)Ψ (்ܧଵݑ  + ்ܨ  Ψ(ݐ) 

Ψ୘(ݐ)ܷ = ఈ்ܷܲ) (ݐ)Ψ୘(ݐ)Ψ்ܩ  + ଴்݀ݑ  + ்(்ܧଵݑ   + Ψ୘(ݐ)ܨ 

= Ψ୘(ݐ) ܩ෨(்ܷܲఈ  + ଴்݀ݑ  + ்(்ܧଵݑ   + Ψ୘(ݐ)ܨ 

Thanks to (7), we obtain the following algebraic system 

൫ܫௗ − ܷ ෨(ܲఈ)்൯ܩ = ଴்݀ݑ)෨ܩ   + ்(்ܧଵݑ +  (21)                               .ܨ

The solution of the problem (17-18) is obtained by substituting U in (20). 
 

3.4.1. NUMERICAL TESTS 

In this section, we consider an example to show the efficiency and the accuracy of the 
proposed approach.  For 0 < ߙ ≤ 1 and ݐ ∈  [0,1], we consider the system : 

൞
ఈܦ (ݐ)ݑ  = (ݐ)ଶݑ  + (ݐ)ݒ +  ୻(ఉାଵ)

୻(ఉାଵିఈ)
ఉିఈݐ  − ଶ ఉݐ − ݐ√



(ݐ)ݒ ఈܦ = (ݐ)ଶݒ  + (ݐ)ݑ +  
୻ቀమାଵቁ

୻ቀమାଵିఈቁ
ݐ 


మିఈ − ݐ − ,ఉݐ

                                (22) 

such that  

൜(0)ݑ = 0
(0)ݒ = 0.                                                                     (23) 

The exact solution of (22) and (23) is given by  

ቊ
(ݐ)௘ݑ = ఉݐ

(ݐ)௘ݒ = ݐ√
 .

 

We employ the Legende wavelet method combined with the decoupling and quasi-
linearization technique for studying the solutions of the problem (22−23). 
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In the Figure 2, we see the evolution of the logarithmic error induced by the 
decoupling and quasi-linearization technique defined in (16). We observe a strict decrease 
of the error, which explains the convergence and the stability of the solution. 

Figure 2: Example 2: Error induced by DQLT. 

 

Then, as we know the exact solution, we estimate the absolute error of each solution is 
produced by cumulate of truncation, LWM and DQL technique by the following formula 

஺ܧ = ݑ‖ −  ௘‖ଶ.                                                               (24)ݑ

Figure 3: Example 2:The analytical and approximate solutions. 

 

We observe a good agreement between the analytical and approximate solutions 
(see Figure 3). However, the obtained result shows that this approach can provide better 
performance. 
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Table 1: Example 2: The point wise errors for u. 

t Exact Solution j=3 and nc=4 j=3 and nc=8 j=5 and nc=4 j=5 and nc=8 
0 0 6.3318e-04 1.5723e-04 3.9868e-05 9.9852e-06 

0.2 0.0400 6.4165e-04 1.6826e-04 4.0775e-05 1.0361e-05 
0.4 0.1600 5.4928e-04 1.5991e-04 3.8131e-05 1.0120e-05 
0.6 0.3600 4.5914e-04 1.4914e-04 3.5756e-05 9.8017e-06 
0.8 0.6400 4.4651e-04 1.3749e-04 3.6947e-05 9.4494e-06 
1 1.0000 4.5500e-04 1.2532e-04 3.9832e-05 9.0781e-06 

Table 2: Example 2: The point wise errors for v. 

t Exact Solution j=3 and nc=4 j=3 and nc=8 j=5 and nc=4 j=5 and nc=8 
0 0 7.8510e-04 8.8309e-04 7.5065e-05 1.0596e-04 

0.2 0.0894 8.7458e-04 1.9219e-04 7.5034e-05 2.0449e-05 
0.4 0.2530 1.7925e-03 3.2299e-04 2.2016e-04 3.9049e-05 
0.6 0.4648 1.0542e-03 3.4945e-04 1.1705e-04 4.2348e-05 
0.8 0.7155 5.1373e-05 3.7980e-04 1.8159e-04 4.6889e-05 
1 1.0000 3.7651e-05 3.8612e-04 1.7892e-04 4.7739e-05 

Finally, as can be seen in Tables 1-2, only a small number of collocation points is 
needed to get the approximate solution, which is a full agreement with the exact solution up 
to 6 Digits. The obtained solutions show that this approach can effectively solve systems of 
fractional differential equations. 

4. A SIMULATION STUDY 

In this section, we propose a new numerical solution for the mathematical model described 
in Section 2. The proposed approach seems to be very efficient for nonlinear differential 
systems. Numerical test shows that one important feature of our approach is that it gives a 
high-quality of the solution as well as a stability and a computational speed for a small 
number of collocation points. 

So, let us consider a small-scale reverse osmosis desalination fractional order model 
(2), where the co-current flow pattern is treated as shown in figure 1, associated with the 
conditions: 

                                                                                     Qୱ୵(0) = 226.8 

                                                                                        Q̇ୱୱ(0) = 2 Qୱ୵(0) 

Q୤୵(0) = 0 

                                                                                                  Q̇୤ୱ(0) = 0 
and 
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ୢ୕౩౭
ୢ୶

(0) = ୢ୕౩౭
ୢ୶

(0) = ୢ୕౩౭
ୢ୶

(0) = ୢ୕౩౭
ୢ୶

(0) = 0. 

The membrane specifications and the operating parameters are given in the table 3 
obtained from [29,28]. 

Table 3: The operating parameters. 

Parameters  Value 
The membrane diameter (Dm) 0.0576 m 
Water density (w) 103 kg/m3 
Solute permeability coefficient (Bs) 1.12 × 10-4 m/h 
Water permeability constant (Aw) 4.2 × 10-13 h/m 
Proportionality coefficient () 1.02 × 10+12  m2/h2 
Transmembrane pressure (P) 4.02 × 10+13 kg/m/ h2 

The feed rate consisting of water and salts (solute) flows continuously and 
tangentially inside the membrane. Following the permselectivte property of the membrane, 
water diffuses faster than the solute. At the output of the module, we obtain a permeate at 
the tube side with a low concentration of salts, and a retentate at the shell side with a very 
high concentration of salts (Figure 1). 
 

The results of simulation obtained by the proposed numerical solution method are 
shown in Figures 4−7. The first finding is that the behavior of the curves predicted by the 
model are very close to these obtained in the literature. 

Figures 4−7 (A) show the variation of the solute and water flow rate in the tube and shell 
side along the dimensionless parameter x. As predicted, the variation of water and solute 
flow rate are close to zero at the entrance of the module. In reality, at this point of the 
module, water and solute flow rates are both constants and therefore, their variation is equal 
to zero. This behavior is demonstrated in the proposed model, which is not the case of the 
classical model with an integer derivative (see Figures 4−7 (B)). 

Figure 4: The flow rate of the solute in tube-side. 
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Figure 5: The flow rate of the water in tube-side. 

(A) (B) 

Figure 6: The flow rate of the solute in shell-side. 

(A) (B) 

Figure 7: The flow rate of the water in shell-side. 
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Another means to verify the accuracy of the obtained results is to establish a matter 
balance. The following equation expresses the relative mass balance applied to the module: 

ଵܸ = ொೢೌ೟೐ೝି൫ொ೛೐ೝ೘೐ೌ೟೐_ೢೌ೟೐ೝାொೝ೐೟೐೙೟ೌ೟೐_ೢೌ೟೐ೝ൯
ொ೑೐೐೏_ೢೌ೟೐ೝ

= 0, 

ଶܸ = ொೞ೚೗ೠ೟೐ି൫ொ೛೐ೝ೘೐ೌ೟೐_ೞ೚೗ೠ೟೐ାொೝ೐೟೐೙೟ೌ೟೐_ೞ೚೗ೠ೟೐൯
ொ೑೐೐೏_ೞ೚೗ೠ೟೐

= 0. 

The examination of the mass conservation law is a pertinent factor for the validation 
of our simulation. The results show the quality of the proposed model for α = 1.5, by 
looking V1 for the water parameter is of the order of 2.45e-10 and V2 for the solute 
parameter is less than 1.08e-12. 

 

5. CONCLUSION 

In this study, simulation of small-scale reverse osmosis desalination problem was 
conducted using a new fractional model. Numerical method of Legendre wavelets 
associated with the decoupling and quasi-linearization technique was applied to solve 
equations of mass transfer. Comparison of model predictions with experimental results in 
the literature reveals that a reasonable agreement exists between them. Simulation results 
reveal that fractional model can be considered as a more efficient predictor as compared 
with classical model. According to the model results, the calculation of the difference 
between the quantity of matter in the feed-side and the permeate-retentate sides shows the 
quality of the solutions obtained by the proposed model. It can be concluded from the 
obtained results that the proposed model in this work can well give the best prediction of 
reverse osmosis desalination phenomena. 
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1. INTRODUCTION  

Fractional calculus is a power tool for finding solution of non-linear problems. So, it has a 
tremendous use in basic sciences and engineering, see e.g. [1−8]. 

The VIM is one of the powerful methods within the exact and approximate 
analyticalsolutions for solving nonlinear equations. The method was first initiated by [9], 
and it was successfully used by various researchers to investigate the linear andnonlinear 
problems [9, 10]. We mention that Jafari et.al. applied the variational iterationmethod to 
the modified Camassa-Holm and Degasperis−Procesi equations andfractional 
Davey−Stewartson equations, [10, 11]. Momani and Odibat [12] has implementedthe 
variational iteration method to solve nonlinear fractional differentialequations. It was 
shown by several authors (see e.g. Wazwaz [13]) that this method ismore powerful than 
existing techniques such as the Adomian decomposition method [14, 15], perturbation 
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method, etc. Besides, the VIM gives rapidly convergent successiveapproximations of the 
exact solution if such a solution exists. Another importantadvantage is related to the fact 
that the VIM is capable of greatly reducing the sizeof calculation while still maintaining 
high accuracy of the numerical solution. 

In [16, 17], it was shown that the VIM for obtaining approximate solutions of 
initialvalue problems is a version of the well-established fixed point iteration methods.In 
this paper, we are interested into approximate solutions of time fractionalchemical 
engineering problems as follow: 

)...,,1,()(

)...,,1,(2)(22

)...,,1,(1)(11

nxxtnftnxnD

nxxtftxD

nxxtftxD











                                                (1) 

where  iD  is the Caputo  derivative of ix  of order ai and 0 < ai ≤ 1, subject to the initial 

conditions  

.)0(...,,2)0(2,0)0(1 ncnxcxcx                                   (2) 

The general response expressions contain a parameter  describing the order of the 
fractional derivative that can be varied to obtain various responses. The solutions 
corresponding to ordinary chemical problems, performing the same dynamics, are also 
determined as a special case of our general solutions. The organization of this paper is as 
follows: In Section 2, some basic definitions and properties of the fractional calculus are 
given. In section 3, we introduce variational iteration method and deform it to fixed point 
iteration method. In Section 4, the mentioned method in Section 3 is used to seek an 
approximate solution of chemical Eq. (1) with the given initial conditions (2). Also, the 
accuracy and efficiency of the scheme is investigated with three numerical illustrations in 
that section. Finally, Section 5 consists of some brief conclusions. 
 
2. PRELIMINARY  

In this section, we give some definitions and properties of the fractional calculus. 

Definition 2.1. A real function ,0);( ttf  is said to be in the space ,, RC   if there 

exists  a real number )( p , such that  ),()( 1 tfttf p  where ),,0()(1 Ctf  and it is 

said to be in the space ,nC if and only if .,)( NnCf n    
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Definition 2.2. The Riemann−Liouville fractional integral operator )( J , of order  ,0

of a function ,1,  Cf   is defined as 

.0),()(

,0,)()(
)(

1)(
1

0


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















tftfJ

dssfsttfJ
t

 

 
The main properties of the operator )( J  can be found in [18, 19], we mention 

only the following:  For 0,,1,  Cf  and :1  
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The Riemann−Liouville derivative has certain disadvantages when trying to model 

real-world phenomena with fractional differential equations. Therefore, we shall introduce 
a modified fractional differential operator D  proposed by Caputo in his work on the 
theory of viscoelasticity [20]. 

Definition 2.3. The fractional derivative of )(tf  in the Caputo sense is defined as 
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Also, we need here two of it's basic properties. 

Lemma 2.1. If Nnnn  ,1  and 1,  
nCf  then )()()( tftfJD 
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3. THE VIM AND FIXED POINT ITERATION METHOD 

To illustrate the basic concepts of the VIM we consider the following general nonlinear 
system:  
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,,...,2,1);())(...,),(1())(( mitigtmutuNtiuiL                                   (3) 

where iL  is the linear operator and iN  is the nonlinear operator, and )(tgi is the 
inhomogeneous term. In the VIM correction function for Eq. (3) can be written as [9]: 

.,...,2,1;))())(~),...,(~())(()(()()(
0 1,,1, midguuNuLttutu
t

iminiiinini        (4) 

It is obvious that the successive approximation 0;, nu ni  can be established by 

determining i , a general Lagrange multiplier, which can be identified optimally via the 

variational theory [21]. The function niu ,
~  is a restricted variation, which means 0~

, niu . 

Therefore, we first determine the Lagrange multiplier i  that will be identified via 

integration by parts. The successive approximations 0),(, ntu ni  of the solution )(tui  will 

be readily obtained upon using the obtained Lagrange multiplier and by using any 
selective function 0,iu  as zeroth approximation which satisfy in given initial condition. 

Consequently, the exact solution may be procured by using,  
)(,lim)( tniu

n
tiu


                                                    (5) 

Obviously, identification of the Lagrange multipliers is crucial to derive a 
variational iteration formula. Now, if we change our attitude and consider the VIM as 
special case of fixed point iteration [16, 17] we can find a simple and straight manner to 
determine Lagrange multipliers. In this order from (3) if 1L  exist then we have: 

,,...,2,1))];(...,),(1()([1)()( mitmutuiNtigiLtitiu                     (6) 

where )(ti  is )( iLKer  which determined by initial condition. In fact, we get Lagrange 

multipliers automatically while calculating inverse of operator iL . Applying simple fixed 
point iteration method on (6) we get 

.,...,2,1))];(,...,),(,1()([1)()(1, mitnmutnuiNtigiLtitniu                          (7) 

Here recursive formula (7) are constructed for two special case of linear fractional 
differential equation as follow 
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4. TEST PROBLEMS 

In this section, we present three examples to illustrate the applicability of new method to 
solve linear and nonlinear chemical fractional differential equations. 

Example 4.1. Chemical Reactor. A reaction BA   takes place in two reactors in series. 
The reactors are well mixed but are not at steady state. The unsteady-state mass balance 
for each stirred tank reactor are given in the form of system of fractional differential 
equations are 
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wwutwD
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)(1)(

)(1)(

1)(

)0(1)(

                                 (10) 

where 0CA  is the concentration of A at the inlet of first reactor. )(1 uCA   is the 

concentration of A  at the outlet of the first reactor ( and inlet of the second). )(2 wCA   is 
the concentration of A  at the outlet of the second reactor. )(1 vCB   is the concentration of 
B  at the outlet of the first reactor ( and inlet of the second). )(2 yCB   is the concentration 
of B  in the second reactor.  is the residence time for each reactor, and   is the rate 
constant for reaction of A to produce B . Consider 0CA  is equal to 10, 1.0  and .5
Initial conditions 

0)0()0(,0)0()0(,0)0()0(,0)0()0( 2121  yCBvCBwCAuCA (11) 
By setting 4321 ,, LandLLL  for this system 
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and using (9), the transform of Eq. (10) with initial conditions (11) leads to the following 
recurrence relations: 
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We start with initial approximations ,0)(,0)(,0)(,0)( 0000  tytwtvtu  which 

satisfy in Eqs. (11). In right hand said of Eq.(13) there isn't nu  so its exact solution will 
obtain at first iteration . In the second iteration we get exact solutions of )(tv and )(tw  by 
using the exact solution of )()( 1 tutu   in right hand said of Eqs. (14) and (15). Finally, in 
the third iteration all exact solutions can be obtain as follow 
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Example 4.2. Concentration of Reactants. The concentrations of three reactants are in the 
form of a system of nonlinear FDEs as 
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                                         (17)      

where 54321 ,,,, kkkkk  and 6k  are constant parameters (k1 = 0.04, k2 = 0.01, k3 = 400, k4 = 
100, k5 = 30000, k6 = 30). The initial conditions are given by 

.0)0(,0)0(,1)0(  wvu                                      (18)      
By setting DL   as a linear operator for every equation in (17) and using (8), we get the 
recursive formula for concentration equations as follow 
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where 
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By starting with an initial approximation 0)(,1)( 00  tvtu  and 0)(0 tw  given 
by Eq. (18) and using the above iteration formulae (19) we can directly obtain the other 
components. The first four components of the series are given by 
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For 1  we have 
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which is the same of solution in [22]. 
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Example 4.3. Chemical Reaction there is the system of nonlinear FDE equation which 
representing a nonlinear reaction, 
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with the initial conditions are given by 
.0)0(,1)0(,1)0(  wvu                                                               (22)          

 By setting DL   as a linear operator for every equation in (21) and using (8), the 
recursive formula for reaction equation (21) is 
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where 
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By using recurrence relation (23) and initial approximation 0)(,1)( 00  tvtu and 

0)(0 tw given by Eq. (22) three Iteration terms of solutions are obtained as follow: 
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 In the third iteration the first four components of the series solution are expressed 
and we have the following approximate solution 
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which is the same of solution in [23]. 

5. CONCLUSION 

For illustration purposes, we considered three examples. Results obtained using the 
scheme presented here agree well with the numerical results presented elsewhere. Results 
also show that the numerical scheme is very effective and convenient for solving nonlinear 
partial differential equations of fractional order. The numerical computations associated 
with the three examples discussed above were performed by using the Computer Algebra 
System Mathematica. 
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The first multiplicative Zagreb index )(1 G  is equal to the product 
of squares of the degree of the vertices and the second multiplicative 
Zagreb index )(2 G  is equal to the product of the products of the 
degree of pairs of adjacent vertices of the underlying molecular 
graphs G . Also, the multiplicative sum Zagreb index )(3 G  is 
equal to the product of the sums of the degree of pairs of adjacent 
vertices of G . In this paper, weintroduce a new version of the 
multiplicative sum Zagreb index and study the moments of the ratio 
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by Doob’s supermartingale inequality. 
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1. INTRODUCTION  

Molecular graphs can distinguish between structural isomers, compounds which have the 
same molecular formula but non-isomorphic graphs- such as isopentane and neopentane. 
On the other hand, the molecular graph normally does not contain any information about 
the three-dimensional arrangement of the bonds, and therefore cannot distinguish between 
conformational isomers (such as cis and trans 2-butene) or stereoisomers (such as D- and 
L-glyceraldehyde). 
 In some important cases (topological index calculation etc.) the following classical 
definition is sufficient: molecular graph is connected undirected graph one-to-one 
corresponded to structural formula of chemical compound so that vertices of the graph 
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correspond to atoms of the molecule and edges of the graph correspond to chemical bonds 
between these atoms. 

In the fields of chemical graph theory, molecular topology, and mathematical 
chemistry, a topological index also known as a connectivity index is a type of a molecular 
descriptor that is calculated based on the molecular graph of a chemical compound. 
Topological indices are numerical parameters of a graph which characterize its topology 
and are usually graph invariant. Topological indices are used for example in the 
development of quantitative structure-activity relationships (QSARs) in which the 
biological activity or other properties of molecules are correlated with their chemical 
structure. The simplest topological indices do not recognize double bonds and atom types 
(C, N, O etc.) and ignore hydrogen atoms (“hydrogen suppressed") and defined for 
connected undirected molecular graphs only. More sophisticated topological indices also 
take into account the hybridization state of each of the atoms contained in the molecule. 
Hundreds of indices were introduced. The Hosoya index is the first topological index 
recognized in chemical graph theory, and it is often referred to as the topological index. 
Other examples include the Wiener index, Randi c ’s molecular connectivity index, 
Balaban’s J index, and the TAU descriptors [12]. 

Let G  be a molecular graph. Two vertices of G , connected by an edge, are said to 
be adjacent. The number of vertices of G , adjacent to a given vertex v , is the degree of 
this vertex, and will be denoted by )(vd . Gutman [5] introduced the following general 
form for topological indices:  

 )),(),((=)(=
)(

vdudFGTITI
TEuv

ss 


 

where the summation goes over all pairs of adjacent nodes vu,  of molecular graph G , and 
where ),(= yxFF  is an appropriately chosen function. In particular,F(x,y) = (xy)−1/2 for 
Randić index, yxyxF =),(  for the first Zagreb index, xyyxF =),(  for the second 

Zagreb index, |=|),( yxyxF   for the third Zagreb index, )( )(=),( RxyyxF  for the 
second variable Zagreb index, F(x,y) = ((x+y−2)(xy)−1)1/2 for the ABC index, 

31)2)((=),(  yxxyyxF , for the augmented Zagreb index, 1)(2=),(  yxxyyxF  for 

the geometric-arithmetic index, 1)2(=),(  yxyxF  for the harmonic index and F(x,y) = 
(x+y)−1/2 for the sum-connectivity index. 

Todeschini  et al. [15,16] proposed that multiplicative variants of molecular 
structure descriptors be considered. Thus we have the following general form for 
topological indices:  

 )).(),((=)(=
)(

vdudFGTITI
TEuv

pp 
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When this idea is applied to Zagreb indices, one arrives at their multiplicative versions 
)(1 G  and )(2 G , defined as 2

)(1 ))((=)( vdG
GVv 

  and )()(=)(
)(2 vdudG

GEuv 
  

[3, 4]. Réti and Gutman [14] provided lower and upper bounds for 1  and 2  of a 
connected graph in terms of the number of vertices, number of edges, and the ordinary, 
additive Zagreb indices 1M  and 2M . Let nT  be the set of trees with n  vertices. Gutman 

[6] determined the elements of nT , extremal w.r.t. 1  and 2 . Iranmanesh  et al. [7] 
computed these indices for link and splice of graphs. In continuation, with use these graphs, 
they computed the first and the second multiplicative Zagreb indices for a class of 
dendrimers. Liu and Zhang [13] introduced several sharp upper bounds for 1 -index in 
terms of graph parameters including the order, size, radius, Wiener index and eccentric 
distance sum, and upper bounds for 2 -index in terms of graph parameters including the 
order, size, the first Zagreb index, the first Zagreb coindex and degree distance. Xu and 
Hua [18] obtained a unified approach to characterize extremal (maximal and minimal) 
trees, unicyclic graphs and bicyclic graphs with respect to multiplicative Zagreb indices, 
respectively. Recently, Wang and Wei studied these indices in k-trees [17]. 

Another multiplicative version of the first Zagreb index is defined as 
))()((=)(

)(3 vdudG
GEuv

  
 and is named as the multiplicative sum Zagreb index. Eliasi  

et al. [2] proved that among all connected graphs with a given number of vertices, the path 
has minimal 3 . They also determined the trees with the second-minimal 3 . Kazemi 

[11] studied 21,  and 3  in random molecular graphs with tree structure. He gave the 
lower and upper bounds related to the moments of these indices. 

We introduce the modified multiplicative sum Zagreb index, defined as  
 ,))()((=)( )()(

)(
4

vdud

GEuv
vdudG  



 

and study it in random molecular graphs with tree structure. An illustrative example is 
provided in Figure 1. 
 

2. EVOLUTION PROCESS 

The structures of many molecules such as dendrimers and acyclic molecules are tree like. 
We present the following evolution process for random trees of order n , which turns out to 
be appropriate when studying the multiplicative Zagreb indices of molecular graphs with 
tree structure [10]. 

Every order- n  tree can be obtained uniquely by attaching n th node to one of the 
1n  nodes in a tree of order 1n . It is of particular interest in applications to assume the 

random tree model and to speak about a random tree with n  nodes, which means that all 
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trees of order n  are considered to appear equally likely. Equivalently one may describe 
random trees via the following tree evolution process, which generates random trees of 
arbitrary order n . At step 1 the process starts with a node. At step i  the i th node is 
attached to any previous node v  of the already grown tree T  of order 1i  with probability 
pi(v) = 1/(i−1). For applicability of our own results and specially connection with the 
chemical relevance, see [9]. 

 
Figure 1. A molecular graph with 6718464=1 , 8707129344=2 , 

                               01440000000=3  and 51
4 104 . 

 
Let ),( nvd  denote the degree of node v  in our structure of order n . It is obvious 

that 1),(1  nnvd . We define nB  to be the sigma-field generated by the first n  stages 

of the random molecular graphs with tree structure. Let nT  be the set of trees with order n . 
Then by definition of the multiplicative Zagreb indices for 1k  and 1,2,3=i  [11],  
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It is obvious that  
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Theorem 1 [11] Let 1,2,3)=1,( ))(( ikT k

ni E  be the k th moment of )( ni T  of a 
molecular graph nT  with tree structure of order n . Then for 5n ,  
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3. MAINRESULTS 

3.1 RATIO OF THE MULTIPLICATIVE ZAGREB INDICES 

In this section, we obtain lower and upper bounds for the moments of the ratio of the 
multiplicative Zagreb indices ( 21,  and 3 ).  
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and proof is completed by Theorem 1.  
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 With this approach, we can obtain the sharp lower bounds for different values of k . 
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Now, the proof is completed by inequalities (2).  
 
 We can introduce the upper bounds similar to Corollary 1.  
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3.2 MODIFIED MULTIPLICATIVE SUM ZAGREB INDEX 
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where U  is independent of 1nB  and node iy  is the neighborhood of the vertex U . 
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 With this approach, we can obtain the upper bound.  
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by Doob’s supermartingale inequality [1].  
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1. INTRODUCTION  

Throughout this article, only finite, undirected and simple graphs without loops and 
multiple edges are considered. Let G be such a graph and V(G) and E(G) be its vertex and 
edge set, respectively. The degree of a vertex v in G is the number of edges assigned  to it, 
denoted by ݀ீ(ݒ). The number of vertices of degree i will be denoted by ݊௜ or ݊௜(G). 
Evidently, ∑ ݊௜

∆(ீ)
௜ୀଵ =  is the maximum degree of  G. Assume that (ܩ) ∆ where ,|(ܩ)ܸ|

V(G) = {ݒଵ, ..., ݒ௡} and ݀௞ ≥ ݀௞ାଵ, for ݇ = 1, … ,݊ − 1, where ݀௞ ≔  Then D(G) .(௞ݒ)ீ݀
= (݀ଵ, ݀ଶ, … , ݀௡) is called the degree sequence of G. If the emphasis is on G, sometimes 
݀௞((ܩ)ܦ) is applied instead of ݀௞ .  

For an edge uv of E(G), the G – uv defines the subgraph of G obtained by deleting 
uv. In a similar manner, for any two nonadjacent vertices x and y of G, G + xy is a graph 
obtained from G by adding the edge xy. A  pendant vertex is a vertex with degree one and  
a tree is a connected acyclic graph. A star of order n, denoted by ܵ௡, is the tree with n−1 
pendant vertices and the path ௡ܲ is the tree of order n with exactly two pendant vertices. 
The symbol τ (n) represents the class of trees with n vertices. 
                                                
Corresponding Author (Email address:eliasi@math.iut.ac.ir) 
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A topological index is a number related to a graph, which is invariant under each 
graph isomorphism. Topological indices play a significant role in mathematical chemistry, 
especially in the QSPR/QSAR assessments (See [6, 15]). 

The first Zagreb index, introduced by Gutman and Trinajstić [14], is an important 
topological index in mathematical chemistry. This index is used by various researchers in  
QSPR/ QSAR studies [1, 20, 22]. In addition, the first Zagreb index has been subjected to 
a great number of mathematical studies [2, 3, 5, 12, 13]. The first Zagreb index of a graph 
G is defined as ܯଵ(ܩ) = ∑ (ீ)ଶ௩∈௏(ݒ)ீ݀ = ∑ (ݑ)ீ݀] + (ீ)௨௩∈ா.[(ݒ)ீ݀  Recently, for an 
arbitrary real number α, except from 0 and 1, Li and Zheng [16] introduced the first 
general Zagreb index ܯଵ

ఈ of G as follows ܯଵ
ఈ(ܩ)  = ∑ (ீ)ఈ௩∈௏(ݒ)ீ݀ . Li and Zhao [17] 

characterized all trees with the first three smallest and largest values of the first general 
Zagreb index, where α is an integer or a fraction 1/k for a nonzero integer k. Todeschini et 
al. [22, 23] proposed the multiplicative versions of additive topological indices, applied to 
the first Zagreb index as ߨଵ(ܩ) = ∏ (ீ)ଶ௩∈௏(ݒ)ீ݀ (ܩ)∗ଵߨ , = ∏ (ݑ)ீ݀] + (ீ)௩∈௏[(ݒ)ீ݀  and 
(ܩ)ଶߨ = ∏ (ீ)௨௩∈ா[(ݒ)ீ݀(ݑ)ீ݀] . The symbols ߨଵ and ߨଶ are referred to as the 
multiplicative Zagreb indices.  

In [11], Gutman showed thatamong all trees with n ≥ 5 vertices, the extremal 
(minimal and maximal) trees regarding the multiplicative Zagreb indices are the path ௡ܲ 
and star ܵ௡ . Eliasi [7] identified thirteen trees with the first through ninth greatest 
multiplicative Zagreb index among all trees of order n. In the same line, Eliasi and 
Ghalavand [10] introduced a graph transformation, which decreases ߨଶ. By applying this 
operation, they identified the eight classes of trees with the first through eighth smallest ߨଶ 
among all trees of order n ≥ 12. Also the effects on the first general Zagreb index were 
observed when some operations including edge moving, edge separating and edge 
switching were applied to the graphs [18]. Moreover, by using majorization theory, the 
authors  [18] obtained the largest or smallest first general Zagreb indices among some 
classes of connected graphs. Some more outstanding mathematical studies on 
multiplicative Zagreb indices are [4, 8, 9, 19, 21, 24].  

This paper is an attempt to investigate into the first general Zagreb index and the 
multiplicative Zagreb indices of trees via applying a new graph operation plus 
majorization theory, in particular, Schur-Convex function theory. Furthermore, some 
hands-on techniques and concluding remarks which complement the previous studies 
concerning aforementioned topological indices are introduced. 
 

2. PRELIMINARY RESULTS 

Let ݔ = ,ଵݔ) ,ଶݔ … , ݕ ௡) andݔ = ,ଵݕ) ,ଶݕ … ,  ௡) be two non-increasing sequences ofݕ
real numbers. If they meet the conditions ∑ ௜௞ݔ

௜ୀଵ ≤ ∑ ௜௞ݕ
௜ୀଵ , for 1 ≤ ݇ ≤ ݊ − 1 and 
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∑ ௜௞ݔ
௜ୀଵ = ∑ ௜௞ݕ

௜ୀଵ , then it is deduced that ݔ is majorized by ݕ, thus ݔ ≼ y. Furthermore,  
ݔ  ≺ y means that ݔ ≼ y and ݔ ≠ A real-valued function φ defined on a set Ω .ݕ ⊆ R୬ is  
said to be Schur-convex on Ω if ݔ ≼ (ݔ)߮ implises ݕ ≤ -It is called strictly Schur .(ݕ)߮
convex on Ω if the inequality is stric. The following theorems are supposed to be utilized 
in the next sections. 

Theorem 1. Let G and G  be two connected graphs with degree sequences D(G) and 
D(ܩˊ), respectively. If D(G) ≼ D(ܩˊ), then (I) ߨଵ(ܩ) ≥ ߨଵ(ܩˊ). This equality holds if an 
only if D(G) = (ˊܩ)ܦ. (II) ߨଶ(ܩ) ≤  = where equality holds if an only if D(G) ,(ˊܩ)ଶߨ
D(ܩˊ) (See [7]). 

Theorem 2. Let G be a connected graph with degree sequence D(G) and ܩˊ be a connected 
graph with degree sequence D(ܩˊ). (I) If D(G) ≼ D(ܩˊ), α < 0 or α > 1, then ܯఈ(ܩ) ≤ 
 α < 1, then > 0 ,(ˊܩ)If D(G) ≼ D (II) .(ˊܩ)equality holds if and only if D(G) = D ;(ˊܩ)ఈܯ
(ܩ)ఈܯ ≥  .(See [18]) (ˊܩ)equality holds if and only if D(G) = D ;(ˊܩ)ఈܯ

For positive integers ݔଵ, ,ଶݔ … , ,ଵݕ ௠ andݔ ,ଶݕ … ,   ௠, letݕ
T(ݔଵ(௬భ), ,ଶ(௬మ)ݔ … ,  (௠(௬೘)ݔ

be the class of trees with ݔ௜ vertices of the degree ݕ௜, i = 1,…,m. This class may be empty. 
It is easy to see that if G ∈ ,ଵ(௬భ)ݔ)ܶ ,ଶ(௬మ)ݔ … (ܩ)ଵߨ ௠(௬೘)), thenݔ, = ∏ ௜ଶ௫೔௠ݕ

௜ୀଵ , 
(ܩ)ଶߨ = ∏ ௜ݕ ௫೔௬೔௠

௜ୀଵ  and ܯఈ(ܩ) = ∑ ௜ఈ௠ݕ௜ݔ
௜ୀଵ . 

 
Lemma 1. There is a tree of order n (>2) in ܶ൫ݔଵ(௬భ), ,ଶ(௬మ)ݔ …  ௠(௬೘)൯ if and only ifݔ,
∑ ௜௠ݕ௜ݔ
௜ୀଵ = 2݊ −  2. 

Proof. It is well-known that if ܽଵ, ܽଶ, … , ܽ௡ are positive integers with n> 2, then there 
exists a tree with degree sequence of ܽଵ, ܽଶ, … , ܽ௡ if and only if ∑ ܽ௜௡

௜ୀଵ = 2݊ − 2.  
Hence there exists a tree T ∈ ܶ(ݔଵ(௬భ), ,ଶ(௬మ)ݔ … , ∑ ௠(௬೘)) if and only ifݔ ௜௠ݕ௜ݔ

௜ୀଵ =
2݊ –  2, as desired. 

Remark 1. Let n ≥ 12. According to Lemma 1, the class of trees in Table 1 are nonempty. 

Lemma 2. Let T be a tree with n vertices. Then ݊ଵ(ܶ) = 2 + ∑ ݊௜(݅ − 2)∆(்)
௜ୀଷ  and ݊ଶ(ܶ) =

݊ − 2 −∑ ݊௜(݅ − 1)∆(்)
௜ୀଷ . 

 

Proof. The above equations are obtained using ݊ଵ + ݊ଶ + ∑ ݊௜ = ݊∆(்)
௜ୀଷ  and ݊ଵ + 2݊ଶ +

∑ ݅݊௜ = 2(݊ − 1)∆(்)
௜ୀଷ .  
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3. A GRAPH TRANSFORMATION 

A graph transformation that decreases the degree sequences of trees regarding the 
majorization is illustrated in this section. 

 

Figure 1. The Trees ܩଵ, ܩଶ, G and ܩˊ in Lemma 3. 

Lemma 3. Let ܩଵ be a tree and ݑଵ, ,ଶݑ ଷݑ ∈   where ,(ଵܩ)ܸ
݀ீభ(ݑଵ) ≥ 2, ݀ீభ(ݑଶ) ≥ 2, ݀ீభ(ݑଷ) =1, and ݑଶݑଷ ∈ E(ܩଵ). In addition, assume that ܩଶ is 
another tree and y is a vertex in ܩଶ. As illustrated in Figure 1, let G be the 
graph obtained from ܩଵ and ܩଶ by attaching vertices y, ݑଵ and ܩˊ=G−yݑଵ+yݑଷ. 
Then D(ܩˊ) ≺ D(G). 

Proof. Suppose that ݀ீభ(ݑଵ) = x and D(G)=(݀ଵ, ݀ଶ,…,݀௜,݀௜ାଵ=x+1,݀௜ାଶ,...,݀௠,1,…,1).  
Since D(ܩˊ)=(݀ଵ, ݀ଶ,…,݀௜,݀௜ାଵ=x,݀௜ାଶ,...,݀௠ ,2,1,…,1),  

(I) For each k (1 ≤ k ≤ i), ∑ ௝݀൫(ܩ)ܦ൯௞
௝ୀଵ = ∑ ௝݀൫(ˊܩ)ܦ൯௞

௝ୀଵ . 
(II) For each k (i+1 ≤ k ≤ m), ∑ ௝݀൫(ܩ)ܦ൯௞

௝ୀଵ <∑ ௝݀൫(ˊܩ)ܦ൯௞
௝ୀଵ . 

(III) For each k (m+1 ≤ k ≤ n), ∑ ௝݀൫(ܩ)ܦ൯௞
௝ୀଵ = ∑ ௝݀൫(ˊܩ)ܦ൯௞

௝ୀଵ . 

Thus D(ܩˊ) ≺ D(G). 

For a positive number n ≥ 12, let F (n) = {T ∈ τ(n) | ∆(T) = 4}. 

Theorem 3. Suppose that ܶˊ is a tree with n ≥ 12 vertices such that ∆( ܶˊ) = 3 and that 
݊ଷ( ܶˊ) ≥ 6. If T ∈ ܶ(5(ଷ), (݊ − 12)(ଶ), 7(ଵ)), then D(T) ≺ D( ܶˊ). 

Proof. We prove the theorem by induction on ݊ଷ( ܶˊ). If ݊ଷ( ܶˊ) = 6, then by using 
Lemma 3 on a vertex of degree 3 in ܶˊ we obtain a tree,  like T, with 5 vertices of degree 3. 
Since ∆(T) = 3, Lemma 2 shows that ݊ଵ(ܶ) = 7 and ݊ଶ(ܶ) = n − 12; therefore, T ∈ 
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ܶ(5(ଷ), (݊ − 12)(ଶ), 7(ଵ)) and by Lemma 3, D(T) ≺ D( ܶˊ). Now assume that ݊ଷ( ܶˊ) > 6. 
Again, by using Lemma 3, we reduce the number of vertices of degree 3. Now we apply 
the induction hypothesis to ݊ଷ( ܶˊ) and obtain the result. 

Theorem 4. Suppose that  ܶˊ ∈ F(n) and T ∈ ܶ(1(ସ), 2(ଷ), (݊ − 9)(ଶ), 6(ଵ)). If ݊ସ( ܶˊ) = 1 
and ݊ଷ( ܶˊ) ≥ 3, then D(T) ≺ D( ܶˊ). 

Proof. The proof is by inductionon on ݊ଷ( ܶˊ). If ݊ଷ( ܶˊ) = 3, then by applying Lemma 3 
on a vertex of degree 3 in  ܶˊ, we obtain a tree, say T, with two vertices of degree 3. Since 
∆(T) = 4 and ݊ସ(T) = 1, Lemma 2 indicates that ݊ଵ(T) = 6 and ݊ଶ(T) = n − 9. Therefore, T 
∈ ܶ(1(ସ), 2(ଷ), (݊ − 9)(ଶ), 6(ଵ)) and D(T) ≺ D( ܶˊ) is obtained by Lemma 3. Now assume 
that ݊ଷ( ܶˊ) > 3. Afterward, by using Lemma 3, we decrease the number of vertices of 
degree 3, and  thus the proof can be verified by induction hypothesis. 

Theorem 5. Suppose that ܶˊ ∈ F(n) and T ∈ ܶ(2(ସ), (݊ − 8)(ଶ), 6(ଵ)). If ݊ସ( ܶˊ) ≥ 2 and  ܶˊ 
∉ ܶ(2(ସ), (݊ − 8)(ଶ), 6(ଵ)), then D(T) ≺ D( ܶˊ).  

Proof. By repeating application of Lemma 3 on vertices of degree 4 in ܶˊ, a tree ௧ܶ with 
݊ସ( ௧ܶ) = 2 in terms of adequate number of times (t–times) can be gained. By repeating 
application of Lemma 3 on vertices of degree 3 in ௧ܶ, adequate number of times (s−times), 
a tree ௦ܶ with ݊ସ( ௦ܶ) = 2 and ݊ଷ( ௦ܶ) = 0 can again be obtained. Now, by Lemma 2, we 
conclude that ݊ଵ( ௦ܶ) = 6 and ݊ଶ( ௦ܶ) = n – 8. Consequently, ௦ܶ ∈ ܶ(2(ସ), (݊ − 8)(ଶ), 6(ଵ)) 
and  Lemma 3 gives D(T) = D( ௦ܶ) ≺ D( ܶˊ). 

Theorem 6. Suppose that ܶˊ is a tree with n (≥12) vertices and ∆( ܶˊ) ≥ 5. If ܶˊ ∉ 
ܶ(1(ହ), (݊ − 6)(ଶ), 5(ଵ)) and T ∈ ܶ(1(ହ), (݊ − 6)(ଶ), 5(ଵ)), then D(T) ≺ D( ܶˊ). 

Proof. Suppose ݒଵ ∈ V( ܶˊ) and ݀ ்ˊ(ݒଵ) = ∆( ܶˊ). Let U = {v ∈ V( ܶˊ) | v≠  .{ଵ, ݀ ்ˊ(v) ≥ 3ݒ
Again, using Lemma 3 on vertices in U, provided that the adequate number of times 
considered, we arrive at a tree ௠ܶ with only one vertex ݒଵ of degree ∆( ܶˊ); whereas the 
degree of other vertices is 1 or 2. In addition, by repeating application of Lemma 3 on ݒଵ, 
(∆( ܶˊ)− 5)–times, we arrive at a tree T, such that ݊ହ (T) = 1 and ݊௜= 0, for i ≥ 3 and i ≠5. 
On the other hand, by Lemma  2 we have ݊ଵ (T) = 5 and ݊ଶ (T) = n − 6. Therefore, T ∈ 
ܶ(1(ହ), (݊ − 6)(ଶ), 5(ଵ)) and D(T) ≺ D( ܶˊ) is followed by Lemma 3. 
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Table 1. Classes of Trees and their Multiplicative Version of Zagreb Indices. 

Class ߨଵ ߨଶ 
ܶ((݊ − 2)(ଶ), 2(ଵ)) 2ଶ(௡ିଶ) 2ଶ(௡ିଶ) 

ܶ൫1(ଷ), (݊ − 4൯
(ଶ)

, 3(ଵ)) 3ଶ × 2ଶ(௡ିସ) 3ଷ × 2ଶ(௡ିସ) 

ܶ൫2(ଷ), (݊ − 6൯
(ଶ)

, 4(ଵ)) 3ସ × 2ଶ(௡ି଺) 3଺ × 2ଶ(௡ି଺) 

ܶ൫3(ଷ), (݊ − 8൯
(ଶ)

, 5(ଵ)) 3଺ × 2ଶ(௡ି଼) 3ଽ × 2ଶ(௡ି଼) 

ܶ൫4(ଷ), (݊ − 10൯
(ଶ)

, 6(ଵ)) 3଼ × 2ଶ(௡ିଵ଴) 3ଵଶ × 2ଶ(௡ିଵ଴) 

ܶ൫5(ଷ), (݊ − 12൯
(ଶ)

, 7(ଵ)) 3ଵ଴ × 2ଶ(௡ିଵଶ) 3ଵହ × 2ଶ(௡ିଵଶ) 

ܶ൫1(ସ), (݊ − 5൯
(ଶ)

, 4(ଵ)) 4ଶ × 2ଶ(௡ିହ) 4ସ × 2ଶ(௡ିହ) 

ܶ൫1(ସ), 1(ଷ), (݊ − 7൯
(ଶ)

, 5(ଵ)) 4ଶ × 3ଶ × 2ଶ(௡ି଻) 4ସ × 3ସ × 2ଶ(௡ି଻) 

ܶ൫1(ସ), 2(ଷ), (݊ − 9൯
(ଶ)

, 6(ଵ)) 4ଶ × 3ସ × 2ଶ(௡ିଽ) 4ସ × 3଺ × 2ଶ(௡ିଽ) 

ܶ൫2(ସ), (݊ − 8൯
(ଶ)

, 6(ଵ)) 4ସ × 2ଶ(௡ି଼) 4଼ × 2ଶ(௡ି଼) 

ܶ൫1(ହ), (݊ − 6൯
(ଶ)

, 5(ଵ)) 5ଶ × 2ଶ(௡ି଺) 5ହ × 2ଶ(௡ି଺) 

Table 2. Classes of Trees and their General First Zagreb Indices. 

Class ܯଵ
ఈ 

ܶ((݊ − 2)(ଶ), 2(ଵ)) (݊ − 2)2ఈ + 2 

ܶ൫1(ଷ), (݊ − 4൯
(ଶ)

, 3(ଵ)) 3ఈ + (݊ − 4)2ఈ + 3 

ܶ൫2(ଷ), (݊ − 6൯
(ଶ)

, 4(ଵ)) 2 × 3ఈ + (݊ − 6)2ఈ + 4 

ܶ൫3(ଷ), (݊ − 8൯
(ଶ)

, 5(ଵ)) 3 × 3ఈ + (݊ − 8)2ఈ + 5 

ܶ൫4(ଷ), (݊ − 10൯
(ଶ)

, 6(ଵ)) 4 × 3ఈ + (݊ − 10)2ఈ + 6 

ܶ൫5(ଷ), (݊ − 12൯
(ଶ)

, 7(ଵ)) 5 × 3ఈ + (݊ − 12)2ఈ + 7 

ܶ൫1(ସ), (݊ − 5൯
(ଶ)

, 4(ଵ))  4ఈ + (݊ − 5)2ఈ + 4 

ܶ൫1(ସ), 1(ଷ), (݊ − 7൯
(ଶ)

, 5(ଵ)) 4ఈ + 3ఈ + (݊ − 7)2ఈ + 5 

ܶ൫1(ସ), 2(ଷ), (݊ − 9൯
(ଶ)

, 6(ଵ)) 4ఈ + 2 × 3ఈ + (݊ − 9)2ఈ + 6 

ܶ൫2(ସ), (݊ − 8൯
(ଶ)

, 6(ଵ)) 2 × 4ఈ + (݊ − 8)2ఈ + 6 

ܶ൫1(ହ), (݊ − 6൯
(ଶ)

, 5(ଵ)) 5ఈ + (݊ − 6)2ఈ + 5 
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4. MAIN THEOREMS 

Based on Tables 1 and 2 and the transformations in Section 3, the main theorems are 
discussed below.   
 

Remark 2. For n ≥ 12, we assume that ଵܶ := ௡ܲ, ଶܶ ∈ ܶ൫1(ଷ), (݊ − 4൯
(ଶ)

, 3(ଵ)), ଷܶ ∈ 

ܶ൫2(ଷ), (݊ − 6൯
(ଶ)

, 4(ଵ)), ସܶ ∈ ܶ൫1(ସ), (݊ − 5൯
(ଶ)

, 4(ଵ)), ହܶ ∈ ܶ൫3(ଷ), (݊ − 8൯
(ଶ)

, 5(ଵ)), ଺ܶ ∈ 

ܶ൫1(ସ), 1(ଷ), (݊ − 7൯
(ଶ)

, 5(ଵ)), ଻ܶ∈ܶ൫4(ଷ), (݊ − 10൯
(ଶ)

, 6(ଵ)), ଼ܶ   ∈ܶ൫1(ହ), (݊ − 6൯
(ଶ)

, 5(ଵ)), 

ଽܶ  ∈ ܶ൫1(ସ), 2(ଷ), (݊ − 9൯
(ଶ)

, 6(ଵ)), ଵܶ଴  ∈ ܶ൫2(ସ), (݊ − 8൯
(ଶ)

, 6(ଵ)) and ଵܶଵ ∈ 

ܶ൫5(ଷ), (݊ − 12൯
(ଶ)

, 7(ଵ)). 
 
Theorem 7. ߨଵ( ଵܶ) > )ଵߨ  ଶܶ) > )ଵߨ ଷܶ) > )ଵߨ ସܶ) > )ଵߨ ହܶ) > )ଵߨ ଺ܶ) > )ଵߨ ଻ܶ) >
଼ܶ)ଵߨ ) > )ଵߨ ଽܶ) > )ଵߨ ଵܶ଴) > )ଵߨ ଵܶଵ). 
 
Proof. Make use of Table 1. 
 
Theorem 8. If n ≥ 12 and ܶ ∈ ߬(݊)\{ ଵܶ, ଶܶ, … , ଼ܶ }, then ߨଵ( ଵܶ) > )ଵߨ ଶܶ) > )ଵߨ ଷܶ) >
)ଵߨ ସܶ) > )ଵߨ ହܶ) > )ଵߨ ଺ܶ) > )ଵߨ ଻ܶ) > ଼ܶ)ଵߨ ) >  .(ܶ)ଵߨ
 
Proof. Theorem 7 shows that ߨଵ( ଵܶ) > )ଵߨ ଶܶ) > )ଵߨ ଷܶ) > )ଵߨ ସܶ) > )ଵߨ ହܶ) > )ଵߨ ଺ܶ) >
)ଵߨ ଻ܶ) > ଼ܶ)ଵߨ ). If ܶ ∈{ ଽܶ, ଵܶ଴, ଵܶଵ}, then the result follows from Theorem 7. If ∆(T) = 3 
and ݊ଷ (T) ≥ 6, then ߨଵ( ଵܶଵ) >  ଵ(ܶ), by Theorems 3 and 1(I), and thus Theorem 7ߨ
implies ߨଵ(଼ܶ  ଵ (T). Assume that ∆(T) = 4. If ݊ସ (T) = 1 and ݊ଷ (T) ≥ 3, then byߨ < (
Theorems 4 and 1(I) we drive that ߨଵ( ଽܶ) >  ଵ(ܶ). Therefore, the result is an immediateߨ
consequence of Theorem 7. If ݊ସ(ܶ) ≥ 2, then by Theorems 5 and 1(I) the ߨଵ( ଵܶ଴) >
(ܶ)∆ ଵ(ܶ) will be yielded. Ifߨ ≥ 5,  then by Theorems 6 and 1(I) the ߨଵ(଼ܶ ) >  ଵ(ܶ) canߨ
be obtained and again  Theorem 7 gives the result. Ultimately, otherwise, ܶ ∈ 
{ ଵܶ, ଶܶ, … , ଼ܶ }. 
 
Theorem 9. ߨଶ( ଵܶ) < )ଶߨ ଶܶ) < )ଶߨ ଷܶ) < )ଶߨ ସܶ) < )ଶߨ ହܶ) < )ଶߨ ଺ܶ) < )ଶߨ ଻ܶ) <
)ଶߨ ଽܶ) < ଼ܶ)ଶߨ ) < )ଶߨ ଵܶଵ) < )ଶߨ ଵܶ଴). 
 
Proof. Apply Table 1. 
 
Theorem 10. If n ≥ 12 and ܶ ∈ ߬(݊)\{ ଵܶ, ଶܶ, … , ଻ܶ, ଽܶ}, then πଶ(Tଵ) < πଶ(Tଶ) <
πଶ(Tଷ) < πଶ(Tସ) < πଶ(Tହ) < πଶ(T଺) < πଶ(T଻) < πଶ(Tଽ) < πଶ(T). 
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Proof. We get πଶ(Tଵ) < πଶ(Tଶ) < πଶ(Tଷ) < πଶ(Tସ) < πଶ(Tହ) < πଶ(T଺) < πଶ(T଻) <
πଶ(Tଽ) from Theorem 9. If ܶ ∈ {଼ܶ , ଵܶ଴, ଵܶଵ}, then Theorem 9 implies ߨଶ( ଽܶ) <  ଶ(ܶ). Ifߨ
∆(T) = 3 and ݊ଷ (T) ≥ 6, then by Theorems 3, 1(II) and 9, ߨଶ( ଽܶ) <  ଶ(ܶ). Assume thatߨ
∆(T) = 4. If ݊ସ (T) = 1 and ݊ଷ (T) ≥ 3, then by using Theorems 4, 1(II) and 9, ߨଶ( ଽܶ) <
(ܶ)ଶ(ܶ). If ݊ସߨ ≥ 2, then by Theorems 5 and 1(II) we have ߨଶ( ଵܶ଴) <  ,ଶ(ܶ). Henceߨ
Theorem 9 yields the result. If ∆(ܶ) ≥ 5,  then by Theorems 6 and 1(II) we have ߨଶ(଼ܶ ) <
)ଶߨ ଶ(ܶ) and Theorem 9 impliesߨ ଽܶ) < ܶ ,ଶ(ܶ). Eventually, otherwiseߨ ∈ 
{ ଵܶ, ଶܶ, … , ଻ܶ, ଽܶ}. 

Theorem11. 
 
 (I) If α < 0 or α > 1, then 

ଵܯ
ఈ( ଵܶ) < ଵܯ

ఈ( ଶܶ) < ଵܯ
ఈ( ଷܶ) < ଵܯ} ݊݅݉

ఈ( ସܶ),ܯଵ
ఈ( ହܶ),ܯଵ

ఈ( ଺ܶ),ܯଵ
ఈ( ଻ܶ),ܯଵ

ఈ(଼ܶ ),
ଵܯ

ఈ( ଽܶ),ܯଵ
ఈ( ଵܶ଴),ܯଵ

ఈ( ଵܶଵ)}. 
(II) If 0 <α < 1, then 

ଵܯ
ఈ( ଵܶ) > ଵܯ

ఈ( ଶܶ) > ଵܯ
ఈ( ଷܶ) > ଵܯ} ݔܽ݉

ఈ( ସܶ),ܯଵ
ఈ( ହܶ),ܯଵ

ఈ( ଺ܶ),ܯଵ
ఈ( ଻ܶ),ܯଵ

ఈ(଼ܶ ),
ଵܯ

ఈ( ଽܶ),ܯଵ
ఈ( ଵܶ଴),ܯଵ

ఈ( ଵܶଵ)}. 
(III) If α = 2, then 

ଵܯ         
ఈ( ଵܶ) < ଵܯ

ఈ( ଶܶ) < ଵܯ
ఈ( ଷܶ) < ଵܯ

ఈ( ସܶ) = ଵܯ
ఈ( ହܶ) < ଵܯ

ఈ( ଺ܶ) = ଵܯ
ఈ( ଻ܶ)

< ଵܯ
ఈ( ଽܶ) = ଵܯ

ఈ( ଵܶଵ) < ଵܯ
ఈ(଼ܶ ) = ଵܯ

ఈ( ଵܶ଴).  
(IV) If α = ଵ

ଶ
 , then 

ଵܯ    
ఈ( ଵܶ) > ଵܯ

ఈ( ଶܶ) > ଵܯ
ఈ( ଷܶ) > ଵܯ

ఈ( ସܶ) > ଵܯ
ఈ( ହܶ) > ଵܯ

ఈ( ଺ܶ) > ଵܯ
ఈ( ଻ܶ)

> ଵܯ
ఈ(଼ܶ ) > ଵܯ

ఈ( ଽܶ) > ଵܯ
ఈ( ଵܶଵ) > ଵܯ

ఈ( ଵܶ଴).   
 
Proof. (I) The proof of  ܯଵ

ఈ( ଵܶ) < ଵܯ
ఈ( ଶܶ) would suffice and other cases can be proved in 

a similar manner. For this purpose, the following equation is applied: 
 

ଵܯ
ఈ( ଵܶ)−ܯଵ

ఈ( ଶܶ) = (2 × 2ఈ) − (3ఈ + 1).                      (1) 
 
Let X = (2,2) and Y = (3,1), thenX ≺ Y. By Lemma 2 (I), the (2 × 2ఈ) < (3ఈ + 1) is 
yielded. Now, Equation (1) shows that ܯଵ

ఈ( ଵܶ) < ଵܯ
ఈ( ଶܶ). 

 
(II) Here, ܯଵ

ఈ( ଵܶ) > ଵܯ
ఈ( ଶܶ) is proved. Other cases can be proved in a similar manner. It 

is easy to check that: 
 

ଵܯ
ఈ( ଵܶ)−ܯଵ

ఈ( ଶܶ) = (2 × 2ఈ) − (3ఈ + 1).    (2) 
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Let X = (2,2) and Y = (3,1), then X ≺ Y. Thus, by Lemma 2(II) we have (2 × 2ఈ) > 
(3ఈ + 1). Therefore, Equation (2) implies ܯଵ

ఈ( ଵܶ) > ଵܯ
ఈ( ଶܶ). To prove (III) and (IV), it is 

enough to apply Table 2. 
 
Theorem 12. 

I. If α < 0 or α > 1 and T ∈ τ(n)\{ ଵܶ, ଶܶ, ଷܶ}, then ܯଵ
ఈ( ଵܶ) < ଵܯ

ఈ( ଶܶ) < ଵܯ
ఈ( ଷܶ) <

ଵܯ
ఈ(ܶ). 

II. If 0 < α < 1 and T ∈ τ(n) \ { ଵܶ, ଶܶ, ଷܶ}, then ܯଵ
ఈ( ଵܶ) > ଵܯ

ఈ( ଶܶ) > ଵܯ
ఈ( ଷܶ) >

ଵܯ
ఈ(ܶ). 

III. If α = 2 and T ∈ τ(n)\{ ଵܶ, ଶܶ, … , ଻ܶ, ଽܶ}, then ܯଵ
ఈ( ଵܶ) < ଵܯ

ఈ( ଶܶ) < ( ଷܶ) <
ଵܯ

ఈ( ସܶ) = ଵܯ
ఈ( ହܶ) < ଵܯ

ఈ( ଺ܶ) = ଵܯ
ఈ( ଻ܶ) < ଵܯ

ఈ( ଽܶ)  = ଵܯ
ఈ( ଵܶଵ) < ଵܯ

ఈ(ܶ).       
IV. If α = ଵ

ଶ
 and T ∈ τ(n) \{ ଵܶ, ଶܶ, … , ଼ܶ }, then ܯଵ

ఈ( ଵܶ) > ଵܯ
ఈ( ଶܶ) > ଵܯ

ఈ( ଷܶ) >
ଵܯ

ఈ( ସܶ) > ଵܯ
ఈ( ହܶ) > ଵܯ

ఈ( ଺ܶ) > ଵܯ
ఈ( ଻ܶ) > ଵܯ

ఈ(଼ܶ ) > ଵܯ
ఈ(ܶ). 

 
Proof. (I) Theorem 11(I) shows that ܯଵ

ఈ( ଵܶ) < ଵܯ
ఈ( ଶܶ) < ଵܯ

ఈ( ଷܶ). UsingTheorem 11(I), 
it suffices to prove that there exists ୧ܶ ∈ { ସܶ, ହܶ, … , ଵܶଵ} such that Mଵ

஑(T୧) < Mଵ
஑(T). If 

∆(T) = 3 and ݊ଷ(T) ≥ 6, then by Theorems 3 and 2(I), the Mଵ
஑(Tଵଵ) < Mଵ

஑(T) is yielded. 
Assume that ∆(T) = 4. If ݊ସ(T) = 1 and ݊ଷ(T) ≥ 3. Then by Theorems 4 and 2(I) we obtain 
Mଵ
஑(Tଽ) < Mଵ

஑(T). If ݊ସ(T) ≥ 2, Theorems 5 and 2(I) imply that ܯଵ
ఈ( ଵܶ଴) < ଵܯ

ఈ(ܶ). If  
∆(T) ≥ 5, then Theorems 6 and 2(I) yields ܯଵ

ఈ(଼ܶ ) < ଵܯ
ఈ(ܶ). Finally, otherwise, T ∈ 

{ ସܶ, ହܶ, … , ଵܶଵ} and thefore Mଵ
஑(Tଷ) < Mଵ

஑(T) follows from Theorem 11(I). 
 
(II) This case can be proved by the same procedure as mentioned in the proof (I). Instead 
of using Theorems 11(I) and 2(I) in the proof of (I), here we apply Theorems 11(II) and 
2(II), respectively.  
 
(III) Theorem 11 (III) yields  ܯଵ

ఈ( ଵܶ) < ଵܯ
ఈ( ଶܶ) < ( ଷܶ) < ଵܯ

ఈ( ସܶ) = ଵܯ
ఈ( ହܶ) <

ଵܯ
ఈ( ଺ܶ) = ଵܯ

ఈ( ଻ܶ) < ଵܯ
ఈ( ଽܶ) = ଵܯ

ఈ( ଵܶଵ). It will thus be sufficient to prove that there 
exists a ୧ܶ ∈ {଼ܶ , ଵܶ଴, ଵܶଵ}, with ܯଵ

ఈ( ௜ܶ) < ଵܯ
ఈ(ܶ). If ∆(T) = 3 and ݊ଷ(T) ≥ 6, then by 

Theorems 3 and 2(I) we have ܯଵ
ఈ( ଵܶଵ) < ଵܯ

ఈ(ܶ). Assume that ∆(T) = 4. If ݊ସ(T) = 1 and 
݊ଷ(T) ≥ 3. then Theorems 4 and 2(I) give ܯଵ

ఈ( ଽܶ) < ଵܯ
ఈ(ܶ). If ݊ସ(T) ≥ 2, then by 

Theorems 5 and 2(I) we have ܯଵ
ఈ( ଵܶ଴) < ଵܯ

ఈ(ܶ). If ∆(T) ≥ 5, then Theorems 6 and 2(I) 
yield ܯଵ

ఈ(଼ܶ ) < ଵܯ
ఈ(ܶ). Eventually, otherwise, T ∈ {଼ܶ , ଵܶ଴, ଵܶଵ} and again Theorem 

11(III) gives the result. 
(IV) This case can be proved by a similar argument as in the proof of (III). Instead of 
using Theoresms 11(III) and 2(I) in the proof of (III), here we apply Theorems 11(IV) and 
2(II), respectively. 
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Figure 3. The Trees in Remark 2. 
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1 INTRODUCTION 

There are many problems in mathematics, chemistry, physics and some engineering 
sciences which are connected to the second-order differential equations. For example, in 
the process of the formation of methyliodide (CH3I) by the biological and photochemical 
production mechanisms in a biogeochemical module, the following equation appears: 

                                 ),(
dz
dcA

z
FSP

dt
dc

Seaair 


                                            (1) 

which describes the evolution of methyl iodide concentration (c [mmolm−3]) over time 
under production (P), degradation (S), air–sea exchange (F), as well as turbulent vertical 
diffusion (Aν−diffusion coefficient) (see [26]). Using the separation of variables technique 
we can transform the equation (1) to the following second-order differential equation: 
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                                                 ,0)(2 





  yxq

x
Ay                                                    (2) 

where λ is the spectral parameter, A is a real number, the potential q(x) is real-valued. 
Equation (2) has a singularity at the endpoint x = 0. For other examples, in quantum 
chemistry or quantum mechanics, we refer to the quantum modeling of the hydrogen atom, 
or the Hellman equation to finding an approximation for the simplified description of 
complex systems, which can be transformed to (2) (see also [3, 4, 6, 13, 15, 17, 24]). 
 Inverse problems associated with the equation (2) with A=0 have various versions. 
The first version was studied by Borg and Levinson, and it is shown that the potential q(x) 
can be uniquely determined from the given boundary condition and one possible reduced 
spectrum [5, 18]. For the second version, using two spectra λn and λˊn, Marchenko uniquely 
determined the potential q(x) and the corresponding boundary conditions [20]. Finally, 
Gelfand and Levitan proved that q(x) uniquely determined by the spectral function [12].  

Some inverse problems having singularities or turning points, and/or discontinuity 
conditions were studied by the above methods in many works (see [1, 2, 8-11, 16, 19, 23, 
27]). Note that, in [22], we considered a second-order differential equation of Sturm-
Liouville type having two turning points and singularities in a finite interval. Then, its 
asymptotic form of the solutions was studied, and obtained the infinite representation of the 
solutions of differential equation which plays an important role in investigating the 
corresponding inverse problem.          
 In later years, in some interesting works but without singularity, inverse problems 
were investigated using a new spectral data which are so-called nodal points, and their 
corresponding inverse problems are so-called inverse nodal problems. Mclaughlin seems to 
have been the first to consider this method for the one-dimensional Schrödinger equations 
[21]. For other works, see also [7, 14, 25]. 
 In this work, we consider the inverse nodal problem associated with the singular 
differential equation (2) and the Dirichlet boundary condition  
                                                        ),1(0)0( yy                                                              (3) 
on the interval (0,1). We also assume that 
                                                     ),1,0()( 122 0 Lxxq k                                                        (4) 
where k0 is a member of {2,3,4,…}. The problem (2)-(3) has infinitely many nontrivial 
solutions. The values of λ for which there exist nontrivial solutions are so-called 
eigenvalues, and their corresponding nontrivial solutions y(x,λ) are so-called 
eigenfunctions. All the eigenvalues are real and the set of the eigenvalues is countably 
infinite, and also the eigenvalues can be arranged in increasing order as follows 
 

                                                         ...,321     
such that λn as n. In the present paper, first, we obtain the asymptotic formula for 
the eigenvalues, the nodes of the eigenfunctions and the nodal lengths (Section 2). Then, 
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we prove that the set of the nodal points of the boundary value problem (2)−(3) is dense in 
the interval (0,1) and the potential q(x) can be uniquely determined from this new kind of 
spectral data (see Section 3). 
 
2 ASYMPTOTIC FORMULA FOR NODAL POINTS 

We consider the boundary value problem L=L(q(x)) defined by (2)-(3). Assume that in (2), 

                                      ,
4
12 A  ,

2
1

0  k    ,...4,3,20 k .                                     (5)      

From [11], we know that the equation (2) has two solutions y1(x,λ) and y2(x,λ), 
which are linearly independent with respect to x, and also have the following asymptotic 
forms as  λ : 

                                     00
12/)1(

1 ]1[]1[)1(),( 00 xixikk eexy    ,                            (6) 

                                     0
1

0
2/

2 ]1[)1(]1[
4
1),( 00 xikxik eeixy    ,                        (7) 

where ))((1]1[ 1
0

 xO  . Therefore, the solution y(x,λ) of the equation (2) under the 
condition y(0)=0 can be written as a linear combination of y1 and y2. Also, since the 
boundary value problem L is self-adjoint and y1, y2 are entire in λ, thus all of the 
eigenvalues of L are real and simple. In the case when k0 is odd, it follows from (3), (7) that 
y(x,λ)= y2(x,λ) and the asymptotic form of the eigenvalues as follows 

                                                        







n
Onqn

1)(  .                                                  (8) 

Similarly, in the case when k0 is even, we derive from (3), (6) that y(x,λ)= y1(x,λ)  
and also the eigenvalues of L may be calculated as (8). 
 For the boundary value problem L an analog of Sturm's oscillation theorem is true. 
More precisely, the eigenfunctions yn(x)= y(x,λn) has exactly n-1 (simple) zeros inside the 
interval (0,1), namely: 

1...0 )1()2()1(  n
nnn xxx . 

The set 
                                               )(: j

nL xX  ,   1n ,    1,1  nj ,                                       (9) 
 

is called the set of nodal points of the problem L. Also, let 
],[: )1()()(  j

n
j

n
j

n xxI  
 

be the jth nodal domain of the nth eigenfunction yn, and let 
)()1()()( : j

n
j

n
j

n
j

n xxI    
 

be the associated nodal length. Inverse nodal problems consist in recovering the potential 
q(x) from the given set XL of nodal points or from a certain its part. 
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Now, in the following theorem, we develop asymptotic expressions for nodal points 
)( j

nx  and the nodal lengths )( j
n  (n=1,2,3,…, j=1,2…,n-1) at which yn, the eigenfunction 

corresponding to the eigenvalue λn of the problem L, vanishes. 
 

Theorem 1. We consider the equation (2) under Dirichlet boundary condition (3). Let q(x) 
satisfies (4), then the nodal points of the problem L defined by (2)-(3) are 

                                                                        



















,1,...,3,2,1,...,3,2,1

,1)(

njn
n

O
n
jx j

n
                                              (10) 

and the nodal lengths are  









n
O

n
j

n
11)( . 

Proof. Suppose ν=k0-1/2 and k0 is odd. Then, by (7)-(8) and solving y2(x,λn)=0, we 
approximate the nodal points of the form (10). Similarly, in the case when k0 is even, using 
(6), (8) and from y1(x,λn) = 0 we arrive at (10). Moreover, 
                                        )()1()( j

n
j

n
j

n xx     

                                              

































n
O

n
j

n
O

n
j 111                  

                                              







n
O

n
11 .                                                                             □ 

Theorem 1, specially the relation (10), provide the sufficient conditions for the 
uniqueness theorem in the next section. 
 

3 THE UNIQUENESS THEOREM 

In this section, we show that the set of the nodal points )( j
nx of the form (10) is dense in 

(0,1). Then, we prove a uniqueness theorem for the solution of the inverse nodal problem 
associated with the boundary value problem L. 
 

 First, we consider the equation    
  

                                          ,0),(),(   xwxw     10  x ,                                       (11) 

with the boundary conditions 
                                                    ),1(0),0(  ww  .                                                      (12) 

It is easily shown that the solution of the problem (11)-(12) is )sin(),( xxw   . 
Furthermore, the exact eigenvalues of the problem L0 defined by (11)-(12) are 
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                                                             ,22 nn                                                               (13) 
and their corresponding eigenfunctions are 
                                                 )sin(),()( xnxwxw nn   .                                             (14) 

Since for each n {2,3,4,…} there exist k {0,1,2,…} and m {1,2,…,2k} such 
that n=2k+1-m+1, so according to (13)-(14), the set 
 

 kk mkm 2,...,2,1,...,2,1,0|)12( 221   , 

consists of all eigenvalues of (11)-(12) except 1=2. Moreover, the eigenfunction 
corresponding to the eigenvalue n=(2k+1-m+1)2 is  
 

))12sin((),( 1 xmxw k
n    , 

 

so that m/(2k+1-m+1) is a zero of the eigenfunction wn(x). Therefore, the set of the nodal 
points of L0 is  
                                 

1,1,
:

0 


njjn
j

nLX   

                                         02,...,2,1,...,2,1,0|
12 1 












 
k

k mk
m

m .               (15) 

 

Lemma 1. The set 
0LX , defined by (15), is dense in [0,1].  

 

Proof. For each fixed k {0,1,2,…}, we have 
 























  12
2,...,

22
3,

12
2,

2
12,...,2,1|

12 1111 k

k

kkk
k

k m
m

m . 

 

Moreover,  

                                         11 2
10

2
1

  kk ,          
12

1
12

21





 kk

k

,                                 (16) 
 

and for m=1,2,…,2k−1,  

121)1(2
1: 11,







  m
m

m
m

kkkm  

                                                   
)12()2(

12
11

1




 



mm kk

k

. 
 

Hence, there exists a sufficiently large number k  such that for each kk   we have  
 

                                                             
1

1
,




k
km .                                                           (17) 
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Now, let :,kmx m/(2k+1−m+1). Then, for each ]1,0[x , there exists m {1,2,…,  
2k−1} such that 
                                    ],0[ ,1 kxx    ],[ ,1, kmkm xxx     ]1,[ ,2 kkxx .                             (18) 
 

On the other hand, the right sides of equations (16) and (17) tend to zero as k . 
This together with the equation (18) completes the proof.                                                    □ 
 
Theorem 2. The set of the nodal points of the boundary value problem L, XL, is dense in 
the interval (0,1).  
                          

Proof. It follows from (15) that the nodal points )( j
n  of L0 have the form 

n
jj

n )( ,      2n ,  1,...,3,2,1  nj . 

Thus, using (10) we obtain 

                                                     







n
Ox j

n
j

n
1)()(  .                                                        (19) 

By (19) and Lemma 1, we conclude that XL is dense in (0,1).                                   □  
 
 Now, we prove the main result of this section. 
 
Theorem 3. Consider the boundary value problems defined by 
 

                                 ,0)(2 





  yxq

x
Ay i     2,1i ,   )1,0(x ,                             (20) 

 

and Dirichlet condition 
 

                                                         )1(0)0( yy  .                                                         (21) 
 

Let 21, qq , satisfy the condition (4) and )()( 2
)(

1
)( qxqx j

n
j

n  . Then 21 qq   (a.e.). 
 

Proof. First, we consider the case when k0 is odd, in (5). Let x be an arbitrary, fixed number 
in the interval [0,1]. Since the set of the nodal points XL, defined in (9), is dense in the 
interval (0,1) by Theorem 2, it follows that there exists a subsequence {nk}, k=1,2,3,…, 
such that 
 

                                                          xx j
nk k


)(lim .                                                        (22) 

 

Let ))(,()(~
2 ini qxyxy

k
  be the solution of (20)-(21) with the potential qi(x). Then, 

using (20) we derive                               
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  )(~)(~)()()()())('~~'~~( 2121212112 xyxyqqxqxqxyyyy
dx
d

kk nn   .                (23)    
 

Integrating (23) from 0  to )()(:),( 2
)(

1
)()( qxqxxnjx j

n
j

n
j

nk kkk
 , we get 

 

         
),(

0 212121
),(

02112 )(~)(~)()()()(|))('~~'~~( k

kk

k
njx

nn
njx dttytyqqtqtqxyyyy  .      (24) 

 

Since 0)),((~)),((~
21  kk njxynjxy , the left side of (24) is equal to zero for each 

k {1,2,3,…}. Thus,  
 

         0)(~)(~)()()()(
),(

0 212121 
k

kk

njx

nn dttytyqqtqtq  , 
 

for ,...3,2,1k . We are done if we can show 

0))()((
0 21  dttqtq
x

. 

For this goal, by (8) we have 
 

0)()( 21  qq
kk nn    as k . 

 

Hence, together with (22) and (24) these results imply 
 

                                      0)(~)(~))()((lim
0 2121

22 

x

kk dttytytqtqn  .                              (25) 
 

Moreover, it follows from (7) that there exists a constant C such that for sufficiently 
large k, we have  
 

322
21 )()(sin)()(~)(~    kkk nCxnnxyxy . 

  

So,  
 

                                        )(sin)(~)(~ 2
21

22 xnxyxyn kk   ,    k .                                   (26) 
 

Therefore, by (25)(26) we get 
 

                                                    0))()((
0 21 
x

dttqtq .                                                   (27) 
 

Finally, since x  was chosen arbitrary in the interval [0,1], together with (27) this 
yields q1=q2 (a.e.). In the case when k0 is even, Theorem 3 can be proved similarly, by (6) 
and the same way as above.                                                                                                   □ 
 
 Theorem 3 shown that the solution of the inverse nodal problem associated with 
(2)−(3), the potential function q(x), can be uniquely determined by a dense set of nodes of 
the eigenfunctions. 
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Nowadays, numerical models have great importance in every field 
of science, especially for solving the nonlinear differential 
equations, partial differential equations, biochemical reactions, etc. 
The total time evolution of the reactant concentrations in the basic 
enzyme-substrate reaction is simulated by the Runge-Kutta of order 
four (RK4) and by Non-standard finite difference (NSFD) method. 
ANSFD model has been constructed for the biochemical reaction 
problem and numerical experiments are performed for different 
values of discretization parameter ‘h’. The results are compared 
with the well–known numerical scheme, i.e. RK4. Unlike RK4 
which fails for large time steps, the developed scheme NSFD gives 
results that converge to true steady states for any time step used. 
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1. INTRODUCTION  AND PRELIMINARIES 

In this paper, we consider the well-known Michaelis-Menten biochemical reaction model 
[1], i.e., the single enzyme substrate reaction scheme 

ܧ + ܣ ⇌ ܻ ⟶ ܧ + ܺ,                                                                  (1) 
where ܧ is the enzyme, A the substrate, ܻ the intermediate complex and ܺ the product. The 
time evolution of scheme (1) can be determined from the solution of the system of coupled 
nonlinear ODE [2]. 
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YkEAk
dE
dA

11  ,                                                                 (2) 

,)( 211 YkkEAk
dt
dE

                                        (3) 

,)( 211 YkkEAk
dt
dY                                                         (4) 

,2Yk
dt
dX                                                      (5) 

subject to the initial conditions 
0)0(,0)0(,)0(,)0( 00  XYEEAA                             (6) 

where the parameters ݇ଵ, ݇ିଵ and ݇ଶ are positive rate constants for each reaction. Systems 
(2) – (5) can be reduced to only two equations for ܣ and ܻ and in dimensionless form of 
concentrations of substrate ݔ, and intermediate complex between enzyme and substrateݕ, 
are given by [2]. 

xyyx
dt
dx  )(                                                              (7) 

)(1 xyyx
dt
dy

 


                                             (8) 

subject to the initial conditions 
0)0(,1)0(  yx                                                                         (9) 

where ߚ,ߙ and ߪ are dimensionless parameters. 
The time evolution of the reaction can be determined from the traditional purely 

numerical methods like the classical fourth order Runge-Kutta method (RK4), but we are 
interested in this work to solve the system of coupled nonlinear ODEs (7) and (8) by using 
NSFD. To do so, we proceed as follows: 
 
1.1 EQUILIBRIUM POINT 

To calculate equilibrium point, equate (7) and (8) equal to zero i.e, 
0)(  xyyx                                                                   (10) 

0)(1
 xyyx 


                                                                     (11) 

we obtain (ݕ,∗ݔ∗) = (0,0),that is the equilibrium point. 
 

2. RK4 METHOD 

In this section, we solve the systems (7) and (8) by RK4 Scheme as follows: 
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43211 mmmmyy nn                                                                 (13) 

2.1  NUMERICAL EXPERIMENTS 

Numerical experiments are performed using values of parameters given in Table 2.1. 
 

  

Figure 2.1. Concentration of Substrate. Figure 2.2. Concentration of Intermediate 
Complex between Enzyme and Substrate. 
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Figure 2.3. Concentration of Substrate. 
Figure 2.4. Concentration of 
Intermediate Complex between Enzyme 
and Substrate. 

 

  

Figure 2.5. Concentration of Substrate. 
Figure 2.6. Concentation of 
Intermediate Complex between 
Enzyme and Substrate. 
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݊ for ,(݈݊)ݕ and (݈݊)ݔ ௡are the approximations ofݕ௡andݔ = 0,1,2, …,  and where ‘݈’ is step 
size of time. For satisfying biological nature of the continuous time model, it should be 
non–negative. The numerical method which has been developed to solve the system must 
hold Conservation law proposed by Mickens [6, 7]. To construct the NSFD scheme for 
system (7)−(8) we note the following statements  

(i) The linear and nonlinear terms on the right hand side of Equation (7) are in the 
form nnnn yxyxyyxx   ,)()(,1   

(ii) The linear and nonlinear terms on the right hand side of Equation (8) are in the 
form 11,,   nnnn yxyxyyxx   

So,  
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Eq. (14) implies that  

h
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1
}){(1                                                  (16) 

and Eq. (15) implies that  
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3.1  CONVERGENCE ANALYSIS 

The stability and convergence of the proposed NSFD scheme about equilibrium point (0,0) 
are discussed here. Let 

,
1

}){(
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and the Jacobian matrix is 
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Lemma [11]: For the quadratic equation ߤଶ − ܣ ߤ + ܤ = 0, both roots satisfy |ߤ௜| < 1; ݅ =
1,2 if and only if the following conditions are satisfied: 

(i) AB 1  
(ii) 01  BA  
(iii) 1B  
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The first condition of the Lemma is AB 1 , so by using the values of A  and B  we have 
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which proves that h2 > 0. 
The second condition of the Lemma is 01  BA , so by using the values of A  

and B  we get 

.0
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The third condition of the Lemma is B1 , so by using the values of A  and B  we obtain 
 hh 2  .)2(0 h  

Since 0h  and all conditions of the theorem are true, the System is Stable for all 
values of h  and converges to steady state.  
 
3.2  NUMERICAL EXPERIMENTS 

Numerical experiments are performed using values of parameters given in Table 2.1. 
 

 

Figure 3.1. Concentration of Substrate. Figure 3.2. Concentration of Intermediate 
Complex between Enzyme and Substrate. 
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Figure 3.3. Concentration of Substrate. Figure 3.4. Concentration of Intermediate 
Complex between Enzyme and Substrate. 

  

Figure 3.5. Concentration of Substrate. Figure 3.6. Concentration of Intermediate 
Complex between Enzyme and Substrate. 

 

 

Figure 3.7. Concentration of Substrate. Figure 3.8. Concentration of Intermediate 
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Figure 3.9. Comparison between NSFD 
and RK4. 

Figure 3.10. Comparison between NSFD and 
RK4. 
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‘h’. Results are compared with well-known numerical method i.e. Runge–Kutta method of 
order four (RK4). Table 4.1 shows the effect of different time step, ℎ for both numerical 
schemes. 

Table 4.1. The Effect of Different Time Step. 
 

 RK4 Numerical Model ࢎ

.01 Convergence Convergence 

0.1 Convergence Convergence 

0.16 Divergence(method failed) Convergence 

0.2 Divergence Convergence 

2 Divergence Convergence 

10 Divergence Convergence 

100 Divergence Convergence 
 

Table 4.1 shows that the RK-4 method converge for small values of parameter ℎ and 
it diverges for the large values but our NSFD model will remain convergent even for a very 
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large value of discretization parameter i.e. ℎ = 1000. It isto be noted that the authors of 
[11] solved this problem by multistage homotopy perturbation method and homotopy 
perturbation method. In both cases they statedthat the step size ℎ should be very small 
otherwise the methods will diverge, but in our case, the step size is irrelevant. 

 

5. CONCLUSION 

Figures 3.9 and 3.10 show the comparison of NSFD scheme with Runge-Kutta method of 
order 4. It can be observed that when step size has been increased up to 0.16, the RK–4 
scheme gives negative values of both concentrations, while the proposed NSFD scheme 
preserves positivity and convergence of the solution for these values of step size. Unlike 
RK-4 which fails for large time steps, the developed NSFD scheme gives results that 
converged to true steady states for any time step used. The proposed scheme is easy to 
implement and numerically stable. 
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solution in a fluid is presented. This model describes the change of 
mass of the gas volume due to diffusion through the contact surface. 
An appropriate representation of the solution based on the Müntz 
polynomials reduces its numerical treatment to the solution of a 
linear system of algebraic equations. Numerical examples are given 
and discussed to illustrate the effectiveness of the proposed approach. 
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1. INTRODUCTION  

A number of examples in nature can illustrate the capability of liquids to dissolve gases; in 
fact, human life would not be feasible if blood cannot dissolve oxygen, nor marine life is 
likely to happen if oxygen did not dissolve in water. The solubility anticipation of oxygen 
gas in the liquid is important as it can be used in aquaculture and biological issues such as 
oxygen uptake in lungs and its dissolution in the blood. The prediction of CO2 gas 
solubility in water can be used for growing plants and in the production of carbonated 
drinks [24]. Such interesting natural phenomena are described by differential equations. 

This paper is concerned with providing good quality algorithm for the numerical 
solution of the three–term fractional differential equations of the form 

(ݐ)ᇱ݌ + (ݐ)݌ଵ/ଶܦ(ݐ)ܨ + (ݐ)݌(ݐ)ܩ =  (1.1)                           ,(ݐ)ܪ
combined with the suitable initial condition (0)݌ =  ଴. This equation describes the change݌
of mass of the gas volume due to diffusion through the contact surface [2]. Here, ܦଵ/ଶ(ݐ)݌ 
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denotes the fractional derivative ܦ∗
ଵ/ଶ(ݐ)݌ in the Caputo version [7] and the Riemann–

Liouville fractional derivative ܦ଴ோ௅ ௧
ଵ/ଶ(ݐ)݌, defined by 

∗ܦ
ଵ/ଶ(ݐ)݌ =  

1
ߨ√

න
(ݏ)ᇱ݌
ݐ√ − ݏ

ݏ݀
௧

଴
,                                   (1.2) 

଴ோ௅ܦ ௧

భ
మ(ݐ)݌ =  

1
ߨ√

݀
ݐ݀
න

(ݏ)݌

ݐ√ − ݏ
ݏ݀

௧

଴
,                              (1.3) 

respectively [9,23]. It is well-known that the fractional derivative of Riemann–Liouville 
and Caputo type are closely linked by the following relationship: 

∗ܦ
ଵ/ଶ(ݐ)݌ = ଴ோ௅ܦ  ௧

ଵ/ଶ[(ݐ)݌ −  (1.4)                                   .[(0)݌
Fractional calculus, including the operators of fractional order integration and 

differentiation, is known to provide an excellent setting for capturing in a model framework 
concerned with real–world problems in a variety of disciplines from physics, chemistry, 
biology and engineering [1, 4, 17, 23]. In order to approximate fractional derivatives, a 
number of methods have been proposed [4, 6, 11]. Since few of the fractional differential 
equations can be solved explicitly, it is necessary to employ numerical techniques to find 
the approximate solution. Especially, numerical schemes for the multi–term fractional 
differential equations have been developed in the past ten to fifteen years and have been 
studied in numerous papers [4, 9, 10, 22]. 

As a fractional derivative is a non–local operator, it is very natural to consider a 
global method like the spectral method for its numerical solution. Spectral collocation 
methods are efficient and highly accurate techniques for numerical solution of differential 
equations [13, 25]. The basic idea of the spectral collocation method is to assume that the 
unknown solution(ݐ)݌can be approximated by a linear combination of some basis 
functions, called the trial functions, such as orthogonal polynomials. 

Whereas the classical orthogonal polynomials work well for numerical solution of 
conventional differential equations, their application for the fractional differential equations 
implies at least two difficulties in connection with the collocation method. First, according 
to Theorems 4.1 in [16], the solutions of the problem (1.1) can contain some fractional–
power terms with which the classical orthogonal polynomials cannot match. In this case, 
the rate of convergence of the numerical approximations is not reasonable when the 
classical polynomial bases are used. Second, to apply a collocation method, it is required 
that the derivatives of any trial function can be expressed in terms of the same trial bases. 
However, the fractional derivatives of a classical polynomial are not polynomials. 
Therefore, roughly speaking, a good approximation for the fractional derivatives via the 
classical orthogonal polynomials is not hoped to be obtained. 

In the present article, the Müntz–Legendre polynomials are used, which are a family 
of generalized orthogonal polynomials. These polynomials were introduced and 
investigated in [5, 18]. A fractional derivative of a Müntz–Legendre polynomial is again a 
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Müntz–Legendre polynomial. This is a crucial feature of these bases for using them in the 
collocation method for the numerical solution of the fractional differential equations. 

The structure of the paper is as follows. In the next section, the derivation of 
mathematical model of gas solution in a fluid is briefly recalled. Then, to construct a 
numerical algorithm, this equation as a three–term fractional differential equation is 
reformulated. In Section 3, the Müntz–Legendre polynomials and related topics are 
introduced. A description of the proposed numerical scheme is provided in Section 4. Some 
details concerning the practical implementation are discussed in Section 5. Finally, the 
numerical results to demonstrate the efficiency of the proposed method are given in Section 
6. 
 
2. PROBLEM STATEMENT 

The mathematical model of the process of solution of a compressible gas volume in a fluid, 
when there are no convection currents, is described by the system [2, 23] 

݀
݀߬ ൬ ଴ܸ݂ ቀ

߬
,ቁܲ(0ߠ ߬)

ܯ
ܴܶ൰ = ܭܵ

ܥ߲
ฬ௫ୀ଴ݔ߲

,         0 < ߬ <  (2.1) ,ߠ

ܭ√−                   డ஼
డ௫
ቚ
௫ୀ଴

= ଴ோ௅ܦ ఛ
ଵ/ଶ[0)ܥ, ߬) − ,ݔ)ܥ 0)], (2.2) 

                                    ܲ(0, ߬) = ,0)ܥߢ ,ݔ)ܲ       ,(߬ 0) = ,ݔ)ܥߢ 0), (2.3) 

where ଴ܸ is the initial gas volume, ߠis the time of the gas compression to zero volume, ݂ is 
a function describing a change of the gas volume, such that ݂(0) = 1 and ݂(1) =  is ܯ ,0
the molecular weight of the gas, ܴ is the molar gas constant, ܭ is the gas diffusion 
coefficient in the fluid, ܵ is the contact surface between the gas and the fluid, ߢ is the 
Henry’s constant, ݔ)ܥ, ߬) is the gas concentration, and ܲ(ݔ, ߬) is the unknown gas pressure 
(Figure 1). 

The gas pressure near the contact surface ܲ(0, ߬) is to be found. The ݔ–axis goes 
down from the contact surface, for which ݔ = 0. The gas temperature ܶ is assumed to be 
constant, which implies the gas compression is slow enough. If necessary, a weak 
nonisothermality can be accounted by making a correction to the function ݂(߬/ߠ). The 
depth of the fluid is taken infinite [2, 23]. 

The change of the gas volume mass due to diffusion through the contact surface is 
described by (2.1). The mass change depends on the change of the gas concentration near 
the contact surface, which is given by (2.2). Taking into account the condition (2.3), makes 
the consideration of mass transfer process for ݔ > 0 unnecessary. 

The problem (2.1)−(2.3) for determining the dimensionless gas pressure 

(߬)݌ =  
ܲ(0, ߬)
,ݔ)ܲ 0) =  

,0)ܥ ߬)
,ݔ)ܥ 0), 
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near the constant surface can be written as [23] 

(ݐ)ᇱ݌ + ∗ܦ(ݐ)ܨ
ଵ/ଶ(ݐ)݌ + (ݐ)݌(ݐ)ܩ = (0)݌          ,0 = 1, (2.4) 

where 

ݐ =
߬
ߠ ∈

(ݐ)ܨ     ,[0,1) =
ߣ

(ݐ)݂ (ݐ)ܩ      , =
݂ᇱ(ݐ)
(ݐ)݂ ߣ     , =

ߠܭ√ܴܵܶ
ܯߢ ଴ܸ

 . 

 

 
Figure 1. Solution of a gas in a fluid [23]. 

 
 

3. MÜNTZ–LEGENDRE POLYNOMIALS 

Let the complex numbers from the set Λ௡ = ,଴ߣ} … , (௞ߣ)௡} satisfy the condition ℜߣ > − ଵ
ଶ
 

and ߣ௞ ≠ ݇ ,௝ߣ ≠ ݆. Then, for every ݊ = 0,1,2, …, the Müntz–Legendre polynomials on the 
interval [0,1] are defined by [5, 18] 

(ݔ;Λ௡)௡ܮ = ෍ܿ௡௞ݔఒೖ
௡

௞ୀ଴

 ,            ܿ௡௞ =
∏ ௞ߣ) + ఔߣ̅ + 1)௡ିଵ
ఔୀ଴

∏ ௞ߣ) − ఔ)௡ߣ
ఔୀ଴,ఔஷ௞

 .               (3.1) 

For the Müntz–Legendre polynomials (3.1), the orthogonality relation 

න (ݔ;Λ௠)ത௠ܮ(ݔ;Λ௡)௡ܮ
ଵ

଴
ݔ݀ =

௡௠ߜ
௡ߣ + ௠ߣ̅ + 1

 , 

holds for every ݉, ݊ = 0,1,2, …  [5]. 
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In this paper, the case when the powers of the Müntz basis elements build an 
arithmetic progression is considered [12, 20]. In other words, we assume that ߣ௞ = ݇/2. In 
this case, the Müntz–Legendre polynomials on the interval [0,1] are represented by the 
formula 

(ݐ)௡ܮ = ෍ܿ௡௞ݐ௞/ଶ
௡

௞ୀ଴

 ,            ܿ௡௞ =
(−1)௡ି௞

݇! (݊ − ݇)!ෑ(݇ + ߥ + 2)
௡ିଵ

ఔୀ଴

 .                (3.2) 

The functions ܮ௞(ݐ), ݇ = 0,1, … ,݊ form an orthogonal basis for ॸ௡, where 
ॸ௡ = span൛1, tଵ/ଶ, t, tଷ/ଶ, … , t୬/ଶൟ. 

The denseness of ॸ௡ in [0,1]ܥ, the set of continuous functions on the interval [0,1], in the 
uniform norm is characterized by ∑ 1/݇ஶ

௞ୀଵ = ∞ [5]. 
 
4. MÜNTZ–LEGENDRE COLLOCATION METHOD  

In this section, the collocation method based on Müntz–Legendre polynomials is applied 
for solving an initial value problem of the form 

(ݐ)ᇱ݌ + ∗ܦ(ݐ)ܨ
ଵ/ଶ(ݐ)݌ + (ݐ)݌(ݐ)ܩ =  (4.1) ,(ݐ)ܪ

(0)݌ =  ଴ . (4.2)݌

Under certain conditions on the functionsܩ ,ܨ and ܪ, the initial value problem (4.1)−(4.2) 
possesses unique solution݌ in an appropriate space of functions [9, 16]. As a generally 
applicable method to determine the exact solution of initial value problem (4.1)−(4.2) is not 
readily accessible, some numerically computed approximate solutions are inevitable. 
Numerical evaluation of this solution is the aim of this section. At first, the solution ݌ is 
approximated by ݌௡ ∈ ॸ௡  as the finite sum 

(ݐ)௡݌ = ∑ ܽ௞ܮ௞(ݐ)௡
௞ୀ଴ , (4.3) 

where ܽ௞ are unknown coefficients. It is worthwhile to note that if ݌௡ ∈ ॸ௡ , then ܦ∗
ଵ/ଶ݌௡ 

belongs to ॸ௡, too. This key property is crucial for application of the collocation method to 
the initial value problem (4.1)−(4.2). 

The unknown coefficients ܽ௞ in approximation (4.3) are obtained from the initial 
condition 

௡(0)݌ =  ଴ , (4.4)݌

and the fact that ݌௡(ݐ) should satisfy the fractional differential equation in some suitably 
chosen collocation points ߦ௝, ݆ = 1,2, … , ݊. More precisely, the relation holds as follows: 

௝൯ߦᇱ൫݌ + ∗ܦ௝൯ߦ൫ܨ
ଵ/ଶ݌൫ߦ௝൯ + ௝൯ߦ൫݌௝൯ߦ൫ܩ =  ௝൯. (4.5)ߦ൫ܪ

 
Substituting (4.3) into (4.4), the equation 
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෍ܽ௞݃௞଴

௡

௞ୀ଴

=  ଴, (4.6)݌

with ݃௞଴ =  ݊ ௞(0) is obtained. In its turn, equation (4.5) can be presented in form ofܮ
algebraic equations 

෍ܽ௞݃௞௝

௡

௞ୀ଴

= ݆     ,௝൯ߦ൫ܪ = 1,2, … , ݊, (4.7) 

where 
݃௞௝ = ௞ᇱܮ ൫ߦ௝൯ + ∗ܦ௝൯ߦ൫ܨ

ଵ/ଶܮ௞൫ߦ௝൯ +  . ௝൯ߦ௞൫ܮ௝൯ߦ൫ܩ

Note that ܮ௞ᇱ ൫ߦ௝൯ and ܦ∗
ଵ/ଶܮ௞൫ߦ௝൯ in (4.7) can be computed by using the subsequent stable 

methods (5.3) and (5.8), respectively. The equations (4.6) and (4.7) are nothing else but a 
linear system of ݊ + 1 equations for the ݊ + 1 unknown coefficients ܽ௞ that can be solved 
by one of the known methods. Substituting the coefficients ܽ௞ into (4.3) leads to an 
approximated solution of the fractional initial value problem (4.1)−(4.2). 

It should be noted that, the error analysis of the collocation method based on 
nonclassical polynomials is very complicated and is beyond the scope of this paper.  

  
5. IMPLEMENTATION ISSUES 

In this section, some details to provide additional insight on this new method are presented. 
 

5.1.  NUMERICAL EVALUATION OF (࢚)࢔ࡸ AND ࡰ૚/૛(࢚)࢔ࡸ 

A direct evaluation of Müntz–Legendre polynomials in the form (3.1) can be problematic 
in finite arithmetic, especially when ݊ is a large number andݔ is close to 1. These problems 
have been addressed by Milovanović in [18]. He stated that the coefficients ܿ௡௞ become 
very large when ݊ increases, but their sums are always equal to 1. 

Here, a stable method for evaluating the Müntz–Legendre polynomials defined by 
(3.2) is presented. The proposed technique is based on a three–term recurrence relation 
induced from the following theorem.  
 
Proposition 5.1. ([12]) Let ܮ௡(ݐ) be Müntz–Legendre polynomial defined by (3.2) and 
ݐ ∈ [0,1]. Then 

(ݐ)௡ܮ = ௡ܲ
(଴,ଵ)൫2√ݐ − 1൯, (5.1) 

holds true, where ௡ܲ
(଴,ଵ) is a Jacobi polynomial. 
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Hence, in view of [21, (18.9.2)], the Müntz–Legendre polynomials ܮ௡(ݐ) can be 
evaluated by means of the three–term recursion 

ܾଵ௡ܮ௡ାଵ(ݐ) = ܾଶ௡(ݐ)ܮ௡(ݐ) − ܾଷ௡ܮ௡ିଵ(ݐ),       ݊ ≥ 1, (5.2) 

where ܮ଴(ݐ) ≡ (ݐ)ଵܮ ,1 = ݐ√3 − 2, and 
            ܾଵ௡ = 2(݊ + 1)(݊ + 2)(2݊ + 1), 

                                         ܾଶ௡(ݐ) = 2(݊ + 1)ൣ(2݊+ 1)(2݊+ 3)൫2√ݐ − 1൯ − 1൧, 
  ܾଷ௡ = 2݊(݊ + 1)(2݊ + 3). 

Another result of Proposition 5.1 is a formula for evaluating ܮ௡ᇱ  ,More precisely .(ݐ)
by means of [21, (18.9.15)] the first derivative of ܮ௡(ݐ) is given by 

௡ᇱܮ (ݐ) =
݊ + 2
ݐ√2 ௡ܲିଵ

(ଵ,ଶ)൫2√ݐ − 1൯. (5.3) 

 
Proposition 5.2. ([12]) Let ܮ௡(ݐ) be Müntz–Legendre polynomial defined by (3.2) and 
ݐ ∈ [0,1]. Then 

∗ܦ
ଵ/ଶܮ௡(ݐ) =  

݊ + 2
ߨ√

න (1 − ଶ)ିଵ/ଶݔ
௡ܲିଵ
(ଵ,ଶ)൫2ݐ√ݔ − 1൯݀ݔ,

ଵ

଴
 (5.4) 

holds true. 
 
5.2.  GAUSS–TYPE QUADRATURE RULES 
An ݊–point quadrature rule for the weight function ݓ is called a formula of the type 

න ݔ݀(ݔ)݂(ݔ)ݓ
௕

௔
= ෍ݓ௞݂(ݔ௞)

௡

௞ୀଵ

+  ܴ௡[݂], (5.5) 

where the sum on the right–hand side of the equation provides an approximation to the 
integral and ܴ௡ is the error. The numbers ݔ௞, ݇ = 1, … ,݊ are called nodes and ݓ௞  are 
called weights of the quadrature rule. Among all quadrature rules of the form (5.5) those of 
the Gaussian type have the best performance. More precisely, if nodes ݔ௞ and weights ݓ௞  
are chosen in the way that quadrature rule (5.5) becomes exact for polynomials of degree at 
most 2݊ − 1, then this quadrature rule is called a Gauss–type quadrature rule. It can be 
proved that the nodes ݔ௞ in a Gaussian quadrature are the roots of the orthogonal 
polynomial (ݓ;ݐ)ߨ associated with the weight function and the weights ݓ௞  can be obtained 
from the following system of linear equations:  

෍ݓ௞ݔ௞
௝

௡

௞ୀଵ

= න ݔ݀(ݔ)ݓ௝ݔ
௕

௔
,        ݆ = 0,1, … , 2݊ − 1. (5.6) 

As ݊ increases, finding roots of (ݓ;ݐ)ߨ and solving the linear system (5.6) become 
an ill–conditioned and time consuming problem. Alternatively, the Golub–Welsch 
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algorithm to determine the nodes and the weights of a Gaussian quadrature can be used 
[15].  

The construction of the Gaussian quadrature (5.5) for an arbitrary݊ ≥ 1 can be 
realized very easy by MATHEMATICA package OrthogonalPolynomials[8,19]. 
Alternatively, for this purpose, there is also Gautschi’s package OPQ written in MATLAB 
[14]. These packages provide many other calculations with orthogonal polynomials and 
different quadrature rules, and they are downloadable from Web Sites: 
www.mi.sanu.ac.rs/gvm/ and www.cs.purdue.edu/archives/, 
respectively. 

To calculate the integral on the right–hand side of (5.4), ܰ–point Gaussian quadrature 
rule 

න (1− ଶ)ିଵ/ଶݔ
ଵ

଴
ݔ݀(ݔ)݂ = ෍ݓ௞݂(ݔ௞)

ே

௞ୀଵ

,     ݂ ∈ ℙଶேିଵ, (5.7) 

is used. The weight function (ݔ)ݓ = (1−  ଶ)ିଵ/ଶ is a nonclassical one and no explicitݔ
formulae are known for ݔ௞ and ݓ௞ . However, the Chebyshev and Golub–Welsch 
algorithms to calculate the nodes and weights in (5.7) can be used [14, 15]. The quadrature 
rule (5.7) with ܰ = ⌈݊/2⌉ becomes exact for computing the integral in (5.4). The nodes and 
weights in the generalized Gaussian quadrature rule (5.7) are reported in Table 1. 

 
Table 1: Nodes and weights in 10–point Gaussian quadrature rule (5.7). 

Nodes ݔ௞ Weights ݓ௞  
0.013428248384359 0.034319541263749 
0.165229282898357 0.077205134746572 
0.165088161001579 0.114617582317493 
0.292182309608721 0.145264568917587 
0.438817309663802 0.169221867374936 
0.591551320859218 0.187274168806872 
0.736030889552124 0.200396120129594 
0.858545000002092 0.209464924712622 
0.947393707327565 0.215148632394853 
0.994059476652251 0.217883786130620 

 
After obtaining the nodes ݔ௞ and weights ݓ௞ , the fractional derivative ܦ∗

ଵ/ଶܮ௡(ݐ) 
can be computed by using the formula 

 

∗ܦ
ଵ/ଶܮ௡(ݐ) =

݊ + 2
ߨ√

෍ ௞ݓ

⌈௡/ଶ⌉

௞ୀଵ
௡ܲିଵ
(ଵ,ଶ)൫2ݔ௞√ݐ − 1൯. (5.8) 
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This section ends with a brief discussion of collocation points. Grid points for 
orthogonal collocation method should lie approximately in a minimal–energy configuration 
associated with inverse linear repulsion between points. Hence, a proper choice of 
collocation points is crucial for the accuracy of the numerical solution and for its 
computational stability [13, 25]. In the proposed case, a particularly convenient choice for 
the collocation points ߦ௝ is ߦ௝ = ݆ ,௝ଶݐ = 1, … , ݊ where ݐ௝ are Chebyshev points associated 
with the interval [0,1], i.e., 

௝ݐ =
1
2 ൬1 − cos

݆ߨ
݊ ൰ ,     ݆ = 0,1, … , ݊ . 

 
6. NUMERICAL EXPERIMENTS 

In this section, some numerical studies are presented to illustrate and test the behavior of 
the approach described in the Section 4. As is common, there is no comparison to other 
known methods. The main reason for this is that the numerical solution for this problem 
comes only in [23] and has a slow convergence. The following numerical experiments were 
implemented through MATHEMATICA and MATLAB. 
 

Example 1. As the first experiment, given ߣ =  and the change of gas volume (ߨ√3)/8
(ݐ)݂ = 1−  then the initial value problem (2.4) has the analytical solution ,ݐ√

(ݐ)݌ = 1 + ݐ√ −
1
3 ݐ + ൬

32
ߨ27 −

1
3൰  . ݐ√ݐ

The analytical and numerical solutions of this problem are plotted in Figure 2. Furthermore, 
to explore the dependence of errors on the discretization parameter n, the error in the ∞–
norm is used. As it is seen, the presented method provides accurate results even with a few 
number of nodes.  

Example 2. Consider the initial value problem (2.4) with ݂(ݐ) = 1 −  In this case, it is .ݐ
hard to find a closed form solution of (2.4). However, thanks to the work of Babenko [3, 
(7.25)], if the compression is slow (ߣ ≫ 1), the following asymptotic representation for 
 :is obtained (ݐ)݌

(ݐ)݌ = 1 +
ݐ√2
ߨ√

1
ߣ + ൬

3
2 ݐ − 1൰

1
ଶߣ + ࣩ ൬

1
ଷߣݐ√

൰ ݐ     , > 0 . (6.1) 

Moreover, in the case of rapid compression (ߣ ≪ 1), a similar expression in powers 
of ߣ can be obtained [3, (7.26)] as follows: 

(ݐ)݌ =
1

1 − ݐ +
2
ߨ√

ቆ
ݐ√

1− ݐ −
sinିଵ ݐ√

(1 − ଷ/ଶቇ(ݐ ߣ + ࣩ ቆ
ଶߣ

(1− ଶቇ(ݐ ݐ     , < 1 . (6.2) 
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Figure 2: Analytical and numerical solutions of problem (2.4) (Example 1). 

 
In Figure 3, the numerical and asymptotic solutions of problem (2.4) are illustrated. 

These results indicate that the approximate solutions of the present method are in 
agreement with asymptotic solutions. It can be shown that the maximum pressure, ݌௠௔௫, 
occurs at ݐ = 1. On the other hand, from (6.1), the following asymptotic expression is 
obtained 

(ݐ)݌ ≈ 1 +
2
ߨ√

1
ߣ +

1
2

1
ଶߣ + ࣩ(1)

1
ଷߣ ߣ     , → ∞ . (6.3) 

The numerical solutions for various values of ݊ are reported in Table 2. As 
tabulated, the asymptotic expression (6.3) as a reference “exact” solution is used. It can be 
seen that the presented method provides accurate results and indicate an exponential decay.  

 
Table 2: Numerical solutions at ݐ = 1 and related errors with ߣ = 5 (Example 2). 

݊ 5 10 15 20 25 30 
 ௡(1) 1.2457842 1.2456764 1.2456758 1.2456758 1.2456758 1.2456758݌
Error 1.08(04) 5.93(07) 2.19(09) 5.89(12) 1.24(14) 2.22(16) 
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Figure 3. Numerical and asymptotic solutions of problem (2.4): slow compression (left) 
and rapid compression (right) (Example 2). 

 
7. CONCLUSION 

In this paper, a computational technique based on the Müntz polynomials for solution of 
mathematical model of gas solution in a fluid is presented. The exact solution of this 
problem can contain some fractional–power terms with which the Müntz polynomials can 
match. An appropriate representation of the solution based on the Müntz polynomials 
reduces its numerical treatment to the solution of a linear system of algebraic equations. 
The numerical results obtained by the new method indicated the effectiveness of the 
proposed approach.  
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Borderenergetic Graphs Of Order 12 
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  12 ۀگراف هاي فعال مرزي از مرتب

  
  اشرفی علیرضا : رابط ادیتور

 
 چکیده

 Knاز گراف کامل  Gباشد و  (2n-2)اش برابر با  هرگاه انرژي فعال مرزي گویند را n ۀز مرتبا Gگراف 
آغاز  2015درسال  منظم آن ۀکشف شد اما مطالع 2001بار درسال  چنین گرافی براي اولین .متمایز باشد

درحال حاضر مشخص  .تعیین شده است n≤11هاي فعال مرزي از مرتبه  تعداد گراف کنونتا .شد
  .وجوددارد 12 ۀاز مرتب همبند فعال مرزي عدد گراف 572کنیم که دقبقا  می
  )گراف( طیف گراف فعال مرزي، ،گراف انرژي :ت کلیديلغا
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استفاده زدایی اسمز معکوس با  کسري مدل نمک ۀعددي از مرتب ۀمطالع

  از تقریب موجک لژاندر
  

  اشرفی علیرضا : رابط ادیتور
 

 چکیده

زدایی اسمز  سازي سیستم نمک هدف از این مطالعه، گسترش یک دستاورد جدید در مدلسازي و شبیه
ترکیب مدل موجک لژاندر با تکنیک استفاده از  با. است کسريمعکوس با استفاده از معادلات دیفرانسیل 

کارایی دادن  نشان به منظور. دهیم میخطی سازي، صحت و کاربرد مدل خود را نشان  -جداسازي و شبه
. ارائه شده است مثالهایی این مدل، یتکنیک دیفرانسیل کسري و پررنگ کردن کاربرد گسترده و بازده

  .توصیف شده است مشتق کسري در مفهوم کاپوتو
، مشتق کسري DQLموجک لژاندر، تکنیک  روشسیستم نمک زدایی اسمز معکوس،  :کلیديلغات 
  کاپوتو
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اصلاح  زمانی مهندسی شیمی با روش تکرار تغییرات-حل معادلات کسري

 به عنوان روش تکرار نقطه ثابت شده

  
  اشرفی علیرضا : رابط ادیتور

 
 چکیده

شده ب تقریبی مسائل کسري مهندسی شیمی  توسعه داده جوا یافتنبراي  تکرار تغییرات  روشدر اینجا 
در این مقاله  ،تغییرات بطور صریح مشخص نشده استهنوز ضرایب لاگرانژ در روش تکرار چون . است

 زمانی-یافته و سپس براي حل مسائل کسري بهبودبت تغییرات به کمک روش تکرار نقطه ثاروش تکرار 
 ،دیگر تقریبی بدست آمده در مقایسه با نتایج عددي مقالات هاي جواب. مهندسی شیمی بکار رفته است

  .دنروش را نشان می ده موثر بودن و دقت ،کارایی
  راکتور شیمیایی ،قضیه نقطه ثابت ،روش تکرار تغییرات ،معادلات دیفرانسیل کسري :لغات کلیدي
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The Ratio and Product of the Multiplicative Zagreb   
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  هاي زاگرب ضربی شاخص نسبت و ضرب

  
  رزکلاو نديس : رابط ادیتور

 
 چکیده

ها و شاخص زاگرب ضربی دوم برابر حاصل ضرب توان دوم درجه (ܩ)ଵ∏شاخص زاگرب ضربی اول 
∏ଶ(ܩ) همچنین، شاخص زاگرب  .است ܩزوج رئوس مجاور گراف مولکولی  برابر حاصل ضرب درجۀ

 ۀدر این مقاله، یک نسخ .است ܩزوج رئوس مجاور  ۀبرابر ضربِ مجموع درج (ܩ)ଷ∏ضربی -جمعی
ها در یک گراف شاخص ۀضربی معرفی و گشتاورهاي نسبت و ضرب هم-جدید از شاخص زاگرب جمعی

همچنین، یک  .شودمطالعه می ݊ ۀبا ساختار درختی از مرتب مولکولی به طور تصادفی انتخاب شده
  .شود گلی دوب معرفی میزبرمارتینگل بر اساس نابرابري زبرمارتین

زبرمارتینگلی گراف مولکولی با ساختار درختی، شاخص زاگرب ضربی، گشتاور، نابرابري  :لغات کلیدي
  .دوب

 



۵                                                         )١٣٩٦( ٤ شماره ٨ژورنال ریاضی شیمی ایران جلد   IJMC 
 

 

Extremal Trees with Respect to Some Versions of 
Zagreb Indices Via Majorization  

 
MEHDI ELIASI  AND ALI GHALAVAND 

 
Department of Mathematics, Khansar faculty of Mathematics and Computer Science, Khansar, Iran 
 

 
به  هاي زاگرب شاخص هاي نسخه درختهاي اکسترمال نسبت به برخی 

  زیشن یماجر وسیلۀ
  

  تمنگو ایوان : رابط ادیتور
 

 چکیده

(  اکسترمال ادیرمق هایی از درختان با شناسایی ردهزیشن در یماجر روشهايبکارگیري  ،این مقاله موضوع
݊از مرتبۀ  ی از میان همۀ درختانتوپولوژیک هاي شاخصبرخی از ) مینیمال یا ماکسیمال ≥   .است 2

  زاگرب ضربی شاخص یافته،  شاخص اول زاگرب تعمیم، ماجریزیشن :لغات کلیدي
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The Uniqueness Theorem for Inverse Nodal Problems 
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  اي عکس داراي پتانسیل شیمیایی یکتایی براي مسائل گره ۀقضی

  
  اشرفی علیرضا : رابط ادیتور

 
 چکیده

مرتبۀ دوم داراي پتانسیل شیمیایی روي یک بازة  ۀاي عکس براي یک معادل گره در این مقاله، مسألۀ
دست  عملگر دیفرانسیل بهاي  اي و طولهاي گره ابتدا تقریبی براي نقاط گره. شود متناهی بررسی می

اي  اي چگال از نقاط گره وسیلۀ مجموعه توان تابع پتانسیل را به دهیم که می ، سپس نشان میآوریم می
  .طور یکتا تعیین کرد به

  .اي مقادیر ویژه، نقاط گره، اي عکس مسألۀ مقدار مرزي، مسألۀ گره :ت کلیديلغا
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  هاي واکنش بیوشیمیایی غیرخطی مدلسازي عددي براي شبکه

  
  اشرفی علیرضا : رابط ادیتور

 
 چکیده

براي حل معادلات دیفرانسیل  بخصوصامروزه، مدلهاي عددي در هر شاخه از علم اهمیت فراوانی دارند 
 هاي غلظتکل زمان تکامل . و غیره اییهاي بیوشیم غیرخطی، معادلات دیفرانسیل جزئی، واکنش

و روش تفاضل متناهی  )RK4( 4 ۀکوتا از مرتب -آنزیم، توسط رانگ -واکنش لایه ۀدهنده بر پای واکنش
ی ساخته یایواکنش بیوشیم براي مسألۀ ANSFD مدل. استسازي شده  شبیه) NSFD(غیراستاندارد 

نتایج به دست . ، انجام شده است"h"سازي  ستههاي عددي براي مقادیر مختلف پارامتر گس شده و آزمایش
که براي مراحل بلندمدت  RK4برخلاف . اند مقایسه شده RK4آمده، با طرح عددي معروف یعنی 

نتایجی ارائه داد که به حالات پایدار واقعی براي هر گام زمانی  NSFD ۀخورد، طرح پیشرفت میشکست 
  .شوند استفاده شده، همگرا می

 RK4، روش NSFDمنتن ، روش  -لیسئمدل میکا :لغات کلیدي
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 مدل مشتق کسري: محلول گاز در یک سیالحل عددي مسألۀ 

  
  اشرفی علیرضا : رابط ادیتور

 
 چکیده

جرم  رییتغ ،مدل نیا. شودیارائه م الیس کیمحلول گاز در  یاضیحل مدل ر يبرا یروش محاسبات کی
یۀ مناسب از جواب بر پا شینما کی. کندیم فیرا توص الیبر اثر تماس با سطح س افتهیگاز انتشار یحجم

-یم لیتبد يجبر هاياز معادله یدستگاه خط کیله را به حل أمس يمونتس، حل عدد يهاایچندجمله
  .روش ارائه شده است نیا ییدقت و کارا براي تأیید زین عدديچند مثال . کند

- هم روش گاوسی، چهارگوشۀ مونتس، ایهايچندجمله گاز، محلول کسري، هايمشتق :لغات کلیدي

  مکانی
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