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Borderenergetic Graphs of Order 12

BORIS FURTULA® AND IVAN GUTMAN
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ARTICLE INFO ABSTRACT

Avrticle History: A graph G of order n is said to be borderenergetic if its energy is
Received 23 May 2017 equal to 2n - 2 and if G differs from the complete graph K. The first
Accepted 6 June 2017 such graph was discovered in 2001, but their systematic study started
Published online 22 July 2017 only in 2015. Until now, the number of borderenergetic graphs of

Academic Editor: Tomislav Dosli¢ order n was determined for n < 11. We now establish that there exist
exactly 572 connected borderenergetic graphs of order 12.

Keywords:

Graph energy
Borderenergetic graph
Spectrum (of graph) © 2017 University of Kashan Press. All rights reserved

1. INTRODUCTION

Let G be a simple graph of order n, possessing m edges. Let the eigenvalues of G (i.e., the
eigenvalues of the adjacency matrix of G) be A, 4,,...,4, [1] The energy of the graph G is
defined as

E=E@)=Y14]

This graph-spectrum-based invariant has been extensively studied. Details of its
mathematical theory can be found in the book [2] whereas details of its chemical
applications in [3].

The upper bound

E <+/2mn

was established by McClelland in the early 1970s [4]. In the same paper [4], an
approximate formula was proposed:

‘Corresponding author (Email: furtula@kg.ac.rs)
DOI: 10.22052/ijmc.2017.87093.1290
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E~av2mn , a~0.9 1)
which was eventually demonstrated to be highly accurate in the case of molecular graphs
[5,6]. An additional corroboration of this formula was the analogous lower bound

E > /%\/Zmn

that holds for certain molecular graphs, in particular, for benzenoid systems [7].

According to formula (1), the energy of a graph would be a monotonically
increasing function of the number m of edges. If this formula could be applied to all
graphs, then among graphs with a fixed number n of vertices, the complete graph K,
would have the greatest energy, equal to E(K,)=2n-2. Counterexamples for this naive

conjecture were soon discovered [8]. Somewhat later [9], the first systematic construction
of graphs with the property E(G) > E(K, ) were reported.

Graphs of order n with the property E(G)>2n—2 were named hyperenergetic
[10]. Numerous classes of hyperenergetic graphs have been recognized; for details see the

survey [11]. The search for hyperenergetic graphs became purposeless after Nikiforov
proved in 2007 [12] that for almost all n-vertex graphs
E= (3i+o(n)j n*?

T
implying that almost all graphs are hyperenergetic.

The question that remained open was if there exist graphs of order n, other than K,
satisfying the equality

E(G)=2n-2.
In 2015, such graphs were named borderenergetic [13]. It is understood that the complete
graph is not borderenergetic.

The first borderenergetic graph was discovered by Yaoping Hou and one of the
present authors already in 2001 [14], but in that time it did not attract much attention. The
first systematic research of borderenergetic graphs is reported in the paper [13], which was
then continued in [15-19]. By means of computer-aided checking, the following was
established.

Theorem 1.
1. There are no borderenergetic graphs of order n<6 [13].
2. There exists a unique borderenergetic graph of order 7 [13].
3. Forany n>7, there exist borderenergetic graphs of order n [13].
4. There are exactly 6 borderenergetic graphs of order 8 [13].
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5. There are exactly 17 borderenergetic graphs of order 9 [13].

There are exactly 49 borderenergetic graphs of order 10 [15,18].

7. There are exactly 158 borderenergetic graphs of order 11 [18], of which 157 are
connected.

IS

We now can extend Theorem 1 by establishing:

Theorem 2. There are exactly 572 connected borderenergetic graphs of order 12.

2. NUMERICAL WORK

Determining computationally the borderenergetic graphs of order 12 is not an easy task to
be done. This could be illustrated by the fact that the total number of such graphs is
164059830476. In order to reduce the number of investigated graphs, the fact that the size
of the borderenergetic species must be greater than 2n-3 is incorporated. Such
intervention decreased the total number of 12-vertex connected graphs by 343198848.

The geng tool from the nauty package was employed for the generation of the
dataset containing 163716631628 graphs stored in 100000 files [20]. The total size of
these files is more than 2 TB. All these files are moved to the cluster having 4 nodes with
32 CPUs per node. A Python program was developed for filtering borderenergetic graphs.
Using PySpark for processing large datasets, the jobs were distributed over cluster using in
total 80 CPUs simultaneously. The computations took about a month or so and finally, we
obtained the result that there were exactly 572 connected twelve-vertex borderenergetic
graphs.

Table 1 shows the distribution of 12-vertex borderenergetic graphs by the number
of edges. Their size varies from 25 to 58. It should be noted that there are no 12-vertex
borderenergetic graphs with 49, 53, and 59-65 edges.

3. CONCLUSION

In this note, we reported the preliminary results on searching for and studying of
connected borderenergetic graphs with twelve vertices. There are 572 such species, and
these provide a class of equienergetic graphs suitable for examining the structural factors
on which graph energy does depend or does not depend. In addition, the distribution of
these graphs with regard to the number of edges is presented in Table 1, indicating that
equienergetic graphs may significantly differ in their edge counts.
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Table 1. The distribution of twelve-vertex borderenergetic graphs by the number of edges.

Number of Edges Number of Graphs
25 2
26 5
27 1
28 8
29 7
30 42
31 20
32 62
33 58
34 50
35 44
36 43
37 37
38 27
39 25
40 24
41 20
42 26
43 12
44 14
45 14
46 7
47 4
48 7
50 2
ol 1
52 4
94 1
55 2
56 1
o7 1
58 1
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ARTICLE INFO ABSTRACT
Avrticle History: The purpose of this study is to develop a new approach in modeling
—— and simulation of a reverse osmosis desalination system by using
iigzgiee?j': gOszyéOZlO% ! fractic_JnaI dii_"ferential equati_ons. Using the_Lege_ndr_e wavelet_ method
Published online 6 July 2017 combined with the decoupling and quasi-linearization technique, we
Academic Editor: Ivan Gutman demonstrate the validity and applicability of our model. Examples are
developed to illustrate the fractional differential technique and to
Keywords: highlight the broad applicability and the efficiency of this method.

Reverse osmosis desalination system  The fractional derivative is described in the Caputo sense.

Legendre wavelet method

DQL- technique

Caputo fractional derivative © 2017 University of Kashan Press. All rights reserved

1. INTRODUCTION

In recent few decades, fractional calculus has caught much attention due to its ability to
provide an accurate description of different nonlinear phenomena. Moreover, the fractional
differential equations have gained considerable popularity of many researchers due to their
applications in many engineering and scientific disciplines such as control theory, signal
processing, information sciences, and many other physical and chemical processes and also
in medical sciences, see [15-18, 20, 21, 24]. These equations are also used in the modeling

* Corresponding Author: (Email address: (omar.belhamiti @univ-mosta.dz)
DOI: 10.22052/ijmc.2017.86494.1289
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of physical processes running in dynamic mode [23, 22]. In this way, this work deals with
the application of fractional derivatives for the desalination phenomenon.

On the other hand, desalination of sea water appears as a strategic solution adopted
by several countries to cope with drinking water availability problem. This process was
intended only for industrial purposes due to the constraints of high desalination costs [1-5].
However, technological advances in the field of manufacture of membranes have reduced
these costs and thus enable more countries to use this alternative as a freshwater resource.
Actually, re-verse osmosis, due to its lower energy consumption and simplicity has gained
much wider acceptance than the thermal alternatives. Reverse osmosis is based on a
physical property called semi-permeability. Certain polymeric materials (membranes)
allow water to pass more quickly than some substances such as dissolved salts. The
principle is to apply a high enough pressure to overcome the osmotic pressure and reverse
the flow of water.

Many mathematical models have been proposed to describe the performance of
reverse 0Smosis unit. For more details, we cite [1-5]. But, since the memory of phenomena
plays a key role in mechanics, so a possible generalization of the classic desalination model
would be a system with fractional order derivative. In this line of thought, Du et al. [11]
found that a physical meaning of the fractional order is an index of memory. Then,
Atangana et al. [8] proved that a fractional operator can provide a better interpretation of
both physical and engineering processes.

The authors in [30, 31] studied the overall performance of hollow fiber membranes
by using the interplay of fiber productivity (defined as the fraction of feed recovered as
permeate) and fiber selectivity or rejection. Two flow configuration modules for reverse
osmosis hollow fiber membranes are considered: co-current and counter-current flow.
Productivity and selectivity were plotted as functions of fiber length. It is found that at the
entrance of the module, the term of productivity is equal to zero. This trend (flattening of
the curve of productivity) is observed in the neighborhood of the entrance to the tube for
the two cases: Co-current and Cross-current. This phenomenon is explained by the fact that
the feed rate is constant and therefore the first derivative is equal to zero.

In this paper, we will focus on the use of the fractional differential operator in the
sense of Caputo for modeling a seawater desalination module using the reverse osmosis
process. The numerical solution of the fractional differential model (FDM) is obtained by
using the Legendre wavelet method combined with the decoupling and quasi-linearization
technique. For more information about this new approach, we refer the reader to [6,7,9,14].
In this approach the Block-Pulse functions (BPFs) and the operational matrix of integration
are used, FDM can be transformed to lower triangular system of algebraic equations. Then
the solution of this system is used to determine a new numerical solution of FDM. At the
end, and since the approach is not yet tested sufficiently on FDEs, some other problems are
studied.
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This work is organized as follows: Section 2 gives the fundamental equations to
describe the transport phenomena in reverse osmosis by using the fractional model. Section
3 introduces some necessary definitions of the Legendre wavelet method. We present a new
operational fractional matrix of integration and we give the description of the proposed
method. Section 4 gives the numerical investigations of the analytical findings. At the end,
a conclusion follows.

2. MODELING OF REVERSE OSMOSIS DESALINATION SYSTEM

2.1. CLASSICAL MODEL OF REVERSE OSMOSIS DESALINATION SYSTEM

Sea water desalination has become an inevitable alternative for many countries to
overcome the shortage of natural fresh water. Among desalination technology, reverse
osmosis is the most used method. This is mainly due to its simplicity, their costs, reduced
compared to thermal processes. No heating or phase separation change is necessary. The
major energy required for desalting is for pressurizing the seawater feed [19]. Reverse
osmosis is a method of separation and concentration in the liquid phase. This process is
applied to purify water for laboratory. The process consists in passing aqueous solution
under pressure through an appropriate membrane and withdrawing the membrane permeate
at atmospheric pressure and ambient temperature. The product obtained is enriched in one
of the mixture components. The other components are recovered in the retentate with
higher concentration in the high-pressure side of the membrane. Reverse osmosis
membranes are generally mounted on supports called modules. Currently, the most used
modules are: hollow fiber, tubular and spiral wound modules. Tubular modules are
constituted of two concentric tubes designed to separate a given feed into a higher pressure
stream (retentate) and a low pressure stream (permeate) see figure 1. According to the
direction of the feed flow rate, there are two types of flow pattern: the co-current and
counter-current flow pattern.

Figure 1: Hollow fiber membrane.

‘SeaWater
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A mathematical model was developed to predict the performance of hollow fiber
reverse osmosis membrane with co-current flow pattern. The mass transfer model
employed in this study is the solution-diffusion model. The solvent and salt mass flux are
expressed by Fick's law. This model is developed by the author [1, 2]. It consists of a set of
four strongly nonlinear differential equations. This system is found, according to material
balance principle:

(_dst:_nA_me AP—K(E—%)
dx Ow Qsw Qrw
d A ) )
wa:n_me AP—K(E—%)
) dx ow Qsw wa (1)
dQss _ Q Oy
o= o o (g2 )
40 . .
_Qfs = T[BS Dm <$ — %),
\ dx Qsw wa

where
Qs - 1s the water volumetric flow rate in the shell side,

Qfw : is the water volumetric flow rate in the fiber side,

Q,, : represents the solute mass flow rate in the shell side,
Qs : is the solute mass flow rate in the fiber side,
Kk is a proportionality coefficient,

A,, 1s the water permeability coefficient (a function of salt diffusivity through the
membrane),

AP is the transmembrane pressure (a function of the feed, concentrate and permeate
concentrations),

o, 1S the water density,
B is the solute permeability coefficient,

The osmotic pressure is approximately represented by a linear function of solute
concentrations T = k C.

2.2. REVERSE OSMOSIS DESALINATION MODEL

Lately, it has frequently been observed that the mathematical models represented by
fractional order derivatives [11, 12, 13, 20] can provide better agreement between
measured and simulated data than classical models based on integer order derivatives. In
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classical desalination model [1, 2, 7], instead of a variation of order one, we consider, in
this study, a variation of the order 1 < a < 2. Taking into account normalized variables,

— Osw — wa - _ & - _ Qfs
Qv Qswo’ wa Qswo’ Qs Oss0 ' Qfs Oss0

if we replace the first order derivatives by fractional derivatives in (1), then a simple
dimensional analysis shows that the left-hand sides of the equations have the dimension of
(space)™. But an examination of the right-hand sides shows that they have the dimension of
(space)™, so, we need to modify the right-hand sides to adjust the dimensions [12]. Thus,
we formulate the fractional model of reverse osmosis desalination using Caputo fractional
derivatives of order, 1 < a < 2 [10], the model is described by the non-linear Caputo
fractional differential system:

( _ Q Qf
oDx Qsw = —¢1 + ¢, (Q;‘i - Qf_:;)
oDxQrw = €1 — <$ - %)
Qsw wa
< 0 0 2)
Da = —¢ <ﬁ —_ L)
oMx wa 3 Qsw Qfw
a = Oss _ %)
\ ODx wa C3 <st wa ,
where
A, D @
Ow QSWO
. a
c _<T[AW Dm st)
, = =
Ow QSWO QSWO

D a
c3:<nBst) .
sw0

Note that in the limit case @ — 1, the system (2) reduces to the classical system (1).

3. LEGENDRE WAVELET METHOD

In this section, we present some definitions and properties of fractional calculus. Then, we
introduce some preliminaries on Legendre wavelets that are used throughout this paper.
This section is ended by presenting some definitions, notations and basic facts of block
pulse functions, [25-27].
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Let (n —1) < a <n,n € N*, afunction f € C" (a,b). The Caputo derivative of
order « = 0 is defined by

I
=1 (Ff(ﬂ)

[0¢]

M'a): = f e *u®1ldu, Re{a}>0
0

6D F(0) = ¢

where

We note that the Caputo derivative of a constant function is zero. For more details
on fractional calculus, we refer the reader to [10, 13].

3.1. LEGENDRE WAVELETS

On the other hand, the wavelets are a family of functions constructed from dilatations and
translations of a single function called the mother wavelet. We have the following family of
continuous wavelets

Yar(©) = lal 2 (tT),a,b R a #0,

where ¥(t) € L*(R) , a and b represent the dilation and the translation parameters
respectively. If a and b have discrete values as
a=ay*a,>1
n,k €N,
b=mnbyaz* by >1

for n and m positive integers, we have the following family of discrete wavelets:
m
lpm,n(t) = |a0|7 l/J(a(’)”t - n bO)

where i, ,,(t) forms a wavelet basis for L2(R). In particular, when ag = 2 and b = 1,
Y. (t) forms an orthonormal basis. That is (Y, n, Y1k ) = Smy Sny inWhich (., .)
denotes the inner product in L2([0,1]).

In this work, the mother wavelet is the Legendre polynomials. We de ne the
orthogonal Legendre polynomials of order m by the following Rodriguez recurrence
formula:
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Lo(t) =1
Li(t) =t
2 3
nan® = () s O = (g )

with m =0,1,2,3,... and t varies into [-1,1].
The Legendre wavelets are defined in [0; 1] by the following formula

n

n—1 -
St< o

21

1 .
o () = { m+ 17222 Ly(2t —2n+ 1) if
| 0, otherwise,

wheren=1,..,2771(j € N\{0}), m=0,..,n. — 1 (n, € N\{0}) is the order of the
Legendre polynomials and nc is the number of collocation points. However, the dilatation
parameter is a = 22 and the translation parameter is b = (2n-1)22.

The family

forms an orthonormal basis of L?([0,1]) [26]. Then, any function f € L*([0,1]) may
be decomposed as

f(@) = X521 XmZo Com Wnm(t), 3)
where C,., = (f,¥); inwhich (.,.) denoted the inner product in L2([0,1]).
The function in (3) can be approached by
f(0) = T2 S0 Com Ynm (8) = CT W), )
where C and W(t) are 2/~ nc vectors given by

T
C= [61,0 ..... Cinc-1,C20,.Conc—1 621—1,1 ,,,,, sz—l,nc—1] )

W) = [P1.0(0): o W1 ne1(O) W20O), e Wame-1 (), o o (), o Wr e O] (6)

The following property of the product of two Legendre wavelet vector functions will
also be used

ATW() WT(t) = WT(t) 4, (7)

where
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T
A = [alvo, ,alvnc_l, azvo, ey azvnc_l, ,“./)2j—1'0(t), ’1’/)2j_1,nC—1(t) ]
and A is a 2/ ncx2/~1 nc matrix [26].
3.2. BLOCK PULSE FUNCTION

The block functions form a complete set of orthogonal functions which can be defined over
[0;T] by

. i—1 i
b;(t) = {1 I Pinel S T (8)
, otherwise,

where, i = 1,...,2/"nc [27]. There are some properties for block pulse functions: the
most important properties are disjointness and orthogonality.

The disjointness property follows

b(t) bT(t) V =V b(t)

v, 0
V= ( P : )
0 - VZj_lnc

where V is an 2/~nc-vector. The block-pulse functions are orthogonal

and

T T .
f b;(t), bi(t) dt = {21"1nc’l —J
0 0, otherwise

wherei; j=1,2,..., 2/ nc.
3.3. OPERATIONAL FRACTIONAL MATRIX OF INTEGRATION

In the following section, we introduce new arguments for deriving the fractional Legendre
wavelets operational matrix of integration.

Let t € [0; 1] we define the Legendre wavelets operational matrix of integration as
in [6, 26],

;W (x) dx = P ¥(t), 9)

where
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1 o L -~ :
P = il - . F
0 0 L

is the 2/=Inc x 2/~1nc operational matrix of integration, and L and F are nc x nc matrices.
It is not difficult to see that

(I2¥) () = P(),

(%) () = f W) dx = P (o),
(29O = |

0

uwmm:f

0

t ( f W) dx) ds = f Pw(s) ds = PXPXW(E) = P? W(0),

t(fs\y(x) dx (fT‘P(x) dx...)ds) = PxPx..X¥(t) = P" W(t),

On the other hand, we have

(oY) (t) = o )f (t—7)" ¥ (1)dr, te [01]

Using the convolution product, we can write
(oI ¥) (6) = (Tx$)(0),

where
(t- r)

o(t) =

(a causal function).

The continuous character of the function I'(a) is used to release I'(n) and to define
the integral operator of order a>0.This operator is defined as

odFP(t) =T (a )f (t—-1)*'¥(r)dr, a>0
¥Y(t), a=0,

S0
(& ¥P)() = P¥¥(t), a > 0. (10)

Now, to define the fractional Legendre wavelets operational matrix of integration,
we give a result, in the transition matrix of the base B to the base ¥(t).
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Proposition 3.3.1. For m = 0,1,..., nc-1, the relation between the Legendre wavelet vector

and m-set of block-pulse functions can be written as
¥Y(t) = H B(t),

where H is the (2/7'nc) x (2/~1nc) passage matrix

hl,O hl,nc—l
: : 0
| hnc,O hnc,nc—l |
H=| s s !
hl,O hl,nc—l
0 : :
hnc,O hnc nc—1
and
= (m + k)! (D)t — (i — 1)k+t
i e + _ m+k i
R GO (e
Proof. Let

! / 1. (% .
him = f Yo (@) bi(t)dt = |m+ > 272 ﬁ:Lm (2/t—2n+1) dt.
0 -
q

On the first level n = 1, this formula becomes

him = /m+ > 212 fﬁ_le (27t —1) dt.

q

Assuming that 2/t — 1, we obtain

et
him = Jm+1/2 2172 f L, (x) dx
! 21—2_1
nc

2_i_1 m—-1
_ . nc m m+k
= Jm+1/22i" fz,_cz_l kZO(—l)m*" (k)( - )xkdx

— - m-1 . (m + k)! ()1 — (i — 1)k+1
= \/mzll ;(_1) k (m — k) (k") nck q (k+1)

We need also the following result [27]:

(11)
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Proposition 3.3.2. Let o>0. The fractional integral of block-pulse function vector can be
written as

(1% B) (t) = F* B(1), (12)

where F¢ is the (21=1nc) x (21~'nc) matrix given by

N

_ T \* 1 |
F*= (Zj‘lnc) I'(a+2) K i ij_lncz)’
0 :

i

and

fl = 1!
{fp =pl —2(p-1)*1+ (p—2)**1, p=23..2 nc—i+1,

with i =123, ...,2/ nc.
Now, we prove the following result for the fractional matrix of integration:

Theorem 3.3.3. The Legendre wavelets operational matrix P of fractional integration is
given by

P* =HF*H 1, (13)

Proof. Using (10) and (11), we can write

(IE¥)(t) = (I*H B)(t) = HUI* B)(®). (14)
Thanks to (10) and (14), yields
PY (t) = HF* B(t). (15)

By (11) and (15), we get
P*HB(t) = H F*B(t).
Therefore,
P® = HF%1,
3.4. ILLUSTRATION OF THE APPROACH

In this subsection, we will describe our approach to solve numerically the system (2). We
start with the decoupling and quasi-linearization iterative technique. It is summarized as
follows:
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Given initial profile for each solution: Q%) (x), Q(O)(x) 09 x), Q(O)(x)

(k+1) Q(k+1)>

(k+1) __ Ss
D¥Qsw ~ = —C1 + (Q(k+1) 0®D

(k+1) Q(k+1)
(k+1) __ Ss
oDxQp, =1 —C (Q(k+1) Q(k+1)>

A (k+1) Q(k+1)
DEQsy = —C3 | =1
0¥x X fw Q(k+1) Q(k+1)

H(k+1) Q(k+1)
DeQ = c sS
0¥x ¥ fw 3 Q(k+1) Q(k+1)

sw

where U and U™ are the approximations of the solution at the current and the preceding
iteration, respectively.

To find a solution of (2), we apply the method described above for each equation
and we calculate the decoupling and quasi-linearization error by using the following
formula

e = s (o - 021, o™ - 2, - o -

) 1o

where || . ||, represents the Euclidian norm. This procedure gives the solution of the
problem when the error is less than a given small epsilon.

Foru € C? ([0,1]), we develop our method for the problem

D*u(t) = g(t) u(t)+ f(t),t € 101],0<a<?2 (17)
such that
u(0) = u,
{u’(O) =u, (18)

The condition u'(0) = u, is only for 1 <a <2, where f,g € L*([0,1]). We
approximate the derivative D* u and the functions g and f as in (4) as follows :
Deu(t) =UT ¥(t)
g(t) =G"¥() (19)
f(&)=F"¥(t)

Using (10), we can write
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u(t) =1 (D% u(t)) + u(0) + v’ (0)¢
= 1% (UT W(t)) + upd” W(t) + w,ET W(t)
= UTP*W(t) + ugd” ¥Y(t) + u ET ¥(¢t),

SO
u(t) = (UTP* +uyd? +uw, ET) W(t) (20)

where d = (1, W(t));2o1 and E = (t, W (t)) 20 17)- Substituting (19) and (20) into (17),
we have
UTW(t) = GTY(t) (UTPY +uyd” +u,ET)WP(t) + FT ¥(t)
YT()U = GTPE)YT(t) (UTP* +upyd” +u, ET)T +WT()F
=WT(t) GWUTP® +uyd” +w,ET)T +WT(¢)F
Thanks to (7), we obtain the following algebraic system
(Is = G(PY)T)U = G(uod™ +u,ET)T +F. (21)

The solution of the problem (17-18) is obtained by substituting U in (20).

3.4.1. NUMERICAL TESTS

In this section, we consider an example to show the efficiency and the accuracy of the
proposed approach. For0 < a < l1and t € [0,1], we consider the system :

— 2 r(g+1) B—a _ 2B _ 7
D* u(t) = u?(t) + v(t) + ra b a_t Vt
F(§+1) y (22)

F(§+1—a)

D v(t) = v2(t) +u(t) + tz % —t7 —tP,

such that

{u(O) =0 (23)

v(0) = 0.
The exact solution of (22) and (23) is given by

u,(t) = th
v, (t) = V¢
We employ the Legende wavelet method combined with the decoupling and quasi-
linearization technique for studying the solutions of the problem (22-23).
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In the Figure 2, we see the evolution of the logarithmic error induced by the
decoupling and quasi-linearization technique defined in (16). We observe a strict decrease
of the error, which explains the convergence and the stability of the solution.

Figure 2: Example 2: Error induced by DQLT.
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Then, as we know the exact solution, we estimate the absolute error of each solution is
produced by cumulate of truncation, LWM and DQL technique by the following formula

Ey = llu = uell,.

Figure 3: Example 2:The analytical and approximate solutions.
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(24)

We observe a good agreement between the analytical and approximate solutions
(see Figure 3). However, the obtained result shows that this approach can provide better

performance.
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Table 1: Example 2: The point wise errors for u.

t Exact Solution ~ j=3 and nc=4 j=3 and nc=8 j=5and nc=4 j=5and nc=8

0 0 6.3318e-04 1.5723e-04 3.9868e-05 9.9852¢-06
0.2 0.0400 6.4165e-04 1.6826e-04 4.0775e-05 1.0361e-05
0.4 0.1600 5.4928e-04 1.5991e-04 3.8131e-05 1.0120e-05
0.6 0.3600 4.5914e-04 1.4914e-04 3.5756e-05 9.8017e-06
0.8 0.6400 4.4651e-04 1.3749¢e-04 3.6947e-05 9.4494¢-06

1 1.0000 4.5500e-04 1.2532e-04 3.9832e-05 9.0781e-06

Table 2: Example 2: The point wise errors for v.

t Exact Solution j=3 and nc=4 j=3 and nc=8 j=5and nc=4 j=5and nc=8
0 0 7.8510e-04 8.8309e-04 7.5065e-05 1.0596e-04
0.2 0.0894 8.7458e-04 1.9219e-04 7.5034e-05 2.0449¢-05
0.4 0.2530 1.7925e-03 3.2299e-04 2.2016e-04 3.9049e-05
0.6 0.4648 1.0542e-03 3.4945e-04 1.1705e-04 4.2348e-05
0.8 0.7155 5.1373e-05 3.7980e-04 1.8159¢-04 4.6889e-05
1 1.0000 3.7651e-05 3.8612e-04 1.7892e-04 4.7739e-05

Finally, as can be seen in Tables 1-2, only a small number of collocation points is
needed to get the approximate solution, which is a full agreement with the exact solution up
to 6 Digits. The obtained solutions show that this approach can effectively solve systems of
fractional differential equations.

4. A SIMULATION STUDY

In this section, we propose a new numerical solution for the mathematical model described
in Section 2. The proposed approach seems to be very efficient for nonlinear differential
systems. Numerical test shows that one important feature of our approach is that it gives a
high-quality of the solution as well as a stability and a computational speed for a small
number of collocation points.

So, let us consider a small-scale reverse osmosis desalination fractional order model
(2), where the co-current flow pattern is treated as shown in figure 1, associated with the
conditions:

Q.,(0) =226.8
Qs5(0) = 2 Q4 (0)
Qw(0) =0

Qs(0) =0

and
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dQSW J— dQSW —_— dQSW —_— dQSW J—
dx 0)= dx 0) = dx (0) = dx 0)=0.

The membrane specifications and the operating parameters are given in the table 3
obtained from [29,28].

Table 3: The operating parameters.

Parameters Value

The membrane diameter (Dy,) 0.0576 m

Water density (o) 10° kg/m’

Solute permeability coefficient (Bs) 1.12 x 10™* m/h
Water permeability constant (A,) 4.2 x10™h/m
Proportionality coefficient (i) 1.02 x 10" m?h’
Transmembrane pressure (AP) 4.02 x 10" kg/m/ h?

The feed rate consisting of water and salts (solute) flows continuously and
tangentially inside the membrane. Following the permselectivte property of the membrane,
water diffuses faster than the solute. At the output of the module, we obtain a permeate at
the tube side with a low concentration of salts, and a retentate at the shell side with a very
high concentration of salts (Figure 1).

The results of simulation obtained by the proposed numerical solution method are
shown in Figures 4-7. The first finding is that the behavior of the curves predicted by the
model are very close to these obtained in the literature.

Figures 4-7 (A) show the variation of the solute and water flow rate in the tube and shell
side along the dimensionless parameter x. As predicted, the variation of water and solute
flow rate are close to zero at the entrance of the module. In reality, at this point of the
module, water and solute flow rates are both constants and therefore, their variation is equal
to zero. This behavior is demonstrated in the proposed model, which is not the case of the
classical model with an integer derivative (see Figures 4-7 (B)).

Figure 4: The flow rate of the solute in tube-side.
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The flow rate of the solute in shell-side

361

Figure 5: The flow rate of the water in tube-side.
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Figure 6: The flow rate of the solute in shell-side.
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Figure 7: The flow rate of the water in shell-side.
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Another means to verify the accuracy of the obtained results is to establish a matter
balance. The following equation expresses the relative mass balance applied to the module:

V. = Qwater_(Qpermeate_water+Qretentate_water) =0
1 - ’

Qfeed_water

v, = Qsotute=(Qpermeate sotutetQretentate solute) =0
_ Qfeed _solute
The examination of the mass conservation law is a pertinent factor for the validation
of our simulation. The results show the quality of the proposed model for a = 1.5, by
looking V; for the water parameter is of the order of 2.45e-10 and V. for the solute
parameter is less than 1.08e-12.

5. CONCLUSION

In this study, simulation of small-scale reverse osmosis desalination problem was
conducted using a new fractional model. Numerical method of Legendre wavelets
associated with the decoupling and quasi-linearization technique was applied to solve
equations of mass transfer. Comparison of model predictions with experimental results in
the literature reveals that a reasonable agreement exists between them. Simulation results
reveal that fractional model can be considered as a more efficient predictor as compared
with classical model. According to the model results, the calculation of the difference
between the quantity of matter in the feed-side and the permeate-retentate sides shows the
quality of the solutions obtained by the proposed model. It can be concluded from the
obtained results that the proposed model in this work can well give the best prediction of
reverse osmosis desalination phenomena.
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1. INTRODUCTION

Fractional calculus is a power tool for finding solution of non-linear problems. So, it has a
tremendous use in basic sciences and engineering, see e.g. [1-8].

The VIM is one of the powerful methods within the exact and approximate
analyticalsolutions for solving nonlinear equations. The method was first initiated by [9],
and it was successfully used by various researchers to investigate the linear andnonlinear
problems [9, 10]. We mention that Jafari et.al. applied the variational iterationmethod to
the modified Camassa-Holm and Degasperis-Procesi equations andfractional
Davey-Stewartson equations, [10, 11]. Momani and Odibat [12] has implementedthe
variational iteration method to solve nonlinear fractional differentialequations. It was
shown by several authors (see e.g. Wazwaz [13]) that this method ismore powerful than
existing techniques such as the Adomian decomposition method [14, 15], perturbation
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method, etc. Besides, the VIM gives rapidly convergent successiveapproximations of the
exact solution if such a solution exists. Another importantadvantage is related to the fact
that the VIM is capable of greatly reducing the sizeof calculation while still maintaining
high accuracy of the numerical solution.

In [16, 17], it was shown that the VIM for obtaining approximate solutions of
initialvalue problems is a version of the well-established fixed point iteration methods.In
this paper, we are interested into approximate solutions of time fractionalchemical
engineering problems as follow:

D Lxq (8) = f(t, X, X))

D,,‘}sz(t): f2(t,x1,.... Xn) 1)

DN X (t) = iy (t, X1, X))

where D is the Caputo derivative of x, of order a; and 0 < a; < 1, subject to the initial

conditions
x1(0) =g, x2(0) =¢2,..., xn (0) =cCp. )

The general response expressions contain a parameter o describing the order of the
fractional derivative that can be varied to obtain various responses. The solutions
corresponding to ordinary chemical problems, performing the same dynamics, are also
determined as a special case of our general solutions. The organization of this paper is as
follows: In Section 2, some basic definitions and properties of the fractional calculus are
given. In section 3, we introduce variational iteration method and deform it to fixed point
iteration method. In Section 4, the mentioned method in Section 3 is used to seek an
approximate solution of chemical Eq. (1) with the given initial conditions (2). Also, the
accuracy and efficiency of the scheme is investigated with three numerical illustrations in
that section. Finally, Section 5 consists of some brief conclusions.

2. PRELIMINARY

In this section, we give some definitions and properties of the fractional calculus.

Definition 2.1. A real function f(t); t >0, is said to be in the space C,, u € R, if there

exists a real number p(>u), such that f(t) =t" f,(t), where f (t)eC(0,), and it is
said to be in the space C,ifand only if ™ eC,, neN.
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Definition 2.2. The Riemann-Liouville fractional integral operator (J*), of order « >0,
of a function f e C , u > -1, is defined as

Jaf(t):%j;(t—s)alf(s)ds, a0,
1) = f(t), o=0.

The main properties of the operator (J*) can be found in [18, 19], we mention
only the following: Forf eC ,u>-1, a,>0 and y >-1:

1. J*3Pf) =371 (1)
2. J°3PF()=37J°fF (1)
T +1) o
INa+y+1)

3. J% =

The Riemann-Liouville derivative has certain disadvantages when trying to model
real-world phenomena with fractional differential equations. Therefore, we shall introduce
a modified fractional differential operator D* proposed by Caputo in his work on the
theory of viscoelasticity [20].

Definition 2.3. The fractional derivative of f(t) in the Caputo sense is defined as

1
I'h-a)

D“f(t) =J"“D"f(t) = j; (t—s)"f ™ (s)ds

Also, we need here two of it's basic properties.
Lemma 2.1. If n-l1<a<nneNandfeCj,u>-1 then (D“J*)f(t)=f(t) and

(J°D)f(t) = f(t)—ni f‘k)(O*)%,t>0.

3. THE VIM AND FIXED POINT ITERATION METHOD

To illustrate the basic concepts of the VIM we consider the following general nonlinear
system:
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Lj (uj () + N (up (t),...,um () = gj (t); 1 =1,2,...,m, (3)
where L, is the linear operator and N, is the nonlinear operator, and g,(t)is the
inhomogeneous term. In the VIM correction function for Eq. (3) can be written as [9]:

Ui ®) = Ui @)+ [ 4= D)L (U @)+ Ny (@ (@), T, () - 9, (2))d 73 1 =1.2,m. (4)

It is obvious that the successive approximation u,.;n>0 can be established by

determining 4., a general Lagrange multiplier, which can be identified optimally via the
variational theory [21]. The function u;, is a restricted variation, which means &u;, =0.
Therefore, we first determine the Lagrange multiplier A that will be identified via
integration by parts. The successive approximations u; , (t),n >0 of the solution u; (t) will

be readily obtained upon using the obtained Lagrange multiplier and by using any
selective function u; , as zeroth approximation which satisfy in given initial condition.

Consequently, the exact solution may be procured by using,

uj(t) = lim ujn(t) (5)
N—>o0

Obviously, identification of the Lagrange multipliers is crucial to derive a
variational iteration formula. Now, if we change our attitude and consider the VIM as
special case of fixed point iteration [16, 17] we can find a simple and straight manner to

determine Lagrange multipliers. In this order from (3) if L™ exist then we have:
Ui (8) = 0 (©) + L5 () — Nj @y (0), .. U (O)]; 1 =1.2,....m, (6)
where ¢ (t) is Ker(L;) which determined by initial condition. In fact, we get Lagrange

multipliers automatically while calculating inverse of operator L,. Applying simple fixed
point iteration method on (6) we get

-1 -
Ui, n+1(t) = ¢j (t) + L 719i (1) = Nj(up,n (t),...um n ()] i =1,2,....m. (7)
Here recursive formula (7) are constructed for two special case of linear fractional
differential equation as follow

-1
if L(u)=D% then L 1(f)= jgif(r)dr and

I'(a) ®)
u (t)=¢(t)+1t¢(g(r)—N(u (1)) dt
n+1 0" T() n ,
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if L(u)=D% +ou then LI(f)= j(t)(t—r)a_lEa,a(—w(t—r)a)f(r)dr and
9)
Uns1(D) =o(t) + 6(t il Eq, o (—o(t = 1)*)[g(x) - N (un (v)]d.

4. TEST PROBLEMS

In this section, we present three examples to illustrate the applicability of new method to
solve linear and nonlinear chemical fractional differential equations.

Example 4.1. Chemical Reactor. A reaction A — B takes place in two reactors in series.

The reactors are well mixed but are not at steady state. The unsteady-state mass balance
for each stirred tank reactor are given in the form of system of fractional differential
equations are

D“u(t)%(CAo—u)—Bu

D%v(t) =_—1V—Bu

: (10)
D%w(t) = E(u —Ww) —Bw

T

D“y(t)%(v—y)—sy

where CA, is the concentration of Aat the inlet of first reactor.CA (=u) is the
concentration of A at the outlet of the first reactor ( and inlet of the second). CA,(=w) is
the concentration of A at the outlet of the second reactor. CB, (= V) is the concentration of
B at the outlet of the first reactor ( and inlet of the second). CB, (= y) is the concentration
of B in the second reactor. 7 is the residence time for each reactor, and S is the rate
constant for reaction of Ato produce B. Consider CA, is equal to 10, f=0.1 and 7 =5.
Initial conditions

CA,(0) =u(0) = 0,CA, (0) = w(0) = 0,CB, (0) = v(0) = 0,CB, (0) = y(0) = 0 (11)
By setting L, L,,L, and L, for this system



370 HAGHBIN AND JAFARI

D)+
L(u)=D u(t)+10u(t)

L, (v(t) = D“V(t) + L v(t)
> (12)
L, (w(t)) = D*w(t) +%w(t)

. 3
L (y() =DB"y(®) +75v(®)

and using (9), the transform of Eq. (10) with initial conditions (11) leads to the following
recurrence relations:

a0 =[,0-2)E, . (- (=)@ ds (13)
V0= [}, , (- -0l U, (]de (14)
W (0= [ -0 E, . (o (=) )0, ())de (15)
Von® = [ € =1)E, , (= (t =) v, ()] de (16)

n+1 0 a,a 10 5 n

We start with initial approximationsu, (t) =0,v,(t) =0,w,(t)=0,Yy,(t) =0, which
satisfy in Eqgs. (11). In right hand said of Eq.(13) there isn't u, so its exact solution will
obtain at first iteration . In the second iteration we get exact solutions of v(t)and w(t) by
using the exact solution of u(t) = u,(t) in right hand said of Egs. (14) and (15). Finally, in
the third iteration all exact solutions can be obtain as follow

u(t) =2—:(1— E, (‘Tzot“))

_100_ 3 (Tl —3a
v(t) = 3 @ 3Ea(5t )+2Ea(10t )
_40 . & (@A-m)(=3/10)" .
W)= 9(1 ZO I(Mma +1) )

20, oe Ly & (8-2m)(=3/10)" .,
O ="« 9Ea(5t)+m2=0 o <D t")

Example 4.2. Concentration of Reactants. The concentrations of three reactants are in the
form of a system of nonlinear FDEs as
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D%u(t) = —kqu + kovw
DOV(t) = —kgu —kqvw—ksv?
D%w(t) = kgv2
where k;,Kk,,k;,K,, ks and k, are constant parameters (k; = 0.04, k, = 0.01, ks = 400, k4 =
100, ks = 30000, ks = 30). The initial conditions are given by
u(0)=1 v(0)=0, w(0)=0. (18)

By setting L = D* as a linear operator for every equation in (17) and using (8), we get the
recursive formula for concentration equations as follow

Un41(t) = =2t = 7)(~kun (t) + kaVn (7) W (1)) dre

(17)

V() =] Bk(t —1)(—k3up (1) + kgvn (v) wn (t) + k5Vn2 (1) dt (19)

Wn1(t) = [ § A - 1) (kg2 (1)) do
where
(t _ T)O(—l
At t)=—"—

By starting with an initial approximation u,(t) =1,v,(t) =0 and w,(t)=0 given
by Eq. (18) and using the above iteration formulae (19) we can directly obtain the other
components. The first four components of the series are given by

£ O N tZOL ) t30t
25I'(1+a) 625I'(1+2a) 156250 (1+ 3o)
400t%  16t°*  4800000000t3%

ut)=1-

o B 20
v(t) T+ o) * I'(L+2a) rd+ oc)zr(lJr 3a) “
3a
W(t) = 4800300t
T+ 0a)“T(1+30)

For o =1 we have
u(t) = 1—0.04t + 0.0008t2 —0.000106 66713
v(t) = 400t —8t2 —1.6x10%¢3

w(t) = 1600000t
which is the same of solution in [22].
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Example 4.3. Chemical Reaction there is the system of nonlinear FDE equation which
representing a nonlinear reaction,

D%u(t) = —u
D%(t) = u—v2 (21)
D%w(t) = v2
with the initial conditions are given by
u(0) =1, v(0) =1, w(0) =0. (22)

By setting L = D” as a linear operator for every equation in (21) and using (8), the
recursive formula for reaction equation (21) is

u,(t)=1- j;/m(t —7)u, (r)dz
Vor O = =] At =) (-, 1)V, (1)) d7 (23)

t 2
w, ()= jo/m(t —7)v,’(r)dr
where

(t . T)O(—l
I'(a)
By using recurrence relation (23) and initial approximation u,(t) =1,v,(t) = 0and

Alt,1) =

w, (t) = Ogiven by Eq. (22) three Iteration terms of solutions are obtained as follow:
tOL
rl+a)’
o
vt = rl+a)’
wy (t) =0,

up(t) =1-

(24)

el {20
rl+a) i r(l+2a)’
t* 2% 3%ra20)
Fl+a) T@+20) P14 0)2T@+30)

ug(t) =1-

va(t) = : (25)

30014 24)
I(1+0)2T(1+3a)

wo(t) =
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£ tZOL t30t
U3 = o) T e 20) T 3a)
Va(t) = t* B tZOL B 1 _ I'(1+2a) )t3OL (26)
U Tra) Tr20) TA+30) T0+o)2rdsde) |
3a
wa(t) = t F§1+20c) .
[+ o) °T(L+3a)

In the third iteration the first four components of the series solution are expressed
and we have the following approximate solution

el {20 130
u(t) =1- + — :
'l+a) I'l+20) I'(l+3a)
2
v(t) = ¢ ¢ ot r(12+2a) 3o
I'l+a) I'l+2a) T(@A+3w) Il+a)*T(L+30)
3
W(t) = r(1+22a)t°‘ |
r'l+o)°Tl+3a)

which is the same of solution in [23].
5. CONCLUSION

For illustration purposes, we considered three examples. Results obtained using the
scheme presented here agree well with the numerical results presented elsewhere. Results
also show that the numerical scheme is very effective and convenient for solving nonlinear
partial differential equations of fractional order. The numerical computations associated
with the three examples discussed above were performed by using the Computer Algebra
System Mathematica.
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The first multiplicative Zagreb index 111(G) is equal to the product

of squares of the degree of the vertices and the second multiplicative
Zagreb index 115(G) is equal to the product of the products of the

degree of pairs of adjacent vertices of the underlying molecular
graphs G. Also, the multiplicative sum Zagreb index ri3(G) is

equal to the product of the sums of the degree of pairs of adjacent
vertices of G. In this paper, weintroduce a new version of the
multiplicative sum Zagreb index and study the moments of the ratio
and product of all indices in a randomly chosen molecular graph
with tree structure of order n. Also, a supermartingale is introduced

by Doob’s supermartingale inequality.
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1. INTRODUCTION

Molecular graphs can distinguish between structural isomers, compounds which have the
same molecular formula but non-isomorphic graphs- such as isopentane and neopentane.
On the other hand, the molecular graph normally does not contain any information about
the three-dimensional arrangement of the bonds, and therefore cannot distinguish between
conformational isomers (such as cis and trans 2-butene) or stereoisomers (such as D- and
L-glyceraldehyde).

In some important cases (topological index calculation etc.) the following classical
definition is sufficient: molecular graph is connected undirected graph one-to-one
corresponded to structural formula of chemical compound so that vertices of the graph

*Corresponding author (Email: r.kazemi@sci.ikiu.ac.ir)
DOI: 10.22052/ijmc.2017.53731.1198



378 KAZEMI

correspond to atoms of the molecule and edges of the graph correspond to chemical bonds
between these atoms.

In the fields of chemical graph theory, molecular topology, and mathematical
chemistry, a topological index also known as a connectivity index is a type of a molecular
descriptor that is calculated based on the molecular graph of a chemical compound.
Topological indices are numerical parameters of a graph which characterize its topology
and are usually graph invariant. Topological indices are used for example in the
development of quantitative structure-activity relationships (QSARS) in which the
biological activity or other properties of molecules are correlated with their chemical
structure. The simplest topological indices do not recognize double bonds and atom types
(C, N, O etc.) and ignore hydrogen atoms (“hydrogen suppressed™) and defined for
connected undirected molecular graphs only. More sophisticated topological indices also
take into account the hybridization state of each of the atoms contained in the molecule.
Hundreds of indices were introduced. The Hosoya index is the first topological index
recognized in chemical graph theory, and it is often referred to as the topological index.
Other examples include the Wiener index, Randic’'’s molecular connectivity index,
Balaban’s J index, and the TAU descriptors [12].

Let G be a molecular graph. Two vertices of G, connected by an edge, are said to
be adjacent. The number of vertices of G, adjacent to a given vertex v, is the degree of
this vertex, and will be denoted by d(v). Gutman [5] introduced the following general

form for topological indices:

T, =TI(G) = Y F(d(u).d(v))

uveE(T)
where the summation goes over all pairs of adjacent nodes u,v of molecular graph G, and

where F = F(x,y) is an appropriately chosen function. In particular,F(x,y) = (xy) " for
Randi¢ index, F(x,y)=x+y for the first Zagreb index, F(x,y)=xy for the second
Zagreb index, F(x,Yy)=|x—y]| for the third Zagreb index, F(x,y)=(xy)"* (1 eR) for the
second variable Zagreb index, F(xy) = ((x+y—2)(xy))¥* for the ABC index,
F(x,y) = (xy(x+y—2)")*, for the augmented Zagreb index, F(x,y)= ZM(X+ y)™ for
the geometric-arithmetic index, F(x,y)=2(x+y)™" for the harmonic index and F(x,y) =
(x+y) "2 for the sum-connectivity index.

Todeschini et al. [15,16] proposed that multiplicative variants of molecular
structure descriptors be considered. Thus we have the following general form for
topological indices:

T, =TI1,(G)= [] F(d(u),d(v)).

uveE(T)
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When this idea is applied to Zagreb indices, one arrives at their multiplicative versions
I1,(G) and I1,(G), defined as l‘Il(G):l_[VEv(G)(d(v))2 and Hz(G):HUVEE(G)d(U)d(V)

[3, 4]. Réti and Gutman [14] provided lower and upper bounds for I, and I1, of a
connected graph in terms of the number of vertices, number of edges, and the ordinary,
additive Zagreb indices M, and M,. Let T, be the set of trees with n vertices. Gutman

[6] determined the elements of T,, extremal w.r.t. I, and II,. Iranmanesh et al. [7]

computed these indices for link and splice of graphs. In continuation, with use these graphs,
they computed the first and the second multiplicative Zagreb indices for a class of
dendrimers. Liu and Zhang [13] introduced several sharp upper bounds for IT,-index in
terms of graph parameters including the order, size, radius, Wiener index and eccentric
distance sum, and upper bounds for IT,-index in terms of graph parameters including the
order, size, the first Zagreb index, the first Zagreb coindex and degree distance. Xu and
Hua [18] obtained a unified approach to characterize extremal (maximal and minimal)
trees, unicyclic graphs and bicyclic graphs with respect to multiplicative Zagreb indices,
respectively. Recently, Wang and Wei studied these indices in k-trees [17].

Another multiplicative version of the first Zagreb index is defined as

I,(G) = HUVEE(G)(d (u)+d(v)) and is named as the multiplicative sum Zagreb index. Eliasi

et al. [2] proved that among all connected graphs with a given number of vertices, the path
has minimal IT,. They also determined the trees with the second-minimal IT,. Kazemi

[11] studied IT,,I1, and IT; in random molecular graphs with tree structure. He gave the

lower and upper bounds related to the moments of these indices.
We introduce the modified multiplicative sum Zagreb index, defined as
IL(G)= [T (d(u)+d(v))"™®,
uveE(G)
and study it in random molecular graphs with tree structure. An illustrative example is
provided in Figure 1.

2. EVOLUTION PROCESS

The structures of many molecules such as dendrimers and acyclic molecules are tree like.
We present the following evolution process for random trees of order n, which turns out to
be appropriate when studying the multiplicative Zagreb indices of molecular graphs with
tree structure [10].

Every order-n tree can be obtained uniquely by attaching nth node to one of the
n—1 nodes in a tree of order n—1. It is of particular interest in applications to assume the
random tree model and to speak about a random tree with n nodes, which means that all
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trees of order n are considered to appear equally likely. Equivalently one may describe
random trees via the following tree evolution process, which generates random trees of
arbitrary order n. At step 1 the process starts with a node. At step i the ith node is
attached to any previous node v of the already grown tree T of order i —1 with probability
pi(v) = 1/(i—1). For applicability of our own results and specially connection with the
chemical relevance, see [9].

Figure 1. A molecular graph with TT, =6718464, IT, = 8707129344,
I1, =14400000000 and I1, = 4x10>.

Let d(v,n) denote the degree of node v in our structure of order n. It is obvious
that 1<d(v,n)<n-1. We define B, to be the sigma-field generated by the first n stages
of the random molecular graphs with tree structure. Let T, be the set of trees with order n.
Then by definition of the multiplicative Zagreb indices for k >1 and i =1,2,3 [11],

1_Ii(Tn)k
1_Ii(Tnfl)k
where U is independent of B, ,. Let {y,,..., Y} be the neighborhood of the vertex U . Also

= £, (d(U,n-1))",(2)

dU,n-1) |
d(U,n-1)
fp (d(U,n-1))= (%J x(dU,n-1)+1), fori=2

10D dU,n-1)+d(y,,n-1)+1

, fori=3.
k= dU,n-1)+d(y,,n-1)

It is obvious that
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2k
[Ej . fori=1

n-3
a, :=min f, (dU,n-1))" =14 fori=2
1 1 K
[3n—_;j , fori=3
n_
and
4 fori=1
k(n-3)
d,, = max f,, (d(U,n-1))" = (:—_gj (n-2)<, fori=2
k(n-3)
(”—_;j (n—1), fori=3.

Theorem 1 [11] Let E(IT,(T,)*)(k>1,i=1,2,3) be the kth moment of IT.(T,) of a
molecular graph T, with tree structure of order n. Then for n>5,
(n-2)* <E(IT(T,)*) <42 (ae),
4409 < E(IT,(T,)*) < (n—2)"2, (ae),

(éS”(n—l)) <E(M,(T.)4) <24 (=1)""2, (ae).

3. MAINRESULTS

3.1 RATIO OF THE MULTIPLICATIVE ZAGREB INDICES

In this section, we obtain lower and upper bounds for the moments of the ratio of the
multiplicative Zagreb indices (I1,,IT, and I1;).

Theorem 2 Suppose

k
IT.(T.) .
IT.. (T)=El —/—2= |, 1 ,1,]=1,2,3.
|,J,k( n) {HJ(TH)J e J J
Then
T 2k(n-2)
n-2 1 n-2
Hl,Z,k(Tn)Z[(n_S)ZJ vnl,s,k(Tn)Zz_k —l )
(n=3)(n-1)?
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4 02
I, (021 T ()2 5]

3n-1)"? [3(n-)"”
I, (T,) 22 ( _2) » g, (T,) 22 (WJ :

Proof. It is obvious that for i =1,2,3, T1,(T,)* > IT,(T, ,)*. Then
_ I, (T,)
Hi,j,k(Tn)_E[ {HJ(T) |B, n
> E E H (Tn 1 —at |B
I1;(T,)
=g, e — = |B
i\ina Hj(Tn)k n-1
> 8, [1(T, ) E| —=— B,
: 1_Ij(Tn)
S>> E[ag_zni (T,)" E(;k | B“N
: H](Tn)
:aﬁ.zbﬁ.E[E( - " Bnlj} by, =I1;(T;)
: : H](Tn) I

_aHZbk 1 =,
[ j(Tn) J

where bHl = bHZ =1, bn3 = 2. By Jensen’s inequality [1],
1
VE(IT;(T,))

and proof is completed by Theorem 1.

Ijk(T) anZK

Corollary 1 Suppose m=n(m,neN) and

k
M, 0T = 2l | 103
- HJ(Tm)
Then
2k(n-2) K(n-2)
n-2 —k(m- 4
llk(Tm1T )= ( 3) 47 2)1 Hz,z,k(Tm’Tn)ZW’
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3(n-1))"? i
H3,3,k(Tm’Tn)2( ( )) (m_l) “ 2)1

n-2
2k(n-2)
I (T, T,) 2 (n_—gj (m—2)"*m2,

n—

2k (n-2)
I—[l,B,k (Tm an) > Zik(n—_ij (m _:I_)fk(mfz)1
4k(n—2)

I, (T T,) = 4", Hz,s,k(Tm’Tn) 2 W’

k(n-2)
I—[3,1,k (Tm ’Tn) 2> 2k (Sn__;) 47k(m72) 1

«[ 3(n-1) o _ pyk(m-2)
I, (T, Ty) 2 2 (—(n 2y J (m-2) .

With this approach, we can obtain the sharp lower bounds for different values of k .

Theorem 3 Suppose

1_[i(Tn)

k
, 1=, 1,)=1,2,3.
H,-(TH)J S

Hi,j,k (T,)= E(
Then

k
Hl,z,k (Tn) < 4k(n72), Hl,s,k (Tn) < (%) 4k(n72),

k(n-3)(n-2)
HZlk(Tn)S(n—_z) (n_z)k(rﬁ%

n-3
k k(n-3)(n-2)
1} (n-2 o
[Ty, (T,) < (E) (n——?:) (n-2)"?,
k(n-3)(n-2)
n-1
IT <2¢ = n—1)k-2.
3,l,k(Tn) (n_zj ( )
k(n-3)(n-2)
n-1
I <24 —= n—1)<"2,
3,2,k(Tn) (n—Z) ( )
Proof. We have [11]:
E(IT,(T,)" [ Byy) < dpy T (T, )", (ae),
E(IT,(T,)" [Byy) < dy T, (T, )" (ae),

E(L,(T,) 1B,) <d, TL,(T,.) . (2e).(2)
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Thus

g g L)
IT; jk\'n/ ™ E E = k Bn—l
I, (T ) [ (HJ(Tn) | j}

o]
I(T)

_ 1 K
- E[HJ (Tnfl)k E(HI (Tn) |Bn1)J

SdH_E Lfﬂ)i
CUIT (M)

SdH_E Lfﬂ)kk
: Hj(Tn—Z)

4, E E{&mﬂ
F o

_ 1
! Hj(Tn—Z)k
Sdé_E Lfﬂ)i
: Hj(Tn—Z)
S"'SdeZE Hi(Tz)k
(T,
= drnI;ZHi,j,k(Tz)f

E(H| (Tn—l)k | BnZ)J

where
I, 5 (T,) = I, (T,) = (1/2)k .

1—13,1,k (Tz) = H3,2,k (Tz) =2 )

I, (T,) =T, (T,) =1.
Now, the proof is completed by inequalities (2).

We can introduce the upper bounds similar to Corollary 1.
Corollary 2 Let i, j,k,1=1,2,3, n,p>5 and
Iy (THVTp) = E[

Let r,se[1,00] with 1/r +1/s =1. By Holder’s inequality,

I1,(T,) Hk(r,,)J

I;(T,) IL(T,) )

KAZEMI
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1 1
Hi'j‘k‘l (rn’Tp) < Hi,j,r (I-n)r 1_Ik,l,s (rp)s-
For example,
1 1 g
155, (Ts, Tg) <TLy,  (T5) "L, o (Tg)® < s

3.2 MODIFIED MULTIPLICATIVE SUM ZAGREB INDEX

For a path P,,
I1,(P,) = 256(n—3)+18, n>3
and for astar S,
I1,(S,)=n"*(n-1), n>2
Lemmal Let
x4y, +1) 0

f(valv""yx):(X+2)X+1H (X+y-)xyi

, XY, =123,...,n-3.

Then
f(1,1,...)<f(XY,.Y,)<f(n=3,n-3,..,n-3).
Proof. It is enough to note that the function f(x,Y,,...,Y,) is increasing in each y, and x.
Let vertex U is uniformly distributed on the vertex set {v,,v,,...,v, ,}. Then by definition
of the modified multiplicative sum Zagreb index,
I, (T,) = I, (T, )(dU,n-1)+2)* """
Y (d(U,n-1)+d(y;,n—1)+1)
X I d(U,n-1)d(y; ,n-1) J (3)
i=1 (dU,n-1)+d(y,,n-1)) i

where U is independent of B, , and node vy, is the neighborhood of the vertex U .

(d(U.n-1)+1)d(y;.n-1)

Theorem 4 Let E(IT,(T,)*) (k >1) be the k th moment of IT,(T,) of a molecular graph
T, with tree structure of order n. Then for T,\{P,,S,},

L w2
81 k(n-2) 1 (21 _3) -1 \K(-2)
2 — <E(IT,(T)4) <81 [j*0?| —=—1— , (ae).(4
EF R AR § (R BN D0
Proof. It is obvious that IT,(T, ;) is B, ,-measurable and the nth vertex is attached to any

previous vertex v of the already grown structure T, , with probability 1/(n—1) [8,10]. From
Lemma 1 and Equation (3),

E(I1,(T,)"|B,,) = E(I1,(T,)|d(v;,;n-1), j=1,.,n-1)
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4 ) k(d(v;,n-1)+1)
I Tn, k n-17%]j k(d(v,n-1)+1) (d (V-an_l)+2) !
> 4( 1) Z (d(vj,n—l)+2) j ) kd (v, ,n-1)
n-1 93 4 (d(Vjin_l)'i'l) J

zru(nly(%§), (ae)

k(n-2)
59 (81) |
2

since I1,(T,) = 2. We can obtain the upper bound from Lemma 1 and IT1,(T,) =81.

11, (Ti—l)

g 2k i (2i—5)i72 k(i-3)2 - iy (2] ),2 k(j-3)2
(&) <emun oy E95] oo G905

k
IT,(T. .
Theorem 5 Assume I1,;, = [4—”1)J ,for i>5 and k >1. Then almost everywhere,

k
Proof. Suppose Y,; :EIEILTUI))J for i>5. Then E(IT,;,) =E(Y,;Y4ik) - Now, from
4\

Theorem 4 and the law of the iterated expectation,

E(H4,i,k) = E(E(Y4,i,kY4,i+1,k |B)))
= E(Y4,i,kE(Y4,i+1,k [B;)), (ae.)

81)'
(2 et

2

2k
> (8_1 .
2
With this approach, we can obtain the upper bound.

n_2 2k(n-2)
(=2)

PR
1kH K(j-1) (21_3)J LY
@j-4"*

j=3

= (ﬂ' E(E(YM'k 1Bi1))

Corollary 3 We have

1_11,4,k (Tn) 2
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4*(0-2)
H2,4,k (Tn) > .
T i j-1 i-2)
Slknjk(il)(Mj
j=3 (2] _4)1—2
2k[3(”—1)jk‘”)
,,,(T,)= n-2 -
81kH k(j 1)((21 3)11j
j=3 (2] 4)1 2
ZK(SJ-JK(nZ) 2k(81jk(n2)
2 2
a2 VTCERE I, (T,) 2 W,

g1)"?
( j 4k(n 2)
43k(T)—W1 14k(|')_

k(n-2)(n-3)
n-2 N
24k(T)— (n 3) (n_z)k( 2)1

k(n-3)(n-2)
n-1 N
34k(T) ( ) (n_l)k( 2)1

-2
k(n-3)2(n-2)
@n-5"*
(2 n-— 6) n-3 ,

IT ‘ | 2 k(nfs)z(n 2)
n 5)n72

SZK n-1 k(n-2) (— )
A2k n) ( ) (2“ 6)”73

(2n—5)"* k(n-3)? (n-2)
Wj .

Iy (T,)< 2k(n _1)k(n2)2(

H4,3,k (Tn) <(n _:|_)k(n—2)2 (

since

81 K (2n—5)”’2 k(n-3)2
al'[4 = (?) , bl‘[4 =2, dH4 = (n_l)k(nz)(mj |

AlSO, 1—11,4,k (Tz) = H2,4,k (TZ) = (1/2)k ; H4,1,k (Tz) = H4,2,k (Tz) = 2k , H3,4,k (TZ) = H4,3,k (TZ)

k
Theorem 6 Let T be a finite stopping time for {L”)k,Bn} . Then
EILT)) ).

E[Lnkkjﬂ
E(H4 (TT) )

387

=1.
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Also, for 1 >0,

F{wpﬂﬂg

1
ws E(AL(T)) ) 4

Proof. We have

EELJK| B“j _E@L(1,)[B,.)

E(I1,(T,)") E(I1,(T,)")
< 4k1_[1(|-n—1)k (a e )
81 o
[2) E(H4 n—l) )
1_Il(Tnfl)k (ae)

CE(IL(T,,))
1_Il(Tn)k

—>0. Proof is completed
E(IL(T,)")

k
Then {L”)k Bn} is a supermartingale. Also,
EILT)Y) ).

by Doob’s supermartingale inequality [1].

Theorem 7 Suppose 5<m<n. For i=1,2,3,4 and k;,k, >1,
ET, () T1(T,)?)

TI. !

E(L(T,) 0, (T,) )

where a, =min f, (d U, n-1))".
Proof. If m<n, then IT,(T,,) <I1,(T,,) and B,, =B, ;. Then

E(IT, (T,) 1, (T,)'2) = E(E(TT, (T,) “T1,(T,)? | B,,))
= E(I1,(T,.)? E(1,(T,) | B,))
= E(I1, (T,,) ? E(E(TT, (T,) |B,,,) | B,.))
> E(IT(T,)? E(ay IT,(T, 1) " [B,))
> ay, E(IT,(T,,) 11, (T,.)'),

since by [1, Theorem 5.5.10],

E(E(T; (T,)|B,) [B,4) = E(L(T,) [B,) = E(E(IL(T,)[B,,) [B,) (ae.).
For example,

e =2 |

m-1
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Suppose 5<m<n and r,se[1,o0] with 1/r +1/s =1. Then for i =1,2,3,4 and k;,k, >1,

E(IT, (T,) 1T, (T,,)'?) < (E(I,(T,) )" (E(T, (T,)2)s, (ae)

This bound is an immediate consequence of Holder’s inequality. Let

m

I, (T,)= > _I;(T,),1<m<4. Thenfor r >1,

BT, (T,))" <m™ Y E(T,(T,)"

For example, E((IT,(T,) +T1,(T,))?) < 2(4"? + (m-2)*"?),
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1. INTRODUCTION

Throughout this article, only finite, undirected and simple graphs without loops and
multiple edges are considered. Let G be such a graph and V(G) and E(G) be its vertex and
edge set, respectively. The degree of a vertex v in G is the number of edges assigned to it,
denoted by d;(v). The number of vertices of degree i will be denoted by n; or n;(G).

Evidently, ng) n; = |V(G)], where A (G) is the maximum degree of G. Assume that
V(G) ={vq, ... vy} and dy = dj,q1, fork =1,...,n — 1, where d;, := d;(vy). Then D(G)
=(d,, d,,..., d,) is called the degree sequence of G. If the emphasis is on G, sometimes
d,(D(G)) is applied instead of d.

For an edge uv of E(G), the G — uv defines the subgraph of G obtained by deleting
uv. In a similar manner, for any two nonadjacent vertices x and y of G, G + xy is a graph
obtained from G by adding the edge xy. A pendant vertex is a vertex with degree one and
a tree is a connected acyclic graph. A star of order n, denoted by S,,, is the tree with n-1
pendant vertices and the path B, is the tree of order n with exactly two pendant vertices.
The symbol z (n) represents the class of trees with n vertices.

*Corresponding Author (Email address:eliasi@math.iut.ac.ir)
DOI:10.22052/ijmc.2017.46693.1161
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A topological index is a number related to a graph, which is invariant under each
graph isomorphism. Topological indices play a significant role in mathematical chemistry,
especially in the QSPR/QSAR assessments (See [6, 15]).

The first Zagreb index, introduced by Gutman and Trinajsti¢ [14], is an important
topological index in mathematical chemistry. This index is used by various researchers in
QSPR/ QSAR studies [1, 20, 22]. In addition, the first Zagreb index has been subjected to
a great number of mathematical studies [2, 3, 5, 12, 13]. The first Zagreb index of a graph
G is defined as M1(G) = Yyev(e) A6 (V)? = Tuver()[de (W) + dg(v)]. Recently, for an
arbitrary real number «, except from 0 and 1, Li and Zheng [16] introduced the first
general Zagreb index M{ of G as follows M{(G) = X,ey(c) dg(v)®. Li and Zhao [17]
characterized all trees with the first three smallest and largest values of the first general
Zagreb index, where o is an integer or a fraction 1/k for a nonzero integer k. Todeschini et
al. [22, 23] proposed the multiplicative versions of additive topological indices, applied to
the first Zagreb index as 1 (G) = [lyev(¢) de (V)?, 11 (G) = [lyey(e)lde (u) + d;(v)] and
m2(G) = [uver)lde(W)de (v)]. The symbols m; and m, are referred to as the
multiplicative Zagreb indices.

In [11], Gutman showed thatamong all trees with n > 5 vertices, the extremal
(minimal and maximal) trees regarding the multiplicative Zagreb indices are the path P,
and star S,. Eliasi [7] identified thirteen trees with the first through ninth greatest
multiplicative Zagreb index among all trees of order n. In the same line, Eliasi and
Ghalavand [10] introduced a graph transformation, which decreases m,. By applying this
operation, they identified the eight classes of trees with the first through eighth smallest r,
among all trees of order n > 12. Also the effects on the first general Zagreb index were
observed when some operations including edge moving, edge separating and edge
switching were applied to the graphs [18]. Moreover, by using majorization theory, the
authors [18] obtained the largest or smallest first general Zagreb indices among some
classes of connected graphs. Some more outstanding mathematical studies on
multiplicative Zagreb indices are [4, 8, 9, 19, 21, 24].

This paper is an attempt to investigate into the first general Zagreb index and the
multiplicative Zagreb indices of trees via applying a new graph operation plus
majorization theory, in particular, Schur-Convex function theory. Furthermore, some
hands-on techniques and concluding remarks which complement the previous studies
concerning aforementioned topological indices are introduced.

2. PRELIMINARY RESULTS

Let x = (xq, x5,..., x,) and y = (¥4, ¥2,..., ¥n) be two non-increasing sequences of
real numbers. If they meet the conditions YK, x; <¥¥ vy, for 1<k<n-1 and
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K x; =YK,y then it is deduced that x is majorized by y, thus x < y. Furthermore,
x <y means that x <y and x # y. A real-valued function ¢ defined on a set 0 € R" is
said to be Schur-convex on Q if x < y implises @ (x) < @(v). It is called strictly Schur-
convex on ( if the inequality is stric. The following theorems are supposed to be utilized
in the next sections.

Theorem 1. Let G and G’ be two connected graphs with degree sequences D(G) and
D(G"), respectively. If D(G) < D(G"), then (1) m,(G) > m,(G"). This equality holds if an
only if D(G) = D(G"). (1) m,(G) < m,(G"), where equality holds if an only if D(G) =
D(G") (See [7]).

Theorem 2. Let G be a connected graph with degree sequence D(G) and G” be a connected
graph with degree sequence D(G"). (1) If D(G) < D(G"), a < 0 or a > 1, then M,(G) <
M, (G"); equality holds if and only if D(G) = D(G"). (1) If D(G) < D(G"), 0 < a < 1, then
M,(G) = M,(G"); equality holds if and only if D(G) = D(G") (See [18]).

For positive integers x;, x5,... , X, aNd 1, Vo, ..., Vi, let
T(x, 00, x,02) . x, Om)
be the class of trees with x; vertices of the degree y;, i = 1,...,m. This class may be empty.
It is easy to see that if G € T(x;¥7), x,02), ... x,0m), then m,(G) = [T, v;?*,
m,(G) = [12, v and Mo (G) = X712, x;y;*.

Lemma 1. There is a tree of order n (>2) in T(x, 0, x,02, ..., x,,®™) if and only if
=1 Xy =2n— 2.

Proof. It is well-known that if a;, a,,..., a, are positive integers with n> 2, then there
exists a tree with degree sequence of a,, a,, ..., a, if and only if },a; =2n — 2.
Hence there exists a tree T € T(x;07), x,02), .. x,,Om) if and only if X™, x;y; =
2n — 2, as desired.

Remark 1. Let n> 12. According to Lemma 1, the class of trees in Table 1 are nonempty.

AT

Lemma 2. Let T be a tree with n vertices. Then n,(T) = 2+ ¥.2."n;(i — 2) and n,(T) =

n—2-— ng) n; (i —1).
A(T)

Proof. The above equations are obtained using n; +n, + X",

YA in, = 2(n — 1).

=3

n; =n and n, +2n, +
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3. A GRAPH TRANSFORMATION

A graph transformation that decreases the degree sequences of trees regarding the
majorization is illustrated in this section.

M ° y ] ui
G G

Figure 1. The Trees G4, G,, G and G” in Lemma 3.

Lemma 3. Let G, be a tree and U, Uy, us € V(G,), where
dg,(uq) = 2, dg, (uz) > 2, dg, (u3) =1, and u,uz € E(G,). In addition, assume that G, is
another tree and y is a vertex in G,. As illustrated in Figure 1, let G be the
graph obtained from G, and G, by attaching vertices y, u; and G'=G—yu,+yus.
Then D(G") < D(G).

Proof. Suppose that dg, (u;) = xand D(G)=(d,,d;,...,d; di+1=X+1,d;15,...d1y 1,...,1).
Since D(G")=(d4, d;,....d;,di11=%,d;i42,..,dm,2,1,...,1),

()  Foreachk (1<k<i), X¥_, d;(D(6))=Xk_, d;(D(G)).
(1) Foreachk (i+1<k<m), X¥_, d;(D(6))<Xk., d;(D(6")).
(1) Foreach k (m+1 <k <n), ¥*_, d;(D(6))= Xk, 4;(D(6")).

Thus D(G’) < D(G).
For a positive number n > 12, let F (n) = {T € z(n) | A(T) = 4}.

Theorem 3. Suppose that 7° is a tree with n > 12 vertices such that A(T") = 3 and that
ns(T)>6. 1f T e T(5®, (n — 12)®,7M) then D(T) < D(T).

Proof. We prove the theorem by induction on ns(T"). If ng(T") = 6, then by using
Lemma 3 on a vertex of degree 3 in T” we obtain a tree, like T, with 5 vertices of degree 3.
Since A(T) = 3, Lemma 2 shows that n,(T) = 7 and n,(T) = n — 12; therefore, T €



Extremal trees with respect to some versions of Zagreb indices via majorization 395

T(5®, (n —12)®, 7MY and by Lemma 3, D(T) < D(T"). Now assume that n;( T") > 6.
Again, by using Lemma 3, we reduce the number of vertices of degree 3. Now we apply
the induction hypothesis to n;( T”) and obtain the result.

Theorem 4. Suppose that T € F(n) and T € T(1®,23) (n — 9)® 6MW), 1f n,(T) =1
and n3( T°) = 3, then D(T) < D(T").

Proof. The proof is by inductionon on n3( T7). If n3(T") = 3, then by applying Lemma 3
on a vertex of degree 3 in T’, we obtain a tree, say T, with two vertices of degree 3. Since
A(T) =4 and n,(T) = 1, Lemma 2 indicates that n,(T) = 6 and n,(T) = n — 9. Therefore, T
e T(AM,203) (n —9)@ 6M) and D(T) < D(T) is obtained by Lemma 3. Now assume
that n;(T”) > 3. Afterward, by using Lemma 3, we decrease the number of vertices of
degree 3, and thus the proof can be verified by induction hypothesis.

Theorem 5. Suppose that T° € F(n) and T € T(2®, (n — 8)®,6M). If n,(T) >2and T’
g T(2W, (n — 8)@,6M), then D(T) < D(T).

Proof. By repeating application of Lemma 3 on vertices of degree 4 in T, a tree T, with
n,(T;) = 2 in terms of adequate number of times (t-times) can be gained. By repeating
application of Lemma 3 on vertices of degree 3 in T;, adequate number of times (s-times),
a tree T, with n,(T;) = 2 and n3(T;) = 0 can again be obtained. Now, by Lemma 2, we
conclude that n,(T;) = 6 and n,(T;) = n — 8. Consequently, T, € T(2®, (n — 8)@, 61)
and Lemma 3 gives D(T) = D( Ty) < D(T").

Theorem 6. Suppose that T’ is a tree with n (>12) vertices and A(T") > 5. If T" ¢
T(1®, (n—6)@ 5M)and T e T(A®), (n — 6)@ 51), then D(T) < D(T").

Proof. Suppose v; € V(T") and d +(v1) = A(T"). Let U ={v e V(T’) | v# vy, d (V) > 3}.
Again, using Lemma 3 on vertices in U, provided that the adequate number of times
considered, we arrive at a tree T,, with only one vertex v, of degree A(T"); whereas the
degree of other vertices is 1 or 2. In addition, by repeating application of Lemma 3 on v,,
(A(T")— 5)-times, we arrive at a tree T, such that ng (T) =1 and n;= 0, for 1 > 3 and i #5.
On the other hand, by Lemma 2 we have n, (T) =5 and n, (T) = n — 6. Therefore, T €
T(1®), (n — 6)@ 50 and D(T) < D(T") is followed by Lemma 3.
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Table 1. Classes of Trees and their Multiplicative Version of Zagreb Indices.

Class

Ty T,
T((n—2)® 2W) 22(n-2) 22(n-2)
T(1(3), (n— 4)(2), 3(D) 32 x 22(n-4) 33 x 22(n—4)
T(2®,(n - 6)?,40) 3% x 22(n-6) 36 x 22(n-6)
T(3(3), (n— 8)(2), 5(1)) 36 x 22(n-8) 39 x 22(n-8)

T(4®, (n — 10)?, 60)

38 x 22(n—10)

312 x 22(n—10)

T(5®, (n - 12)?,70)

310 x 22(n—12)

315 x 22(n—12)

T(1®, (n - 5)? 4®)

42 x 22(n—5)

44 x 22(n—5)

T(1®,1® (n—7)? 50)

42 x 32 x 22(n—7)

44 x 34 x 22(n—7)

2

T(1(4), 23 (n - 9) ,6(D) 42 x 3% x 22(n-9) 44 x 36 x 22(n=9)
T(2(4), (n— 8)(2), 6(1)) 44 x 22(n-8) 48 x 22(n-8)
T(1(5), (n— 6)(2), 5(1)) 52 x 22(n-6) 55 x 22(n—6)

Table 2. Classes of Trees and their General First Zagreb Indices.

Class

T((n — 2)(2), 2(1))

(n—2)2*+2

T(1®, (n —4)? 30)

3*+(n—4)2*+3

T(2®, (n - 6)?, 4

2x3*+(n—6)2*+4

T(3®, (n — 8)? 5

3x3*+(n—-8)2*+5

T(4®, (n - 10)”

1 6(1))

4%x3%+ (n—10)2*+6

T(5®, (n - 12)”

,7()

5x3%+(n—-12)2¢+7

T(1®, (n —5)? 4®)

4+ (n—5)2%+ 4

T(1®,1®), (n — 7)(2), 51)

49+ 3%+ (n—7)2*+5

T(1®,2®, (n - 9)?

1 6(1))

4 +2x3%+(n—9)2+6

T(2®, (n —8)? 6)

2x4%+(n—8)2*+6

T(1®, (n - 6)? 50)

5+ (n—6)2¢+5
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4. MAIN THEOREMS

Based on Tables 1 and 2 and the transformations in Section 3, the main theorems are
discussed below.

Remark 2. For n > 12, we assume that T, := P,, T, € T(1(3),(n—4)(2),3(1)), T, €
T(2®, (n - 6)® 40y, 1, e T(1®, (n — 5)®, 4W), T, e T(3®, (n — 8)?, 5D, T, €
T(1®,1® (n—7)? 50), T,eT(4®, (n — 10)?,6W), T, eT(1®, (n - 6)?,50),
T, € T(1®2® -9 6W), T, € T(2® (n-8)? 6®) and T,; €
T(5®, (n - 12)?, 7).

Theorem 7. my(Ty) > m,(T;) > my(T35) > my(Ty) > my(Ts) > m,(Te) > 1y (T7) >
1 (Tg) > 11 (To) > m(Tyo) > w1 (T1y).

Proof. Make use of Table 1.

Theorem 8. If n > 12 and T € t((n)\{Ty, T, ..., Tg}, then m (Ty) > m,(T,) > n,(T3) >
1 (Ty) > 11 (Ts) > m1(Te) > w1 (T;) > w1 (Tg) > 7y (T).

Proof. Theorem 7 shows that ,(T;) > n,(T,) > 7,(T3) > 7 (T,) > 7 (Ts) > 7,(T) >
m,(T;) > m,(Tg). f T €{Ts, Ty, T11}, then the result follows from Theorem 7. If A(T) = 3
and n; (T) > 6, then m,(Ty;) > m,(T), by Theorems 3 and 1(l), and thus Theorem 7
implies m{(Tg) > m; (T). Assume that A(T) = 4. If n, (T) = 1 and n; (T) > 3, then by
Theorems 4 and 1(1) we drive that 7, (Ty) > 7, (T). Therefore, the result is an immediate
consequence of Theorem 7. If n,(T) = 2, then by Theorems 5 and 1(l) the m,(T,) >
7, (T) will be yielded. If A(T) = 5, then by Theorems 6 and 1(l) the 7, (Tg) > 7, (T) can
be obtained and again Theorem 7 gives the result. Ultimately, otherwise, T €
{T,, Ty, ..., Te}.

Theorem 9. 1, (Ty) < m,(T,) < mp(T3) < mp(Ty) < mp(Ts) < my(Te) < myp(T7) <
5 (Ty) < m,(Tg) < mp(Ty1) < mo(Tyo).

Proof. Apply Table 1.

Theorem 10. If n > 12 and T € t(n){Ty, Ty, ..., T, To}, then m,(T;) < m,(T,) <
M, (T3) < mp(Ty) < mp(Ts) < mp(Te) < m(Ty) < mR(To) < my(T).
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Proof. We get m,(T;) < mp(T,) < mp(T3) < mp(T,) < mp(Ts) < mp(Te) < mp(T7) <
1, (Ty) from Theorem 9. If T € {Tg, Ty, T11}, then Theorem 9 implies 7,(Ty) < m,(T). If
A(T) = 3 and ns (T) > 6, then by Theorems 3, 1(ll) and 9, 7,(Ts) < m,(T). Assume that
A(T) =4. If n, (T) =1 and n5 (T) > 3, then by using Theorems 4, 1(I1) and 9, m,(T,) <
,(T). If ny(T) = 2,then by Theorems 5 and 1(II) we have m,(T,,) < m,(T). Hence,
Theorem 9 yields the result. If A(T) > 5, then by Theorems 6 and 1(I1) we have m,(Ty) <
m,(T) and Theorem 9 implies m,(Ty) < m,(T). Eventually, otherwise, T €
{T,, Ty, ... Ty, To}.

Theorem11.

(N Ifa<0ora>1,then
ME(T,) < ME(T,) < M{(T;) < min {M{(T,), MF(Ts), M{¥(T), ME(T,), M&(Ty),
M (To), M{(Ty0), M7 (T11)}
(1) If 0 <a < 1, then
M (Ty) > M{(T,) > M{(T3) > max {M{(T,), M{(Ts), M{ (T¢), M{ (T;), M{ (Ts),
M (To), M{(Ty0), Mi (T11)}-
(1D If a =2, then
ME(T,) < M{(T,) < M{(T5) < M{(T,) = M{(Ts) < M{(T) = M{(T,)
< M{(Ty) = M{(Ty1) < M{(Tg) = M{(Tyy).
(IV) Ifa=2, then
ME(T,) > M{(T;) > M{(T5) > M{(T,) > M{(Ts) > M (T,) > M{(T,)
> M{(Tg) > M{(Ts) > M (Ty;) > M{(Ty,).

Proof. (1) The proof of M{*(T,) < M{(T,) would suffice and other cases can be proved in
a similar manner. For this purpose, the following equation is applied:

ME(T,) — MF(T,) = (2% 2%) — (3% + 1). (1)

Let X = (2,2) and Y = (3,1), thenX < Y. By Lemma 2 (I), the (2 x2%) < (3*+1) is
yielded. Now, Equation (1) shows that M{(T;) < M{(T,).

(1) Here, M{(T,) > M{(T,) is proved. Other cases can be proved in a similar manner. It
is easy to check that:

ME(T,) — M(T,) = (2x2%) = (3% +1). (2)
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Let X =(2,2) and Y = (3,1), then X < Y. Thus, by Lemma 2(I) we have (2 x 2%) >
(3% + 1). Therefore, Equation (2) implies M{(T;) > M{(T,). To prove (I11) and (IV), it is
enough to apply Table 2.

Theorem 12.
I. Ifa<Oora>1and T € «(n)\{T,,T,, T5}, then MI(T,) < MX(T,) < M¥(T3) <
ME(T).
Il. fO0<a<land T € «(n)\ {Ty,T,,T5}, then MF(T,) > MX(T,) > M{¥(T;) >
ME(T).
M. If a =2 and T € «(N\{T,,Ty,...,T;, To}, then MI(T,) < MX(T,) < (T;) <
M{(T,) = M{(Ts) < M{(Ts) = M{(T;) < M{(Ty) = M{(Ty,) < M{(T).
IV. If a=<and T € on) {Ty,Ty ..., Tg}, then ME(Ty) > M{(Ty) > M{(Ty) >
M{E(T,) > ME(Ts) > M{(Tg) > ME(T,) > M (Tg) > ME(T).

Proof. (1) Theorem 11(1) shows that M#(T,) < M&(T,) < M{(T;). UsingTheorem 11(1),
it suffices to prove that there exists T; € {T4,Ts, ..., T11} such that M$(T;) < M{(T). If
A(T) = 3 and n4(T) > 6, then by Theorems 3 and 2(l), the M$(T;;) < M{(T) is yielded.
Assume that A(T) = 4. If n,(T) =1 and n5(T) > 3. Then by Theorems 4 and 2(1) we obtain
M$(Ty) < M(T). If n,(T) > 2, Theorems 5 and 2(1) imply that M{*(T,,) < ME(T). If
A(T) > 5, then Theorems 6 and 2(l) yields M{(Tg) < M{I(T). Finally, otherwise, T €
{T,,Ts, ..., T;1} and thefore M{(T;) < M{(T) follows from Theorem 11(1).

(I1) This case can be proved by the same procedure as mentioned in the proof (). Instead
of using Theorems 11(1) and 2(l) in the proof of (1), here we apply Theorems 11(1l) and
2(I1), respectively.

(1)  Theorem 11 (IN) vyields M{J(T,) < M{&(T,) < (T3) < M&(T,) = M{(Ts) <
M{E(Ty) = MP(T;) < ME(Ty) = M&(T,,). It will thus be sufficient to prove that there
exists a T; € {Tg, T1o, T11}, With MI(T;) < ME(T). If A(T) = 3 and n(T) > 6, then by
Theorems 3 and 2(l) we have M{(T;;) < M&(T). Assume that A(T) = 4. If n,(T) =1 and
ns(T) > 3. then Theorems 4 and 2(1) give M{¥(Ty) < ME(T). If n,(T) > 2, then by
Theorems 5 and 2(1) we have M{I(T;,) < M{(T). If A(T) > 5, then Theorems 6 and 2(1)
yield M (Tg) < M&(T). Eventually, otherwise, T € {Tg, Ty, T11} and again Theorem
11(11) gives the result.

(IV) This case can be proved by a similar argument as in the proof of (I11). Instead of
using Theoresms 11(111) and 2(1) in the proof of (I11), here we apply Theorems 11(IV) and
2(I1), respectively.
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Figure 3. The Trees in Remark 2.
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1 INTRODUCTION

There are many problems in mathematics, chemistry, physics and some engineering
sciences which are connected to the second-order differential equations. For example, in
the process of the formation of methyliodide (CHgsl) by the biological and photochemical
production mechanisms in a biogeochemical module, the following equation appears:

dc

0 dc
—=P-S+F, . +—(A ), 1
dt air—Sea az ('A» dZ) ( )

which describes the evolution of methyl iodide concentration (¢ [mmolm™]) over time
under production (P), degradation (S), air—sea exchange (F), as well as turbulent vertical
diffusion (A,—diffusion coefficient) (see [26]). Using the separation of variables technique
we can transform the equation (1) to the following second-order differential equation:
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y"+[ﬁ—x—’§+q(x)jy -0, @)

where A is the spectral parameter, A is a real number, the potential q(x) is real-valued.
Equation (2) has a singularity at the endpoint x = 0. For other examples, in quantum
chemistry or quantum mechanics, we refer to the quantum modeling of the hydrogen atom,
or the Hellman equation to finding an approximation for the simplified description of
complex systems, which can be transformed to (2) (see also [3, 4, 6, 13, 15, 17, 24]).

Inverse problems associated with the equation (2) with A=0 have various versions.
The first version was studied by Borg and Levinson, and it is shown that the potential q(x)
can be uniquely determined from the given boundary condition and one possible reduced
spectrum [5, 18]. For the second version, using two spectra A, and A%, Marchenko uniquely
determined the potential q(x) and the corresponding boundary conditions [20]. Finally,
Gelfand and Levitan proved that q(x) uniquely determined by the spectral function [12].

Some inverse problems having singularities or turning points, and/or discontinuity
conditions were studied by the above methods in many works (see [1, 2, 8-11, 16, 19, 23,
27]). Note that, in [22], we considered a second-order differential equation of Sturm-
Liouville type having two turning points and singularities in a finite interval. Then, its
asymptotic form of the solutions was studied, and obtained the infinite representation of the
solutions of differential equation which plays an important role in investigating the
corresponding inverse problem.

In later years, in some interesting works but without singularity, inverse problems
were investigated using a new spectral data which are so-called nodal points, and their
corresponding inverse problems are so-called inverse nodal problems. Mclaughlin seems to
have been the first to consider this method for the one-dimensional Schrddinger equations
[21]. For other works, see also [7, 14, 25].

In this work, we consider the inverse nodal problem associated with the singular
differential equation (2) and the Dirichlet boundary condition

y(0) =0=y(), (3)
on the interval (0,1). We also assume that
q(x) e x> e 1(0,), (4)

where ko is a member of {2,3,4,...}. The problem (2)-(3) has infinitely many nontrivial
solutions. The values of A for which there exist nontrivial solutions are so-called
eigenvalues, and their corresponding nontrivial solutions y(x,A) are so-called
eigenfunctions. All the eigenvalues are real and the set of the eigenvalues is countably
infinite, and also the eigenvalues can be arranged in increasing order as follows

M <A, <Ay <.,
such that A,—»o as n—co. In the present paper, first, we obtain the asymptotic formula for
the eigenvalues, the nodes of the eigenfunctions and the nodal lengths (Section 2). Then,
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we prove that the set of the nodal points of the boundary value problem (2)-(3) is dense in
the interval (0,1) and the potential q(x) can be uniquely determined from this new kind of
spectral data (see Section 3).

2 ASYMPTOTIC FORMULA FOR NODAL POINTS

We consider the boundary value problem L=L(q(x)) defined by (2)-(3). Assume that in (2),

A:vz—%, v:ko—%, k<] 234..... 5)

From [11], we know that the equation (2) has two solutions yi(x,4) and y,(x,1),

which are linearly independent with respect to x, and also have the following asymptotic
formsas A—:

yl(X,i) — i(kofl)lz{ (_1)ko*1ei«/7><[1]0 _{_efiﬁx[l]o }’ (6)
yz(X, A) _ %ilko/z{ _eiﬂx[l]o + (_1)ko*1e*iﬁx[l]0 }’ (7)

where [1], =1+ O((\/Ix)’l). Therefore, the solution y(x,4) of the equation (2) under the

condition y(0)=0 can be written as a linear combination of y; and y,. Also, since the
boundary value problem L is self-adjoint and y;, y, are entire in A, thus all of the
eigenvalues of L are real and simple. In the case when kg is odd, it follows from (3), (7) that
y(x,4)= y2(x,4) and the asymptotic form of the eigenvalues as follows

Jn@ = n7z+0[%j. ®)

Similarly, in the case when kg is even, we derive from (3), (6) that y(x,4)= yi(x,4)
and also the eigenvalues of L may be calculated as (8).
For the boundary value problem L an analog of Sturm's oscillation theorem is true.
More precisely, the eigenfunctions yn(X)= y(x,4,) has exactly n-1 (simple) zeros inside the
interval (0,1), namely:
0<x® <x? <. .<x" <1,
The set

XL::{xr‘,j)}, n>1, j=1n-1, (9)
is called the set of nodal points of the problem L. Also, let
| = [xD), D]
n ) n '"n
be the j" nodal domain of the n™ eigenfunction y,, and let
s .=‘| (j)‘ — xUD _
n : n n n

be the associated nodal length. Inverse nodal problems consist in recovering the potential
q(x) from the given set X, of nodal points or from a certain its part.
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Now, in the following theorem, we develop asymptotic expressions for nodal points
x{" and the nodal lengths ¢V (n=1,2,3,..., j=1,2...,n-1) at which y,, the eigenfunction
corresponding to the eigenvalue A, of the problem L, vanishes.

Theorem 1. We consider the equation (2) under Dirichlet boundary condition (3). Let q(x)
satisfies (4), then the nodal points of the problem L defined by (2)-(3) are

-dof]
no\n (10)

n=123..., j=123..,n-1,

T =1+o[3j.
n n

and the nodal lengths are

Proof. Suppose v=Kko-1/2 and ko is odd. Then, by (7)-(8) and solving y.(x,4n)=0, we
approximate the nodal points of the form (10). Similarly, in the case when kq is even, using
(6), (8) and from y1(x,An) = O we arrive at (10). Moreover,

10 = x U _ (D)

(ol )
of) :

Theorem 1, specially the relation (10), provide the sufficient conditions for the
uniqueness theorem in the next section.

3 THE UNIQUENESS THEOREM

In this section, we show that the set of the nodal points x!” of the form (10) is dense in
(0,1). Then, we prove a uniqueness theorem for the solution of the inverse nodal problem

associated with the boundary value problem L.
First, we consider the equation
w'(x,A)+Aw(x,A)=0, 0<x<I1, (11)
with the boundary conditions
w(0,4) =0=w(L ). (12)
It is easily shown that the solution of the problem (11)-(12) is w(x, 1) =sin(\/zx).
Furthermore, the exact eigenvalues of the problem L, defined by (11)-(12) are
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E =n’r?, (13)
and their corresponding eigenfunctions are
W, (X) =w(x,&,) =sin(nzx) . (14)

Since for each ne{2,34,...} there exist k €{0,1,2,...} and me{1,2,...,2“} such
that n=2""*-m+1, so according to (13)-(14), the set
{ (2 -m+1)°z* | k=012,.., m =1,2,...,2k},
consists of all eigenvalues of (11)-(12) except &=#°. Moreover, the eigenfunction
corresponding to the eigenvalue &=(2""*-m+1)7° is
w(x, &) =sin((2“" —m+1)nx),

so that m/(2**-m+1) is a zero of the eigenfunction wn(x). Therefore, the set of the nodal
points of Ly is

Xy, :2{ 5: }nzj,j=1,T—1

={ ﬁ | k=012,..., m=1,2,...,2k}U{0}. (15)

Lemma 1. The set X, , defined by (15), is dense in [0,1].

Proof. For each fixed k €{0,1,2,...}, we have

m 1 2 3 2
= m=1,2,...,2k = y ’ [EERE] .
{2k+l_m+l | } {2k+1 2k+1_1 2k+1_2 2k +1}

Moreover,
k
and for m=1,2,...,2%-1,
7o = m+1 B m
T2 (m+D+1 2 —m+1
2k+1+1

= (2k+1 _ m) _ (2k+1 -m +1) '
Hence, there exists a sufficiently large number k such that for each k > k we have

- 1
Ik <——. 17
“ k+1 1n
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Now, let Xmx :=m/(2**~m+1). Then, for each x [0], there exists m €{1,2,...,
21} such that
X €[0,Xik] Vv X&[Xmnk,Xmiak] Vv Xe&[Xax1]. (18)

On the other hand, the right sides of equations (16) and (17) tend to zero as k—c .
This together with the equation (18) completes the proof. O

Theorem 2. The set of the nodal points of the boundary value problem L, X, is dense in
the interval (0,1).

Proof. It follows from (15) that the nodal points £ of Lo have the form
=1 n>2, j-123..n-1.
n
Thus, using (10) we obtain
e +of1) w
n
By (19) and Lemma 1, we conclude that X, is dense in (0,1). O

Now, we prove the main result of this section.

Theorem 3. Consider the boundary value problems defined by
y”+[i—x—e+qi(x)jy=0, 1=12, xe(0)), (20)

and Dirichlet condition

y(0)=0=y(). (21)
Let q,,q,, satisfy the condition (4) and x\V(q,) = x!{(q,). Then g, =q, (a.e.).
Proof. First, we consider the case when kg is odd, in (5). Let x be an arbitrary, fixed number
in the interval [0,1]. Since the set of the nodal points X., defined in (9), is dense in the

interval (0,1) by Theorem 2, it follows that there exists a subsequence {n}, k=1,2,3,...,
such that

lim,, x{” =x. (22)

Let y,(x)= ¥,(X, 4, (0;)) be the solution of (20)-(21) with the potential gi(x). Then,
using (20) we derive
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d -~ -, ~~, ~ o~
S T T000 =1 .00~ 60+ 4, (@) =2, (@) | F0F00). (23)
Integrating (23) from 0 to x(j,n,) = x{" = x{"(q,) = x{"(q,) , we get

T -55000 10 = [ { 4,0 - 0,0+ 2, (@) - 2, (@) | HOF Ot (24)
Since Y, (x(j,n,))=Y,(x(j,n,)) =0, the left side of (24) is equal to zero for each
ke{1.2,3,...}. Thus,
[ ) - 0,0+ 2, (@) - 4, (@) | HOF,@)dt =0,
for k =1,2,3,.... We are done if we can show

[ (@® -0, @)t =0.
For this goal, by (8) we have
Ao (@) =2, (d,) >0 as k - .

Hence, together with (22) and (24) these results imply

lim, .. 02z [ (6,(8) - 6, ()T, 0T, ()t =0. (25)

Moreover, it follows from (7) that there exists a constant C such that for sufficiently
large k, we have

7,009, (x) - (nz) * sin® (n )| < C(n, ).
So,
027§, (07, () ~sin*(nx), k-0 (26)
Therefore, by (25)—(26) we get
[ (@® -0, ®)dt=0. (27)

Finally, since x was chosen arbitrary in the interval [0,1], together with (27) this
yields g1=q; (a.e.). In the case when kq is even, Theorem 3 can be proved similarly, by (6)
and the same way as above. O

Theorem 3 shown that the solution of the inverse nodal problem associated with
(2)—(3), the potential function g(x), can be uniquely determined by a dense set of nodes of
the eigenfunctions.
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1. INTRODUCTION AND PRELIMINARIES

In this paper, we consider the well-known Michaelis-Menten biochemical reaction model
[1], i.e., the single enzyme substrate reaction scheme

E+A=2Y > E+X, (1)
where E is the enzyme, A the substrate, Y the intermediate complex and X the product. The
time evolution of scheme (1) can be determined from the solution of the system of coupled
nonlinear ODE [2].
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3_2 — K EA+K.Y, )
‘j'j_f K EA+ (K, +K,)Y, @3)

% —KEA— (K, +K,)Y, (4)
%( kY, ©)

subject to the initial conditions

A(0) = Ay E(0) = E,,Y(0)=0,X(0)=0 (6)
where the parameters k,, k_, and k, are positive rate constants for each reaction. Systems
(2) — (5) can be reduced to only two equations for A and Y and in dimensionless form of
concentrations of substrate x, and intermediate complex between enzyme and substratey,
are given by [2].

%=—X+(ﬂ—a)y+xy @)

Y1 py-
- ®)

subject to the initial conditions
x(0)=1,y(0)=0 (9)
where a,8 and o are dimensionless parameters.

The time evolution of the reaction can be determined from the traditional purely
numerical methods like the classical fourth order Runge-Kutta method (RK4), but we are
interested in this work to solve the system of coupled nonlinear ODEs (7) and (8) by using
NSFD. To do so, we proceed as follows:

1.1 EQUILIBRIUM POINT

To calculate equilibrium point, equate (7) and (8) equal to zero i.e,
—X+(f-a)y+xy=0 (10)

L x—py—xy) =0 (1)
(o2

we obtain (x*,y*) = (0,0),that is the equilibrium point.
2. RK4 METHOD

In this section, we solve the systems (7) and (8) by RK4 Scheme as follows:
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kl = h(_xn + (ﬁ _a)yn + Xnyn)
h

ml :_(Xn_ﬁyn_xnyn)
o

Ko =N+ )+ (B =)y, + 2+ (%, +2)(y, + 2]

h Ky _ LU ] m,
m, :;[(Xn +E) ﬁ(yn + 2 ) (Xn + 2)(yn + 2 )]

Ko =Nk, 2+ (B =)y + T2+ (%, + 20y, + 2]
my =0+ 52— Ay + M) - (x, + K2)(y, + M)

o 2 2 2 2
ke = (X, +K) + (B —a)(Y, + M) + (%, + k)Y, +m,)]
m, =g[(xn 1K) = B(Ys +My) — (X, +K)(y, +my)]

X =X +%[kl 2k, 42k, +K, ] (12)

Yoa = Yn +%[m1 +2m, +2m, +m,] (13)

2.1 NUMERICAL EXPERIMENTS

Numerical experiments are performed using values of parameters given in Table 2.1.

RK4 Method RK4 Method
1 05
= Substrate s COMplEX
0.9 0.45
0.8 04 \
0.7 0.35 \
=06 = 03 \
= >
@
Eo05 205
hrs 1
2 o
0.2
& 04 b \
\ 0.15
03 \
\ 0.1
02 \
\ 0.05 X997
01 \ X: 100 1 ¥:13386-015
\ Y:1.165-015 0
0 0 10 20 30 40 50 60 0 80 90 100
0 10 20 30 40 50 60 70 80 90 100 time step size = 0.01

time step size = 0.01

Figure 2.1. Concentration of Substrate. Figure 2.2. Concentration of Intermediate
Complex between Enzyme and Substrate.

Table 2.1. The Parameters «a, fand o.

Parameters Value
a 0.375
B 1
o 0.1
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RK4 Method RK4 Method
1 T T 0.5 T T
= SUbstrate Complex
0.9 0.45
0.8 0.4 \
0.7 0.35 \
=06 = 03
= \ < \
2 >
S 05 2025
= =
£, A
& 0.4 \ S 02 \
0.3 \ 0.15
0.2 \ 0.1 \\
0.1 \ X:100 1 0.05 X: 100 1
& Y:1161e-015 Y:1.204e-015
0 .
0 10 20 30 40 50 60 70 80 90 100 00 10 20 30 40 50 60 70 80 N 1

time step size = 0.1 time step size = 0.1

Figure 24, Concentration of
Figure 2.3. Concentration of Substrate. Intermediate Complex between Enzyme
and Substrate.

RK4 Method RK4 Method
1 0 T
m— SUbstrate X100
05 Y:-1.394e-016 |
0.8
1
0.6 15
— = 2
<04 =
& 22
% 0.2 :.E) 3
@ X:100
Y:-1.345e-016 35
0
4
0.2 45 [—Comp\ex i
04 %" u w % a4 % w W ;o Jo 100
0 10 20 30 40 50 60 70 80 90 100 time step size = 0.16
time step size = 0.16
Figure  2.6. Concentation  of
Figure 2.5. Concentration of Substrate. Intermediate Complex between
Enzyme and Substrate.

3. NONSTANDARD FINITE DIFFERENCE METHOD

In this section we shall construct Non-Standard Finite Difference Scheme for the equations
(7) and (8). First order time derivatives are described by using forward difference
approximation [4, 5]. f (t) can be approximated as
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df (t) _lim f+1)— f(t) +o()
dt 150 I

x™"andy™are the approximations of x(nl) and y(nl), forn = 0,1,2, ..., and where ‘I’ is step

size of time. For satisfying biological nature of the continuous time model, it should be

non—negative. The numerical method which has been developed to solve the system must

hold Conservation law proposed by Mickens [6, 7]. To construct the NSFD scheme for
system (7)-(8) we note the following statements

(1 The linear and nonlinear terms on the right hand side of Equation (7) are in the

form —x~—x"", (B-a)y=(B-a)y", xy~ x"y"
(i) The linear and nonlinear terms on the right hand side of Equation (8) are in the

n,,n+l

form x=x", - By~-By™, —xy~-x"y

So,
n+1 n
=X (Ba)y XY (14)
n+l _ \,n
y y =£{Xn _ﬁyn+l_xnyn+l} (15)
h o
Eq. (14) implies that
n+t _ X"+ B -0)y" +x"y"}
X = (16)
1+h
and Eqg. (15) implies that
n,h n
yn+l: y +GX _
1+@+Dxn
(@) (@)

3.1 CONVERGENCE ANALYSIS

The stability and convergence of the proposed NSFD scheme about equilibrium point (0,0)
are discussed here. Let

F o XA -a)y+xy}
1+h

h
y+-—X

o6
1+h—’8+£x
(o} (o}

G=

and the Jacobian matrix is
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oF oF
« _| OX oy
%6 e
ox oy
where as
oF _l+hy oF _M(B-o)+x}
ox 1+h’ oy 1+h ’
h,B h
o G e
ox (1+h—’3+£x)2 o 1. MBLhy
(o} (o} (o} (o}
At (x*,y*) = (0,0) we have
h
F_ 1  F_hp-a) GE__ o G_ 1
ox 1+h oy 1+h X (1+h£) o N8
o) o)
Define,
1 h(B—a) |
1Fh 1+h
J=| —
G 1
@+ B) 1+hB

Lemma [11]: For the quadratic equation u? — u A + B = 0, both roots satisfy |u;| < 1;i =
1,2 if and only if the following conditions are satisfied:

(1) 1+B>A
(i) 1+A+4B>0
(i)  B<1

Let us defined = trace (J) and B = det(J), where

hﬁ
1 2+h+—

h—’B 1+ h)(1+h—’8)
o

trace(J) = ! +

and
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L T oL
|1 1 _ h(B -a) o _ o
det(J) = ” x— " x— | = -
1+h 4 M8 Leh g DB avnyas "y
(e} (e} (e}
The first condition of the Lemma is 1+ B > A, so by using the values of A and B we have
h? h
1-(f—a)— 2+h+—ﬁ hp h? hp
1+ hG > % = A+h)(l+ ) +1-(f-a)—>2+h+—
a+ha+"?y) asnas ") o o o
o o

which proves that h? > 0.

The second condition of the Lemma is 1+ A+ B > 0, so by using the values of A
and B we get
2
2 oh2MB ey
(o) (o)
The third condition of the Lemma is 1 > B, so by using the values of A and B we obtain
ha <o+ p+2hf =0<c+B+ (2B -a)h.
Since h>0 and all conditions of the theorem are true, the System is Stable for all
values of h and converges to steady state.

3.2 NUMERICAL EXPERIMENTS

Numerical experiments are performed using values of parameters given in Table 2.1.
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Figure 3.2. Concentration of Intermediate

Figure 3.1. Concentration of Substrate. Complex between Enzyme and Substrate.
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NSFD Method
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Figure 3.3. Concentration of Substrate.
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Comparisn of RK4 &NSFD.

10 0 ) [ F) ) 0 ) ) i}
inestgsie=016
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Figure 3.9. Comparison between NSFD
and RK4,

Figure 3.10. Comparison between NSFD and
RKA4.

4. RESULTS AND DISCUSSION

The Numerical modelling of well-known Michaelis—Menten non-linear reaction system
has been analysed in this paper. The model has one equilibrium points. An unconditionally
convergent non-standard finite difference numerical model has been constructed and
numerical experiments are performed for different values of discretization parameter
‘h’. Results are compared with well-known numerical method i.e. Runge—Kutta method of
order four (RK4). Table 4.1 shows the effect of different time step, h for both numerical

schemes.

Table 4.1. The Effect of Different Time Step.

h RK4 Numerical Model
.01 Convergence Convergence
0.1 Convergence Convergence

0.16 Divergence(method failed) Convergence
0.2 Divergence Convergence

2 Divergence Convergence
10 Divergence Convergence
100 Divergence Convergence

Table 4.1 shows that the RK-4 method converge for small values of parameter h and
it diverges for the large values but our NSFD model will remain convergent even for a very
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large value of discretization parameter i.e. h = 1000. It isto be noted that the authors of
[11] solved this problem by multistage homotopy perturbation method and homotopy
perturbation method. In both cases they statedthat the step size h should be very small
otherwise the methods will diverge, but in our case, the step size is irrelevant.

5. CONCLUSION

Figures 3.9 and 3.10 show the comparison of NSFD scheme with Runge-Kutta method of
order 4. It can be observed that when step size has been increased up to 0.16, the RK—4
scheme gives negative values of both concentrations, while the proposed NSFD scheme
preserves positivity and convergence of the solution for these values of step size. Unlike
RK-4 which fails for large time steps, the developed NSFD scheme gives results that
converged to true steady states for any time step used. The proposed scheme is easy to
implement and numerically stable.
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1. INTRODUCTION

A number of examples in nature can illustrate the capability of liquids to dissolve gases; in
fact, human life would not be feasible if blood cannot dissolve oxygen, nor marine life is
likely to happen if oxygen did not dissolve in water. The solubility anticipation of oxygen
gas in the liquid is important as it can be used in aquaculture and biological issues such as
oxygen uptake in lungs and its dissolution in the blood. The prediction of CO; gas
solubility in water can be used for growing plants and in the production of carbonated
drinks [24]. Such interesting natural phenomena are described by differential equations.

This paper is concerned with providing good quality algorithm for the numerical
solution of the three—term fractional differential equations of the form

p'(t) + F(t)DY?p(t) + G(t)p(t) = H(¢), (1.1)
combined with the suitable initial condition p(0) = p,. This equation describes the change

of mass of the gas volume due to diffusion through the contact surface [2]. Here, DY?p(t)
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denotes the fractional derivative Df/ 2p(1:) in the Caputo version [7] and the Riemann-
Liouville fractional derivative ®5D*p(t), defined by

D*llzp(t):\/% %ds, (1.2
1 1d [t
wip) = o [ T, (13)

respectively [9,23]. It is well-known that the fractional derivative of Riemann-Liouville
and Caputo type are closely linked by the following relationship:

D."*p(t) = *D;”*[p(¢) — p(0)]. (14)

Fractional calculus, including the operators of fractional order integration and
differentiation, is known to provide an excellent setting for capturing in a model framework
concerned with real-world problems in a variety of disciplines from physics, chemistry,
biology and engineering [1, 4, 17, 23]. In order to approximate fractional derivatives, a
number of methods have been proposed [4, 6, 11]. Since few of the fractional differential
equations can be solved explicitly, it is necessary to employ numerical techniques to find
the approximate solution. Especially, numerical schemes for the multi-term fractional
differential equations have been developed in the past ten to fifteen years and have been
studied in numerous papers [4, 9, 10, 22].

As a fractional derivative is a non-local operator, it is very natural to consider a
global method like the spectral method for its numerical solution. Spectral collocation
methods are efficient and highly accurate techniques for numerical solution of differential
equations [13, 25]. The basic idea of the spectral collocation method is to assume that the
unknown solutionp(t)can be approximated by a linear combination of some basis
functions, called the trial functions, such as orthogonal polynomials.

Whereas the classical orthogonal polynomials work well for numerical solution of
conventional differential equations, their application for the fractional differential equations
implies at least two difficulties in connection with the collocation method. First, according
to Theorems 4.1 in [16], the solutions of the problem (1.1) can contain some fractional-
power terms with which the classical orthogonal polynomials cannot match. In this case,
the rate of convergence of the numerical approximations is not reasonable when the
classical polynomial bases are used. Second, to apply a collocation method, it is required
that the derivatives of any trial function can be expressed in terms of the same trial bases.
However, the fractional derivatives of a classical polynomial are not polynomials.
Therefore, roughly speaking, a good approximation for the fractional derivatives via the
classical orthogonal polynomials is not hoped to be obtained.

In the present article, the Miintz—Legendre polynomials are used, which are a family
of generalized orthogonal polynomials. These polynomials were introduced and
investigated in [5, 18]. A fractional derivative of a Miintz—Legendre polynomial is again a
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Mintz—Legendre polynomial. This is a crucial feature of these bases for using them in the
collocation method for the numerical solution of the fractional differential equations.

The structure of the paper is as follows. In the next section, the derivation of
mathematical model of gas solution in a fluid is briefly recalled. Then, to construct a
numerical algorithm, this equation as a three—term fractional differential equation is
reformulated. In Section 3, the Mintz—Legendre polynomials and related topics are
introduced. A description of the proposed numerical scheme is provided in Section 4. Some
details concerning the practical implementation are discussed in Section 5. Finally, the
numerical results to demonstrate the efficiency of the proposed method are given in Section
6.

2. PROBLEM STATEMENT

The mathematical model of the process of solution of a compressible gas volume in a fluid,
when there are no convection currents, is described by the system [2, 23]

d T My oC 5
E(Vof(E)P(O,T)ﬁ)—SKax=O, O<T<9, ( 1)
—VR%| _ ="p?[c(0,7) - c(x,0)], 2.2)
P(0,7) = xC(0,7), P(x,0) = kC(x,0), (2.3)

where 1, is the initial gas volume, 6 is the time of the gas compression to zero volume, f is
a function describing a change of the gas volume, such that f(0) =1 and f(1) =0, M is
the molecular weight of the gas, R is the molar gas constant, K is the gas diffusion
coefficient in the fluid, S is the contact surface between the gas and the fluid, « is the
Henry’s constant, C(x, t) is the gas concentration, and P (x, 7) is the unknown gas pressure
(Figure 1).

The gas pressure near the contact surface P(0, 1) is to be found. The x—axis goes
down from the contact surface, for which x = 0. The gas temperature T is assumed to be
constant, which implies the gas compression is slow enough. If necessary, a weak
nonisothermality can be accounted by making a correction to the function f(z/6). The
depth of the fluid is taken infinite [2, 23].

The change of the gas volume mass due to diffusion through the contact surface is
described by (2.1). The mass change depends on the change of the gas concentration near
the contact surface, which is given by (2.2). Taking into account the condition (2.3), makes
the consideration of mass transfer process for x > 0 unnecessary.

The problem (2.1)-(2.3) for determining the dimensionless gas pressure
PO,7)  C€(Or)

P(x,0)  C(x,0)

p(r) =
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near the constant surface can be written as [23]

p'(t) + FODY*p(t) + G()p() =0,  p(0) =1, (2.4)
where
fe RTSVK6

T
t=-€ 01]l, F@®)=—= FO ' T kMY,

T
Figure 1. Solution of a gas in a fluid [23].

3. MUNTZ-LEGENDRE POLYNOMIALS

Let the complex numbers from the set A,, = {4, ..., 4,,} satisfy the condition R(4;) > —%

and A, # 4;, k # j. Then, for every n = 0,1,2, ..., the Mintz-Legendre polynomials on the
interval [0,1] are defined by [5, 18]

n

_ Hg;é(/lk + /Tv + 1)

Lahnin) = ) ua™ ¢ . 3.1)
A k=0 m e 3=O,v¢k(/1k _/11/) (
For the Mintz-Legendre polynomials (3.1), the orthogonality relation
1
- o)
Ly (A X)L (A ) dox = ——2%
fo nm Ao+ +1

holds for every m,n =0,1,2,... [5].
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In this paper, the case when the powers of the Mintz basis elements build an
arithmetic progression is considered [12, 20]. In other words, we assume that A, = k/2. In
this case, the Mintz-Legendre polynomials on the interval [0,1] are represented by the
formula

n n-1

1)~ k
Ln(t) = kZ=O antklz ) Cnk = k(l (n) k)l n(k +v+ 2) (32)

The functions L, (t), k = 0,1,...,n forman orthogonal ba3|s for M,,, where
M, = span{1,t/2 t,t3/2, ... t"/2},
The denseness of M, in C[0,1], the set of continuous functions on the interval [0,1], in the
uniform norm is characterized by }.7°_, 1/k = oo [5].

4, MUNTZ-LEGENDRE COLLOCATION METHOD

In this section, the collocation method based on Miintz—Legendre polynomials is applied
for solving an initial value problem of the form

p'(t) + F(t)D*p(t) + G(t)p(t) = H(t),

p(0) = p, .
Under certain conditions on the functionsF, G and H, the initial value problem (4.1)-(4.2)
possesses unique solutionp in an appropriate space of functions [9, 16]. As a generally
applicable method to determine the exact solution of initial value problem (4.1)-(4.2) is not
readily accessible, some numerically computed approximate solutions are inevitable.
Numerical evaluation of this solution is the aim of this section. At first, the solution p is
approximated by p,, € M, as the finite sum
4.3)

Pn(t) = Xk=o @ Li (D),
where a;, are unknown coefficients. It is worthwhile to note that if p,, € M,,, then Dllzpn
belongs to M,,, too. This key property is crucial for application of the collocation method to
the initial value problem (4.1)-(4.2).
The unknown coefficients a; in approximation (4.3) are obtained from the initial
condition

(4.1)
(4.2)

P (0) = po., (44)

and the fact that p,,(t) should satisfy the fractional differential equation in some suitably
chosen collocation points &;, j = 1,2, ..., n. More precisely, the relation holds as follows:

p'(&;) + F(£,)DYp(&;) + G(¢,)p(&;) = H(E)). (4.5)

Substituting (4.3) into (4.4), the equation
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n
Z axJro = Po: (4.6)
k=0
with g0 = Ly (0) is obtained. In its turn, equation (4.5) can be presented in form of n
algebraic equations

Z axJrj = H(fj), j=12,..,n, (4.7)
k=0
where
9ij = L&) + F(EIDI?Le(§,) + G(&5) L&)
Note that L(¢;) and D}'?L,(&;) in (4.7) can be computed by using the subsequent stable
methods (5.3) and (5.8), respectively. The equations (4.6) and (4.7) are nothing else but a
linear system of n + 1 equations for the n + 1 unknown coefficients a; that can be solved
by one of the known methods. Substituting the coefficients a, into (4.3) leads to an
approximated solution of the fractional initial value problem (4.1)-(4.2).
It should be noted that, the error analysis of the collocation method based on
nonclassical polynomials is very complicated and is beyond the scope of this paper.

5. IMPLEMENTATION ISSUES

In this section, some details to provide additional insight on this new method are presented.

5.1.  NUMERICAL EVALUATION OF L,(t) AND DY2L, (t)

A direct evaluation of Muntz-Legendre polynomials in the form (3.1) can be problematic
in finite arithmetic, especially when n is a large number andx is close to 1. These problems
have been addressed by Milovanovi¢ in [18]. He stated that the coefficients c,; become
very large when n increases, but their sums are always equal to 1.

Here, a stable method for evaluating the Miintz—Legendre polynomials defined by
(3.2) is presented. The proposed technique is based on a three—term recurrence relation
induced from the following theorem.

Proposition 5.1. ([12]) Let L, (t) be Muntz—Legendre polynomial defined by (3.2) and
t € [0,1]. Then

L,(t) = PP (2vt - 1), (5.1)

holds true, where P{®" is a Jacobi polynomial.
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Hence, in view of [21, (18.9.2)], the Mintz—Legendre polynomials L, (t) can be
evaluated by means of the three—term recursion

binLy1(t) = by ()L (t) — b3pLy_1(t), n=>1, (5.2)

where Ly(t) = 1, L,(t) = 3v/t — 2, and
bin =2(n+1)(n+2)(2n + 1),
by () = 2(n+ 1)[(2n+ 1)(2n+ 3)(2v/t — 1) — 1],
bs, = 2n(n + 1)(2n + 3).
Another result of Proposition 5.1 is a formula for evaluating L, (t). More precisely,

by means of [21, (18.9.15)] the first derivative of L, (t) is given by

by =2 a2 _ (5.3)
L,(t) = N PP (2vt - 1).

Proposition 5.2. ([12]) Let L, (t) be Muntz—Legendre polynomial defined by (3.2) and
t € [0,1]. Then

/
D 2L, (t) =

n+2 (! (12) 5.4
f (1 - x2)1/2p02 (2x\/F — 1) dx, (5.4)
V1T Jo

holds true.

5.2. GAuUss-TYPE QUADRATURE RULES
An n—point quadrature rule for the weight function w is called a formula of the type

b n
f w(x)f(x)dx = Z wi f(xx) + RyIf], (5.5)
¢ k=1

where the sum on the right—hand side of the equation provides an approximation to the
integral and R, is the error. The numbers x,, k =1,...,n are called nodes and w, are
called weights of the quadrature rule. Among all quadrature rules of the form (5.5) those of
the Gaussian type have the best performance. More precisely, if nodes x;, and weights w;,
are chosen in the way that quadrature rule (5.5) becomes exact for polynomials of degree at
most 2n — 1, then this quadrature rule is called a Gauss—type quadrature rule. It can be
proved that the nodes x;, in a Gaussian quadrature are the roots of the orthogonal
polynomial (t; w) associated with the weight function and the weights w;, can be obtained
from the following system of linear equations:
n b
Z ka,](' = f xw(x)dx, j=01,..,2n-1. (5.6)
k=1 a
As n increases, finding roots of m(t; w) and solving the linear system (5.6) become
an ill-conditioned and time consuming problem. Alternatively, the Golub—Welsch



432 ESMAEILI

algorithm to determine the nodes and the weights of a Gaussian quadrature can be used
[15].

The construction of the Gaussian quadrature (5.5) for an arbitraryn > 1 can be
realized very easy by MATHEMATICA package OrthogonalPolynomials]8,19].
Alternatively, for this purpose, there is also Gautschi’s package OPQ written in MATLAB
[14]. These packages provide many other calculations with orthogonal polynomials and
different quadrature rules, and they are downloadable from Web Sites:
www.mi .sanu.ac.rs/~gvm/ and www.cs.purdue.edu/archives/,
respectively.

To calculate the integral on the right—hand side of (5.4), N—point Gaussian quadrature
rule

f (1—x?)72 f(x)dx = Z wif(xk), [ € Pay-u, (5.7)
0 =1

is used. The weight function w(x) = (1 — x2)~'/2 is a nonclassical one and no explicit
formulae are known for x, and w;,. However, the Chebyshev and Golub—Welsch
algorithms to calculate the nodes and weights in (5.7) can be used [14, 15]. The quadrature
rule (5.7) with N = [n/2] becomes exact for computing the integral in (5.4). The nodes and
weights in the generalized Gaussian quadrature rule (5.7) are reported in Table 1.

Table 1: Nodes and weights in 10—point Gaussian quadrature rule (5.7).

Nodes x), Weights wy,
0.013428248384359 0.034319541263749
0.165229282898357 0.077205134746572

0.165088161001579
0.292182309608721
0.438817309663802
0.591551320859218

0.114617582317493
0.145264568917587
0.169221867374936
0.187274168806872

0.736030889552124 | 0.200396120129594
0.858545000002092 0.209464924712622
0.947393707327565 | 0.215148632394853
0.994059476652251 0.217883786130620

[n/2]
n +

2
DML, (t) = = Zwk P (2x,0/T — 1).
k=1

After obtaining the nodes x; and weights wy, the fractional derivative Df/ZLn(t)
can be computed by using the formula

(5.8)
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This section ends with a brief discussion of collocation points. Grid points for
orthogonal collocation method should lie approximately in a minimal—energy configuration
associated with inverse linear repulsion between points. Hence, a proper choice of
collocation points is crucial for the accuracy of the numerical solution and for its
computational stability [13, 25]. In the proposed case, a particularly convenient choice for
the collocation points ¢; is &; = tjz, j=1,..,n where t; are Chebyshev points associated
with the interval [0,1], i.e.,

1

£ = (1 "j) =01
=5 cos—), j=01..n.

6. NUMERICAL EXPERIMENTS

In this section, some numerical studies are presented to illustrate and test the behavior of
the approach described in the Section 4. As is common, there is no comparison to other
known methods. The main reason for this is that the numerical solution for this problem
comes only in [23] and has a slow convergence. The following numerical experiments were
implemented through MATHEMATICA and MATLAB.

Example 1. As the first experiment, given A = 8/(3v/m) and the change of gas volume
f(t) = 1 — +/t, then the initial value problem (2.4) has the analytical solution

32 1

1

The analytical and numerical solutions of this problem are plotted in Figure 2. Furthermore,
to explore the dependence of errors on the discretization parameter n, the error in the co—
norm is used. As it is seen, the presented method provides accurate results even with a few
number of nodes.

Example 2. Consider the initial value problem (2.4) with f(t) =1 — t. In this case, it is

hard to find a closed form solution of (2.4). However, thanks to the work of Babenko [3,

(7.25)], if the compression is slow (4 > 1), the following asymptotic representation for

p(t) is obtained:

P(t):1+&1+<gt—1)%+0<\/§13), £>0. (6.1)
Moreover, in the case of rapid compression (A « 1), a similar expression in powers

of A can be obtained [3, (7.26)] as follows:

p(t):i+i<\/E Sin_lﬁ)l.y@(L), t<1. (62)

1—-t Jo\1-t (1-t)3¥2 (1—1t)2
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1.8

lp — P2/l = 0.0080 |lp — P3|l = 6.66e-16

1.8

1194

1.1

| . : p() ||
* Pylt) : : o B XU

p(t) ||

0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t

Figure 2: Analytical and numerical solutions of problem (2.4) (Example 1).

In Figure 3, the numerical and asymptotic solutions of problem (2.4) are illustrated.

These results indicate that the approximate solutions of the present method are in

agreement with asymptotic solutions. It can be shown that the maximum pressure, pmax

occurs at t = 1. On the other hand, from (6.1), the following asymptotic expression is
obtained

21 11 1

p(t) = 1+\/_EI+§/1_2+0(1)/1_3’

The numerical solutions for various values of n are reported in Table 2. As

tabulated, the asymptotic expression (6.3) as a reference “exact” solution is used. It can be

seen that the presented method provides accurate results and indicate an exponential decay.

A— o, (6.3)

Table 2: Numerical solutions at t = 1 and related errors with A = 5 (Example 2).

n 5 10 15 20 25 30

pn(1) | 1.2457842 1.2456764 1.2456758  1.2456758 1.2456758 1.2456758

Error | 1.08(-04) 5.93(-07) 2.19(-09)  5.89(-12)  1.24(-14) 2.22(-16)
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=4, n=20 h=0.4, n=20
1.25 T - T 7 . T .
numerical solution numerical solution
asymptotic for t>>0 asymptotic for t<<1
1.2+
1.150
1 i . i ; i : i :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

t i

Figure 3. Numerical and asymptotic solutions of problem (2.4): slow compression (left)
and rapid compression (right) (Example 2).

1. CONCLUSION

In this paper, a computational technique based on the Miintz polynomials for solution of
mathematical model of gas solution in a fluid is presented. The exact solution of this
problem can contain some fractional-power terms with which the Muntz polynomials can
match. An appropriate representation of the solution based on the Muntz polynomials
reduces its numerical treatment to the solution of a linear system of algebraic equations.
The numerical results obtained by the new method indicated the effectiveness of the
proposed approach.
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