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Autobiographical Notes

NENAD TRINAJSTIC®

The Rugjer Boskovi¢ Institute and Croatian Academy of Sciences and Arts, Zagreb,
Croatia

1. FAMILY BACKGROUND

I was born in Zagreb (Croatia) on October 26, 1936.
My parents were Regina (née Pavi¢) (April 17, 1916,
Zagreb—March 9, 1992, Zagreb) and Cvjetko
Trinajsti¢ (September 9, 1913, Volosko—October 29,
1998, Richmond, Australia). My maternal
grandparents came to Zagreb in the last decade of the
19th century from northern Dalmatia whilst my
paternal grandparents lived all their lives in VVolosko,
a small town located between Rijeka and Opatija.
Rijeka is a large seaport and Opatija is a well-known
summer and winter resort. My younger brother Ivan
(born in 1938 in Zagreb) and | spent the four years
during the Second World War (1941-1945) in
Volosko with our paternal grandparents. Our parents were divorced in 1946, father moved
first to Italy, where he remarried and emigrated to Australia, whilst Ivan and | remained
with our mother in Zagreb. Our mother encouraged us to read books, learn languages and
be good students. My brother took degrees in physics and mathematics, moved back to
Volosko and taught in Rijeka, Opatija and finally in Matulji, a place above Volosko, where
he was until retirement the principal of a primary and junior secondary school. He is
married, has two sons (Slaven and Nenad) and a granddaughter (Emma). His older son
Slaven lives in Toronto since 1993, he is now a Canadian citizen and his daughter Emma
was born in Toronto.

* Corresponding author (Email: trina@irb.hr)
DOI: 10.22052/ijmc.2017.64354.1248
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The origin of the family name Trinajsti¢ is linked to the number 13. This number
appears as the root word in the family name Trinajsti¢: 13—i¢ — 13 = trinajst in the Cakavian
dialect of the Croatian language; the Croatian language has 3 dialects: Cakavian, Kajkavian
and Stokavian [1]. The family name Trinajsti¢ is an old Croatian family name (it can be
traced back several centuries in the place now called Trinajstici, located near Matulji) and
belongs to a class of Croatian family names with numbers in their roots [2]. Simunovi¢ [2],
an in authority on the origin of Croatian family names, hypothesized that the Croatian
family names reflecting a certain number were motivated by the order of birth in old
patriarchal families. Thus, the thirteenth born child got the nickname Trinajsti¢ (the
thirteenth, 13 and i¢ meant the smallest), which later became the family name of the child’s
descendents and has remained so until today. Simunovi¢ [2] also mentioned very briefly the
possibility that the family name Trinajsti¢ originated from the folk belief in the magic of
the number 13. Anyway, whatever the origin of the family name Trinajsti¢, the number 13
is a lucky number for the Trinajsti¢ clan, which is now dispersed over five continents,
although in some cases the name has undergone changes, e.g., the part of the clan in
California is now called Trinast (presumably an immigration clerk on the Ellis Island had
trouble spelling the name Trinajsti¢ and consequently Americanized it to Trinast).
Professor Sven J. Cyvin (1931-2013) (Trondheim, Norway) liked the idea of using the
alphanumeric family name of mine so much that he and his co—workers dedicated a paper
to me, using 13-i¢ as my family name [3], on the occasion of my appointment to the
position of Editor—in—Chief of Croatica Chemica Acta, the chemistry journal published by
the Croatian Chemical Society since 1927.

2. ScHooL DAYs

| started primary school in 1944 in Volosko and in Trieste, but because of the bombing of
Rijeka and Trieste by the Allies, especially in the spring of 1945, this was a highly irregular
schooling. For the second form | was already in Zagreb where | attended a downtown
primary school. In those days, primary schooling in the former Yugoslavia lasted 7 years
and was modeled after the Soviet system of seven-year elementary school called
sedmoljetka. At about the age of nine I started doing chemical experiments. Several friends
in the house where we lived in downtown Zagreb (I was born in that house) decided to
make gunpowder. | joined them and we produced some lovely explosions in the cellar.
These experiments lasted until our parents forbade us to continue after a particularly violent
explosion that shook the whole building. I finished the seven—year school in 1951. One of
the many changes in the Croatian school system happened in that year and the seven-year
school was extended to the eight—year primary school (educational legislators now want to
extend primary schooling to nine years). Thus, all of us who finished the seven-year
primary school had to do five years of secondary school (instead of four like the several
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generations before us) that ended in the final examination called matura. One good point of
the type of schooling I had was that we had lectures in chemistry from the fifth form of the
seven-year school and throughout all five years of high school, making a total of 8 years of
chemical education. Later generations had at best 5 years of chemical education. At high
school I met my future wife Judita née Juri¢ev (born in Zagreb in 1938); she was in the
same class with my brother Ivan. | even remember the date we met — September 21, 1954.
We have remained together ever since that day. We were married in 1960 and have two
children (Regina, born in 1960, and Dean, born in 1965; both born in Zagreb). | graduated
from high school in 1956 and the same year entered the University of Zagreb, enrolling in
the Department of Chemical Technology at the Technical Faculty. Years of my primary
and secondary schooling were difficult because of the postwar shortage of practically
everything. Nevertheless, with the little money we had my mother always bought books
that Ivan and | needed for school and books we liked to read. In this way, Ivan and |
became acquainted with a number of literary masterpieces and since those days | have been
an avid reader and collector of books. My personal library has nowadays reached some
15,000 books, including hundreds of scientific books and journals.

3. UNIVERSITY

Chemistry was only my second choice. I actually wanted to study philosophy. A few days
before enrolment, | went to the Alps with a group of friends and asked my mother to take
my documents to the Department of Philosophy. | spent two weeks climbing various
Alpine peaks. Upon returning to Zagreb, | found to my astonishment that my mother had
entered me into the Department of Chemical Technology at the Technical Faculty. We had
a long talk and my mother convinced me that chemistry was a better choice for me. During
my school days, | read biographies of Louis Pasteu (1822—1895) and Justus von Liebig
(1803-1873) and their lives and achievements in chemistry and science influenced me so
much that | wanted to imitate them. I, therefore, started to read chemical books and to do
experiments in our school lab and in the analytical laboratory of the nearby Faculty of
Pharmacy (now called the Faculty of Pharmacy and Biochemistry). Our apartment was
fairly large and my mother, in need of money, used to rent a room to two students studying
pharmacy who were undergraduate lab assistants. Thus, almost every weekend | went to
their lab with them to do simple analytical experiments. This activity lasted about a year
and a half. Then, the room was rented to a student attending the Department of Chemical
Technology, who was an undergraduate lab assistant in organic chemistry. Thus, |
occasionally went with him to his lab (which again was located close to our house) and did
some simple organic syntheses and purification of solvents. Those visits to the organic
chemistry lab went on for about a year until this student left Zagreb. Then my interest
suddenly focused on philosophy. I accidentally came by a book on Plato (427-347 B.C.)
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and his philosophy, and my enthusiasm for chemistry was shifted to philosophy. | became a
Platonist and have remained the Platonist ever since. | read and reread Timaeus and even
started to learn Greek to avoid translations that I did not trust. It should be pointed out that
in those days Marxism was the official philosophy of the former Yugoslavia. | had a
number of arguments with my philosophy teacher by contrasting Plato’s beautiful
philosophy and his masterly writings to Marxism as an economic theory and not a sound
philosophical foundation upon which to build the society. My mother warned me that if |
wanted to study philosophy and oppose Marxism, which was the basis of the communist
ideology, | would end up in prison. In those days one could be imprisoned for any kind of
opposition to the communists, even philosophical. My mother also said that, as a chemical
engineer, | would be safe even if | sometimes said something that the communists disliked.
Thus, | started chemical studies and returned to my first love, to chemical research. | should
also mention that Vladimir Prelog (1906-1998), the Croatian Nobel laureate in chemistry
for 1975 (sharing the Prize with John War cup Cornforth, 1917-2013), was professor of
organic chemistry in the Department of Chemical Technology from 1935 to 1941, when he
moved to Eidgendssische Technische Hochschule (ETH) in Zurich.

I studied chemical technology uneventfully from 1956 to 1960 and did research in
polarography for my degree thesis under Professor Ivan Filipovi¢ of Heldenthal (1911-
1998) [4], whose undergraduate lab assistant | became in the second semester. The degree
thesis was entitled Influence of pH on the Half-Wave Potential of Bismuth in Solutions of
Sodium Acetate and AceticAcid. After getting a degree in chemical technology, at the
beginning of November 1960 | joined the research department of PLIVA, then and now the
largest pharmaceutical company in the southeast of Europe. The powerful broad—spectrum
antibiotic called azithromycin was discovered in PLIVA. It is sold in Croatia as
SUMAMED and was licensed by PFIZER as ZITHROMAX. In the early 1962, | left
PLIVA and joined the Rugjer Boskovi¢ Institute in Zagreb. | did this because | wanted to
enroll in the graduate school at the University of Zagreb and the Rugjer Boskovi¢ Institute
was in those days an ideal place for graduate research. This move of mine was largely
influenced by a good friend from student days — the late KreSimir Humski (1939-1997) [5]
(later professor of organic chemistry in the Faculty of Technology and at the Faculty of
Pharmacy and Biochemistry). When Humski got married, | was his best man. He suggested
I should join the Laboratory of Physical Organic Chemistry in the Institute whose head was
Dionis Emerik Sunko (1922-2010) (later professor of organic chemistry in the Department
of Chemistry at the Faculty of Natural Sciences and Mathematics). Besides Sunko, the
leading chemist in this laboratory was Stanko Borci¢ (1931-1994) (later professor of
organic chemistry at the Faculty of Pharmacy and Biochemistry), who got his Ph.D. from
ETH doing research under Leopold Ruzizka (1887-1976) and Prelog, two Croatian Nobel
laureates in chemistry (Ruzi¢ka shared the Nobel Prize in 1939 with Adolph F. J.
Butenandt).
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4. M.Sc., PH.D. DEGREES AND POSTDOCTORAL RESEARCH

| started M.Sc. studies in organic chemistry and biochemistry. But, after a year | switched
to physical chemistry, the reason being that both Humski and I got in trouble with Professor
Kresimir Balenovi¢ (1914-2003) [6]. At that time, he was the leading Croatian organic
chemist, collaborator of three Nobel laureates: Albert Szent—-Gyorgy (1893-1986), Ruzicka
and Prelog, and head of the M.Sc. program in organic chemistry and biochemistry. Bozo
Tezak (1907-1980) [7], the leading Croatian physical chemist at that time, was the head of
the M.Sc. program in physical chemistry. He accepted us into his program and this change
was also approved by Sunko. During coffee breaks, a regular visitor to our lab was Milan
Randi¢ (1930) [8], who had come back to the Institute in 1958 after getting his Ph.D. from
the Cambridge University. Research for his thesis Some Studies in Infrared Spectra of
Molecules was carried out under Professor Norman Sheppard, FRS (1921-2015). In
Cambridge, Randi¢ met John Norman Murrell, FRS (1932-2016) who was working for his
Ph.D. degree under Professor Hugh Christopher Longuet—Higgins, FRS (1923-2004). They
became good friends and, besides Randi¢, Murrell played a crucial role in the early
development of quantum chemistry in Croatia [9]. At the graduate school in Zagreb,
Randi¢ lectured on Quantum Chemistry and Symmetry in Chemistry in the M.Sc. program
in physical chemistry. His lectures were very stimulating and during coffee breaks we
talked a lot about quantum chemical problems. At that time, Randi¢ was developing the
maximum overlap approach to strained systems using a paper by Coulson and Moffitt [10]
as the starting point. I liked his lectures and | liked to talk with him so | finally decided to
do research for my M.Sc. degree under his supervision. Most of the work for my M.Sc.
degree was completed by the summer of 1963. | applied the Coulson—Moffitt maximum
overlap approach, in a modified form, to all possible methyl-substituted cyclopropanes.
However, before | could get the master’s degree, | was called up for the compulsory army
service in autumn of 1963. | could not avoid it, though I tried, and thus | spent the next 11
miserable months in Banja Luka (Bosnia and Herzegovina). That time was not completely
wasted, because | read a lot — | read more than 150 books on science, philosophy and
literature. Near the end of my army service, while | was waiting to be discharged, | was on
guard duty at the army car depot guarding thousands of cars and tons and tons of gasoline.
One day while on guard duty I was thinking about what to do after the army — should I get
my master’s degree and work in industry or perhaps continue to do research for a Ph.D.
degree, but with whom, since Randi¢ was abroad and I had learnt he was moving from
Sheffield to Ottawa, when suddenly a car appeared with the officer in charge of the depot.
He brought me a telegram from the Institute. The message it contained changed my destiny.
The Institute’s authorities asked me if I would like to go to the University of Sheffield and
do predoctoral research under John Murrell. My answer was an emphatic Yes! It appears
that somebody else was asked this first, but his wife did not want to leave Zagreb and her
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job. I was the second on the list of possible candidates. I returned from the army in late
August of 1964 and already in early October | was in Sheffield in Murrell’s group. Since |
left Zagreb so quickly, 1 again had to postpone the orals for the M.Sc. degree. This position
in Murrell's Group was offered to the Rugjer Boskovi¢ Institute upon Randi¢’s suggestion.
While | was in the army, Randi¢ spent a year with Murrell in Sheffield and when Murrell
told him that he had got this Royal Society grant, Randi¢ suggested that it be given to
somebody from Zagreb. When the Institute proposed me for this position, Randi¢ strongly
recommended me to Murrell and | was accepted. After several years in Sheffield, in 1965
Murrell moved to the new University of Sussex in Falmer near Brighton, where he became
professor of physical chemistry and stayed there until his retirement, being, among other
things, the chair of the Chemistry Department and the Vice—chancellor of the University.
He was also elected to the Royal Society. | stayed with Murrell from October 1964 to June
1966, first at the University of Sheffield and when he moved to Sussex, | went with him
and a part of the group to the University of Sussex. Later on, several young people from the
Institute spent some time with Murrell (e.g., Tomislav Zivkovi¢ (1943)) and some even
won Ph.D. degrees working with him (e.g., Slobodan Danko Bosanac (1946)). After | left
Sussex, | occasionally visited Murrell and he came many times to Zagreb and to the
theoretical chemistry meetings held in Croatia (Dubrovnik, Brijuni).

In Sheffield I met Harry Kroto, the future Professor Sir Harold Walter Kroto, FRS
(1939-2016), a Nobel laureate for chemistry (he shared the 1996 Prize with Robert F. Curl
(1933) and Richard E. Smalley (1943-2005) for their discovery of buckminsterfullerene).
Kroto was a nice friendly person. He did Ph.D. research in spectroscopy under Richard
Dixon (1930). The late Professor George Porter, FRS (1920-2002) [11], also a future Sir
and Nobel laureate for chemistry (he shared the 1967 Prize with Ronald W. G. Norrish
(1897-1978) and Manfred Eigen (1927) for their work on ultrafast reactions), was head of
the Physical Chemistry Department at the time.

In Murrell’s group | met several people with whom | have remained in contact ever
since. One of them is Stuart Carter, later a postdoctoral fellow with Randi¢ in Zagreb. In
the ensuing years, he visited my brother and me several times in Volosko. In Sheffield,
Stuart Carter patiently taught me the correct pronunciation of many English words. | came
to England with a good passive knowledge of the language but had never before spoken to
an English person. Carter has a natural gift for languages and during his stay in Zagreb
learned to speak decent Croatian. From 1986 to 1989 | used to spend three weeks each year
in the Department of Chemistry of the University of Reading on a British Council grant.
There | was located in the lab of the well-known molecular spectroscopist Professor lan
Mills, FRS. Carter was also associated with Mills and during my stays in Reading we did a
lot of collaborative research [e.g., 12].

Another member of Murrell’s group Alan Hinchliffe helped me with programming.
In Sheffield we had used an old Feranti computer, and that was my first encounter with
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computers. After getting a Ph.D. from the Sheffield University, Hinchliffe joined the
University of Manchester Institute of Science and Technology where he was reader in
chemistry. He is now retired. After both of us left Murrell’s group, we published several
papers together [e.g., 13,14]. He did important research in chemical modeling and wrote, to
my mind, the best book in the field, which had already had two editions [15]. He was also
senior reporter for the specialist periodical report entitled Chemical Modeling -
Applications and Theory, published by the Royal Society of Chemistry.

| studied several problems with Murrell — | did some experimental work on
determining the Kinetics of unsymmetrical quinone-hydroquinone redox reactions [16],
used the Pariser—Parr—Pople (PPP) SCF MO method to interpret the UV/VIS spectra of
alternant hydrocarbon anions and cations [17] and reported a few original criteria for
obtaining localized orbitals [18]. Altogether, | produced 7 papers during my stay with
Murrell and he agreed that this productivity and its quality would make an acceptable Ph.D.
thesis. | returned to Zagreb and obtained and M.Sc. degree first, because in those days an
M.Sc. degree was a prerequisite for the Ph.D. The title of my M.Sc. thesis was The Method
of Maximum Overlap and Its Application to Calculation of Hybrids in Some Methyl-
Substituted Cyclopropanes (University of Zagreb, 1966). Part of the M.Sc. thesis was
published in 1965 and this was my first published research paper [19]. This was also the
first of 76 papers that Randi¢ and I published together over the years. As soon as | got my
M.Sc. degree, | submitted my Ph.D. thesis, based on the papers published while I was with
John Murrell, to the Faculty of Natural Sciences and Mathematics. The thesis was accepted
and | defended it in early January 1967. My Ph.D. thesis was entitled Electronic Structure
of Some Polyatomic Molecules (Zagreb, 1967). My M.Sc. and Ph.D. theses were the first
theses in quantum chemistry in Croatia.

In 1967, Randi¢ organized the first quantum chemistry school in the former
Yugoslavia and | helped him with the organization. The school was held at Herceg—Novi, a
city in the Bay of Kotor. At that school I met Professor Michael J. S. Dewar, FRS (1918-
1997) [20], who invited me to join his group at the University of Texas (Austin) as a Robert
A. Welch postdoctoral fellow. I described how I met Dewar in my article How | Met
Michel Dewar. This article appeared in A Group Memoir (University of Texas, Austin,
1988) containing a collection of memories and tributes written by his present and former
students and colleagues, which was dedicated to Dewar on the occasion of his 70th
birthday and given to him at the International Symposium on Physical Organic/Theoretical
Chemistry held in his honor in Austin on February 25-28, 1988. | wonder why Dewar was
never awarded a Nobel Prize in chemistry? He was a brilliant scientist, developed the PMO
theory and a semiempirical MO method of high accuracy that was widely used. He was
also a highly educated person who possessed a vast knowledge of art and literature, who
appreciated good food and wine, but with his sharp criticisms easily made enemies
(perhaps this is the reason why he was never given the Prize!).
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In Austin, my family and | spent two wonderful years (1968-1970). | was doing the
SCF MO and MINDO studies of various large molecular systems and their properties [e.g.,
21-24] and produced 16 papers with Dewar. This research of mine and of Dewar’s other
post docs was a precursor of the AM1 (Austin Model One) method — the paper introducing
the AM1 was the second most cited paper published in the Journal of American
Chemical Society (JACS) in its 125 years [25]. The list containing the 125 most cited
papers published in JACS can be found on the web:
http://pubs.acs.org/journals/jacsat/125promotion/articles/ntml. Dewar has several more
papers on this list. For example, his paper with Walter Thiel on the MINDO method is the
third on the list. In Austin, I met Douglas J. Klein (1942), who was at that time doing Ph.D.
research under Professor Frederic Albert Matsen (1913-2006). After being a postdoctoral
fellow in several places, Klein settled down as a professor of chemistry in the Department
of Marine Sciences, Texas A & M University at Galveston. | have visited him there many
times and on several occasions | spent three months working with him and several other
professors in the Theoretical Chemical Physics Group that Klein was heading.
Collaboration with Doug Klein and his colleagues was very productive and we have
published over the years a number of research papers [e.g., 26-28].

5. YEARS AT THE RUGJER BOSKOVIC INSTITUE

After returning from England in 1966, | joined the Theoretical Chemistry Group in the
Department of Physical Chemistry of the Institute and stayed there until mandatory
retirement at the end of 2001. The retirement age in Croatia is 65. The Theoretical
Chemistry Group was founded by Randi¢ on his return from Cambridge. My advancement
in the Department was as follows: | became a research scientist in 1967, an associate
research professor in 1971 and a full research professor in 1977. | was head of the
Theoretical Chemistry Group for many years and chairman of the Physical Chemistry
Division from 1997-2001. | was also lucky to be continuously supported by grants from
various Croatian granting agencies.

When Randi¢ left Zagreb for good in 1971, I took over his lectures in quantum
chemistry in the Department of Chemistry of the Faculty of Natural Sciences and
Mathematics. There | was first elected to the position of assistant professor in 1970, then
associate professor in 1973, and finally in 1977 | was promoted to the rank of full
professor. | also lectured on molecular orbital theory in the graduate school. To help
graduate students, | wrote a book entitled Molecular Orbitals in Chemistry (Skolska knjiga,
Zagreb, 1974; this book was translated by my doctoral student Gani Jashari (1952) into
Albanian for the use of students in Albania and at the University of Prishtiné in Kosovo).
This was the first book on molecular orbital theory in the Croatian language. Later, Leo
Klasinc (1937), Zvonimir Maksi¢ (1938-2011) and | wrote a book for undergraduate



Autobiographical notes 239

students on the use of symmetry in quantum chemistry, entitled Symmetry of Molecules
(Skolska knjiga, Zagreb, 1979). | also supervised 15 B.Sc. degree theses, 9 M.Sc. theses
and 18 Ph.D. theses. Among the students who were awarded their B.Sc degrees under my
supervision, Zlatko Baci¢ (1954) is now a professor at the New York University and one of
the leading chemical physicists in the USA. He got his Ph.D. degree from the University of
Utah and received the Camille and Henry Dreyfuss Fellowship. Boris Sinkovi¢ got his
B.Sc. degree with me, his Ph.D. degree from the University of Hawaii and is presently
professor of physics at the University of Connecticut (Storrs). He runs highly regarded
research in surface physics. Milorad Milun (1947), who got all three degrees, B.Sc., M.Sc.
and Ph.D., under my supervision, is retired, but used to be the director of the University
Institute of Physics in Zagreb and a leading Croatian researcher in vacuum physics and
nanotechnology. Ivan Gutman (1947) obtained M.Sc. and Ph.D. degrees with me and later
he was also awarded a Ph.D. degree in mathematics from the University of Belgrade
(Serbia). His M.Sc. thesis (Graph Theory and Molecular Orbitals, University of Zagreb,
1973) and his Ph.D. thesis (Investigation of Topological Properties of Conjugated
Hydrocarbons, University of Zagreb, 1973) were the first theses in mathematical chemistry
in Croatia. Gutman is one of the international leaders in mathematical chemistry and used
to be the professor of physical chemistry at the University of Kragujevac (Serbia). He is
also a current Editor—in—Chief of MATCH — Communications in Mathematical and in
Computer Chemistry, an international periodical, established in 1975 by late Professor
Oskar E. Polansky (1919-1989) [30], for the publication of research work in the
overlapping area between discrete mathematics and chemistry as well as for its applications
in computer chemistry. Borka Dzonova-Jerman-Blazi¢ was head of the computer
networking research at the Josef Stefan Institute in Ljubljana (Slovenia). Her Ph.D. thesis
Computer—Aided Solutions of Some Nonnumerical Problems in Chemistry (University of
Zagreb, 1981) was the first thesis in computer chemistry in Croatia. Sonja Nikoli¢ (1954) is
a distinguished research professor in the Institute Rugjer Boskovi¢. Her Ph.D. thesis
Chemical Graphs — Conjugated—Circuit Model: Selection of Parameters and Applications
of the Model (University of Zagreb, 1988) contains a scholarly review of the conjugated—
circuit model, gives its quantum-mechanical basis and presents its extension to hetero
conjugated polycyclic molecules. Bono Lu¢i¢ (1964) has an interesting background: he got
his bachelor’s degree from the Department of Electrical Engineering, his master’s degree
from the Department of Physics and his Ph.D. degree from the Department of Chemistry of
the Faculty of Natural Sciences and Mathematics. He did research for his Ph.D. degree in
chemistry under my supervision, whilst his M.Sc. thesis was supervised by the well-known
Croatian biophysicist Professor Davor Jureti¢. In his Ph.D. thesis, entitled Quantitative
Structure—Property—Activity Relationships of Molecules: The Use of Ordered
Orthogonalized Descriptors (University of Zagreb, 1997), Luci¢ took advantage of his
broad education. lva Maria Toli¢ (1974) got the first Croatian Ph.D. in theoretical biology
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with her dissertation Cells as Tensegrity Structures (University of Zagreb, 2002). I
suggested her this research topic. She completed the experimental part of the thesis at
Harvard University working with Professor Ning Wang. Tensegrity is a contraction of
terms tensional integrity. This word was coined by Buckminster Fuller (1895-1983).
Buckminsterfullerene, named after him [31], the now famous Cg molecule with the
structure of a truncated icosahedron, is also a tensegric structure.

6. RESEARCH

I have been lucky to have good teachers (Filipovi¢, Randi¢, Murrell, Dewar), gifted
students from Croatia and abroad, good co—workers all my life and to have done joint
research with most of the leading mathematical chemists of our time. Some of them have
already been mentioned and some will be mentioned below. From the early days, | learnt to
cooperate and appreciate the results of my colleagues and | have published research papers
jointly with more than 250 scientists of various backgrounds. | have published extensively
with some of them because | liked to collaborate with them because they were and are very
nice persons, and research has always been an enjoyable occupation for me. In this way,
doing science was like an exciting journey into the unknown in good company.

My research interests lie in the fields of quantum chemistry, mathematical
chemistry, computer chemistry, history of chemistry and especially in the history of
Croatian chemistry. Two topics prevailed in quantum chemistry: development of the semi-
empirical molecular orbital (MO) theory applicable to large (heterocyclic) molecules
[13,14,17,21-24,32,33] and setting up, in collaboration with Douglas J. Klein, Milan
Randi¢ and Sonja Nikoli¢, a valence—-bond model, named the conjugated circuits model
(originated by Randi¢ [34] in 1976), on a firm quantum—mechanical basis, its
parameterization and application to different classes of conjugated molecules and fullerenes
[35-40]. | also did some ab initio computations with the late Andrej Azman (1937-
1980)[41], who was a senior scientist at the then Boris Kidri¢ Institute in Ljubljana (now
the Slovenian National Institute of Chemistry; Slovenia became independent in 1991) and
MO interpretations of photoelectron spectra of biologically active molecules with Leo
Klasinc (1937) [e.g., 42]. With Klasinc and his doctoral students Branko Rus¢i¢ (1952,
presently a senior scientist at the Argonne National Laboratory, Argonne, Illinois) and
Aleksandar Sablji¢ (1950, retired head of the Physical Chemistry Division and a full
research professor at the Rugjer Boskovi¢ Institute) we took the first photoelectron spectra
of opiates, interpreted them and even discussed how their structure affects their bioactivity
[43].

In the field of mathematical chemistry, I worked on the development and
application of graph theory to chemistry with several of my doctoral students (e.g., Ivan
Gutman, Milorad Milun, Maria Barysz, Sonja Nikoli¢, late Albin Juri¢, Dragan Ami¢) and
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many colleagues (e.g., Drago$ Cvetkovi¢, Milan Randi¢, Doug Klein, Tomislav Zivkovig,
Roger Blakeney Mallion, Danail Bonchev, late Ante Graovac, Dejan Plavsi¢, late Istvan
Lukovits, Subhash C. Basak). Gutman came to Zagreb with the knowledge of graph—
spectral theory and the Sachs theorem (introduced in 1964 by Professor Horst Sachs
(1927-2016) [44], a distinguished mathematician from Ilmenau in the East Germany; an
issue of MATCH [45] has been dedicated to him on the occasion of his 75th birthday),
which he learnt from Cvetkovi¢ in Belgrade. When Gutman told me that Cvetkovi¢ calls C.
A. Coulson’s and A. Streitwieser’s Dictionary of n—Electron Calculations (W. H. Freeman
& Co., San Francisco, 1965) the book of graph spectra, it became evident that there was an
isomorphism between the Hiickel MO (HMO) theory and graph-spectral theory and we
started to analyze the simple HMO theory in terms of graph—theoretical concepts and the
Sachs theorem [46]. In the MATCH issue dedicated to Sachs, Gutman described the impact
of the Sachs theorem on theoretical chemistry [47]. Later, during my visit to the
Department of Theoretical Chemistry, University of Oxford, early in 1974, | collaborated
with Mallion and A. J. Schwenk (1947) in applying the Sachs theorem to weighted graphs
representing heteroconjugated molecules [48,49]. My visit to Oxford coincided with a sad
occurrence — Charles Coulson’s demise — in fact, he died on the very day that | arrived at
the Oxford University Department of Theoretical Chemistry: January 7, 1974. That
Department had been created especially for Coulson, who held a Personal Chair in
Theoretical Chemistry and had transferred to the position after 20 years as the Rouse Ball
Professor at the Mathematical Institute and a Fellow of Wadham College, because the Rose
Ball Chair is permanently attached to that College. By a private arrangement between him
and the College, Coulson remained the Fellow of Wadham College until he died. Charles
Adrian Coulson, FRS (1910-1974) was the leading theoretical chemist of those days in the
United Kingdom and was a father figure to theoretical chemists all over the globe [50]. |
met Coulson during the Herceg—Novi School and shared long walks with him during which
we discussed about many topics including the future of quantum chemistry. In the
aftermath of Charles Coulson’s death, Mark Sheard Child, FRS (1937) became Inter
Regnum Head of Department. Then, Norman March, FRS was elected to the first Coulson
Chair of Theoretical Chemistry (with an associated Fellowship at University College).
When March retired, Mark Child became Coulson Professor of Theoretical Chemistry in
his own right. At about that time (in 1994) the Theoretical Chemistry Department was
amalgamated with, and absorbed into, the Physical Chemistry Department. However, the
Coulson Chair of Theoretical Chemistry remained. When | was in Oxford in 1974, Mallion
was in the course of completing his second Ph.D. thesis (called, in Oxford, a D. Phil.) under
Coulson, his first thesis having been obtained from the University of Wales at Swansea,
under Claude William Haigh. At Oxford, Mallion was a Research Lecturer of Christ
Church. Schwenk got his Ph.D. degree from the University of Michigan (Ann Arbor),
under Professor Frank Harary (1921-2005) and was a postdoctoral visitor to the
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Mathematical Institute in Oxford. | met Harary there and he made me a gift a copy of the
second edition of his now—famous book Graph Theory (Addison-Wesley, Reading, MA,
1971, 2nd edition). The well-known graph-theoreticians E. M. Palmer and Lowell Wayne
Beineke (1939) were in the same group of visitors. Another well-known graph—
theoretician, Robin James Wilson (1943), then Lecturer of Jesus College, was also a
member of the Mathematical Institute.

After publishing our first paper on the relationship between the HMO and graph-
spectral theory [46], we soon found that research in chemical graph theory was also being
done by Alexandru T. Balaban (1931) in Bucharest, Dennis H. Rouvray (1938) in South
Africa, Haruo Hosoya (1936) in Tokyo, William C. Herndon (1932—-2011) in El Paso
(Texas), Roger Blakeney Mallion (1946) in Oxford and that, before them, Edgar
Heilbronner (1921-2006) was very productive in this area while he was at ETH and that
Coulson and Klaus Ruedenberg (1920) were also interested in this type of research. In his
reminiscences about the Z-index Hosoya [51] described how he came to Zagreb and met
Gutman and me there. In July of 1973, Hosoya attended the International Conference on
Quantum Chemistry in Menton. There he met Rouvray and Mallion. From Menton Hosoya
proceeded to Basel to visit Heilbronner. From Basel he came to Zagreb and then went to
see Balaban in Bucharest. Interestingly enough, | had a choice of attending either the
conference in Menton or going to Prague to attend the Conference on Chemical Structure-
Biological Activity Relationships: Quantitative Approach. | went to Prague and met there
Corwin Hansch (1918-2011), Lemont Burwell Kier (1930), William B. Purcell, Rudolf
Zahradnik (1928), Peter A. Kollman (1945-2001) and many other QSAR practitioners.
This was the first international meeting on QSAR. | wonder why Hosoya did not go to
Prague instead of to Menton — the Conference in Prague would have been a much more
rewarding meeting for him in the light of his work on the Z-index and its use in QSPR
[52]. Randi¢ learnt about all this activity first from Balaban when he delivered a lecture at
Harvard University — at that time Randi¢ was visiting Professor E. Bright Wilson (1908-
1992) in the Department of Chemistry [53]. Randi¢ immediately realized the potential of
chemical graph theory and started doing highly creative research in this area of theoretical
chemistry, soon to become the leader in the field.

Our most interesting result in the graph—theoretical analysis of HMO theory is the
formulation of topological resonance energy (TRE) as a measure of aromaticity of
conjugated systems [54,55]. The TRE theory was developed in collaboration with my
doctoral students lvan Gutman and Milorad Milun and its applications were extended to
conjugated ions, radicals, ion-radicals and bridged annulenes with my diploma student
Sinkovi¢ and doctoral students Predrag Ili¢ [56] and Sablji¢ [57]. The TRE theory was
based on the concept of acyclic polynomial. We had problems with calculating this
polynomial, thus with the help of Bojan Mohar (1956), a mathematician from Ljubljana, a
computer program was devised for computing the acyclic polynomial and the TRE values
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[58]. Approximately at the same time, Jun—ichi Aihara (1944) in Japan derived the same
type of theory [59], although he called the acyclic polynomial reference polynomial and
TRE the A-Il method. He later accepted our terminology whilst the acyclic polynomial
became known as the matching polynomial [60]. The TRE theory is nowadays accepted as
a reliable theory of aromaticity [e.g., 61].

I summarized our activities in analyzing the HMO theory with graph-theoretical
tools in my article Huckel Theory and Topology [62]. Professor G. A. Segal (1934)
(University of California, Los Angeles) was visiting Oxford and heard my lecture with the
same title. He was just editing volumes 7 and 8 of the series of books on modern theoretical
chemistry and he liked my lecture and thought that, if written, it would nicely fit in his
volume 7, in which a theoretical framework of a number of semiempirical methods for
computing electronic structures of molecules would be presented. | cast my lecture into the
requested form and it appeared in that book as the first article.

I was also involved in the development of molecular descriptors known as
topological indices, a term introduced by Hosoya in 1971 [52] and quantitative
relationships between the structures, properties and activities of organic molecules and
biomolecules (QSPR and QSAR modeling — | believe that the term QSPR - quantitative
structure—property relationship — was first used in print by Sablji¢ and me in 1981 [63]). |
was prompted by the lectures on QSAR that | heard at the Prague Conference in 1973 to
start doing QSPR and QSAR modeling. In collaboration with Randi¢, my doctoral students
Dragan Ami¢, Bogdan Bogdanov, Bono Luci¢ and Sonja Nikoli¢, my younger colleagues
Drago Beslo, Zlatko Mihali¢ and Dejan Plavsi¢ and a graduate student-volunteer, Ante
Milicevi¢, | introduced several novel molecular descriptors, such as the Harary index [64]
and the modified Harary index [65] in honor of Professor Frank Harary, the detour index
[66-68], the three—dimensional Wiener number [69], the connectivity index with a variable
exponent [70], a modified Wiener index [71], a variable Wiener index [72] and a sum-
connectivity index [72a]. Some of these descriptors have also been independently
introduced by other people. For example, the Harary index was at about the same time
derived by Ovidiu lvanciuc, Teodor-Silviu Balaban (1958) and Alexandru T. Balaban, but
was given a different name — the reciprocal distance sum (RDSUM) index. Their report
was published in the same issue of the Journal of Mathematical Chemistry as our paper
[73]. Later, Balaban and his co—workers accepted the suggested name — Harary index [74].
This index is based on the chemists’ intuitive expectation that distant sites in a structure
should influence each other less than the near sites. Randi¢ et al. [75] also considered the
connectivity index with selected values of the exponent, while we considered all possible
values in search of the optimal exponent, that is, an exponent that would produce the QSPR
model with the lowest value of the standard error of estimate. Gutman and Zerovnik had
considered the modified Wiener index before us [76], but only its mathematical properties,
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while we investigated its use in the QSPR modeling. Such oft-repeated research in this
highly competitive area is easy to understand.

Gutman and 1 also developed a pair of rather simple topological indices, which are
often referred to in the literature as Zagreb indices [e.g., 77,78]. One index represents
summation of all vertex—degrees squared and the other summation of edge-weights in
terms of multiplied degrees of incident vertices. In our early work on the topological basis
of the n—electron energy, these two indices appeared in the topological formula for the total
n—energy of conjugated molecules [79] and were first used as branching indices [80] and
later as topological indices in QSPR and QSAR studies [77,78]. We should also mention
that the famous connectivity index of Randi¢ was also introduced as a branching index [81]
and only later used as a molecular descriptor, which in due course became the most
exploited of all topological indices in QSPR and QSAR [77,78]. Zagreb indices, similarly
to the modified Wiener index, were also modified [82] in such a way that the outer atoms
and bonds gave a larger contribution to indices than the inner atoms and bonds, because the
outer atoms and bonds are associated with a larger part of the molecular surface and are
consequently expected to make a greater contribution to physical, chemical and biological
properties. Variable Zagreb indices were also proposed [83].

Danail Bonchev paid a visit to Zagreb in the spring of 1976. We used his stay to
study the branching of acyclic structures using information—theoretic indices that we had
derived from the distance matrix [84]. In 1981, in collaboration with Ovanes Mekenyan, we
derived the topological super index as a sum of six information—-theoretic indices that were
derived from the orbits, chromatic properties, edges (and vertex—degrees), distances, radial
distribution of vertices and the non-adjacent numbers of a graph [85]. This index has
shown a considerable discrimination power. A few years later (1983) Bonchev summarized
all these efforts in a book in which he gave a survey of the application of infomation—
theoretic indices in chemistry [86].

With my doctoral student Luci¢, a CROMR sel procedure was introduced [87]. This
is a very efficient computational procedure for selecting relevant descriptors for the
property modeled and for obtaining the best possible QSPR models for a given number of
descriptors within the multivariate regression. The procedure was then used for modeling
several molecular properties in collaboration with Professor Dragan Ami¢ (1953) from the
University of Osijek [88], Professor Alan Roy Katritzky, FRS (1928-2014) and his group
from the University of Florida (Gainesville) and Damir Nadramija and his group from
PLIVA [89-91]. Our strategy for building the structure—property—activity models is
delineated in a paper prepared in collaboration with Mihali¢ and published in the Journal of
Chemical Education [92], which appears to be used by quite a few researchers in QSPR
and QSAR modeling.

I was also involved in combinatorial enumeration of various classes of molecules.
In collaboration with Professor Jan von Knop (1943) and his group from the University of
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Dusseldorf. We developed several efficient algorithms for characterization, generation and
enumeration of chemical structures. These efforts were summarized in our two books
[93,94]. Our most valuable results are the development of an algorithm based on the N-
tuple code for constructive enumeration of acyclic structures [95] and an algorithm based
on the DAST (dualist angle—restricted spanning tree) code for generation and enumeration
of certain classes of polycyclic structures [96]. The N-tuple code lead to the development
of compact codes [97-104] and induces a unique labeling of atoms in acyclic structures
[97]. Every digit in an N-tuple code belongs to a single atom; thence, the sequential
appearance of the digits indicates sequential labeling of atoms.

Some enumerative work was also carried out in collaboration with Professor Sir
Harold Walter Kroto, FRS (1939-2016; Nobel prize in chemistry 1996) [105]. This
happened in the following way. | was visiting the University of Sussex in May 1982 and
gave a series of lectures on enumeration in chemistry. The lectures were well attended,
Murrell was there as well as Harry Kroto. Throughout the lecture series | had an uneasy
feeling | was boring my audience with such exotic concepts as the N-tuple code, the
boundary code, the DAST code, 1- and 2—factors or the counting trigonal, square and
hexagonal animals. They were probably asking themselves what all that was good for?
However, one person was diligently taking notes and asking penetrating questions during
coffee breaks. This person was Kroto. A few years later, in the spring of 1985, | got a letter
from Kroto asking if | could generate all the possible polyynes Cn,H, and related
cyanopolyyenes C,HnN, which | did. Polyynes (cyanopolyynes) are molecules consisting
essentially of long chains of carbon atoms (and one nitrogen atom) and it appears that our
understanding of interstellar chemistry depends on their existence in the interstellar
medium. Kroto wanted to know the size of each family of these structures and I supplied
the requested data [105]. Later on, we (Kroto, von Knop and his group and I) introduced
the concept of a physical tree [106]. This work was directly linked to our above—mentioned
effort, since in it we proposed a simple mechanism by which acyclic molecules could be
formed in interstellar space and circumstellar shells. To do this, we introduced trees with
the memory of their origin (e.g., physical trees to differentiate them from chemical trees,
that is, trees without memory) and we indicated this by assigning labels to the vertices of a
physical tree consecutively and each vertex to be labeled must be adjacent to an already
labeled vertex. Certain interest was later shown in physical trees and it was pointed out that
Morgan—trees [107] were a subclass of physical trees [108]. | hope that through my
collaboration with Kroto and von Knop, | was able to show the usefulness of constructive
combinatorial enumerations in chemistry even before the combinatorial libraries proved to
be an imperative tool in chemical modeling, preparation of novel compounds and drug
design. Furthermore, | did all kinds of enumerations such as the counting of Kekulé
structures, conjugated circuits, various classes of graphs, etc. using a variety of original and
transplanted methods [109]. The first time | encountered the problem of enumerating
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Kekulé structures was in 1967 when Randi¢ and I tried to extend our method for computing
bond lengths in cyclopentadienyl ligands in the half-sandwich structures containing
transition metals [110] to various benzenoid ligands. We did not do much because at that
time we did not know how to generate all valence structures (Kekulé, Dewar, excited
structures) of a benzenoid hydrocarbon except by hand.

For some time | was also interested in producing criteria for accounting molecular
complexity. The complexity [111] (or as Mallion and | call it, the intricacy [112]) of a
molecule is characterized by its size (in terms of either the number of atoms and/or bonds),
branching, cyclicity, the presence of heteroatoms, multiple bonds, chirality, symmetry, etc.
We (Nikoli¢, Toli¢, Ivo Bauci¢ and 1) used various definitions of Zagreb indices in
considering the two—dimensional complexity of molecules [113,114], and Mallion and |
used a reciprocal spanning—tree density as a new index of complexity (intricacy) [112].
Later, we (Nikoli¢, Toli¢ and I) prepared in collaboration with Gerta and Christoph Rucker
a summary of currently used complexity indices, which appeared in a book Complexity —
Introduction and Fundamentals, edited by Bonchev and Rouvray [115].

In 1983, | wrote the first single—author book on chemical applications of graph
theory Chemical Graph Theory (first edition in two volumes: CRC Press, Boca Raton,
Florida, 1983, second revised edition in a single volume: CRC Press, Boca Raton, Florida,
1992). According the Science Citation Index, this book has been cited 2627 times to the
end of a year 2016.

Regarding the history of chemistry, | mostly studied the events and persons relevant
to Croatian chemistry [4,9,116], but | have also written about the history of quantum theory
[117,118], about Roald Hoffmann (1937) and his research [119] and translated some of his
poems into Croatian [120], and commented part of my correspondence with Vladimir
Prelog [121]. With Randi¢ I have written about a dozen less known early developments of
chemical graph theory [122]. | have also written several articles on the history of numbers
and their uses in science and chemistry, e.g., with Lionello Pogliani (1943) and Randi¢ on
zero [123] and one [124] (the computer age is based on these two numbers: 0 and 1) and
alone on the number five [125], and with Iva Marija Toli¢ on the manifestations of the
number five in biology [126]. We also published an article on the number 13 [127]. Later
Pogliani published book entitled Numbers Zero, One, Two, and Three in Science and
Humanities (Kragujevac, 2006, pp. 250).

I was also interested in the uses of graph-theoretical matrices in chemistry. My
research in this area resulted in a number of publications and two editions of the book
entitled Graph—Theoretical Matrices in Chemistry (the first edition University of
Kragujevac, Kragujevac, 2007; the second edition CRC press/Taylor and Francis Group,
Boca Raton, 2015). As | already mentioned | was interested in history of chemistry in
Croatia. My studies in this direction already resulted in two monographs: N. Trinajsti¢, 100
Croatian Chemists, Skolska knjiga, Zagreb, 2002 and S. Pausek-Bazdar and N. Trinajstic,
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Croatian Chemistry in the 20th Century, Skolska knjiga, Zagreb, 2014. Croatian Academy
of Sciences and Arts published my book on my Life in Science (Zagreb, 2016).

Citations of my various contributions are rather modest. My h index is 59, the most
cited paper is I. Gutman, M. Milun, N. Trinajsti¢, Graph theory and molecular orbitals.
Nonparametric resonance energies of arbitrary conjugated systems, J. Am. Chem. Soc.
1977, 99, 16921704 (SCI=561), citations of my papers is 13760, of my books is 4937 and
the total citations were 20176 (these numbers provided Bono Luci¢).

I was given several awards for my research, such as the City of Zagreb Science
Award in 1972, the Croatian National Award for Science in 1982, the Mid—America State
Universities Association Distinguished Foreign Scholar Award in 1987 and Croatian State
Award for Life Achivements in Science (2004). On the occasion of my 60th birthday, my
former and present students and colleagues from Zagreb and abroad organized on October
25, 1996 a day-symposium in conjunction with the Croatian Chemical Society, Faculty of
Chemical Engineering and Technology and Matrix Croatica (Matica hrvatska). Two
MATH/CHEM/COMP meetings (in 2002 and 2016) had a day-symposia in my honour.

Several journals published issues in my honour, such as Internet Electronic Journal
of Molecular Design (2003, issues 7 to 12; 2004, issues 1 to 6), Croatica Chemica Acta
(2004, 77, 1-414), Journal of Chemical Information and Modeling (2007, 47, 705-951),
International Journal of Chemical Modeling (2015, 6, 1941—-3955). It is interesting to note
that Journal of Chemical Information and Modeling in 2010 has celebrated the 50th
anniversary. In the anniversary issue were listed 50 most cited papers published in this
journal and 50 authors with the highest numbers of papers published in this journal. In the
50 years, this journal published about 10.000 papers. Among the 50 most cited papers are
5 papers from Croatian authors: 3 of Randi¢, one of Gutman and one of Mihali¢, Nikoli¢
and myself. Among the 50 most productive authors are tri Croatian authors: Randi¢ the
second, | am listed as the ninth and Gutman as 12th most productive author in this journal.

1. OTHER MATTERS

I have served and am still serving on editorial boards of several journals: Croatica Chemica
Acta (1967-1994), Journal of Molecular Structure—Theochem (1985-1995), Journal of
Mathematical Chemistry (1986-1989, and again since 1994), Computers and Chemistry
(1989-2002), Symmetry (1989-1990), MATCH — Communications in Mathematical and in
Computer Chemistry (since 1997), SAR & QSAR in Environmental Research (1999-2002),
Gazophylacium (since 2000) and Computational Biology and Chemistry (2003—2006). | am
also a member of advisory boards of the Bulletin of the Chemists and Technologists of
Macedonia (since 1995) and Polimeri (since 1998). Additionally, I was a co—editor—in—
chief of the Journal of Mathematical Chemistry (1990-1993; the other editor was the well-
known mathematical chemist Paul G. Mezey who has been the editor—in—chief since 1993),
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the editor-in chief of Croatica Chemica Acta (1994-2005) and of Prirodoslovlje
(2001—-2008). I am a member of a number of societies, such as Matica Hrvatska (Matrix
Croatica) — the central Croatian cultural and publishing society established in 1842 (since
1955), Croatian Chemical Society established in 1926 (since 1960), Croatian PEN Club
(since 1987), Brethren of the Croatian Dragon — an old Croatian fraternal and cultural
society established in 1408 as the Knights’ Order of Dragon (since 1991). | was elected to
the Croatian Academy of Sciences and Arts (established in 1861) in 1992 as the 12th
chemist who became a member of the Academy and the first theoretical chemist ever. | am
also a member of the International Academy of Mathematical Chemists since 2006.

Since my two-year postdoctoral stay at the University of Texas in Austin and return
to Zagreb, | visited for shorter periods of time, from one to six months, the University of
Trieste (visiting Professor Vinicio Galasso), the University of Utah in Salt Lake City
(staying there with Professor Frank E. Harris (1929) in the Department of Physics), the
University of South Carolina in Columbia (staying there on several occasions with
Professor Benjamin M. Gimarc in the Department of Chemistry. Gimarc also twice spent
some time in Zagreb with me), the University of Missouri at Kansas City (staying there on
several occasions with Professor Jerry Ray Dias (1938) in the Department of Chemistry),
the University of Disseldorf (staying in the Computing Center with Professor Jan von
Knop at least once a year from 1973 to 2003. | probably spent more than three years there;
thus, Dusseldorf became my home away from home). | also visited Texas A & M
University at Galveston (staying on several occasions with Professor Douglas J. Klein in
the Department of Marine Sciences), the Natural Resources Research Institute in Duluth
(staying with Dr Subhash C. Basak in the Center for Water and the Environment. I met
Basak in 1983, when we attended the Symposium on Chemical Applications of Topology
and Graph Theory, held at the University of Georgia, Athens, April 18-22, 1983 and
organized by Professor R. Bruce King (1938)), the Chemical Research Center of the
Hungarian Academy of Sciences in Budapest (visiting Dr Istvan Lukovits (1944—-2007)),
etc. A funny thing is that, although I am older than many of these fine scholars, somehow |
have always felt them to be not so much my colleagues as the older brothers | have never
had. Retirement has not removed me from science and research. | hope to continue to do
modest research for a few more years to come.
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The forgotten topological index of a molecular graph G is defined as
F(G) = Xyev 6y d(v)*®, where d(v) denotes the degree of vertex v in
G. The first through the sixth smallest forgotten indices among all
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1. INTRODUCTION

All graphs considered are assumed to be simple and finite. The sets of vertices and edges of
a graph G are denoted by V (G) and E(G), respectively. By n and m we denote the number
of vertices and edges of G, i.e., n = |V (G)| and m = |E(G)|. If G has p components,
then y = y(G) = m — n + p is called the cyclomatic number of G. In this work we
shall be mainly concerned with connected graphs, for which p = 1. A connected graph
with y = 0 is said to be a tree. Graphs with y = 1,2,3,4,5 are then called unicyclic,
bicyclic, tricyclic, tetracyclic and pentacyclic, respectively.
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The set of all connected graphs with exactly n vertices and cyclomatic number y is
denoted by CY (n). In particular, C°(n) is the set of all n-vertex trees.

The number of the first neighbors of a vertex u € V (G) is said to be its degree,
and will be denoted by d(u) = d;(u). As well known,

d(u) = 2m.
uev(G)
Consequently, for all graphs belonging to a set C¥(n), the sum of the vertex degrees is the
same.

Let V (G) = {vi,v1,..., v}, and let the vertices of G be labeled so that d(v,) =
d(vy) == d(v,). Then the degree sequence of G is [d(v,),d(vy),...,d(v,)]. As
customary, we shall write this degree sequence in an abbreviated manner, as the below two
self-explanatory examples show:

[4,3,3,3,3,2,2,2,2,2,2,2,1,1,1,1] = [4,3%27,1%]
[4,4,4,1,1,1,1,1,1,1,1] = [43,18].

The greatest vertex degree of the graph G will be denoted by A= A(G). The
number of vertices of degree i in G will be denoted by n; = n;(G). If we assume that the
graph G has no isolated vertices (= vertices of degree zero), which is a necessary condition
for being connected, then n, = 0. For such graphs,

A(G) A(G)
Z n,=n and Z in; =2m.
i=1 i=1

For a subset W of V (G), let G — W be the subgraph of G obtained by deleting the
vertices of W and the edges incident with them. Similarly, for a subset E’ of E(G), G — E’
denotes the subgraph of G obtained by removing the edges of E". If W = {v} and E' =
{xy}, then the subgraphs ¢ — W and G — E' will be shorter written as ¢ — v and
G — xy, respectively. Finally, if x and y are non-adjacent vertices of G, then G + xy is
the graph obtained from G by adding an edge xy. Our other notations are standard and can
be taken from the most of textbooks on graph theory. The first Zagreb index, M, (G), of the
graph G is defined as

M= M(6)= ) dw?. ()
u€ev (G)
The theory of this degree—based topological index, introduced in the 1970s [9], is

nowadays well elaborated [6-8,11].
Furtula and one of the present authors [4], recalled that in the formulas for total

m —electron energy, reported in [9], in addition to M,, also the sum of cubes of vertex
degrees was encountered. This latter degree—based graph invariant did not attract any
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attention in mathematical chemistry literature for more than 40 years. In view of this, it was
named forgotten topological index, and defined as

F=F(G)= Z d(u)?. )
u€ev (G)
It can be shown that the F-index satisfies the identity
FO= ) [d@?+dw?]
e=uveE(G)

At this point, it needs to be mentioned that Zhang and Zhang [14] introduced the

first general Zagreb index of a graph G as

M® = M2(G) = Z d(w)“,
u€ev (G)

where « is an arbitrary real number. Evidently, the forgotten index is just the special case
of the first general Zagreb index for « = 3. In [14], all unicyclic graphs with the first
three smallest and greatest values of M{* were characterized. Zhang et al. [13], determined
all n-vertex bicyclic graphs, n > 5, with the first three smallest and greatest My when
a > 1. They also characterized the greatest and the first three smallest values of the first
general Zagreb index when 0 < a < 1. Tong et al. [12], characterized all tricyclic graphs
with the greatest, the second and third greatest values of M{*, and the tricyclic graphs with
the smallest, the second and third smallest values of this index. These results are
automatically applicable to the F-index. The aim of the present work is to extend the
considerations to graphs with cyclomatic number y > 3.

Until now, there are very few researches concerned solely with the F-index. Furtula
et al. [5], among other results, proved that for triangle—free graphs 2F < MZ%. Abdo et al.
[1] studied n-vertex trees with maximal values of the forgotten index. They proved that
if n — 2 is divisible by 3, then the maximum value of the forgotten index is 22n — 42 and
when 3 + n — 2, then the maximum forgotten index will be 22(n — 1) — 21x + x3, where
x IS uniquely determined by2 < x < 3 and n — 1 — x = 0 (mod 3). Anyway,
because of the close analogy between the first Zagreb index and the forgotten index, one
may expect that in the majority of cases, the graphs extremal with respect to M; will also be
extremal with respect to F. The truly interesting results would then be the specification of
cases in which these two indices have a (significantly) different behavior. We also refer to
[2,3] for more information on this topic.

From Egs. (1) and (2) it is evident that two graphs with equal degree sequence
necessarily have equal first Zagreb indices and equal forgotten indices. Bearing this in
mind, it is purposeful to partition each set C¥(n) into equivalence classes, each class
pertaining to a particular degree sequence. All elements of such an equivalence class have
equal M; and equal F indices. Because we are aiming at finding graphs (i.e., the respective
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equivalence classes) with smallest F-values, we will consider only a few selected such
classes, those in which many vertex degrees are equal to two. These equivalence classes are
listed in Tables 1- 10 in the subsequent section.

In Tables 1-10 are listed the equivalence classes (Eq.Cl.) of the sets C¥(n) that are of
interest for the present considerations. The value of n is assumed to be sufficiently large, so
that each equivalence class is non-empty. In order to facilitate the analysis, in the last
column of each table, expression for the F-index of the elements of the respective
equivalence class is given.

2. MAIN RESULTS

The aim of this section is to characterize the graphs (i.e., the respective equivalence
classes) in which the F-index assumes the first few smallest values. We do this for the sets
C'(n)for0 < i <5.

In order to achieve this goal, we first introduce a graph transformation that
decreases the forgotten index.

Transformation A. Let G; be a graph with vertices v; and v, such that dg, (v;) = 2 and
dg,(v2) = 1. Let G, be another graph and w its vertex. Construct the graph G from G; and

G, by connecting the vertices w and v;. Construct the graph G'so that G’ = G — wv; +
WV,.

Lemma 2.1. F(G") < F(G).

Proof. F(G) — F(G) = [(dg,(v1) + 1)*+ 1°] — [dg,(v1) % + 2°] > 0, as
dg,(v1) = 2. O

Remark 2.2. Note that in the exactly same manner we get M;(G") < M,(G). This implies
that whichever result is deduced for the F-index using Lemma 2.1, an analogous result will
also hold for the first Zagreb index.

We now focus our attention to the case y = 0, namely to trees, i.e., to the
equivalence classes of the set C%(n), listed in Table 1. First we state an auxiliary result:

Lemma 2.3. If T is a tree with n vertices, then
A(G) A(G)

n1:2+Z(i—2)ni and n,=n—2-— Z(i—l)ni.
i=3 i=3
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A(G) -

Proof. The proof follows from Z n =n and ¥,2"in; = 2(n—1). 0

Corollary 2.4. There exists a tree T of order n with 2 < n; (T) < 6, if and only if T
belongs to one of the equivalence classes given in Table 1.

Proof. We distinguish the following five cases:

(1) ny(T) = 2,
(2) ny(T) = 3,
(3) ny(T) = 4,
(4) ny(T) = 5,
(5) ny(T) = 6.

We present a proof for the case (1) whereas other cases are treated in a similar
manner. Assume that n,(T) = 2. Then by Lemma 2.3, there is a tree T with n,(T) = 2if
and only if (G)(l 2)n; =0 if and only if n,(T) =n—2 and n;(T) = 0O, for each

> 3. This leads to the proof. O

Theorem 25. LetT, € N, ,T, € N,, T;€ N, ,T, € N, ,Ts € N3 ,and Tg € Ny,. If
n > 10 and € C°(n) \{T., T, ...,Tg}, then F(T,) < F(T,) < F(T3;) < F(T,) <
F(Ts) < F(Ts) < F(T).

Proof. From Table 1, one can see that F(T;,) < F(T,) < F(T3;) < F(T,) <F(Ts) <
F(Tg). If ny(T) = 5 or 6, then the proof follows from the data in Table 1. If n,(T) >7,
then by a repeated application of Transformation A, we obtain a tree T, such that
n (T, ) = 6. By Lemma 2.1, F(T,) < F(T) and by Table 1, F(Ty) < F(T,), which
yields the result. O

Lemma 2.6. If G is a connected unicyclic graph with n vertices, then

A(G) A(G)
n1:Z(i—2)ni andn, =n— Z(i—l)ni.
i=3 i=3

A(G) A(G) -

Proof. The proof follows from }.2.'n; =n and ¥,2;" in; = 2n. 0

Corollary 2.7. There is a connected unicyclic graph G of order n with n; (G) <2 if and
only if G belongs to one of equivalence classes given in Table 2.

Proof. We distinguish the following three cases:
(1) n,(6) = 0,
(2) . (6) = 1,
3) m(6) =2
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In order to prove (1), assume that n,(G) = 0. Then by Lemma 2.6, there exists a
connected unicyclic graph G with n,(G) = 0 if and only if ¥+ (i — 2)n; = 0. But, this
is equivalent to the fact that if and only if n,(T) = nand n;(T) =0, for each i > 3. The
proofs of the remaining cases are similar and are omitted. O

Theorem 2.8. LetG, € A; , G, € A, and G; € A,. If G € C'(n) \{G,,G,, G5} and
n = 5,then F(G,) < F(G,) < F(G3) < F(G).

Proof. From Table 2, one can see that F(G,) < F(G,) < F(G3). Ifn,(G)= 2, then Table
2 leads us to the proof. If n;(G) = 3, then by a repeated application of Transformation A4,
we obtain a connected unicyclic graphs Q such that n,(Q) = 2. By Lemma 2.1, we have
F(Q) < F(G). On the other hand, by the data given in Table 2, F(G;) < F(Q), which
yields the result. O

Lemma 2.9. If G is a connected bicyclic graph with n vertices, then
A(G) A(G)

n1:Z(i—2)ni—2 and n,=n+2-— Z(i—l)ni.
i=3 i=3

A(G)

Proof. The proof follows from Z?i? n;=nand Y- in; =2n + 2. O

Corollary 2.10. There exists a connected bicyclic graph G of order n with n,(G) < 1if
and only if G belongs to one of the equivalence classes given in Table 3.

Proof. We distinguish the following two cases:

(1) ny(G) = 0,
2)m(G)=1.
In order to prove (1), assume that n,(G) = 0. Then by Lemma 2.9, there exists a

connected bicyclic graph G with n,(G) = 0if and only if X3%(i — 2)n; = 2. But the

latter requirement is equivalent to one of the following two conditions:
1. n,(G)=n — 1,n3(G) =0, n,(G) =1,and n;(G) =0, foreachi > 5,
2. ny,(G)=n — 2,n3(G) =2,and n;(G) =0, foreachi > 4.
The proof of case (2) is analogous, and we omit it. O

Theorem 2.11. Let G, € B,, G, € By, and G; € Bs. If G € C?(n) \{G,,G,, G5} and
n = 7, Then F(G,) < F(G,) < F(G3;) < F(G).

Proof. From Table 3, we have F(G;) < F(G,) < F(G3). If n(G) = 1, then the theorem
can be proven by Table 3. If n,(G) = 2, then by repeated application of Transformation
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A, we obtain a connected bicyclic graph, say @Q, such that n,(Q) = 1. By applying Lemma
2.1 we conclude that F(Q) < F(G). On the other hand, by the data in Table 3, F(G3) <
F(Q), which yields the result. O

Lemma 2.12. If G is a connected tricyclic graph with n vertices, then
A(G) A(G)

n, = Z(i—Z)ni—4andn2 =n+4- Z(i—l)ni.
i=3 i=3

Corollary 2.13. There is a connected tricyclic graph G of order n with n,(G) < 2 if and
only if G belongs to one of the equivalence classes given in Tables 4,5, or 6.

Theorem 2.14. Let G, € Ds, G, € E;, G3€ D, and G, € Fi;. If n > 11 and G €
C3(n)\{G,,G,, G3,G,}.Then F(G,) < F(G,) < F(G3) < F(G,) < F(G).

Proof. From Tables 4,5, and 6, one can see that F(G;) < F(G,) < F(G3) < F(G,).The
case of n,(G) < 2 is a direct consequence of the data given Tables 4,5, and 6. If n,(G) =
3, then by repeated applications of Transformation A, we obtain a connected tricyclic
graphs, for example @, such that n,(Q) = 2. By applying Lemma 2.1 we get that F(Q) <
F(G). Then the data given in Table 6 imply that F(G,) < F(Q), which yields the result. [

Lemma 2.15. If G is a connected tetracyclic graph with n vertices, then
ZA(G)(L 2)n;—6 andn, =n+6 — ZA(G)(L — D)n,.

Corollary 2.16. There exists a connected tetracyclic graph G of order n with n,(G) < 1 if
and only if G belongs to one of the equivalence classes given in Tables 7 and 8.

Theorem 2.17. Let G, € Hy; and G, € I;is. If n = 12and G € C*(n) \{G,,G,}. Then
F(Gy) < F(Gy) < F(G).

Proof. From Tables 7 and 8 one can see that F(G,) < F(G,). If n;(G) = 0orn,(G) =1,
then the data given in Tables 7 and 8 completes the proof.

If n,(G) = 2, then by repeated applications of Transformation A, a connected
tetracyclic graph Q is obtained for which n,(Q) = 1. By Lemma 2.1, F(Q) < F(G) and
by Table 8, F(G,) < F(Q), which yields the result. O

Lemma 2.18. If G is a connected pentacyclic graph with n vertices, then
= ZA(G)(L 2)n;—8 and n,=n+8-— ZA(G)(L Dn;
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Corollary 2.19. There exists a connected pentacyclic graph G of order n with n,(G) < 1 if
and only if G belongs to one of the equivalence classes given in Tables 9 and 10.

Theorem 2.20. Let G, € K,, and G, € Lo Ifn > 16and G € C°(n) \ {G,,G,}. Then
F(Gy) < F(Gy) < F(G).

Proof. From Tables 9 and 10, it can be seen that F(G;) < F(G,). If n;(G) =0 or
n,(G) =1, then Tables 9 and 10 lead us to the proof. If n,(G) = 2, then by repeated
applications of Transformation A, a connected pentacyclic graph Q can be constructed,
such thatn,(Q) = 1. By Lemma 2.1, F(Q) < F(G) and by the data in Table 10,
F(G,) < F(Q), which proves the result. O

3. CONCLUDING REMARKS

In this paper the connected graphs with fixed number of vertices and cyclomatic number
(i.e., the respective equivalence classes of such graphs) are determined, whose F—indices
assume the smallest possible value. Since the F—index is defined in a similar manner as the
first Zagreb index, cf. Egs. (1) and (2), their properties are expected also very similar. In
view of this, it is purposeful to compare the result for these two graph invariants. For the
sake of completeness, we first state three relevant results as follows:

Theorem 3.1. The characterization of n-vertex trees, n-vertex unicyclic, and n-vertex
bicyclic graphs with the smallest, the second smallest and the third smallest first Zagreb
index are as follows:

1. Li and Zhao [10]: Trees with degree sequence [2"2,612],[3,2" % 13], and
[32,2"76, 1] have the smallest, second smallest, and third smallest values of the
first Zagreb index among all n-vertex trees.

2. Zhang and Zhang [14, Theorem 1]: Let G be an n—vertex unicyclic graph,
n > 7. Then M;(G) attains the smallest, the second smallest, and the third
smallest value if and only if the degree sequence of G is [2"],[3,2"2,1], and
[32, 2%, 12], respectively.

3. Zhang et al. [13, Theorems 1 and 4]: Suppose that G is a bicyclic graph on
n > 5 vertices, L, denotes the set of such graphs with degree sequence [4,2"1]
or [33,2" % 1] and L, is the set of all n-vertex bicyclic graphs with degree
sequence [4,3,2"73,1] or [3*% 2"°%, 12]. Then the first Zagreb index M,(G)
attains the smallest, the second smallest and the third smallest value if and only if
the degree sequence of G is [3%,2"2],G € L,,and G € L,, respectively.
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By Theorem 2.8, the n-vertex unicyclic graphs with degree sequences [2"],
[3,2"2,1] and [32,2™*,12] have the smallest, second smallest and third smallest values
of forgotten index which are the same as the case of the first Zagreb index. On the other
hand, by Theorem 2.11, n-vertex bicyclic graphs with degree sequences [32,2"7?2],
[4,2™71] and [33,2™%, 1] have the smallest, second smallest, and third smallest values of
the forgotten index. Thus, the bicyclic graphs with smallest value of the forgotten and first
Zagreb index are the same, but these graph invariants attain their second and third smallest
value in different classes of bicyclic graphs.

Table 1. Degree distributions of trees with 2 < n; < 6.

EqCl | ng | ng N N3 n, n, | (=7 F

N; 0 0 0 0 n—2 2 0 8n—-14
N, 0 0 0 1 n—4 3 0 8n—2

Ny 0 0 1 0 n—>5 4 0 8n + 28
N, 0 0 0 2 n—=~6 4 0 8n+ 10
Ng 0 1 0 0 n—=~6 5 0 8n + 82
N, | 0 | 0] 1 1| n-7 5 0 8n + 40
N, 0 0 0 3 n—28 5 0 8n + 22
Ny | 1] 0] 0] 0| n-7 | o 0 8n + 166
Ny 0 1 0 1 n—38 6 0 8n+94
N | O] 0] 2 | 0| n=8 | 6 0 8n + 70
Niq 0 0 1 2 n—9 6 0 8n + 52
N, | 0| 0] 0 | 4| n-10| 6 0 8n + 34

Table 2. Degree distributions of connected unicyclic graphs with n, < 2.

Eq.Cl N ns n, n, | n;(i=5) F
Ay 0 0 n 0 0 8n
A, 0 1 n—2 1 0 8n+ 12
A, 1 0 n—3 2 0 8n +42
A, 0 2 n—4 2 0 8n + 24
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Table 3. Degree distributions of connected bicyclic graphs with n; < 1.

Eq.Cl. | ng Ny Ny n, ny n; (i = 6) F
B, 0 1 0 n—1 0 0 8n + 56
B, 0 0 2 n-—2 0 0 8n + 38
Bs 1 0 0 n—2 1 0 8n+ 110
B, 0 1 1 n—3 1 0 8n + 68
Bs 0 0 3 n—4 1 0 8n + 58

Table 4. Degree distributions of connected tricyclic graphs with n; = 0.

EqCL | ng | ng | n, | ns n, n, | (=7 F
D, 1 0 0 0 n—1 0 0 8n + 208
D, 0 1 0 1 n—2 0 0 8n + 136
D5 0 0 2 0 n—2 0 0 8n+112
D, 0 0 1 2 n—3 0 0 8n +94
Ds 0 0 0 4 n—4 0 0 8n + 76

Table 5. Degree distributions of connected tricyclic graphs with n; = 1.

EqClL | n, |ng | ns | ny | ns n, n, | n; (i =38) F
E, 10|00 ]O n—2 1 0 8n + 328
E, 0O|1|/0] 0|1 n—3 1 0 8n + 220
E; ojol1]1]0 n—3 1 0 8n + 166
E, 0] 0|1 0 2 n—4 1 0 8n + 148
Es 00| O 2 1 n—4 1 0 8n+ 124
Eq 0Oj]0| 0] 13 n—>5 1 0 8n + 106
E, 0/]0| 0| 0|5 n—=6 1 0 8n + 88




Graphs with smallest forgotten index

Table 6. Degree distributions of connected tricyclic graphs with n; = 2.

269

EqCl (ng | n, | ng | ng | ny | nsg n, n, | n; (i =9) F
F; 1,00 0 0 0 n—-3 | 2 0 8n + 490
F, 0O 1|0 0 0 1 n—4 | 2 0 8n + 340
F3 0] 0 1 0 1 0 n—4 2 0 8n + 250
F, 0|01 0 0 2 n—-5 | 2 0 8n + 232
Fs 0] 0] O 2 0 0 n—4 | 2 0 8n + 220
Fg 0] 0 0 1 1 1 n—>5 2 0 8n+ 178
F, 0| 0] O 1 0 3 n—-6 | 2 0 8n + 160
Fg 0] 0] O 0 3 0 n—-5 | 2 0 8n + 154
Fy 0] 0] O 0 2 2 n—-6 | 2 0 8n + 136
Fob |0O]JOoO]JOo] o | 1| 4| n-71]2 0 8n + 118
Fi; {0 0] O 0 0 6 n—-8 | 2 0 8n + 100
Table 7. Degree distributions of connected tetracyclic graphs with n, = 0.
EqClL (ng | n, | ng | ng | ny | nsg n, n, | n; (i =9) F
H, 1,00 0 0 0 n—-11]0 0 8n + 504
H, O| 1|0 0 0 1 n—-2 | 0 0 8n + 354
H, 0|0 |1 0 1 0 n—-2 | 0 0 8n + 264
H, 0] 0|1 0 0 2 n—-3 | 0 0 8n + 246
Hg 0] 0] O 2 0 0 n—-2 | 0 0 8n + 234
H, 0|0 O 1 1 1 n—-3 | 0 0 8n + 192
H, 0] 0] O 1 0 3 n—4 | 0 0 8n+ 174
Hg 0] 0] O 0 3 0 n—-3 | 0 0 8n + 168
H, 0] 0] O 0 2 2 n—4 | 0 0 8n + 150
Hy, | 0] 0O 0 1 4 n—-5 1|0 0 8n + 132
H,; |[0] 0O 0 0 6 n—6 | 0 0 8n+ 114




270 GUTMAN, GHALAVAND, DEHGHAN—ZADEH AND ASHRAFI

Table 8. Degree distributions of connected tetracyclic graphs with n; = 1.

Eq.Cl. | ng| ng | ny | ng | ns | N4 | N3 n, n, | n; (i = 10) F
L [1/]0/0|0]0|0|0]| n—-2 |1 0 8n + 714
b [0/1/0|0]0(0|1]|n-3 |1 0 8n + 516
I, |ojol1lolol1lo0|n=-3 1 0 8n + 384
b [0/0|1|]0]|0(0|2]| n—-4 |1 0 8n + 366
I Jojojlol1l1lol0|n=-3 1 0 8n + 318
I 000|101 |1|n—-4 |1 0 8n+ 276
I, |[0/0|0|1]0(0|3| n=-5]1 0 8n + 258
Ig |00l 0|0|2(0|1]| n-4 |1 0 8n + 246
I, |oj]ojojo|1[2]0] n-4 |1 0 8n + 222
Io |0]ojo]o|21]|1]2] n=-5]1 0 8n + 204
L, |[0/0|0|0|1(0|4]| n—-6 |1 0 8n + 186
L, [0/0|0|0]|O0(3|1]| n-5|1 0 8n + 180
L; [0/0|0|0]|0(|2|3| n—-6|1 0 8n + 162
L. |l0j]ojlo|o0]o|1]5|n-7 |1 0 8n + 144
Ly [0/0|0|0]|0(0|7]| n—-8 |1 0 8n + 125
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Table 9. Degree distributions of connected pentacyclic graphs with n; = 0.

F
8n + 992
8n + 740
8n + 560
8n + 542
8n + 452
8n+ 410
8n + 392
8n+ 416
8n+ 344
8n + 320
8n + 302
8n + 284
8n + 290
8n+ 272
8n + 248
8n + 230
8n+ 212
8n+ 224
8n + 206
8n + 188
8n+ 170
8n + 152

n,

n,

n—1

n—2

n—2

n—3

n—5

n—=~6
n—4

n—=6

Ny | N3

0

0

0|0

0

0|5

3

0

Nns

0,00
0
0

0
1

0,00

1

0(2|0

0

O[04
2
2
1

1
1

0(4|0

0

024
0
0

Ng
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1
1
1
1

1

Ng Ny

Ng

0/0{0] O

1/0/0]| O
0(1/0] O
0(1/0] O

0(0(0] 2
0/0|0
0/0|0
0/0|0
0/0|0

0/0{0] O

0/0{0] O

0/0{0] O

0/0{0] O

0/0{0] O

0/0{0] O

0/0{0] O

0/0{0] O

0/0{0] O

0/0{0] O

LET)

1
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Eq.CL

Ky

K>

K5

Ky

Ks

Ks

K7

Ksg

Ko

KlO

Kll

K12

K13

K14-

Kis

K16

K17

K18

K19

KZO

K21

KZZ
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Table 10. Degree distributions of connected pentacyclic graphs withn, =1

8n + 1316
8n + 1004

8n+ 770
8n + 752
8n+ 614
8n+ 572
8n + 554
8n + 536
8n + 464
8n + 440
8n + 422
8n + 404
8n + 428
8n+ 374
8n + 332
8n+ 314
8n + 296
8n+ 344
8n + 302
8n + 284
8n + 278
8n + 260
8n + 242
8n + 243
8n + 236
8n + 218
8n + 200
8n + 182
8n + 164

0

n,

n,
n—2

n—3
n—3
n—4
n—3
n—4
n—5
n—3
n—4
n—4
n—5
n—=6
n—4
n—4
n—5
n—=6
n—7
n—4
n—5
n—=6
n—5
n—=6
n—7
n—38
n—=6
n—7
n—38
n—9
n—10 |1

Ng| Ng| Nyl Ng| Ny Ny N3

0/0j0j0]j0|0O]|1

1/0/0/0/01|0

1/0/0/0/0/0| 2

LET)

0 /0/|0|0|0O|O|0O] O

1
0
0

0 0j1]|]0|0|2]|0]|O0
0 0j1]0|0|0|1|1

0 0j1/]0]|0|0|0O]| 3
0 0j0j1|12|0]|0]| O
0 0j0j1]0|1|0]|1

0 0j0j1|0|0]|2]|0

0 0j0j1]0|0|1]| 2

0 0j|0]1|0|0|0O]| 4

0 0j0j0]2|0|0]|1

0 0j0jO0O|2|2|21|O0

0 0j0j0j1|0|2]|1

0 0/0]|O0j1|0|1]| 3

0 0j0]0|1|0|0]| 5

0 |/0/|0|0|0|3|0]O0

0 0j0jO0j0|2|1|1

0/0/0|0]0|2]|0]| 3

0 |/0j|0|0|0O|13]0

0 0j0]0|0|1|2]| 2

O 0j|0]|0O|0|1|1)| 4

0 0j0j0O|0O|21|0]| 7

0 0j0j0j0O|0|4]|1

0/0/0|0]0|0|3]|3

0 |0/0|0]0|0|2]|5

0 0j0jO0OjO|0O|1]| 7

0 /0/|0|0]0|0|0O] 9

Nqq

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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L11

L12

L13

L14-

Lys

L16

L17

L18

L19

LZO

L21

L22

L23

L24-

Las

L26

L27

L28

L29




Graphs with smallest forgotten index 273

REFERENCES

1. H. Abdo, D. Dimitrov, I. Gutman, On extremal trees with respect to the F-index,
Kuwait J. Sci., in press.

2. B. Basavanagoud, V. R. Desai, Forgotten topological index and hyper-Zagreb index
of generalized transformation graphs, Bull. Math. Sci. Appl. 14 (2016) 1-6.

3. N. De, S. M. A. Nayeem, A. Pal, F-index of some graph operations, Discrete Math.
Algorithm Appl. 8(2) (2016) 1650025.

4. B. Furtula, 1. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015)
1184-1190.

5. B. Furtula, 1. Gutman, Z. Kovijani¢ Vukicevi¢, G. Lekishvili, G. Popivoda, On an
old/new degree—based topological index, Bull. Acad. Serbe Sci. Arts (Cl. Math.
Natur.) 40 (2015) 19-31.

6. 1. Gutman, Degree—based topological indices, Croat. Chem. Acta 86 (2013) 351-
361.

7. 1. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun.
Math. Comput. Chem. 50 (2004) 83-92.

8. . Gutman, B. Furtula, Z. Kovijani¢ Vukicevi¢, G. Popivoda, On Zagreb indices and
coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5-16.

9. I. Gutman, N. Trinajsti¢, Graph theory and molecular orbitals. Total z-electron
energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.

10. X. Li, H. Zhao, Trees with the first three smallest and largest general topological
indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57-62.

11. S. Nikoli¢, G. Kovacevi¢, A. Milicevié, N. Trinajsti¢, The Zagreb indices 30 years
after, Croat. Chem. Acta 76 (2003) 113-124.

12.Y. M. Tong, J. B. Liu, Z. Z. Jiang, N. N. Lv, Extreme values of the first general
Zagreb index in tricyclic graphs, J. Hefei Univ. Nat. Sci. 1 (2010) 4-7.

13. S. Zhang, W. Wang, T. C. E. Cheng, Bicyclic graphs with the first three smallest

and largest values of the first general Zagreb index, MATCH Commun. Math.
Comput. Chem. 56 (2006) 579-592.

14. S. Zhang, H. Zhang, Unicyclic graphs with the first three smallest and largest first

general Zagreb index, MATCH Commun. Math. Comput. Chem. 55 (2006) 427-438.






Iranian J. Math. Chem. 8 (3) September (2017) 275 — 283

Iranian Journal of Mathematical Chemistry

Journal homepage: ijmc.kashanu.ac.ir

On the First Variable Zagreb Index

KHOSRO |V|ORADIAN1, RAMIN KAZEMI*®* AND MOHAMMAD HASAN BEHZADI®

L3Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran,
Iran

2Department of Statistics, Imam Khomeini International University, Qazvin, Iran

ARTICLE INFO ABSTRACT

Article History: The first variable Zagreb index of graph G is defined as M(G) =
Received 29 December 2016 Yixev(G) d(v)?*, where A is a real number and d(v) is the degree of
Accepted 8 April 2016 vertex v. In this paper, some lower and upper bounds for the
Published online 21 April 2017 expected value and distribution function of this index in random
Academic Editor: Sandi Klavzar increasing trees (recursive trees, plane-oriented recursive trees and

Keywords: binary increasing trees) are given.

First variable Zagreb index

Random increasing trees

Distribution function

Expected value © 2017 University of Kashan Press. All rights reserved

1. INTRODUCTION

The concept of the variable molecular descriptors was proposed as an alternative way of
characterizing heteroatoms in molecules, but also to assess the structural differences, such
as, for example, the relative role of carbon atoms of acyclic and cyclic parts in alkyl
cycloalkanes. The idea behind the variable molecular descriptors is that the variables are
determined during the regression so that the standard error of estimate for a studied
property is as small as possible. Several molecular descriptors, have already been
generalized in their variable forms, but here we will only pay attention to first Zagreb
index. This index has been used to study molecular complexity, chirality, ZE-isomerism
and hetero-systems. Overall, Zagreb indices exhibit a potential applicability for deriving
multi-linear regression models [2].
The first variable Zagreb index of graph G is defined by
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M =M{(G)= > dv)*, 1)

veV (G)
where A is a real number and d(v) is the degree of vertex v (for example, see [1] for the
case 1 €[0,1/2]).

There are several tree models, namely so called recursive trees, plane-oriented
recursive trees (also known as non-uniform recursive trees or heap ordered trees) and
binary increasing trees, which turned out to be appropriate in order to describe the
behaviour of a lot of quantities in various applications. All the tree families mentioned
above can be considered as so called increasing trees, i.e. labelled trees, where the nodes of
a tree of size n are labelled by distinct integers of the set {1,2,...,n} in such a way that each
sequence of labels along any path starting at the root is increasing. E. g., plane-oriented
recursive trees are increasingly labelled ordered trees (= planted plane trees) and binary
increasing trees are obtained from (unlabelled) d-ary trees via increasing labellings [2]. We
can describe the tree evolution process which generates random trees (of arbitrary size n)
of grown trees. This description is a consequence of the considerations made in:

Step 1: The process starts with the root labelled by 1.
Step i+1: At step i+1 the node with label i+1 is attached to any previous node v (with

out-degree d*(v)) of the already grown tree of size i with probabilities

1 .
- for recursive trees
i
p(v):= il(v) for binary increasing trees 2
i+
%, for plane —oriented recursive trees.
I —

Since the structures of many molecules are tree like, our interest here is to study the
first variable Zagreb index of increasing trees. Several other topological indices of random
trees have been studied by many authors. We refer the reader to Kazemi [3, 4, 5] for the
first Zagreb, eccentric connectivity index and second Zagreb indices, Kazemi and
Meimondari for degree distance and Gutman index [6] and references therein. Our aim in
this paper is to consider the expected value and distribution function of the first variable

Zagreb index in random trees. In the following, we use the notation R’ to denote the first
variable Zagreb index of an increasing tree of size n witha € R.

2. CASE a.=2L eN\{1}

Let « =24 eN\{1} and R’ be the first variable Zagreb index of an increasing tree of size
n.For a =1 (or A =1/2),
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= 3 dwv)=2(n-1).

veV (G)

Let d, , denote the degree of node labeled k in the random tree of size n. Considering the

insertion of label n at the nth stage, we obtain
R: = R:—l + (dU pon-1 +1)a - dSn,n—l +1

—R"l+2( jdd a1 (3)

where

n-1
u,= Zk I(node k is the parent of node n)
k=1

is uniformly distributed on the set {1,2,...,n—1}.
Now, let F, be the sigma-field generated by the first n stages of the increasing

trees. By stochastic growth rule of the random increasing trees and definition of conditional
expectation,

E(R |F,,)=E(R"|d,, ,, k=1,...n—1)

,_.

n-1 o
=R+ p(v) ajdkj,nl +1. (4)

k=1]j J

I}
o

As our first result, we prove the following theorem.

Theorem 1 We have

n+ ZM for recursive trees
= -1
« - (2]-3)° Lo -
E(RY)<in+ 22—_ -1, for binary increasing trees
=2 J
n+ Z(Zj —-3)**(j—1)-1, for plane—oriented recursive trees.
j=2

Also
n+2(2* —1)Zn:j_;_2, for recursive trees
E(R?)>n+4(2* - Z for binary increasing trees
n+2(2* 1)22-—_3 -1, for plane —oriented recursive trees.
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Proof. We have
n-1a-1 o .
E(RY [F.1) = Ryy + p(v) ( C|di s +1
k=1 j=0 J '

a-1

=RY, + pW)Y. .j( 54, +1

=0 k=1

— R

<R+ pW)Y (ij(Ril)" +1

=0\ J
=R", +p(v)(2n-3)* +1

and then
E(R?) <E(RY,))+ p(V)(2n—-3)* +1.

Also,
a-1 a

E(RY [F) 2 R, + p(v) ), J. Ris+1
j=0

=R, + p(v)(2(n—2))(2* -1) +1.
Now proof is completed by (2) since R =0 and Ry =2.
Forapath P, P*:=R*(P,)=2+2%(n-2) and for astar S,
SY=R"(S,)=(n-1)+(n-1)~.
We use the notation —2— to denote convergence in distribution. If dun,n is the degree of

a random node in a randomly chosen tree of size n, d, , —2 > X with [7]

Zik’ for recursivetrees 1k >1
P(X =k) = % for binary increasing trees:1<k <3 (5)
2 for plane —oriented recursive trees :k >1.

w

ol

Thus
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Li, (%), for recursive trees

M(j):=E(X)= %H (1:3), for binary increasing trees
4F()), for plane —oriented recursive trees

where Li (z) is the polylogarithm function, H(p;n):ZEﬂkp is the (p+1)-th-degree

polynomial of n and

0

)= Z(k+2)(k e Iset

Theorem 2 For n large enough,
a-1
E(R?)=n+(n —1)2(0.‘}/1 (j)-L.
i=o\_J

D
Proof. If we denote by X, =X, the equality in distribution of random variables X; and X5,
then from (3),

1+Z( jdd nl+1 Ry 1+Z( ijH'

Thus
E(RY) = E(R" 1)+Z( jE(X1)+1
:"':”_“(n_l)jz_;(ﬂM(j)'
since R? = 0.

Corollary 1 For a =2 in random recursive trees that reduce to the first Zagreb index, we
have

E(R?)=n+(n —1)2{?}“ (%) -1

=n+(n —1)(|_i0(%) + 2Li1(%)J—l

=n-1+(n-1)(1+4)
=6n-6,
since
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Lig(@)= "~ Li,(2)= (1_)

Let A, be the maximum degree of any node in a random recursive tree. Szyma n’ski [8]

proved that
A, <log,n,
for all but o((n—1)!) recursive trees on n nodes. For a binary increasing trees, A, <3.

Theorem 3 1) For all but o((n—1)!) recursive trees on n nodes,
E(RY) <n+(2* -1)(log,(n—-1)1)** -1
il) For binary increasing trees,
E(RY)<n+(n-1)4" -1.
Proof. i) We have:
E(RY) = E(RY,) + E[“z di . j

=0

<E(RY l)+ai( jE(A )+l

<E(R7,)+(2“ ~1)(log, (n-1))*" +1
<--<n+ (2% -1)(log, (n-1)1)** -1
Similarly, we can prove Part (ii).

Theorem 4 For all increasing trees,
E(RY)>P’ -2
Proof. From (3),
a 1
E(RY) = E(R; 1)+E[ (g nlj

j=0

= E(R® l>+“zUE<du L)+l

a-1
>E(R%,) + Z(O_‘ju, j>0
j=0 J
=...= 2“([‘]_1).
Theorem 5 Let F.”(r) = P(R” <r) be the distribution function of R"

be large enough.
1) For recursive trees,

r>2(n-1) and n

n?
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2 1—% <F“(r)<2/1- lrfn
2“ n-2 2057 n-2
il) For binary increasing trees,
r-n r—n
n 2
<F/(r)< ———
3 (r)
iii) For plane-oriented recursive trees,
5, s
e <F(< )
o k(k+1)(k+2) =i k(k +1)(k+2)

Proof. Suppose T, = zoj’*l

=0|

a .
(jjx !'. Thus from (3),

Fo(r)=P(Ry <r)

=P(RY,+T, +1<r)

=P, <r-R7,-1)

=...= P((n—2)Ta <r-n)

=P(T, < —)
Also,

Z=(1+X)*" <T, <W =(1+X)"

and

I:(—)<F’(r )<F( 2)

where F, and F, are the distribution functions of VA and W, respectlvely. Now the proof
is completed by (5).

3. GENERAL CASE o eR

Lemma 1 Let f(x)=(x+1)*—x“, where x>1. Then f(x) is decreasing (respectively
increasing) for 0 < o <1 (respectively for & <0 or « >1).

Proof. It is enough to note that f’(x) is negative (respectively positive) for 0<a <1
(respectively for ¢ <0 or a >1).
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Theorem 6 Let f(n)=(n+1)* —n*.
1) For 0<a <1,

P, for recursive trees

E(R)<<n+2(2" —1)21—71—1, for binary increasing trees
=2 )

n+(2* —1)2&“3_2)—1, for plane —oriented recursive trees
i=3 -

and

Sy +1, for recursive trees

E(RY)><n+ ZZJ—_l f(j—2)-1,  forbinaryincreasing trees
[

n+2221_;l f(j—2)-1, for plane—oriented recursive trees
=2 2]

i) For o <0 or a >1, the presented bounds in Part (i) should be changed by other.

Proof. We have
n-1

E(RY IF) =Ry + (W)Y f (dea) +1,
k=1

where f(1)=2*-1and f(n—-2)=(n-1)* —(n—-2)“. For Part (i), f(n—2)< f(1) and for
Part (i), f(1) < f(n—2). Now, proof is completed by Lemma 1.
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1. INTRODUCTION

Let G = (V,E) be a finite simple connected graph with vertex set V ={1,2,---,n} and
degrees d; for 1 < i < n. The general formula

RI(G) = Xpcjy £ DRy 1)
where Ry;; is the effective resistance between vertices i and j and f(i,j) is some real
function of the vertices, identifies a family of descriptors widely studied in Mathematical
Chemistry. Among these, the ones that have undergone a more intense scrutiny are the
Kirchhoff index R(G), the multiplicative degree—Kirchhoff index R*(G) and the additive
degree—Kirchhoff index R*(G) defined by (1) when taking f(i,j) = 1, f(i,j) = d;d; and
f(i,j) = d; +d;, respectively, and introduced in [10], [3] and [6] respectively. The
references [9, 12, 17-20] are a recent sample of works where some interesting
relationships between these three indices are highlighted.

*Corresponding Author (Email address: jpalacios@unm.edu)
DOI: 10.22052/ijmc.2017.64656.1249
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A possible approach to compute these indices is to find first the individual values

Ry;;3 and then compute the sums in (1). It is well known (see [2]), for instance, that

Rup = LPan + Iypn — Dup — Ly, (2)
where L# is the Moore—Penrose inverse of the Laplacian matrix L = D - A, D is the
diagonal matrix with the degrees of the vertices in the diagonal, and A is the adjacency
matrix of G. It is also known (see [2]) that the resistances can be expressed in terms of the
Laplacian matrix:

detL(i,j

Rejy = det ]f(l])), (3)
where L(i,j) and L(i) are obtained from L by deleting its i — th row and j — th column,
and by deleting its i — th row and column, respectively.

This approach, though amenable to being programmed, does not seem to be
computationally efficient, because it entails computing n? + n determinants just to get the
values of the effective resistances. If in addition we want to compute the additive degree—
Kirchhoff index, besides storing the matrix L we need to store the matrix of resistances
R = Ry, in order to compute Y.; 1 d;d;R;;; with an additional set of additions and
multiplications.

A major breakthrough in the computation of these indices is the fact that two of
them have a simple expression in terms of certain eigenvalues, namely (see [7, 21]), and
also [8] and [15] for alternative proofs)

n-—1
1
R@=n) = 4)
i=1 /11'
for A, = -+ > 1,_1 > 4, = 0 the eigenvalues of the Laplacian matrix. Likewise (see [3])
n-—1
1
R(@) =2IE Y =, (5)
i=1 ﬁi

for 2>, == B,_1 > Bn = 0 the eigenvalues of the normalized Laplacian matrix
L= D_TILD_TI, and also (see [16])

R@ =208 ©)

forl=a; >a, > > a, = —1 the eigenvalues of the transition probability matrix P =
DA of the random walk on G.

There is a probabilistic connection between effective resistances and random walks
on graphs that allow us to express R(G) in terms of the fundamental matrix Z of the
random walk on G (see [14]), R*(G) in terms of the eigenvalues of P, as in( 6), and R*(G)
as a more involved expression
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1
R¥(G) = o R*(G) + E E BTy, (")
j i

where m = (7;)1<i<n 1S the stationary distribution of the random walk on G, which can be
di
2|E[
vertex j by the walk on G started at the vertex i (see [1] for all matters regarding random
walks on graphs). In principle, one could use the expression (7) to compute R*(G), but in
addition to working with L for the calculation of R*(G), we need to store Z, then compute
the hitting times and store them in an additional matrix from which the sum ¥; ¥’; m; E; T;
can be computed with additional operations.

In [20] and [9] they came up, almost simultaneously, with the same idea of
expressing

given explicitly as m; = and where E;T; denotes the expected hitting time of the

R*(G) = d;R(G) + n trace (DL¥). (8)
Calculating R*(G) with (8) is perfectly feasible. A possible concern is the complexity in
the calculation of the Moore Penrose inverse. More on this below.
Also recently (see [18]), we found that

R*(G) :%R*(G)+2|E|Z$—n, (9)

where the v;s are the eigenvalues of the modified Laplacian matrix L + DW, and W is the
matrix all of whose rows are copies of the stationary distribution 77 defined above.

The interesting point now is to realize that the new modified Laplacian matrix can
be written exclusively in terms of the Laplacian matrix: indeed, the matrix D is the
diagonal matrix whose elements are those in the diagonal of L (see below the simple
Matlab command to get D from L) and

1
W = ﬁOD
where O is the n x n matrix of all whose entries are ones. In what follows we will use for
the computation of the Kirchhoffian indices only the formulas (4),(5) and (9) where in the

last equation, the v;s are the eigenvalues of the invertible matrix L + ﬁDOD.

2. THE COMPUTATIONS

Clearly (4), (5) and (9) depend exclusively on L. Perhaps this is more evident if we write
2|E| trace L=trace D.
Also, the sums of inverses of eigenvalues in (4),(5) and (9) can be written as

Zn—li _ _% (10)
i=1 A a;
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Zn—l 1 _ bz (11)
i=1 ﬁi bl
and
Zn 1 (12)
i=1Vi Co _
where a;, i = 1, 2 (resp. by, i=1, 2 and c;, i = 0, 1) are the coefficients of x' in the

characteristic polynomial of L (resp. £and L + ﬁ DOD).

To see for instance that (10) holds, we notice that:
Zn_li B 2,11.1,11.2 ...,1in_2
i=1 A - MAg e Ay

where the sum in the numerator runs over all (n—2)-long products of distinct nonzero
eigenvalues. We then apply Vieta's formulas (see [13]) for the sums of products of the
roots of a polynomial in terms of its coefficients. Formulas (11) and (12) follow similarly.

We will now write the Matlab commands to obtain the three indices when the only
input is the Laplacian matrix of the graph. Matlab is a registered trademark of the
Mathworks [11].

Once L has been entered, no other matrix needs to be manipulated, and these are
the commands used (with a brief comment of their purpose in the parentheses):

>>[n,n]=size(L) (recovers the number of vertices of the graph)
>>a=flip(charpoly(L)) (finds the vector of coefficients a(i) of x'~*,1 <i < n + 1 for the
characteristic polynomial of L)

>>R1 = —n % (finds the Kirchhoff index)

>>D = diag(diag(L)) (finds the diagonal matrix D)
>>b = flip(charpoly(D A () * L * D A (5))) (finds the vector of coefficients b(i) of

x=11 < i < n + 1 for the characteristic polynomial of £
>>R2 = —trace(L) * % (finds the multiplicative degree—Kirchhoff index)

>> ¢ = flip(charpoly(L+1/trace(D)*D*ones(n)*D)) (finds the vector of coefficients c(i) of

x=1,1 < i < n+ 1, for the characteristic polynomial of L + ﬁDOD

>>R3 =n * R2/trace(D) — trace(D) * c(2)/c(1) —n (finds the additive degree-
Kirchhoff index)

For illustration purposes we will use the graph in the following figure.



Computing the additive degree—Kirchhoff index with the Laplacian matrix

6

o

7

Once the matrix L has been entered, Matlab returns the vectors

a:

0 385 -1106 1181 -600 156 -20 1

b.

0 1.5278 -9.4944 23.3194 -29.2417 19.8917 -7.0000 1.0000

C:
1.0e+03*

-1.1000 3.6284 -4.6636 3.0416 -1.0985 0.2219 -0.0234 0.0010
and the indices R1 = 20.1091, R2 = 124.2909, R3 = 102.4727.

289

Final remarks. A question may arise as to the advantages of using formula (9) instead of
(8) when computing R*(G). We can point to the fact that the computation of the

characteristic polynomial of the matrix L +$DOD is done in Matlab using the well

studied Hessenberg's algorithm (see [4]) with the command *“charpoly”, and the
computation of the Moore—Penrose inverse with the command “pinv” of Matlab, and other
algorithms, is cause for concern as to the time and space requirements. Indeed, both
“charpoly” and “pinv” are of order O(n?), but the constant of the n3 term seems to be
much larger in the case of the “pinv” command (see [5]).
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1. INTRODUCTION

Let G be a simple connected graph with vertex set V(G) = {v,,v,,v5,...,v, }. The
distance between the vertices v; and v; of G, is equal to the length (= number of edges) of
each shortest path starting at v; and ending at v; (or vice versa) [2], and will be denoted by
dg(v;, v;). The distance matrix of G is defined as the n x n matrix D(G) = [d;;], where
d;; is the distance between vertices v; and v; in G. While the problem of computing the
characteristic polynomial of adjacency matrix and its spectrum appears to be solved for
many large graphs, the related distance polynomials have received much less attention.
The distance matrix is more complex than the ordinary adjacency matrix of a graph since
the distance matrix is a complete matrix while in the adjacency matrix most of entries are
zero. Thus the computation of the characteristic polynomial of the distance matrix is
computationally a much more intense problem and, in general, there are no simple
analytical solutions except for a few trees [6]. For this reason, distance polynomials of
only trees have been studied extensively in the mathematical literature [6, 7]. The distance
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matrix of a graph and its spectrum has numerous applications to chemistry and other
branches of science. The distance matrix, contains information on various walks and self-
avoiding walks of chemical graphs, is immensely useful in the computation of topological
indices such as the Wiener index, is useful in the computation of thermodynamic
properties such as pressure and temperature coefficients and it contains more structural
information compared to a simple adjacency matrix [1].

Figure 1: A Generalized Bethe Tree with 5 Levels.

In a number of recently published articles, the so-called reduced distance matrix
[10] or terminal distance matrix [5, 8] of trees was considered. If an n-vertex graph G has
n' pendant vertices (= vertices of degree one), labeled by {v,,v,,vs,...,v,}, then its
reduced distance matrix is the square matrix of order n" whose (i, j)-entry is d¢(v;, v;)
and will be denoted by RD(G). Reduced distance matrices were used for modeling of
amino acid sequences of proteins and of the genetic code, and were proposed to serve as a
source of novel molecular structure descriptors [5, 8].

Recall that a tree is a connected acyclic graph. In a tree, any vertex can be chosen
as the root vertex. The level of a vertex on a tree is one more than its distance from the
root vertex. Suppose T is an unweighted rooted tree such that its vertices at the same level
have equal degrees. We agree that the root vertex is at level 1 and that T has k levels. In
[9], Rojo and Robbiano, called such a tree with, generalized Bethe tree and denoted by £,
(see Figure 1). This class of trees has been much studied by mathematical chemists, for
details see [3, 9].

In this paper we will compute the spectrum of the reduced distance matrix of the
generalized Bethe trees by using methods of computation of eigenvalues of the tensor
product of matrices. Recall that if A is @ m < n matrix and B is a p X q matrix, then the
tensor product A®B is the mp % nq block matrix as follows:

a B a,B ... ai,B

AR®B = a B a,,B .. a,,B

amB ampB ... amaB
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AN AN

Figure 2: Simple Examples of 8, and ;.

Acyclic connected graphs or trees are wildly used in application of graph theory
such as molecular graphs, telecommunication networks and the intellectual data analysis.
Thus computation of numerical descriptors of trees has been studied in many recent
papers [4-9]. The spectrum of the generalized Bethe trees can be used to obtain sharp
bound for spectrum and some distance based topological indices of trees [9]. In this paper
we will compute the spectrum of the reduced distance matrix of the generalized Bethe
trees by exact formula in terms of its vertex degrees and the number of its levels.

2. RESULTS AND DISCUSSION

As we mentioned the computation of the characteristic polynomial and spectrum of the
distance based matrices of a graph is computationally a much more intense problem and,
in general, there are no simple analytical solutions except for graphs with simple structure.
We will compute the spectrum of the reduced distance matrix of S, by rewrite this matrix
as a special type of block matrices, which can be described by the tensor product of some
simple matrices. For this purpose, we assume that d,_;,; denotes the degree of vertices

on the j—th level of B, , forj = 1.2,..., k. Put
e; = { 9 J=hk1
J di—1, 1<j<k.
Thus e; denotes the number of vertices on the (j+1)-th level which are adjacent with a
vertex on the j-th level of B, for j =1.2,..,k —1. If n, denotes the number of the
pendant vertices of S, then n;, = 1'[;;1 ej. Suppose that I,, denotes the identity matrix of
order n and / = [J;;] denotes a square matrix of order n, where
Ji = {0 if j=1i
U if j#i
Put B, =1, +J,. So B, is asquare matrix of order n with all elements equal
exactly 1. To obtain the reduced distance matrix of 3, we note that f3,, is a star of order
e, + 1, see Figure 2. This is because that degree of the non-pendant vertices of 8, must be
e,. Thus the reduced distance matrix of 8, is given as RD(f,) = 2/,,. In what follows, we
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will describe the reduced distance matrix of 5, which is obtained by making a new vertex
adjacent to all central vertices of e; copy of £5,, see Figure 2. For this purpose we shall use
the tensor product of real matrices as follows:

[2]., 4B., 4Be, .. 4B,)]
|4B,, 2], 4B., .. 4362|

RD(B3) =|4B,, 4B, 2J,, .. 4B, |  =I,®RD(B,)+].,®4B,,
4B, 4B, 4Be, - 2),)

Thus for j = 2, the reduced distance matrix of §;,, can be obtained by a recursive
formula in terms of the reduced distance matrix of §; by using the inductive method. Let

ny =1 and n; = {=1 e; denote the number of the pendant vertices of g;, for j =
2,3,..,k—1. Since B;,, is obtained by making a new vertex adjacent to all central
vertices of e;, ; copy of g;, put D, = 2], (the reduced distance matrix of £,) and
Djs1 = le,,,®D; + ], ®2jB,

for j =23,...,k — 1. Then the reduced distance matrix of the generalized Bethe trees
with k levels is given by RD(B),) = D,. Therefore to compute the spectrum of RD () we
must introduce a method to calculate the eigenvalues of the block matrix which is defined
in (1). First we recall a classical theorem related to the tensor product of two square
matrices [11].

Theorem A. Let {4;} and {x;},1 < i < n, denote the eigenvalues and the corresponding
eigenvectors for n-square matrix A, respectively and {x;} and {y;},1 < j < m, denote the
eigenvalues and the corresponding eigenvectors for m-square matrix B, respectively. Then
the eigenvalues of A®B are {1,®u;} with corresponding eigenvectors {x;®y;}, where
1<i<nandl<j<m.

In what follows, we introduce a method for computation the spectrum of the block
matrices, which are defined in (1). Recall that the spectrum of an n-square matrix with all
entries equal 1, contains n and O with multiplicity n — 1.

Lemma 1. Let By, denote an n;-square matrix with all entries equal 1. If x denotes an
eigenvector of D;,j = 2, then Byx = 0 for all eigenvector of D; except x,, one of the

eigenvectors of D; such that By x0= n;Xo.

Proof. We proceed by induction on j. For j = 2, let A be an eigenvalue of D, = 2/,, with
corresponding eigenvector x, then
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A
By X = (I, + Jn, )X =X+ 5%,
since n, = e,. Obviously, 2 = -2 or 1 = 2(e, —1), so B,,x =0 or B, ,x = n,X. Thus
the result is true for j = 2. Now suppose that the lemma is true for all positive integers
less than j. Since n; = ejn;_,, if u is an eigenvalue of B, with associated eigenvector y,
then

B, (x®) = (B, ,®B,;) (x®) = B, x®uy.

By induction hypothesis, we have By, x= 0 or By, ,x = mny

;—1x. Since u =0 or

u=ejByx= Oor By x = nyx. This completes the proof. O

Now by using Lemma 1, the spectrum of square matrix D;,, which is defined in
equation (1), can be computed in terms of the eigenvalues of D; for j = 2.

Lemma 2. Let as above, x, be an eigenvector of D; associated to the eigenvalue A, which
By xo = n;xg for j = 2. If 4, # 4, is an eigenvalue of D; with multiplicity k, then the
spectrum of D;,; contains A; with multiplicity e;, 1k, Ao — 2jn; with multiplicity e;,; — 1
and Ao + 2jn;(ej+1 — 1) with multiplicity 1.

Proof. Let x be an eigenvector of D; associated to A and y be an eigenvector of Jejin
associated to u, then by use of (1) we have

D1 (y®x)=(le,,,®D; + ], , ®2jB, )(y®x)= y®Ax + uy®2jB, x.

If x # x, then by Lemma 1 we get B, x = 0, thus D1 (y®x) = y®Ax. Since 4 is an
eigenvalue of D; with multiplicity k and Jejss Is a square matrix of order e;, 1, S0 A, is an
eigenvalue of D;,, with multiplicity ke;, ;. Now suppose that x # x,, by Lemma 1 we
have By x = nyx. Note that u = —1 with multiplicity e;,; —1 or u=-e;,; — 1 with
multiplicity 1. If u = —1, then D;,; (y®x) = (1, — 2jn;)(y®x). Hence 1, — 2jn; is an
eigenvalue of D;,; with multiplicity e;,; — 1. Otherwise if u = e;,; — 1, then

Dj1(y®x) = (Ao + 2jn;(ej4y — 1)) (y®x).

Hence 4, + 2jn;(ej+; — 1) is an eigenvalue of D;,; with multiplicity 1. Therefore the
proof is complete. O

Now we can compute the spectrum of the square block matrix D;,; which is given in
equation (1), using Lemma 2 and determine the elements of the spectrum of S;,.

Theorem 1. The spectrum of the reduced distance matrix of 3, the generalized Bethe tree
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of level k, contains —2 with multiplicity (e, — 1) [T¥_; e;, Zm‘l 2i(ejy1 — 1)n; — 2mn,,
with multiplicity (en4q — 1) [1foni2€; for m =23, ..k — 1 and X2 2i(e;qq — Dy
with multiplicity 1.

Proof. We proceed by induction on k. If k = 2, then the reduced distance matrix of 5, is
given byD, = 2J,,. Hence the spectrum of D, contains —2 with multiplicity e, — 1 and
2(e; — 1) with multiplicity 1. Thus the argument is true for k = 2. We now assume that
the theorem is true for all positive integers less than k. By using the assumption of
induction, the spectrum of RD(f,_1) contains —2 with multlpI|C|ty (e, — DI e,
Xt 2i(eiys — Dny — 2mn,,  with  multiplicity(em.q — 1) [T 5426 for m=
23,...k—2 and Y¥22i(e;;; — 1)n; with multiplicity 1. By using Lemma 2, the
spectrum of RD(B,) contains —2 with multiplicity
ex(e; — DTS e = (e2 — 1) [1fz e

On the other hand, the spectrum of RD(p,) should contain the elements

ym t2i(e;; — )n; — 2mn,, of the spectrum of RD(By_,) form =23,....k — 2, with

multlpI|C|ty
k-1 k
elemn =1 | | g=(emn-1 [ ] ¢

j=m+2 j=m+2
Also corresponding to the elements Y¥-22i(e;,; — 1)n; of the spectrum of

RD(Bx—1), by using Lemma 2, ¥¥-22i(e;,, — 1)ni — 2(k — 1)ny_, is an element of the
spectrum of RD(B,). Hence the spectrum of RD(B)) contains Y77 2i(e;; — 1)n; —
2mn,, with multiplicity e,,,; —1 for m = k — 1. Finally, by using Lemma 2, the
spectrum of RD (Bx) should contain the following values with multiplicity 1

Zzl(em D+ 2(k — Dy (e — 1) = Zzl(em D,
Therefore the proof is completed. O

By using Theorem 1, the spectrum of the reduced distance matrix of trees such that
vertices on same level have equal degree can be computed. For example the reduced
distance spectrum of the dendrimer trees, the caterpillar trees and the B-trees will be
computed by using this method.

Example 1. As an application of Theorem 1, we compute the spectrum of the reduced
distance matrix of T, a generalized Bethe tree of order 63 which is shown in Figure 3.
Notice that T is a tree with 5 levels and e, =2, e; =3, e, =3 and e; = 2. By using
Theorem 1, the spectrum of RD(T) contains —2 with multiplicity (e, — 1) [17_; e; = 18.
Also the reduced distance matrix of T contains the following integer numbers with
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multiplicity (e; — 1) [1%4 e, for m = 2,34,
ST 2i(ess — Dny — 2miy,.

If m = 2, then Y7 2i(e;41 — Dn; — 2mn,, = 2(1) — 2(2)(2) = —6. If m = 3,
then XM 1 2i(e; 1, — 1)n; — 2mn,, = 2(1) + 4(2)(2) — 6(6) = —18 and if m = 4, then
ymit2i(e;; — Dn; — 2mn,, = 2(1) + 4(2)(2) + 6(2)(3)(2) — 8(18) = —54. Hence,
the spectrum of RD(T) contains —6 with multiplicity 12, —18 with multiplicity 4 and 54
with multiplicity 1. Finally, the last element of the spectrum of RD(T) with multiplicity 1
is  computed as  YK12i(e, — Dn; = 2(1)(1) + 4(2)(2) + 6(2)(6) +
8(1)(18) = 234.

Figure 3: A Generalized Bethe Tree of Order 63.

REFERENCES

1. K. Balasubramanian, Computer generation of distance polynomials of graphs, J.
Comput. Chem. 11 (1990) 829-836.

2. F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Redwood, 1990.

3. A. Heydari, On the Wiener and terminal Wiener index of generalized Bethe trees,
MATCH Commun. Math. Comput. Chem. 69 (2013) 141-150.

4. A. Heydari, On the spectrum of reduced distance matrix of dendrimers, Trans. Comb.
2 (2) (2013) 41-46.

5. B. Horvat, T. Pisanski, M. Randi¢, Terminal polynomials and star-like graphs,
MATCH Commun. Math. Comput. Chem. 60 (2008) 493-512.

6. R. L. Graham, L. Lovasz, Distance matrix polynomials of trees, Adv. Math. 29 (1978)
60-88.

7. B. D. McKay, On the spectral characterization of trees, Ars Combin. 3 (1977)
219-232.

8. M. Randi¢, J. Zupan, D. Viki¢-Topié¢, On representation of proteins by starlike graphs,
J. Mol. Graph. Model. 26 (2007) 290-305.



298 HEYDARI

9. O. Rojo, M. Robbiano, An explicit formula for eigenvalues of Bethe trees and upper
bounds on the largest eigenvalue of any tree, Linear Algebra Appl. 427 (2007)
138-150.

10. E. A. Smolenskii, E. V. Shuvalova, L. K. Maslova, I. V.Chuvaeva, M. S. Molchanova,
Reduced matrix of topological distances with a minimum number of independent
parameters: distance vectors and molecular codes, J. Math. Chem. 45 (2009)
1004-1020.

11. F. Zhang, Matrix Theory, Basic Results and Techniques, Springer-Verlag New York
Inc, 1991.



Iranian J. Math. Chem. 8(3) September (2017) 299 - 311

Iranian Journal of Mathematical Chemistry

Journal homepage: ijmc.kashanu.ac.ir

On the Second Order First Zagreb Index

B. BASAVANAGOUD?, S. PATIL! AND H. DENG?*

'Department of Mathematics, Karnatak University, Dharwad — 580 003, Karnataka, India
?Key Laboratoryof High Performance Computing and Stochastic Information Processing,
College of Mathematics and Computer Science, Hunan Normal University, Changsha,
Hunan, 410081, P. R. China

ARTICLE INFO ABSTRACT

Avrticle History: Inspired by the chemical applications of higher-order connectivity index

Received: 24 April 2017 (or Randic’ index), we considgr here the higher-order fi(st Zagreb inc_iex

Accepted: 28 August 2017 of a molecular graph. In this paper, we study the linear regression

Published online 31 August 2017 analysis of the second order first Zagreb index with the entropy and

Academic Editor: Bo Zhou acentric factor of an octane isomers. The linear model, based on the
second order first Zagreb index, is better than models corresponding to

Keywords: the first Zagreb index and F-index. Further, we compute the second

Topological index order first Zagreb index of line graphs of subdivision graphs of 2D-

Line graph lattice, nanotube and nanotorus of TUC,Cs[p, q], tadpole graphs, wheel

Subdivision graph graphs and ladder graphs.

Nanostructure

Tadpole graph © 2017 University of Kashan Press. All rights reserved

1. INTRODUCTION

Let G = (V,E) be a simple (molecular) graph. The number of vertices and edges of G are
denoted by n and m, respectively. As usual n is said to be the order and m the size of G.
The degree of a vertex v € V(G), denoted by d (v), is the number of vertices adjacent to
v in G, and sg(V) = Yyeny ) de(u), where Ng(v) = {uluv € E(G)} is the set of
neighbor vertices of v in G. Let E,(G) be the set of all paths of length « in G and clearly
E;(G) = E(G). If all the vertices of G have same degree equal to r, then G is called a r-
regular graph. The tadpole graph T, is a graph of order n + k obtained by joining an end
of a path of length k to a vertex of a cycle graph C,, [34].
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The join G + H of graphs G and H is a graph with the vertex set V(G) U V(H) and
edge set E(G) U E(H) U {uv|u € V(G) and v € V(H)}. The join C, + K; of a cycle C,
and a single vertex is referred to as a wheel graph W,,,; of order n + 1. The Cartesian
product G x H of graphs ¢ and H has the vertex set V(G < H) =V(G) x V(H) and
(a,x)(b,y) is an edge of G x H if and only if [a =b and xy € E(H)] or [x =y and
ab € E(G)]. The ladder graph L,, is given by L,, = K, % B,, where B, is a path of order n.
The subdivision graph S(G) [14] of a graph G is the graph obtained from G by replacing
each of its edges by a path of length 2. The line graph L(G) of a graph G [14] is the graph
whose vertex set is E(G) in which two vertices are adjacent if and only if they share a
common vertex in G. We refer to [14] for unexplained graph theoretic terminology and
notation.

Chemical graph theory is a branch of mathematics which combines graph theory
and chemistry. Graph theory is used to mathematically model molecules in order to gain
insight into the physical properties of these chemical compounds. The basic idea of
chemical graph theory is that physico-chemical properties of molecules can be studied by
using the information encoded in their corresponding chemical graphs. A graph invariant
is any function on a graph that does not depend on a labeling of its vertices. Such
quantities are called topological indices. The Zagreb indices have been introduced in 1972
in the report of Gutman and Trinajsti¢ on the topological basis of the m-electron energy-
two terms appeared in the topological formula for the total m-energy of alternate
hydrocarbons, which were in 1975 used by Gutman et al. as branching indices, and later
employed as molecular descriptors in QSAR and QSPR. The first Zagreb index M; and
second Zagreb index M, of a graph G are defined as

M;(G) = Yvev(e) de (v)? and M,(G) = Yuver, () de(W)dg (V).
The first Zagreb index can be written also as
M1 (G) = Luver, 6y [de(w) +de ()] (1.1)
Another vertex-degree-based graph invariant
F(G) = ZUEV(G) de¢(v)?
was encountered in [13] and also called F-index [12].

The connectivity index (or Randi¢ index) of a graph G, denoted by y(G), was

introduced by Randi¢ [31] in the study of branching properties of alkanes. It is defined as

X(6) = Lwer©) Ty (12)

In [16, 17], with the intention of extending the applicability of the connectivity

index, Kier, Hall, Murray and Randic’ considered the higher-order connectivity index of a
graph G as

1
a —
X(6) = Yotz 418 (6) Jacy)dg(uz)—dg (arr) (1.3)
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It has found numerous applications [6, 18, 19, 22, 23, 24, 25, 26, 35, 36]. Results
related to the mathematical properties of this index have been reported in [27, 28].
Bearing in mind Egs. (1.2) and (1.3), we can consider the higher-order first Zagreb
index of Eq. (1.1) as
IM(G) = Zuyuyugsiebn ) [de(ur) + dg(uz) + -+ + dg(Ugeq)] (1.4)
By Eq. (1.4), it is consistent to define the second order first Zagreb index as
My (G) = X upuser, 6y [de(uy) + dg(up) + dg(uz)].  (1.5)
The present paper is organized as follows: In Section 2, we study the chemical
applicability of the second order first Zagreb index. In Section 3, we establish some basic
results on  2M; which are useful in later sections. In Sections 4, we obtain explicit
formula for computing the second order first Zagreb index of line graphs of subdivision
graphs of 2D-lattice, nanotube and nanotorus of TUC,Cg[p, q], tadpole graphs, wheel
graphs and ladder graphs.

2. ON THE CHEMICAL APPLICABILITY OF THE SECOND ORDER FIRST
ZAGREB INDEX

In this section, we will discuss the regression analysis of entropy (S) and acentric factor
(AcentFac) of an octane isomers on the degree based topological indices of the
corresponding molecular graph. The productivity of the second order first Zagreb index
was tested by using a data set of octane isomers, that can be found at
http://www.moleculardiscriptors.eu/dataset.htm, it is shown that the second order first
Zagreb index is highly correlated with the entropy (R = 0.961093128) and also with
acentric factor (R = 0.990202) of octane isomers. The data set of octane isomers
(columns 1-3 and 5 of Table 1) are taken from above web link whereas last column taken
form [5], and the fourth column of Table 1 is computed by Eg. (1.5).

The linear regression models for the entropy and acentric factor of Table 1 are
obtained by using the least squares fitting procedure as implemented in R software [2].
More details about the linear regression can be found in [33]. The fitted models are:

S = 123.14880(+1.30984) — 0.31608(£0.02271)%M, (2.1)
S = 150.8878(%3.5756) — 1.4722(+0.1153)M, (2.2)
S = 122.31091(+1.38791) — 0.20607(+0.01643)F (2.3)
AcentFac = 0.4792(+0.005195) — 0.002555(+0.00009006)2 M, (2.4)
AcentFac = 0.6996325(+0.0216422) — 0.0117797(20.0006977) M, (2.5)
AcentFac = 0.4700828(+0.0093940) — 0.0016380(0.0001112)F (2.6)

where the values in the brackets of Egs. (2.1) to (2.6) are the corresponding standard errors
of the regression coefficients (intercept and slope).

Tables 2 and 3 show that, the correlation coefficient (R = 0.961093128 and
R = 0.990202) of the experimental entropy and acentric factor of an octane isomers with
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second order first Zagreb index in the models (2.1) and (2.4) are better than in the models
(2.2), (2.3) and (2.5), (2.6), respectively, also the model (2.1) is better than the model
related to entropy of octane isomers on Sanskruti index (R = 0.829 and residual standard
error is 17.837) [15].

Table 1: Experimental values of the entropy, acentric factor and the corresponding values
of degree based topological indices of octane isomers.

Alkane S AcentFac M, M, F
n-octane 111.67 0.397898 34 26 50
2-methyl-heptane 109.84 0.377916 41 28 62
3-methyl-heptane 111.26 0.371002 43 28 62
4-methyl-heptane 109.32 0.371504 43 28 62
3-ethyl-hexane 109.43 0.362472 45 28 62
2,2-dimethyl-hexane 103.42 0.339426 58 32 92
2,3-dimethyl-hexane 108.02 0.348247 52 30 74
2,4-dimethyl-hexane 106.98 0.344223 50 30 74
2,5-dimethyl-hexane 105.72 0.35683 48 30 74
3,3-dimethyl-hexane 104.74 0.322596 62 32 92
3,4-dimethyl-hexane 106.59 0.340345 54 30 74
2-methyl-3-ethyl-pentane 106.06 0.332433 54 30 74
3-methyl-3-ethyl-pentane 101.48 0.306899 66 32 92
2,2,3-trimethyl-pentane 101.31 0.300816 71 34 104
2,2,4-trimethyl-pentane 104.09 0.30537 65 34 104
2,3,3-trimethyl-pentane 102.06 0.293177 73 34 104
2,3,4-trimethyl-pentane 102.39 0.317422 61 32 86
2,2,3,3-tetramethylbutane 93.06 0.255294 90 38 134
(a) (b)
4‘0 5‘0 5‘0 7I0 3‘0 9‘0 4I0 5I0 alo ?Io alo 90

Figure 1: Scatter diagram of (a) S on  2M,; (b) AcentFac on 2M,, superimposed by
the fitted regression line.
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Figure 3: Scatter diagram of (a) S on F; (b) AcentFac on F, superimposed by the fitted
regression line.

Table 2: Correlation coefficient and residual standard error of regression model.

Index Correlation coefficient (R) with entropy Residual standard error
M, 0.961093128 1.286
M, 0.954306031 1.392
F 0.952732911 1.415
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Table 3: Correlation coefficient and residual standard error of regression model

Index |Correlation coefficient (R) with acentric fac Residual standard error
M, 0.990202 0.005101
M, 0.973087869 0.008424
F 0.965038859 0.009577

3. MATHEMATICAL PROPERTIES FOR THE SECOND ORDER FIRST
ZAGREB INDEX OF A GRAPH

In this section, we will establish some basic results on  2M; which are useful in later
sections.

Theorem 3.1 For agraph G = (V,E),
2M,(G) = 2M,(G) + 2 F(G) — = M, (G). (3.1)

Proof. By Eq. (1.5), we have
2M1(G) = Yupwer,c) (de(w) + dg(v) +dg(w))
= ZUEV(G) Zu:thNg(v) (dG (u) + dG (U) + dG (W))

IN Tuewengwy (do(w) + dg(v) + dg(w)), the quantity dg(v) appears (“6{”)) =
w times, and each quantity d (u) of {d;(u)|u € N;(v)} appears (d;(v) — 1)
times, i.e., the quantity s; (v) = Xyen,w) de(u) appears (dg (v) — 1) times. So,

ZMI(G) = ZUEV(G) Zu:thNg(v) (dG (u) + dG (U) + dG (W))
= Yoev(oy |“E24DD 4 (v) + (dg (v) — Dse ()]
= [Svevey 3 () — Ty d2(W)] + Xy ds(0)s5(v) = Xy 56(v)
= 2[F(6) — My(6)] + 2 Zuver(sy AWd(®) — Tvev(ey d2(v)
= ZF(G) — 3 My (G) + 2M,(G) — My(G)
= 2M,(G) + 2 F(G) — =M, (G).

Theorem 3.1 shows that the second order first Zagreb index 2M, is a linear
combination of the first Zagreb index M,, the second Zagreb index M, and the F-index F.
For the path P,, the wheel W,;; (n = 3) and the complete bipartite graph K, , we have

F(B,) =8n—14,M,(P,) = 4n — 6, M,(P,) = 4n — §;
F(Wyyt) = n° + 270, My(Wy 1) = n? + 9n, My(Wyy1) = 3n® + 9n;
F(Kr,s) = T‘S(TZ + 52)’M1(Kr,s) = TS(T + S)’MZ(Kr,s) =r?s?,
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By Eq. (3.1) in Theorem 3.1, we can get the following result.
Corollary 3.2 Forn >3, 2M,(B,) = 6n — 14.

Corollary 3.3 Forn >3, 2*M,(W,,,) = %[n3 + 9n? + 36n].

Corollary 3.4 *M;(K,;) = rz—s[r2 + 52 +4rs — 3r — 3s].

Theorem 3.5 Let G be ar-regular graph on n vertices. Then 2M,(G) = 37”[r3 —r?].
Proof. Since G is a r-regular graph, M,(G) = nr?, F(G) = nr3 and M,(G) = rng Hence,
by Theorem 3.1, we get the desired result.

Corollary 3.6 For the cycle C,, onn > 3 vertices, 2M,(C,) = 6n.

3n(n-2)(n-1)>?

Corollary 3.7 For the complete graph K,, on n > 3 vertices, 2M,(K,) = .

Lemma 3.8 [3] Let G be a graph with n vertices and m edges. Then
M, (G) < m(% +n—2). (3.2)

Lemma 3.9 [4] Let G be a graph with n vertices and m edges, m > 0. Then the equality
2m
Ml(G) - m<m+n—2)

holds if and only if G is isomorphic to the star graph S,, or K,, or K,,_; U K;.

Theorem 3.10 Let G be a graph with n vertices and m edges. Then
2My(G) < 3m(n — 1) + “T“*) (3.3)
with equality if and only if G is isomorphic to K,.

Proof.
My (G) = Yuwwer, ) [de(u) +de(v) + dg(w)]
< Yuwwek, ) 3(m — 1) (3.4)
=3(n— 1) Luev() () = 3(n — 1)(—m + My(6))
<3(n—1)(-m+;m(=+n—2)) (3.5)

n-1 2

=3m(n-1) (% + ﬂ).
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The relations (3.4) and (3.5) were obtained by taking into account d;(v) <n -1
for each vertex v € V(G) and Eq. (3.2), respectively. The equality in (3.3) holds if and
only if the equalities in (3.4) and (3.5) hold, if and only if d;(v) < n — 1 for each vertex
v € V(G), i.e., G is a complete graph from Lemma 3.9.

Lemma 3.11 [4] Let G be a graph with n vertices and m edges. Then
My(G) = 2m(2p + 1) — pn(1 + p), where p = |22,

and the equality holds if and only if the difference of the degrees of any two vertices of
graph G is at most one.

Theorem 3.12 Let G be a graph with n vertices, m edges and the minimum vertex degree
6. Then

2M,(6) = £ (4mp — pn(p + 1)), wherep = |22 (3.6)
and the equality holds if and only if G is a regular graph.

Proof.
My (G) = Yuwwer, ) [de(u) +de(v) + dg(w)]
> Yuwwer,6) 36 (3.7)
= 35(-m +; My(6))

> 35(—m + % @Cm2p + 1) — pn(1 + p))) (3.8)

=2 (4mp — pn(p + 1)).

The relations (3.7) and (3.8) were obtained by taking into account d;(v) = § for
each vertex v € V(G) and Lemma 3.11, respectively. The equality in (3.6) holds if and
only if the equalities (3.7) and (3.8) hold, i.e., d;(v) = & for each vertex v € V(G) and G
is a regular graph from Lemma 3.11.

4. THE SECOND ORDER FIRST ZAGREB INDICES OF SPECIAL FAMILIES
OF GRAPH

Let p and g denote the number of squares in a row and the number of rows of squares,
respectively in the 2D-lattice, nanotube and nanotours of TUC,Cg[p, q], see Figure 3 (a),
(b) and (c), where p = 4 and q = 3. In [29, 30], Ranjini et al. presented explicit formulas
for computing the Shultz index and Zagreb indices of the subdivision graphs of the tadpole
T, k. the wheel W, and the ladder graph L,,. In 2015, Su and Xu [32] calculated the general
sum-connectivity index and co-index of the L(S(T,)), L(S(W,)) and L(S(Ly)). In [20],
Nadeem et al. derived some exact formulas for computing ABC, and GA; indices of the
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line graphs of the tadpole T, , the wheel W, and the ladder graph L, by using the notion
of subdivision. Recently, authors in [1, 15, 21] obtained the expressions for certain
topological indices of line graphs of subdivision graphs of 2D-lattice, nanotube and
nanotorus of TUC,Cg[p, q]. For more information on nanostructures, we refer the articles
[7,8,09, 10, 11].

R

(a)

Figure 4: (a) 2D-lattice of TUC,C5[4,3]; (b) TUC,Cs[4,3] nanotube; (c) TUC,Cg[4,3]
nanotorus.

(a) (b)
Figure 5: (a) Subdivision graph of 2D-lattice of TUC,Cg[4,3]; (b) line graph of the
subdivision graph of 2D-lattice of TUC,Cg[4,3].

Lemma 4.1 [21] Let A be the line graph of the subdivision graph of 2D-lattice of
TUC,Cg[p, q]. Then M;(A) = 108pq — 38p — 38q, F(A) = 324pq — 130p — 130q and
M,(A) = 162pq — 67(p + q) + 4.

From Lemma 4.1 and Theorem 3.1, we can immediately get the following result.

Theorem 4.2 Let A be the line graph of the subdivision graph of 2D-lattice of
TUC,Cg[p,q]. Then 2M,(A) = 324pq — 142p — 142q + 8.
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(a) (b)
Figure 6: (a) Subdivision graph of TUC,Cg[4,3] of nanotube; (b) line graph of the
subdivision graph of TUC,Cg[4,3] of nanotube.

Lemma 4.3 [21] Let B be the line graph of the subdivision graph of TUC,Cg[p, q]
nanotube. Then M,(B) = 108pq — 38p, F(B) = 324pq — 130p and M,(B) = 162pq —
67p.

The following result is immediate from Lemma 4.3 and Theorem 3.1.

Theorem 4.4 Let B be the line graph of the subdivision graph of TUC,Cg[p, q] nanotube.
Then 2M,(B) = 324pq — 142p.

(a) (b)

Figure 7: (a) Subdivision graph of TUC,Cg[4,3] of nanotorus; (b) line graph of the
subdivision graph of TUC,Cg4[4,3] of nanotorus.

Theorem 4.5 Let C be the line graph of the subdivision graph of TUC,Cg[p, g] nanotorus.
Then 2M,(C) = 324pq.

Proof. The subdivision graph of TUC,Cgs[p, q] nanotorus and the graph C are shown in
Figure 6 (a) and (b). The graph C is 3-regular with 12pq vertices. By Theorem 3.5, we get
required result.
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Lemma 4.6 [30, 32] (i) Let X be the line graph of the subdivision graph of the tadpole
graph T, . Then M;(X) =8n + 8k + 12, F(X) = 16n + 16k + 50 and M,(X) = 8n +
8k + 23.

(i1) Let Y be the line graph of the subdivision graph of the wheel graph with order n + 1.

Then M;(Y) = n® + 27n, F(Y) = n* + 81n and M,(Y) = n(—”s‘“zjn”z)
(iii) Let Z be the line graph of subdivision graph of a ladder graph with order n. Then

M;(Z) =54n - 76, F(Z) = 162n — 260 and M,(Z) = 81n — 132.
From Lemma 4.6 and Theorem 3.1, we can immediately get the following result.

Theorem 4.7 (i) Let X be the line graph of the subdivision graph of the tadpole graph

Tpk- Then  2M;(X) = 12n + 12k + 53.

(i1) Let Y be the line graph of the subdivision graph of the wheel graph with order n + 1.

Then 2M,(Y) = §(3n3 —5n? + 12n + 144).

(iii) Let Z be the line graph of subdivision graph of a ladder graph with order n. Then
M, (Z) = 162n — 280.
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1. INTRODUCTION

All graphs considered in this paper are undirected and simple. Let G be a simple graph
with vertex set V(G) and edge set E(G). A perfect matching or 1-factor (or Kekulé
structure in chemical literature) of G is a set of disjoint edges which covers all vertices of
G . Perfect matching has many practical applications, such as in dimer problem of
statistical physics, Kekulé structures in organic chemistry and personnel assignment of
operations research, etc. For more details on perfect matching, we refer the reader to see
[8].

In 2007, Vukicevi¢ and Trinajsti¢ [9,10] introduced the anti—forcing number of a
graph G with perfect matching M. A set S < M is called a forcing set of M if S cannot
be contained in another perfect matching of G other than M. The forcing number (or innate
degree of freedom) of M is defined as the minimum size of all forcing sets of M, denoted
by f(G,M) [5, 6]. The minimum forcing number of G is the minimum value of the
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forcing numbers of all perfect matchings of G, denoted by f(G). Zhang et al. [11] proved

that the minimum forcing number of fullerenes has a lower bound three and there are
infinitely many fullerenes achieving this bound. For S < E(G), let G—S denote the graph

obtained by removing S from G. Then S is called an anti—forcing set if G—-S has a
unique perfect matching. The cardinality of a smallest anti—forcing set is called the anti-
forcing number of G, denoted by af (G). Anedge e of G is called an anti—forcing edge if

G —e has a unique perfect matching. Note that af (G) =| E(G)| if and only if G does not

have any perfect matching. A graph G is called odd or even graph, if the number of
vertices of G is odd or even, respectively.

Recently, Lei et al. [7] defined the anti—forcing number of a perfect matching M of
a graph G as the minimal number of edges not in M whose removal to make M as a
single perfect matching of the resulting graph, denoted by af (G, M) . By this definition, the

anti-forcing number of a graph G is the smallest anti—forcing number over all perfect
matchings of G .

In the next section, after computing the anti—forcing number of some specific
graphs, the anti—forcing number of the link and the chain of graphs are discussed. Also we
study the anti—forcing number of chain triangular cactus and chain square cactus as a
special kind of the chain of graphs that are of importance in chemistry. In Section 3, we
consider two graph operations, the join and the corona of two graphs and obtain some
relations between the anti—forcing number of two graphs G; and G, and the anti—forcing
number of the join and the corona of them under some suitable assumptions. Finally, in
Section 4, we compute the anti-forcing number of some dendrimers.

2. ANTI-FORCING NUMBER OF SPECIFIC GRAPHS

In this section, we shall compute the anti—forcing number of some specific graphs. First we
consider some certain graphs such as paths, cycles, wheels, friendship and Dutch-windmill
graphs. The following example gives the anti—forcing number of path, cycle and wheel
graphs.

Example 2.1 Let P,, C, and W, be a path, cycle and wheel of order n, respectively. We

have

=[5 =[] Y weron =5 37

As another specific graph, we consider friendship graph F, which is a graph that
can be constructed by coalescence n copies of the cycle graph C3; with a common vertex. It
is obvious that this graph does not have any perfect matching and so
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af (Fn) =|E(Fn)|=3n. For the stars graphs K,  there is no perfect matching, thus
af(S,)=n, for n=2 and af(K,;)=0. Also for the n-book graph B, which can be

constructed by joining n copies of the cycle graph C, with a common edge {u,v},
af (B,) =1.

Let Wd(k,n) be an undirected graph, constructed for k >2 and n>2 by joining n
copies of the complete graph K, at a shared wvertex. We have
[V(G)|=(k-1n+1, |E(G)|=1/2kn(k —1) (see [4]). We have the following theorem for
the anti—forcing number of Wd(k,n).

Theorem 2.2 af Wd (k,n)) = %kn(k ~1).

Proof. Suppose that n is even. Obviously, for every k, Wd(k,n) is an odd graph and so

the graph does not have any perfect matching. It implies that for every Kk,
af (Wd(k,n)) =1/2kn(k —1). Now assume that n is odd, then for odd k, the order of

Wd(k,n) is odd too and hence the graph does not have any perfect matching. For even k ,

using Tutte’s Theorem we have the same result. So we can conclude that
af (Wd(k,n)) =1/ 2kn(k -1). n

Here, we consider some graphs with specific construction that are of importance in
chemistry and study their anti—forcing number. First we define the link of graphs.

Definition 2.3 [3] Let G, G,, ..., G, be a finite sequence of pairwise disjoint connected
graphs and let x,y, €V (G,). The link G of the graphs {G,}, with respect to the vertices
of G,

i+1

{x,y.}., is obtained by joining an edge the vertex y, of G, with the vertex x for

all 1=1,2, ..., k-1 (see Figure 1 for k =4).

i+1

X Y, X ¥ ¥y X4 y

1 2 > X3 ¥4

Figure 1: A link of four graphs.

Theorem 2.4 Let L(G,,G,....,G,) be the link of k graphs G,,G,,....G,. If every G,
(1<i<Kk) has perfect matching, then
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af (L(G,,G,,...,G,)) = Zk:af G,).

i=1
Proof. It sufficies to prove the theorem for k=2. Let G, and G, be two graphs with
perfect matching. Let x, eV(G,), x,eV(G,) and L(G,,G,) be the link of these two
graphs obtained by joining an edge the vertex x, with the vertex x,. Suppose that S, and
S, have the smallest cardinality over all anti-forcing sets of graphs G, and G,,
respectively. So af (G,) =|S,| and af (G,) =|S, |. It is obvious that the edge x x, does not
belong to any perfect matching of L(G,;,G,). So if S has the smallest cardinality over all
anti-forcing sets of graph L(G,,G,),then S=S, US, and so,
af (L(Gy,G2)) =| S |=| S1|+| S |= af (Gp) +af (G),
which completes our argument. ]

Note that if there exist 1<i<k such that G, does not have any perfect matching,
then Theorem 2.4 is not true. For example, af(L(R,,C,,C,))=12, but
af (R,) +2af (C,) = 4. Now, we consider the chain of graphs and study the anti—forcing
number of them for different cases.

Definition 2.5 [3] Let G,,G,,...,G, be a finite sequence of pairwise disjoint connected
graphs and let x,y,eV(G,). The chain G of the graphs {G,}, with respect to the

vertices {x,y}., is obtained by identifying the vertex y, with the vertex x, for

1<i<k-1, see Figure 2 for k =4.

T X X >

% ¥i=%s o] ¥37X4 Y4

i+1

Figure 2: A chain of four graphs.

Theorem 2.6 Let C(G,,G,....,G,) be the chain of k graphs G,,G,,...,G,.
i. IfG,G,,.,G, areodd graphs, then af (C(G,,G,,...,G,)) = zik=1| E@G,)]|.

ii. If G,G,,...,G, are even graphs, then for every even k we have

af (C(G,,G,,....G,)) = Z| EG)].

i=1
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Proof.
i. It can easily verified that |V (C(G,,G,,...,G\))|= zik=1|V(Gi)|—(k —1). Thus in this
case, for every k, C(G,,G,,...,G,) is an odd graph and so
af (C(G,,G,,...,G,)) =| E(C(G,,G,,...,G,\)) |
since | E(C(Gy,Gp..-.Gk))| = £K; | E(Gj)|, we have the resul.
il.  Itis easy to see that in this case the chain graph C(G,,G,,...,G,) is an odd graph
and so we have the result.
Hence the result. m

Remark 2.7 Theorem 2.6(ii), is not true for odd k. For example, af (C(P,,P,,P,))=0 and
af (C(R,,P,,C,)) =1.

As special cases of chain graphs, we can consider cactus chains. A cactus graph is a
connected graph in which no edge lies in more than one cycle. Consequently, each block of
a cactus graph is either an edge or a cycle. If all blocks of a cactus G are cycles of the
same size k, the cactus is k—uniform. A triangular cactus is a graph whose blocks are
triangles, i.e., a 3—uniform cactus. A vertex shared by two or more triangles is called a cut—
vertex. If each triangle of a triangular cactus G has at most two cut—vertices, and each cut—
vertex is shared by exactly two triangles, we say that G is a chain triangular cactus. The
number of triangles in G is called the length of the chain. An example of a chain triangular
cactus is shown in Figure 3.

" _.Mﬁuﬂwﬁb

Figure 3:A chain triangular cactus T, and square cactus O, , respectively.

Obviously, all chain triangular cactus of the same length are isomorphic. Hence, we
denote the chain triangular cactus of length n by T, . clearly, a chain triangular cactus of

length n has 2n+1 vertices and 3n edges [1]. Since T, does not have any perfect
matching, we have af (T,) =3n.
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By replacing triangles in chain triangular chain T, by cycles of length 4, we obtain
cactus whose every block is C, as shown in Figure 3. We call such cactus, square cactus
and denote a chain square cactus of length n by O, [1].

Theorem 2.8 Let O, be a chain square cactus. We have
I. Ifniseven,then af (O,)=4n.

. 1fnis odd, then af(on):”T*l.

Proof.
I. By Tutte’s Theorem, there is no perfect matching for O, in this case and so
af (O,) =4n.
Il.  For this case the anti-forcing number of O, is equal with the anti-forcing number
of L(C,.....C,). Since af (C,) =1, so we have the result by Theorem 2.4.
This proves the theorem. ]

3. ANTI-FORCING NUMBER OF SOME OPERATIONS OF GRAPHS

In this section, we shall study the anti-forcing number of some operations of two graphs.
First we consider the join of two graphs. The join G, +G, of graphs G, and G, with

disjoint point sets V(G,) and V(G,) and edge sets E(G,) and E(G,) is the graph union
G, UG, together with all the edges joining V(G,) and V(G,). The following theorem
gives a lower bound for the anti—forcing of join of two graphs.

Theorem 3.1 Let G, and G, be two simple graphs. Then we have

af (G, +G,) > af (G,) +af (G,).
Proof. Suppose that S,, S, and S have the smallest cardinality over all anti—forcing sets of
graphsG,,G, and G,+G,, respectively. So af(Gy)=|S1|, af(Gp)=|Sy|and
af(G,+G,)=|S|. By definition of G,+G,, |V(G1+G2)|=|V(G)|+|V(Gy)| and
|E(G, +G,)|>|E(G)|+]| E(G,)|. Thus for the choosing the perfect matchings of G, +G,, we
have more possibilities than the number of perfect matching of G, plus the number of
perfect matchings of G, . It means that |S |2 S, |+|S, | and so we have the result. n
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Remark 3.2 The lower bound in Theorem 3.1 is sharp. For example
af(C,+C,)=6=af (C,)+af(C,). Also, if G, is an odd graph and G, is an even graph, then
af (G, +G,) > af (G)) +af (G,).

Because for odd graph G,, we have af(G))=|E(G,)| and for even graph G,,
af (Gp) <|E(Gyp)|. Also G, +G, is an odd graph. So

af (G +Gy) =| E(G +Gp)|>| E(Gy) | +| E(Gp) | > af (Gy) +af (Gy).
Here, we consider the corona of two graphs and then we study the anti—forcing number of
them. We recall that the corona of two graphs G, and G, , written as G, oG, , is the graph
obtained by taking one copy of G, and |V (G,)| copies of G,, and then joining the i-th
vertex of G, to every vertex in the i-th copy of G, .

Theorem 3.3 Let G, and G, be two simple graphs. If both of G, and G, have perfect
matching, then

af (G,G,) = af (G,)+|V(G,) | af (G,).
Proof. Suppose that S, and S, have the smallest cardinality over all anti-forcing sets of
graphs G, and G,, respectively. So af(G)=|S,| and af(G,)=|S,|. Let
V(G,) ={X;, %,,-..,X.} and V(G,) ={y,,¥,,.-, ¥, }. Forevery 1<i<n and every 1< j<m
, the edge xy; cannot be in the perfect matchings of G,oG,. Let S has the smallest

cardinality over all anti—forcing sets of graph G, oG, . Then
S=5,uUS,u..uUS,
v (Gl)|—times
and we have
af (G, 2G,) =[S IS, [+|V(G) IS, |- af (G)+ |V (G,) | af (G,).
This completes the proof. ]

Clearly, If G, has a unique perfect matching, then af (G, - G,) =|V(G,) | af (G,) and
if G, has a unique perfect matching, then af(G,-G,)=af(G,). For example
af(C,oPR,)=1and af (P,-C,)=2.

Now this question comes to mind: what happens to the anti—forcing number of
graph G;10G,, when at least one of the G; or G, does not have any perfect matching? It can
easily verified that if only G; does not have any perfect matching, then the graph G;0G;
does not have any perfect matching too and so af(G;0G,) = |E(G10G,)|. But if G, does not
have perfect matching, then the anti—forcing number of G,0G; just depends on G,, because
assume that u € V(G;) and (G,), be a copy of G, such that the vertex u is adjacent to every
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vertex of (G),. Since G, does not have any perfect matching, then it has at least one
unsaturated vertex. Without loss of generality we can suppose that v € V((G2),) is the
unsaturated vertex of (G2)u. Then uve M where M is a maximum matching of graph
G10G,. Thus every vertex of Gy in M is saturated by the edges that connect G; with G,. In
the following propositions, we consider the anti—forcing number of G10G,, when G is a
path, cycle or wheel of odd order n, respectively.

€

\‘"

u

Figure 4: The K, o P, in the proof of Proposition 3.4.

Proposition 3.4 Let G be a simple graph and P, a path of odd order n. We have
af (GoP,) =|V(G)|.

Proof. Let ueV(G) and (P,), be a copy of P, with the vertex set {v,,...,v,} such that the
vertex u is adjacent to all vertices of (P,),. It can easily verified that if v is one of the
vertices in the set {v,,v,,...,v,}, then the edge uv belongs to a perfect matching of graph
GoP,. Since P,—v has unique perfect matching and there exist (n+1)/2 ways to choose
vertex veV(P,), so we can conclude that the number of perfect matchings of K,oP, is
equal to (n+1)/2. Also n is odd and so the perfect matching of G- P, does not related to
the perfect matching of G. Thus the number of perfect matchings of GoP, is equal to
[(n+1)/2]V®). Let S={e} (see Figure 4). Then S has the smallest cardinality over all
anti—forcing sets of graph K, o P, . So for each odd n, we have af (K, oP,) =1. Obviously,
the number of graphs K, o P, is equal to |V (G)| and this implies the result. m

Proposition 3.5 Let G be a simple graph and C_ be a cycle of odd order n. We have

af (GoC,)=2|V(G)].
Proof. Let ueV(G) and (C,), be a copy of C, such that the vertex u is adjacent to every
vertex of (C,), . Suppose that veV ((C,),) and uv belongs to one of the perfect matchings
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of graph G-C,. Since C,-v=P,,, so C,—v has an unique perfect matching. Also to
choose vertex veV (C,) we have n possibilities. Note that since n is odd, thus the perfect
matching of G- C_ does not related to the perfect matching of G and we can conclude that
the number of perfect matchings of GoC_ is equal to n¥). Let S={ee,} be as shown

in Figure 5. Clearly, S has the smallest cardinality over all anti-forcing sets of graph
K,oC,. So for every odd n, we have af (K,oC )=2. Also the number of graphs K,-C,

is equal to |V (G)|. So we have the result. m

Figure 5: The graph with S ={e;,e,} in the proof of Proposition 3.5.

Proposition 3.6 Let G be a simple graph and W, a wheel of odd order n. We have
af (GoW,)=4|V(G)]|.

Proof. Let ueV(G) and (W,), be acopy of W, such that u is adjacent to every vertex of
(W,), - Suppose that veV ((W,),) and uv belongs to one of the perfect matchings of graph
GoW,. If veC, ,, then to choose other edges of perfect matching of K, oW, , we have
(n-1)/2 possibilities and if v e K,, then there exist two possibilities to choose other edges
of perfect matching of K, oW, . Since n is odd, so the perfect matching of G oW, does not
related to the perfect matching of G. Also C,_, have n—1 vertices. Thus to choose perfect
matching of GoW._, we have [1/2(n-1)? + 2]V©®! possibilities. Let S ={ee,,e,,e,} as
shown in Figure 6. Observe that S has the smallest cardinality over all anti-forcing sets of
graph K,oW_. Then for every odd n, af (K1Wp) =|S|=4 and we can conclude that

af (GoW,) = 4|V (G)]|.
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Figure 6: The graph with S ={e,,e,,e,,e,} in the proof of Proposition 3.6.

4. ANTI-FORCING NUMBER OF SOME DENDRIMERS

Dendrimers are hyper—branched macromolecules, with a rigorously tailored architecture.
They can be synthesized, in a controlled manner, either by a divergent or a convergent
procedure. Dendrimers have gained a wide range of applications in supra—molecular
chemistry, particularly in host guest reactions and self-assembly processes. Their
applications in chemistry, biology and nano-science are unlimited [2].

In this section, we shall find the anti—forcing number of certain polyphenylene
dendrimers. First we obtain the anti-forcing number of the first kind of dendrimer of
generation 1-3 that has grown n stages.We denote this graph by D,[n]. Figure 7 shows
the first kind of dendrimer of generation 1-3 has grown 3 stages D,[n]. Also we shall
study the anti—forcing number of the first kind of dendrimer which has grown n steps
denoted D,[n]. Figure 7 shows D,[4]. Note that there are three edges between each two

cycle C in this dendrimer.

Theorem 4.1
(i) Let D,[n] be a kind of dendrimer of generation 1-3 that has grown n stages. Then

af (D,[n]) =3x2""* - 24.
(i) Let D,[n] be a kind of dendrimer that has grown n stages. Then
af (D,[n]) =9x2"* —11.

Proof.
(i) It follows from Tutte’s Theorem.

(i) It can be observe that from Figure 7 that D,[n] is an odd graph. So
af (D,[n]) =| E(D,[n]) |= 25+ z:ll(18>< 2h.
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This completes our argument. m
SRy,
L0 O
.

Q)
8
>0
G O
0
(D0
g :
J

Figure 7: The dendrimers D,[3] and D,[4], respectively.

Finally we consider another type of polyphenylene dendrimer by construction of
dendrimer generations G, that has grown n stages. We simply denote this graph by PD5[n].
Figure 8 shows the generations Gs that has grown 3 stages.

Theorem 4.2 Let PD,[n] be a type of polyphenylene dendrimer by construction of
dendrimer generations G, that has grown n stages. Then we have

af (PD,[n]) = 2+Zn:(5><2”l).

Proof. As you see in Figure 8,
PDy[n] = L( Ce.Cg.-.-.Cp ).
\_g/-_—J
(2+ 3 521 ™) times

Now the result follows from Theorems 2.1 and 2.4. n
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Figure 8: Polyphenylene dendrimer of generations G, that has grown 3 stages.
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1. INTRODUCTION

All graphs considered in this paper are undirected and finite without loops and multiple
edges. Denoted by V(G) and E(G), we mean the set of vertices and the set of edges of graph
G, respectively and suppose n = [V(G)|, m = |[E(G)|. Two vertices are adjacent if and only if
they are connected by an edge.

The Wiener index [17] is the first reported distance based topological index defined as
half sum of the distances between all the pairs of vertices in a molecular graph [10,16].
Topological indices are abundantly being used in the QSPR and QSAR researches. So far,
many various types of topological indices have been described.

Furtula and Gutman, in [4] introduced a new topological index namely, forgotten
topological index and it is clearly stated that the forgotten index is a special case of the
earlier much studied general first Zagreb index. They also established a few basic
properties of it, see for example [1]. In 2014 unexpected chemical application of the F-
index was discovered and it is proved that the forgotten topological index can significantly
enhance the physico—chemical applicability of the first Zagreb index.

*Author to whom correspondence should be addressed (E-mail: mghorbani@srttu.edu).
DOI: 10.22052/ijmc.2017.43481
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2. NOTATION AND DEFINITIONS

There are two Zagreb indices [10]: the first M; and the second M, can be defined as:

M, =M,G) =Y, d)’ (1)
and
M, =M,(G) =Y, ., dWd(v) )
respectively. The first Zagreb index can be rewritten also as
M, =M,(G) =" o [dW)+d)] ©)

For more details on these topological indices we refer to [8,11,14,16,18]. With this
notation, the F- index is defined as [4,5]

F=FG)=Y, 60 =Y, oW +dv] (4)

In [7] it is shown that some topological indices have one of the following three
algebraic forms:

TL=TLG) =Y, o PV (5)
TL=TLG) =Y, c e, Fo(UY) (6)
TL=TLG) = X o FoUY) ()

where Fi, F, and F; are functions dependent of a vertex or on a pair of vertices of the
molecular graph G and the forgotten index is of the form Eq. (5).

In 2006, bearing in mind Egs. (1) and (2), Dosli¢ [2] put forward the concept of the
first and second Zagreb coindices, defined as

M, =M,G) =3 o [dW)+dv)] (8)
and
M, =M,(G) =3, e, d(Wd(V) 9)

respectively, see also [9]. In formulas (8) and (9) it is assumed that x # y. In full analogy
with Egs. (8), and (9), relying on Eq. (4), we can now define the F-coindex as

Co—-F=Co—F(G)= Y [du)’+dVv)?]. (10)
uvgE(G)

Let a is an arbitrary real number, the generalized version of the first Zagreb index is
defined in [12,13] as follows:

M, =M, (G) =Y, 0, dW* =X, o [ +d ()], (11)

The generalized first Zagreb index was studied in several works such as [6,15] and
the aim of this paper is to investigate the properties of M,(G) where a = 3.
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The Zagreb and forgotten co—indices of a graph G and of its complement G can be
represented in terms of the Zagreb indices of G and forgotten index, respectively. The
respective formulas are given in [5,9].

3. RESULTS AND DISCUSSIONS

In this section, we propose several bounds for the F-index and then we compute the F-
index of some composite graphs. Throughout this paper we use standard notations of graph
theory. The path, star, wheel and complete graphs with n vertices are denoted by Py, Sp,W,
and K, respectively.

An automorphism of the graph G is a bijection o on which preserves the edge set

E, i.e. if e=uv is an edge of G, then e’= u°v” is a member of E, where the image of vertex u
is denoted by u®. We denote the set of all automorphisms of G by Aut(G) and this set
under the composition of mappings forms a group. This group acts on the set of vertices, if
for any pair of vertices u,v eV , there is an automorphism a € Aut(G) such that u°= v. An
isomorphism of graphs G and H is a bijectiona : V' (G) — V(H) such that uv e E(G) if and
only if a(u)a(v) € E(H) . Two isomorphic graphs G and H are denoted by G = H .

Theorem 1. Let G be a graph with orbits Vi, Vs, ..., V, under action of Aut(G) on the set of
vertices V(G). Then for u, €V, , we have

F(G)= Zi.lVi |d(ui)3-

Proof. Let Vi, Vo, ..., V; be all orbits of Aut(G) on the set of vertices. It is a well-known
fact that for two vertices x,y €V,, d(x) = d(y). Then one can verify that

F(G)= XinZuey d(u)’ =LV [d(uy)’.

As an application of Theorem 1, consider the dendrimer D with r layers as depicted
in Figure 1. The vertex degrees of this graph are 1 and 3, thus, it is bi-regular. The vertices
of every layer are in the same orbit under the action of automorphism graph on the set of
vertices. Hence,

F(G)= ZiLlV, [dW)* = ZFIV, BP+V, |.

This graph has 1 + 3 + 2.3 + 223 + --- + 2".3 = 1 + 3(2" - 1) vertices in which the

last layer has 2".3 vertices. Hence,
r-1
F(G) =271+ IV, [+IV, .

This means that F(G) =3.2" + 27[1+3(2" —1)] =84.2" —54.
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Figure 1. 2-D Graph of Dendrimer D.

Theorem 2. Let G be a graph on n vertices, then
F(G)<M,(G)*-2M,(G)<M,G)>

Proof. We have
F(G)= Tyev d(U)® <[Zyey d)F = My(G)°.
On the other hand,
F(G) = Zwee(@)d(L)? +d(v)?]
= Tuvee(e)l(d(U) +d(v))? - 2d (u)d (v)]
< M;(G)? - 2M,(G).

For two positive integers x and v, it is clear that x° is greater than x* — 2y and the proof is
completed.

Theorem 3. Let G be a graph on n vertices, then
F(G)+F(G)22[M,(G)+ M2(G)].
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Proof. For every pair of vertices u,veV, we have (d(u)-d(v))=>0, hence

d(u)? +d(v)% > d(u)d(v) and then F(G) > 2M,(G). By a similar way, we can deduce that
F(G) = 2M2(G). This confirms our claim.

Theorem 4. Let G be a graph on n vertices, m edges and maximum degree A. Then
F(G)+F(G) < (n—1)My(G) + A’m(n -3).

Proof. For each edge uve E(G) and for a vertex ueV(G), the n - 1 - d(u) vertices are

non-adjacent with the vertex u. Let A be the maximum degree of G. For uw ¢ E(G), we

have d(u)+d(w)<[d(u)+ A][n-1-d(u)]. So,

F(G) = uwge(c)dW)* +d(w)
< S uwek(6)ld ()7 + A% —-1-d(u)]
= (N=1)M{(G)- F(G)+ A%(n—1)m—AZ2m,
Hence,
F(G)<(n-1)M(G)-F(G)+A’m(n-3).

Theorem 5. Let u,v be two vertices of graph G. Let G = G — {wvy, ..., W} + {uvy, ..., Uvs}.
If d(u) + s>d(v) then F(G") >F(G).

Proof. Let ds(u) = d(u), for every vertex x €V \{u,v}, we have
dG*(u) =dg(u)+s, dG*(v) =dg(V)-s, dG*(x) =dg(X).
Hence, by the definition of F-index, we have
F(G)-F(G)=d () +d+(v)° -dg (1) -dg (v)°

= (dg (W) +5)° +(dg (V) =)’ ~dg (u)° - dg (v)°

=3sdg (u)(s+dg (u)) +3sdg (V)(dg (V) —Ss).
Clearly F(G")=F(G)> 0 if and only if dg(U)(s+dg(u))+dg(v)(dg(v)—s)>0. On the
other hand, {v,,...,v.} < N(v) \ N[u] implies that d5(v)—s>0 and so

dg (u)(s +dg (u)) +dg (V)(dg (V) —s)>0.

The following bounds for the forgotten topological index were proposed in [5]:
My(G)

F(G) = o
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2
F(G)z%—ZMZ(G),

F(G)<2M,G)+m(n-1)>2.
Here, we establish some new bounds.

Theorem 6. Let G be a graph on n vertices and m edges. Then
F(G) > max{6m-2n,8m®n’}.

Proof. According to Bernoulli inequality, for every integer o > 1, we have (1+x)* > 1 + ax.
Let x = d(u;) - 1, then d(u;)® > 1 + 3(d(u;) - 1) = 3d(u;) - 2. This means that F(G) > 6m - 2n.
On the other hand, Let X, ..., X, be real numbers. Then, it is a well-known fact that

R {z}

n

By putting k=3 we have F(G) > 8m°®n?. This completes the proof.

Theorem 7. Let G be a graph on n vertices, m edges, minimum degree ¢ and maximum
degree A. Then

o 4 2. 6(A-D)
F(G)=6M(G)+3n-12m 5+1[(5+1) HYA-D? 4= J

Proof. For every real number a, we can prove that

2 3
a +123 a +1.
a+1 2

a?+1)
a’< 2[ j ~1.
a+l
This implies that

\2 3 _ 2_ 3
F(G)=xN, d(u)? <250 [%J —n=2 Pﬂ[%} _

Thus

=2[( L d(u)®-350 d(u)? + 350 d(u) - n)}

n 1 n (d(u) ) i (d(U') 1)
D ey ) by ey W O N I
[ _1(1+d(Ui))3 t(L+d(w)) (1 au )) ]
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But d(ui) > 1, and so

8n Zl—l(A 1) 12 (A-1) )

F(G) <2| (F(G)=3M(G)+6m—n)+
(5+1)° o+1 (5 +1)2

Thus, the proof is completed.

Let G be a connected graph with n vertices and A be its adjacency matrix, where
Ay, are its eigenvalues. The k-th spectral moment of G is defined as z:,liik and it is

equal to the number of all closed walks of length k in G. Similarly, if u,,...,u, are
Laplacian eigenvalues, than the k—th Laplacian spectral moment is as follows:

S =2 A

Theorem 8 ([5]) If the graph G is triangle—free, then

n n

FG) =Y, o) —d(y)F —2M,(G) +4m+ Y>> (A),

i=1 j=1

where A is the adjacency matrix of G.

Theorem 9. Let G be a connected graph, then
F(G) = S3 - 3My(G) + 6t.
Proof. Let D be a diagonal matrix whose entries are the degree of vertices in G. We have
¥ il =tr(D- A)S =tr(D3 - A3+3A%D)
=¥Md(u;)®+3%,d(u.)* -6t
Thus for the k—th spectral moment we have
F(G)=S3-3%ML,d(u;)? +6t = S3—3M1(G) +6t.

Corollary 10. Let G be a triangular—free graph, then
F(G) = S3 - 3My(G).

4. COMPUTING THE F—INDEX OF SOME GRAPH PRODUCTS

In this section we present explicit formulas for the F-index of several classes of graphs that
arise via binary graph operations known as graph products. We start from the most
common operation, the Cartesian product. The disjunction and the symmetric difference
share many properties with the Cartesian product: they have the same vertex sets, they are
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commutative and associative; hence they are considered next. The join of two or more
graphs is also a commutative operation, but defined on the union instead on the Cartesian
product of the vertex sets of the components.

4.1 CARTESIAN PRODUCT

The Cartesian product GxH of graphs G and H is a graph such that
V(GxH)=V(G)xV(H), and any two vertices (a,b) and (u,v) are adjacent in GxH if and only
if either a = u and b is adjacent with v, or b = v and a is adjacent with u. The degree of a
vertex (ui,up) of GixG, is the sum of the degrees of its projections to the respective
components,

dg,xG, (U1, U2) = dg, (1) +dg, (Up).

Theorem 11. Let G; (i = 1,2) be a graph on n; vertices and m; edges. Then
F(G,xG,) =n,F(G) +nF(G,)+6m,M,(G,) +6mM, (G,).

Proof. For (u;,u,) € G, xG,, we have dg, g, (,U2) =dg, (1) +dg, (Uz). This means that
F(G,xG,)= Z(ubuz)ewez d’cse, (U, U,) = Z(UPUZ)E%GZ [dg, (uy) +dg, (u,)P°

= Z(ul,uz)eGlez d 3Gl (Ul) +d 3Gz (uz) + ?’dc-;l (ul)dGz (uz)[del (ul) + d(;2 (uz)]
=n,F(G,) +nF(G,) +6m,M,(G,) +6mM, (G,).

4.2 SYMMETRIC DIFFERENCE AND DISJUNCTION

The disjunction G v H of two graphs G and H is the graph with vertex set V(G)xV(H) in
which (us,uy) is adjacent with (v1,v2) whenever u; is adjacent with v, in G or u; is adjacent
with vz in H. If [V(G)| = ny, |E(G)| = my, |V(H)| = n2, |[E(H)| = my, the degree of a vertex
(Ul,Uz) of GVH s given by dGVH((Ul,Uz)) = nsz(ul) + nldH(Uz) —dG(Ul) dH(Uz).

Theorem 12. Let G; (i = 1,2) be a graph on n; vertices and m; edges. Then
F(G, v G,)=nF(G,)+n’F(G,) - 4mm,.
Proof. We have
FGVG) =Y oo, o =0, & (W)=Y,  de @), . 0o, (U)
=n;F(G,) +n’F(G,) —4mm,.

The symmetric difference G ® H of two graphs G and H is the graph with vertex
set V(G)xV(H) in which (uy,uy) is adjacent with (v1,v») whenever u; is adjacent with v; in G
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or u; is adjacent with v, in H, but not both. It follows from the definition that the degree of
a vertex (u;,uz)of G @ H is given by

dean ((Uy,Uz)) = nadg (u) + mdy (Uz) —2dg (Up)dy (uz).

Theorem 13. Let G; (i = 1,2) be a graph on n; vertices and m; edges. Then
F(G, ®G,)=n/F(G,) +n’F(G,)—8mm,.
Proof. The proof is similar to the proof of Theorem 12.

4.3 JOIN

The join G = G1+ G; of graphs G; and G, with disjoint vertex sets V; and V, and edge sets
E: and E; is the graph union G, UG, together with all the edges joining Vi and V. Let n;
and n, be number of vertices of G; and G, respectively. Then

d
dc-;l+c-32 (u)= { > W K

Theorem 14. Let G; (i = 1,2) be a graph on n; vertices and m; edges. Then
F(G, +G,) = F(G) + F(G,) +nn; +n’n, +3n,M,(G,) + 3n,M, (G,) + 3nm, +3n,m,.

dg, (U) + n

Proof. We have
F(G,+G,)= ZUEGNGZ d%,:q, (U) = ZUEGI (dg, (u)+1n,)° + ZUEGZ (dg, () +n,)?
= F(Gy) + F(G,) +nn; +n’n, +3n,M,(G,) +3n,M, (G,) +3nm, +3n,m,.
4.4  COMPOSITION

The composition G = G;1[G;] of graphs G; and G, with disjoint vertex sets V; and V, such
that |Vi| = n1, |V2] = n, and edge sets E; and E; such that |E;| = my, |Ez| = m; is the graph
with vertex set V1%V, and u = (uy,uz) is adjacent with v = (v1,v2) whenever u; is adjacent
with vi or u; = vy and u; is adjacent with v,. It follows from the definition that the degree of
a vertex (up,u,) of G1[G2] is given by

dGl[GZ]((ul’ U2)) = nszl (U]_) + nldGZ (Uz).

Theorem 15. Let G; (i = 1,2) be a graph on n; vertices and m; edges. Then
F(GIG,]) =nF(G,) + F(G,) +6n;m,M, (G,) + 6n,mM, (G,).

Proof. We have
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F(GIG,]) = Z(ulvuz)EGl[Gz] d SGI[GZ](U) = ZUEGl [nszl (u) + dc—;2 (uz)]3
= ngF (G) +F(Gy) + 6n22m2M1(G1) +6n,mM, (G,).
4.5 CORONA PRODUCT

The corona G;0G;, was defined by Frucht and Harary [3] as the graph G obtained by
taking one copy of G; of order p; and p; copies of G, and then joining the i-th node of
G; to every node in the i-th copy of G,, see Figure 2. Suppose p1, p2, g1 and ¢, are the
number of vertices and the number of edges of graphs G; and G, respectively. It is easy
to see that the number of vertices and the number of edges of G,0G; are p1(1 + p2) and

g1 + P10z + p1p2, respectively.

i-th copy of G,

k-th copy of G,

Figure 2. The Corona Product G; o Go.

Example 1. For the graphs G; = K; and G, = Ps, the two different coronas G;0G; and
G,0G; are shown in Figure 3.

(a) (b)
Figure 3. (a) The Corona Product K,0P3 and (b) P;0Ko.

Theorem 16. Let G; (i = 1,2) be a graph on n; vertices and m; edges. Then
F(G,0G,) = F(G,) + n,F(G,) +nn; +3n,M,(G,) +6n’m, +nn, +3n,M, (G,) + 6n,m,.
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Proof. It is not difficult to see that
de (@) +n, aeV(G)
dGloGz (@)= d .
6, (U)+1 aeV(G,)

This means that

F (GloGZ) - ZueGloG2 d 3G10G2 (U) - ZueGl dzl (U) + z:zl ZueGi d zi (U)
= F(G,) +nF(G,) +nn +3n,M, (G, + 6njml +n,n, +3n,M,(G,) +6nm,.
4.6 TENSOR PRODUCT

For given graphs G; and G, their tensor product G; ® G, is defined as the graph on the
vertex set V (G1) x V (G2) with vertices u = (us, uz) and v = (vy, v2) connected by an edge
if and only if either u;v; € E(G;) and uyve. € E(Gy), see Figure 4. In other words, G; ® G,
has exactly nin, vertices and 2m, +2m, -12 edges, where ni, n, are the number of

vertices and m;, m; are the number of edges of G; and G, respectively.

Figure 4. The Tensor Product P;® Ps.
Theorem 17. Let G; (i = 1,2) be a graph on n; vertices and m; edges. Then
F(G1 ®Gy)=mF(Gy) +naF(Gy) + F(G1)F(Gy) +3[2my (M1(Gy) + F(Gy)) +2m M1 (Gy)
+ F(G)M1(Gy) + F(G2)M1(G1)]+6M1(G)M1(Gy).

Proof. Notice that the degree of every vertex of the tensor product can be computed as
dg® G, (U1, U2) = dg, (U)+dg, (U2)+dg, (U)dg, (Up)-
Similar to the proof of Theorem 11, the proof is straightforward.

ACKNOWLEDGMENT. The authors are indebted to Professor Boris Furtula for reading
the first draft of this paper and for giving us his valuable comments. This work is supported
by Shahid Rajaee Teacher Training University under grant number 27774,



338

KHAKSARI AND GHORBANI

REFERENCES

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

K. C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH
Commun. Math. Comput. Chem. 52 (2004) 103-112.

T. Dossli¢, Vertex—weighted Wiener polynomials for composite graphs, Ars Math.
Contemp. 1 (2008) 66-80.

R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970)
322-324.

B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015)
1184-1190.

B. Furtula, I. Gutman, Z. K. Vukievi¢ ,G. Lekishvili and G. Popivoda, On an
old/new degree—based topological index, Bull. Acad. Serb. Sci. Arts (Cl. Sci. Math.
Natur.) 148 (2015) 19-31.

I. Gutman, An exceptional property of first Zagreb index, MATCH Commun. Math.
Comput. Chem. 72 (2014) 733-740.

I. Gutman, Edge decomposition of topological indices, Iranian. J. Math. Chem. 6
(2015) 103-108.

I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun.
Math. Comput. Chem. 50 (2004) 83-92.

I. Gutman, B. Furtula, Z. Kovijani¢ Vukic¢evi¢ and G. Popivoda, On Zagreb indices
and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5-16.

I. Gutman, B. Rus¢i¢, N. Trinajsti¢ and C.F. Wilcox, Graph theory and molecular
orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.

A. 1li¢ and D. Stevanovi¢, On comparing Zagreb indices, MATCH Commun. Math.
Comput. Chem. 62 (2009) 681-687.

X. Liand H. Zhao, Trees with the first smallest and largest generalized topological
indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57-62.

X. Li and J. Zheng, A unified approach to the extremal trees for different indices,
MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.

S. Nikoli¢, G. Kovacevi¢, A. Mili¢evi¢ and N. Trinajsti¢, The Zagreb indices 30
years after, Croat. Chem. Acta 76 (2003) 113-124.

G. Su, L. Xiong and L. Xu, The Nordhaus—-Gaddum - type inequalities for the
Zagreb index and coindex of graphs, Appl. Math. Lett. 25 (2012) 1701 — 1707.

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley—-VCH,
Weinheim, 2000.

H. Wiener, Structural determination of the paraffin boiling points, J. Amer. Chem.
Soc. 69 (1947) 17-20.

B. Zhou and N. Trinajsti¢, Some properties of the reformulated Zagreb index, J.
Math. Chem. 48 (2010) 714-719.



ABSTRACTS
IN
PERSIAN






\ (YF4%) Toad A s il s 20 Has3 | 1 JMC

Graphs with smallest forgotten index

| GUTMAN!, A GHALAVAND?, T DEHGHAN-ZADEH?, AR ASHRAFI?

'Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
2Department of Pure Mathematics, Faculty of Mathematical Science, University of Kashan,
Kashan 87317-53153, I. R. Iran

)3) 03 (Bgalyd pasls ()5S o B1)S

ST Ry guss Tyl joiss)
ol

353 oo cin o F(G) = pev(e) A(0)° w50 0 G JoSske 315 515 ouds el p a5l
S bsls e s et B opdgl dllie opl jo el G GIS 0 VLl ax 0 A(V) o] jo a5
AL oS b sl adlgs g ol Al STl SIS rages B gl 0 ST 00l Shgel b e
5 2515 el Ngeld asli (neS L sl alls aw SIS Geeloz U sl (ST 0l Jhgal 3
b @515 ead (iseld a3l oS b ol ail> =y 5 ol aile iz gle SIS Geess 5 s

5l oas duslie Jol )51 a3l gl ooel Cewds @l b zls cpl ol sal cawas
s SIS gl ails oz ST sl dils a ST (ol dilogs ST ol dils S5 G5 gl i)

'6‘ dal>



Y (YF4%) Toad A s il s 20 Has3 | 1 JMC

On the First Variable Zagreb Index

KHOSRO |V|ORADIAN1, RAMIN KAZEMI? AND MOHAMMAD HASSAN BEHZADI®

1"”’Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran,
Iran

2Department of Statistics, Faculty of Science, Imam Khomeini International University, Qazvin,
Iran

Jol néls )51 gaslin

)L (53w byly jodisl
AN

Aol s a8 sgin iy MY = Tpeya) dW)? oy50a G 313 o) ine 0515 (a5l
SUIS 90 Sladie (gl YU g b o)l,S wi @lie opl j0 cCanl U wly a0 A(V) 5 > soe S5
S sbes s (ES5L slacs) (Bolai (il sbosys s ke ol @g By

D9 a8l (29990 il Glacs o g locgsaxio



. (V7%) Yolad A sla 0 rasdi 35 05083 | | JMIC

Computing the Additive Degree-Kirchhoff Index with
the Laplacian Matrix

JOSE LUIS PALACIOS

Electrical and Computer Engineering Department, The University of New Mexico, Albuquerque,
NM 87131, USA

ool gpSle b AiNiS) an)s-ChginS gasld wwlas

G5 Loyle Tyl Hois)
ol

Az 0 m g 1S g gl yS sl aslh gl ce (g g Bolu e 8IS e sly AT el Bg e
oasls sl Al cpl a5 asoe lis b oS acubne (LY e sle 5l eolil b 1) ailass
oSl a2 a5 s e dl) Cdie 00,8 Ay Sy g ol Bolo g il am s —cagd S

S o delone (689,5 LS olgie 4 WY e yile 5l eoliiul b | Cagd S

Y il )0 meiagd 1S e li i gals Wl



¥ (YFA%) Totad A s dodl s 20 a3 | 1 JMC

On the Spectra of Reduced Distance Matrix of the
Generalized Bethe Trees

ABBAS HEYDARI

Department of Science, Arak University of Technology, Arak, Iran

AsLearsal b slacid)ys aboldgnals gusyls Lhab

B o) 1l Hods)
ol

(o 20 b o) &susl Gogfy degerme b osies bl BIF S0 G ouus (o8
&S ol K &5,0 5l ooy omple G 8IS Aol pals b .asb {vq, V5, V3, .., Uk}
CEys ) B350 o cwl U 5 Vg &susl ey om (Seidnss Alols plp T pk(11]) &l
Lo llio cnl po axdly ply ol g o 5 @8ly ogsy Sl po oS 10 095 0 oueli wdlyerans 2y
oS oo Aol |, 428l grans o sl Alols 1alS s ile sl acgore

Lacl @Bl o o B0 @lol palS s slelguads O



> (V7%) Yolad A sla 0 rasdi 35 05083 | | JMIC

On the Second Order First Zagreb Index

B. BASAVANAGOUD!, S. PATIL! AND H. DENG?

'Department of Mathematics, Karnatak University, Dharwad — 580 003, Karnataka, India *Key
Laboratory of High Performance Computing and Stochastic Information Processing, College of
Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan, 410081, P. R.
China

©0> a3)s (3)51) Paslid Halg)

S Loyle Tyl Hois)
ol

o g (Saai, G 1) VL s Ll adli leasd las,plS 51 plel L Lnilo
Gelsl o g5y Ul allie (nl )5 me S o 50 |y (JsSge SIS S 51 VL e 0Ty
Joe S oo addllas (LST sl yag il 3550 5l @)s Jole 5 (29,51 L L) pes Aye )51y a3l
"okl 9 0815 Jol (atle b b pe sledow Sl sl g0 A p0 0 515 (a3l gl AL oS s
U 2D-a0s iy GBS 5L b GBS s g5 w81 pale Glsl ey ool g F
olons |y b5 BT 5 &2 SWdlS atlyyb aze cledl,S TUCLCe[P,q] 5l g sl 5 s

48l 98 Az SIS wojlugil ¢ i SIS (b S5 (Sojddsng patle gauls Gl



7 (YFA%) Yotadh sla dodl o 80 Js3 | | JMC

Anti-Forcing Number of Some Specific Graphs
SAEID ALIKHANI AND NEDA SOLTANI

Department of Mathematics, Yazd University, 89195-741, Yazd, Iran

0old sgd)5 )\ By Sigwyd, N1 sac

Y3838 pamaslle | hyl) )o3s)
ol

Slaegazs (G BI5 Ll siluysr S5l palate ool aio 5 00l H5G = (V,E) ws 28
Slei b aS G G5 K58 5T i o icdin |y BT wgs) ded a5 cud G slime sledly
U aigs ails p BLS 51 ool a8 conl BLS 51 Sl olaws (pieS b ol 05 0 o0ls Lis af(G)
ot 0 85 (pols LS Wlie cnl jo all Sy paxie LS il ol Jols SIS

oS oo andllane 1 LT Ko 198 5T slael g aid 5 L5 )5 1) 5 ls Covan



v (YF4%) Toad A s il s 20 Has3 | 1 JMC

On the Forgotten Topological Index

AHMAD KHAKSARI* AND MODJTABA GHORBAN?
1Department of Mathematics, Payame Noor University, Tehran, 19395-3697, I. R. Iran

2Department of mathematics, Shahid Rajaee Teacher Training University, Tehran, 16785 — 136, I.
R. Iran

DD B81)8 (537619365 paAlin

06365 plga) © bul) )odsl
ol

Lo alio (ol ) 098 (oo oyni Dl pgw OlF Egemme Sjge & oddbgalp (Sjolpng pasle
SedS (Fn i ) aFLE (nl G g 03,5 dnmlone | 0ad Ghgal b atld sla Sy (pan
oS o e gyl 1S

‘S;J.ai..al? d‘; ‘o..\...uu,uﬁ.obB ua?Lm ‘u;b 6Lbua>Lm ‘5«.\4..1: ol



@lls 8911127 5,50 89/3/11/104372 o )les jome Gub 4y o

Gezed 5L (oo 5,9k 9 Slikdod ¢ pole Ol 5 (LB (oode Lol
ISC (Islamic World Science Citation  sledbl o5oL o alxe oy




MATHEMATICAL CHEMISTRY

CONTENTS September 2017
pages
Autobiographical notes 231
N. Trinajstic
Graphs with smallest forgotten index
I. Gutman, A. Ghalavand, T. Dehghan-Zadeh and A. R. Ashrafi

On the first variable Zagreb index
K. Moradian, R. Kazemi and M. H. Behzadi

Computing the additive degree-Kirchhoff index with the Laplacian
matrix

J. Palacios
On the spectra of reduced distance matrix of the generalized Bethe

trees
A. Heydari

On the second order first zagreb index
B Basavanagoud, S. Patil and H. Y. Deng

=
-
=
=
z
s
=
-,
-
Z.
=
Z
=
=

Anti-forcing number of some specific graphs
S. Alikhani and N. Soltani

On the forgotten topological index
A. Khaksari and M. Ghorbani

B - BBE ( Print Version )
nna -ﬂa (Online Version )




