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Autobiography of Roberto Todeschini

ROBERTO TODESCHINI®

Milano Chemometrics and QSAR Research Group, Department of Earth and
Environmental Sciences, University of Milano Bicocca, Milan, Italy
Website: http://michem.disat.unimib.it/chm/

Born in Rome (lItaly) in 1949, Roberto Todeschini graduated
in chemistry at the University of Milan (Italy) in 1972 with a
thesis in theoretical chemistry. He got married to Marilena in
1973 and soon had a daughter Alessia (1975) and some
years later a son Edoardo (1982).

In 1975, he was appointed to the position of
researcher at the same university in Milano and worked in
the field of theoretical chemistry, with special focus on
conformational analysis, until the first ‘80s. Then, since
1985 his research interests have shifted towards
chemometrics, multivariate analysis and applied statistics,
QSAR, molecular descriptors, multicriteria decision making, software development,
starting to publish on these topics. The new research interests arose from the participation
to an educational project carried out at Escuela Politecnica del Chimborazo (Riobamba,
Ecuador) in the framework of an official cooperation action between the Foreign Ministers
of Ecuador and Italy, aimed to propose over there up-to-date but low cost researches. In the
beginning of ‘90s, Todeschini became associate professor at the University of Milano-
Bicocca (Milan, Italy) and then, in 2001, full professor of chemometrics at the Department
of Earth and Environmental Sciences in the same Institution, where he founded the Milano
Chemometrics and QSAR Research Group. The actual staff of the research group includes
Davide Ballabio, Viviana Consonni and Francesca Grisoni, while past-researchers of the

*Corresponding author (Email: roberto.todeschini@unimib.it)
DOI: 10.22052/ijmc.2017.43095
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group are Paola Gramatica, Manuela Pavan, Andrea Mauri, Matteo Cassotti, Kamel
Mansouri, and Faizan Sahigara.

He was one of the founders of the International Academy of Mathematical
Chemistry in 2004 and served as President of the Academy from 2008 to 2013. He is also
President of the Italian Chemometric Society and “ad honorem” professor of the University
of Azuay (Cuenca, Ecuador) since 2006.

He is author of more than 200 publications in international peer-reviewed journals
and co-author of the books: “The Data Analysis Handbook”, by IL.E. Frank and R.
Todeschini (Elsevier, 1994); “Handbook of Molecular Descriptors”, by R. Todeschini and
V. Consonni (Wiley-VCH, 2000); “Molecular Descriptors for Chemoinformatics” by R.
Todeschini and V. Consonni (Wiley-VCH, 2009); “Handbook of Bibliometric Indicators”
by R. Todeschini and A. Baccini (Wiley-VCH, 2016). The first book about the molecular
descriptors (2000) is among the most cited scientific books, with more 3300 in 2016.

Todeschini, together with his research group, organized several national and
international meetings and schools about molecular descriptors, multi-criteria decision
making, chemometrics, experimental design.

The complete list of publications of Todeschini can be accessed in Google Scholar
at “https://scholar.google.com/citations?user=MNyYEfBCAAAAJ” with more than 11000
citations and an h-index of 44 (January 2017).His main scientific results were organized in
different topics and presented below.

1. CHEMOMETRICS

The interests of Todeschini about chemometrics include all its theoretical aspects. Critical
reviews about Q? metrics proposed in literature for evaluating prediction ability of
regression models were published and earned a big success. More recently, an extended
comparison about the different proposals to estimate Q* was published and a reliable
solution was proposed.

About classification methods, he proposed three new methods, called CAIMAN, N3
and BNN; in particular, the last two methods, proposed together with Ballabio, Cassotti and
Consonni, were demonstrated to give very good quality classification results. Moreover,
studies were also made on the KNN classification method, about its dependence on scaling
and distance measures and for evaluating missing values.

Several studies were also performed on the concept of the applicability domain of
classification and regression models and on the topic of variable selection, for which some
novel methods were also proposed.

In 1993, Todeschini along with lldiko Frank released the software SCAN (Software
for Chemometric Analysis) andin 1994 Todeschini, still with Ildiko Frank, published the
book “The Data Analysis Handbook” (Elsevier).



Autobiography of Roberto Todeschini 95

2. MOLECULAR DESCRIPTORS

Todeschini proposed in 1994 a set of 3D molecular descriptors, called WHIM, based on the
Principal Component Analysis and, in 2000 with Consonni, the GETAWAY descriptors,
based on the statistical concept of leverage. Starting from the publication of the first book
on molecular descriptors, already mentioned afore, Consonni and Todeschini published
several reviews and book chapters in this field. About topological descriptors, they
published a paper where a generalization of graph energy was proposed analysing the
spectral indices defined in literature as well as the different kinds of topological vertex
degree. Still with Consonni, a review was also dedicated to analyse all the weighted and
unweighted topological matrices defined in literature.

The software DRAGON was also developed by Todeschini and his research group
since 2000, collecting from time to time always more molecular descriptors.

3. STATISTICS

Among the main results in statistics, the K multivariate correlation index was proposed in
two papers, giving the exact definition of an index able to give a measure of global
correlation in a multivariate dataset.

Several papers were also dedicated to similarity/diversity measures. Among these, a
paper with Consonni, Peter Willett et al., on all the binary similarity measures proposed in
the literature, some papers about canonical distances and similarities between datasets, an
original variant of the Mahalanobis distance, a similarity measure for DNA sequences, a
new similarity measure taking into account higher order similarities, a Hausdorff-like
similarity measure to evaluate the similarity between sets (i.e. molecules) when they are
partitioned in different constituents (i.e. ionic liquids, metabolites, sub-structures) and a
review about similarity/diversity measures for the Encyclopaedia of Analytical Chemistry
by Wiley & Sons.

4. QUANTITATIVE STRUCTURE-ACTIVITY (-PROPERTY) RELATIONSHIPS
(QSAR/QSPR), DRUG DESIGN

Several chemometric applications were developed by Todeschini’s research group in
QSAR/QSPR and related fields.

In the environmental and human health fields, studies were performed on
biodegradability, aquatic toxicity, tropospheric degradation, bioconcentration factor,
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bioaccumulation, water quality, non-ionic surfactants, mutagenicity and environmental
priority settings. In chemistry, studies were performed on the phisico-chemical and
toxicological behaviour of PAH, PCB, PCDD and PCDF compounds. In food chemistry,
studies were performed on olive oils, sweetness, dairy cream, spirits, and food quality
analysis, while in drug design, studies were performed on Cytochrome P450, Ca2+ channel
antagonists, non-peptide angiotensin Il receptor antagonists and virtual compound
screening for sets of pharmacological targets.

5. MULTICRITERIA DECISION MAKING

He was the editor, together with Manuela Pavan, of a book for Elsevier about the ranking
methods and decisions based on multi-criteria. In this field, papers were published about
indices for the evaluation of Hasse diagrams, generalization of the Power-Weakness Ratio
(PWR) measure and Hasse theory.

6. BIBLIOMETRIC INDICATORS

In 2016 he published the “Handbook of Bibliometric Indicators” together with Alberto
Baccini (Wiley-VCH), following the same encyclopaedic approach used in the past for the
books about molecular descriptors.

This topic is actually particularly warm, due to the large interest of researchers,
institutions, countries, etc. for the research evaluation.
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In this paper, a novel topological index, named M-index, is
introduced based on expanded form of the Wiener matrix. For
constructing this index the atomic characteristics and the interaction
of the vertices in a molecule are taken into account. The usefulness
of the M—index is demonstrated by several QSPR/QSAR models for
different physico—chemical properties and biological activities of a
large number of diversified compounds. Moreover, the applicability
of the proposed index has been checked among isomeric
compounds. In each case the stability of the obtained model is
confirmed by the cross-validation test. The results of present study
indicate that the M—index provides a promising route for developing
highly correlated QSPR/QSAR models. On the other hand, the
M—index is easy to generate and the developed QSPR/QSAR
models based on this index are linearly correlated. This is an
interesting feature of the M—index when compared with quantum
chemical descriptors which require vast computational cost and
exhibit limitations for large sized molecules.
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1. INTRODUCTION

Graph theory is one of the most useful tools for studying systems in various fields such as
chemistry,physics, computer science, economy, and biology [1-3]. This powerful concept,
which introduced originally by agreat mathematician, Leonhard Euler [4], has been a useful
approach to predict some key features of such systems. Chemical graph theory is a branch
of graph theory that is concerned with analyses of all consequences of connectivity in a
chemical graph. Chemical graph serves as a convenient model for any real or abstracted
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chemical system. It can represent different chemical objects as molecules, reactions,
crystals, polymers, and clusters [5-8].

Successful use of chemical graph to quantitative structure—property and structure—
activity relationships (QSPR/QSAR) has led to the emergence of several molecular
descriptors [9-13]. The molecular descriptors derived there from are commonly named
topological indices [5]. Regardless of the descriptors used in the development of
QSPR/QSAR models, all of them share in common a basic approach; molecules are
represented by vectors constructed in turn by molecular parameters, which are supposed to
contain relevant information about molecular structure. So far, hundreds of topological
indices have been proposed in chemical literature [14]. Among these, topological indices
such as the molecular connectivity indices of the Wiener [15], Balaban [16], Randi¢ [17],
and Hosoya [18] indices have received greater attention due to their application in
chemistry.

The Wiener index, W, is one of the most frequently used graph descriptors in
QSPR/QSAR models. Its applicability for predicting physico—chemical and
pharmacological properties of organic compounds is well documented and was outlined in
quite afew reviews [19-21]. In the past decades, a remarkably large number of
modifications and extensions of the Wiener index was put forward and studied by
mathematical chemists [22,23]. These indices are generally based on the adjacency matrix
or on the distance matrix.

However, most of introduced indices lack certain information such as the features
and interaction of vertices (atoms). Recent attentions of graph theoretical chemists have
been focused on resolving this problem [24]. In this respect, Yang et al. [25—28] used the
electronegativity, the energy, the length between vertices, and principal quantum number to
reform the distance matrix of Wiener so that more information of the distance matrix were
included in the molecular graph. They have applied these modified Wiener in prediction of
the retention indices of gas chromatography, the standard formation enthalpy and gaseous
solubility.

However, owing to the complexity of the molecular structure, it seems to be
impossible to expect that a single set of descriptors would contain all the relevant structural
information. Hence, introducing topological indices which can predict a wide range of
physico—chemical properties requiring a minimum number of inputs is the goal of many
studies. As far as we know the Wiener index and its modification have been widely used to
account for many physico—chemical properties. In the present study, we intend to propose a
new topological index based on the reciprocal form of the expanded distance matrix. The
expanded form of the Wiener index was suggested by Tratch et al. [29] for characterization
of molecular graphs and structure—property correlations. This index is more sensitive to the
structural characteristic of alkane molecule as compared with normal Wiener index and
also can differentiate several graphs having just the same value of the very powerful
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Balaban index. On the other hand, the inclusion of the interactions among vertices (atoms)
as well as the vertex properties is a crucial issue in describing the whole properties of a
molecule.

Accordingly, based on the above—mentioned issues, in the present study we have
introduced a new topological index and named it M—index. This newly proposed index
includes topological properties of the vertices (atom parameter) and the interaction of such
vertices in a molecular graph (bond parameter). The applicability of M—index for the
estimation of physical, chemical, and pharmacological properties such as boiling point,
enthalpy of formation, refractive index, retention index, toxicity, Gibbs free energy, heat
capacity, and etc. has been investigated. We have checked the appropriateness of this index
for simple molecular compounds such as un—branched alkanes or cycloalkanes as well as
more complicated systems with various functional groups and isomers.

2. DEFINITION OF THE M—-INDEX

2.1 EXPANDED WIENER NUMBER

In 1971, Hosoya proposed a modified Wiener number which can be applied to chain and
cyclic molecules [18], as follows:
1<

W =EZi,jdii (1)
where N is the total number of the atoms in a molecule and dj;’s are the elements of a
matrix, called distance matrix. dj; is defined as the shortest distance between any two given
atoms iand j in a molecule which is clearly equal to zero for all diagonal elements of i = j.
Toobtaina higher discriminating ability of the Wiener number, Tratch et al. [29] proposed a
novel topological index, called expanded Wiener number which is defined as

W = ij dy = ij HyVydy- (2)
In general, the vertices i and j may be connected by several, u; , shortest paths and for each
of these paths a set of v; shortest super—paths of the length equal or greater than d; must

be taken into account. It may be easily shown that the number of shortest superpaths is just
the same for each of the shortest paths connecting i with j. However, because of
computationally extensive nature of the Eq. 2, an alternative method was proposed to
compute the expanded Wiener number,

~ ~ d.(d; +1)(d. +2

I I ©
in which the total length of all subpaths for every pair of vertices is taken into account [29].
Note that the resulting expanded Wiener numbers calculated from Eqs. 2 and 3 are the
same.




110 MOHAJERI, MANSHOUR AND MOUSAEE

2.2 MODIFIED ADJACENCY MATRIX

The Wiener index considers the length of shortest paths only, and the properties of vertices
as well as their interactions are not included. In this article, we try to introduce a novel
topological index by focusing on some information about the structural details in the
molecular graph such as the features and interaction of vertices. For this purpose, we
modify the conventional form of adjacency matrix A, by inclusion of the bond parameters.

The elements of modified adjacency matrix A" are defined as: AIJ =0, in the cases where
=) and where two vertices are not connected (non-adjacent vertices), otherwise
AJ =b; X;;. The parameter b, represents the bond order between atoms i and J,andis 1,
2, and 3, respectively for the single, double, and triple bonds. Moreover, we have used the
definition of Yang et al. [25-28] for the bonding characteristics, X; = (1+Al;)/R;. In this
formula, Al; = ‘Ii -1 j‘ stands for the electronegativity difference between atoms i and |,
and R; =n, +n;, where n; and n; are the maximum principal quantum numbers of the
atoms i and j. According to its definition, X, is a measure for the bonding ability

between vertices i and J, i.e., the smaller the value of X, , the weaker the bonding ability

ij *
between atoms i and j.

2.3 ELEMENTS OF THE |\7| —-MATRIX

The modified version of adjacency matrix has been utilized for constructing the M—index in
which not only the characteristics of an individual atom but also the role of that atom in
establishing the connection with other atoms in a molecular graph are taken into account.

The diagonal elements of the M —matrix contain the electronegativity of atom i as the
characteristic of that atom and the sum of the i—th row of the A" matrix divided byk; (the

number of neighboring atoms of atom 1) as the average role of atom i in establishing
connections with other atoms in the molecule.

2A
-

Mizli+ (4)

If the vertices i and j are adjacent, then I\7I’ij is obtained by employing the inverse of the

off-diagonal elements of the expanded Wiener index. Therefore, the elements of M —
matrix are summarized as below
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*
~ 1+|i|inj
fj

1

fij

i, j areadjacent

i, j arenon -adjacent.
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()

This matrix includes not only the characteristics of atoms but also the pattern of their

connections in the molecular graph.

2.4 THE M-INDEX

Taking into account the symmetric property of the M matrix, we introduce our proposed

M —index as the sum of the upper triangular and diagonal elements of the M matrix:

M ZZi’LMi +ZiN<j|\7iij'

Now, we take an example to illustrate how to get M—index for a simple cyclic graph

containing four vertices
1

4

2

3

The expanded distance matrix of such a graph is obtained by use of Eq. 3:

0 1*(1*2*3)/6
| 1rar2*3)/6 0
T 2% (2%3%4)/6 1*(1*2*3)/6
1*(1*2%3)/6 2*(2*3*4)/6
Then, we can find A’

0 b12X12

A* — b21X21 0
0 bSZXSZ

by X4y 0

2%(2*3%4)/6 1*(1*2*3)/6
1%(1%2*3)/6 2*(2*3*4)/6

0 1*(1*2*3)/6 |
1*(1*2*3)/6 0
0 b14 X 14
b23 X 23 0
0 b34 X 34 .
b43 X 0

The diagonal elements, Mi s, can be obtained through Eq. 4.

(6)
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1=l +(@/2)* (b, Xy, +byy Xyy)
2 =1+ (12)*(by X5y +b X 3)
Ms =13+ (1/2)*(by, X5, + b3y Xy,)
M, =1, +@/2)* (0, X,y +byX,0)

M
M

Finally, the whole M matrix is expressed as

~

M, 1+1,1,b,X,, 1/8 1+1,0,b,X,,
Vi |1 ohby X M, 1 1,140, X 1/8
1/8 1+1,1,b, X, M, 1+ 1,1,b, X,
1+1,1,b, X, 1/8 1+1,10,,X,, M,

If we suppose that all vertices of the above graph are carbon the resulting graph represents
a cyclobutane molecule in which b, =b,,=b,=b,=1, I,=1,=1,=1,=255 and

n, =n, =n, =n, =2. These quantities give the value of M = 21.96 for the cyclobutane.

3. RESULTS AND DISCUSSION

We have carried out comprehensive studies on the physico—chemical properties of a large
number of diversified compounds. In this respect, the applicability of the proposed index
has been checked for a wide range of properties including: partition coefficient, molar
refraction, molar volume, parachor, polarizability, standard enthalpy of formation,
toxicity,boiling point, heat capacity, refractive index, and Gibbs free energy. On the other
hand, our analysis was based on different category of compounds such as: alkanes,
cycloalkanes, silicon/titanium halides, methyl halides, alcohols, aldehydes and ketones,
carboxylic acids, as well as isomeric systems. The values of M—index were computed for
each compound with a view to study their correlation potential in developing QSPR/QSAR
models.

3.1. UN-BRANCHED ALKANES/CYCLOALKANES

In the first test, the proposed M —index is evaluated for the prediction of some physico—
chemical properties of a series of simple un-branched alkanes and cycloalkanes. Many
properties of alkanes vary in a regular manner with molecular mass and because the alkanes
are nonpolar, complexities due to polarity, polarizability, and hydrogen bonding are
avoided. Thus, the physico—chemical properties of alkanes are dominated by their inherent
structural features, such as molecular dimension or shape. Here, we are mainly concerned
with the size effect and consider hydrogen—depleted graphs, i.e. we do not take into account
the hydrogen atoms as vertices of the graph.
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Table 1 collects the calculated M—index for 19 un—branched alkanes together with
the experimental data for the logarithm of partition coefficient in octanol/water (log p),
molar refraction (MR), molar volume (MV), parachor (PR), and polarizability (« ) [30]. For
all studied properties, we have reported the correlation coefficient (R) and the standard
error (s). Moreover, the resultant models were validated for generalization and
productivity by leave—one-out cross-validation (LOO-CV) method, and calculated R_, and

s, are also given. The statistical significance of the obtained models was confirmed by a

sV

high R with a close R, in value and a small s with a close s, in value.

Table 1. The calculated M —index and the experimental values of five physico—chemical
properties for un-branched alkanes.?

Compd. M log p MR MV PR o4
Methane 0 1.53 11.31 61.50 111.70 4.48
Ethane 8.23 2.06 15.94 78.00 151.50 6.32
Propane 13.90 2.60 20.58 94.50 191.20 8.15
Butane 19.68 3.14 25.21 111.00 231.00 9.99
Pentane 25.50 3.67 29.84 127.50 270.80 11.83
Hexane 31.36 4.21 34.47 144.00 310.60 13.66
Heptane 37.23 4,74 39.11 160.50 350.40 15.50
Octane 43.11 5.28 43.74 177.00 390.20 17.34
Nonane 49.01 5.82 48.37 193.60 430.00 19.17
Decane 54.90 6.35 53.01 210.10 469.70 21.01
Undecane 60.81 6.89 57.64 226.60 509.50 22.85
Dodecane 66.71 7.42 62.27 243.10 549.30 24.28
Tridecane 72.62 7.96 66.90 259.60 589.10 26.52
Tetradecane 78.53 8.50 71.54 276.10 628.90 28.36
Pentadecane 84.45 9.03 76.17 292.60 668.70 30.19
Hexadecane 90.36 9.57 80.80 309.10 708.40 32.03
Heptadecane 96.28 10.10 85.44 325.60 748.20 33.87
Octadecane 102.19 10.64 90.07 342.10 788.00 35.70
Nonadecane 108.11 11.18 94.70 358.60 825.80 37.40

4Experimental data were taken from [30].

The correlation results for listed properties in Table 1 as well as corresponding
statistical quantities are given in Egs. 7-11. As obvious from these equations, for all five
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properties, the R values are near to 1 with very small s. Moreover, the values of R, and
s, are very close to Rand s, and s, are slightly larger than s indicating that the resulted

models are statistically significant and validated for physico—chemical properties of
alkanes. Further, there is a good correlativity between M —index and the molecular
structure. Inspection of the results in Table 1 reveals that while the considered properties
increase with the increase in the alkane size, the values of M —index increase as well.

log p=1.382+0.090M (7)

R=0.9999, s=0.042, R, =0.9999, s, =0.049 N =19

MR =10.050+0.783M 8)
R=0.9999, s=0.354, R, =0.9999, s, =0.413 N =19

MV =57 +2.788M (9)
R=0.9999, s=1.264, R, =0.9999, s, =1.477 N =19
PR =101.100+6.714M (10)

R =0.9999, s =3.055, R, =0.9999, s, =3563 N =19

o =3.986+0.310M (11)
R=0.9998, s=0.168, R, =0.9998, s, =0.189 N =19

Table 2. The comparison between correlation parameters for modeling physico—chemical
properties of alkanes using Sz, PI, and M —indices.?

R S
Sz Pl M Sz Pl M
log p 0.8586 0.9397 0.9999 1.957 1.305 0.042
MR 0.8586 0.9397 0.9999 16.914 11.283  0.354
MV 0.8395 0.9402 0.9999 60.194 40.100 1.264
PR 0.8586 0.9397 0.9999 145251 96.895  3.055
o 0.8592 0.9401 0.9998 6.691 4.457 0.168

®The correlation parameters for Sz, Pl were taken from [30] and those for M —index were
computed in the present work.

The quality of the obtained correlations will be confirmed by comparison of our
results with other indices. For this reason, we compared the correlation coefficients and the
standard errors of the considered physico—chemical properties obtained by M —index with
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those previously reported using Szeged (Sz) and Padmakar—Ivan (P1) indices in Table 2
[30]. The quality parameters presented in Table 2 confirm the superiority of the M —index
over Sz and PI for modeling property/activity of alkanes. Inspection of the reported data in
Table 2 reveals that for all five properties, the models base on the M —index provides
significantly less standard errors.

Now, we extend our QSPR models to normal (un—branched) cycloalkanes. Listed in
Table 3 are the values of M —index and similar experimental physico—chemical properties
for considered cycloalkanes [30]. The corresponding linear correlation results are as
follows:

log p = 0.148 + 0.090M (12)
R =1.0000, s=0.012, R, =1.0000, s, =0.013 N =17

MR =1.226+0.770M (13)
R=1.0000, s =0.122, R, =1.0000, s, =0.133 N =17

MV = 4.754+2.963M (14)
R =1.0000, s =0.452, R, =1.0000, s, =0.503 N =17
PR =10.960+6.684M (15)

R =1.0000, s =0.905, R, =1.0000, s, =0.994 N =17

o = 0.494+0.305M (16)
R =1.0000, s =0.045, R, =1.0000, s, =0.049 N =17

The EQs.12-16 can outstandingly reproduce the physico—chemical properties of
cycloalkanes which in turn imply that M —index can successfully be applied for cyclic
structures as well as non-cyclic alkanes.

3.2 INORGANIC COMPOUNDS OF SILICON/TITANIUM HALIDES

To assess the applicability of M —index for inorganic compounds, we considered standard
enthalpy of formation for a series of silicon/titanium halides with the general formula of
Si(Ti)Xm (X=F, Cl, Br, | and m=1,2,3,4). The calculated M —index and the corresponding
experimental standard enthalpy of formation for studied systems are given in Table 4
[31,32].
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Table 3. The calculated M —index and the experimental values of five physico—chemical
properties for un-branched cycloalkanes.?

Compd. M log p MR MV PR a

Cyclopropane 16.28 1.61 13.83 53.20 120.10 5.48
Cyclobutane 21.96 2.14 18.44  70.90 160.10 7.31
Cyclopentane 28.38 2.68 23.05 88.70 200.20 9.14
Cyclohexane 34.20 3.22 27.67 106.40 240.20 10.96
Cycloheptane 40.43 3.75 32.28 12410 280.20 12.79
Cyclooctane 46.31 4.29 36.69 14190 320.30 14.62
Cyclononane 52.43 4.82 4150 159.60 360.30 16.41
Cyclodecane 58.33 5.36 46.11 177.40 400.40 18.28
Cycloundecane 64.40 5.90 50.72 195.10 440.40 20.11
Cyclododecane 70.30 6.43 55.34 212.80 480.40 21.93
Cyclotridecane 76.34 6.97 59.95 230.60 520.50 23.76
Cyclotetradecane 82.25 7.50 64.54 248.30 560.50 25.59
Cyclopentadecane 88.26 8.04 69.17 266.00 600.60 27.42
Cyclohexadecane 94.18 8.58 73.78 283.80 640.60 29.25
Cycloheptadecane 100.05 9.11 78.39 30150 680.60 31.07
Cyclooctadecane 106.09  9.65 83.01 319.30 720.70 32.90
Cyclononadecane 112.07 10.18 87.67 337.60 760.70 34.73

4Experimental data were taken from [30].

The linear correlation equations are given in Egs. 17 and 18. For both SiX;, and
TiXn series, there are good linear correlations with Requals to 0.9614 and 0.9631,
respectively.
A, Hg =658.100—45.720M @an
R=0.9531, s=156, R, =0.9374, s, =160 N =16

A H} =583.900-51.290M (18)
R=0.9586, s =146, R, =0.9489, s, =146 N =16
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Table 4. The calculated M —index and the experimental standard enthalpy of formation,

AH® (kJ/mol), for silicon/titanium halides.

Compd. M AH®  Compd. M AH°
SiF 12.77  -2092  TiF 11.18  -66.90
SiF, 2327  -589.94 TiF, 20.50 -688.30
SiFs 3403  -999.98  TiF, 30.07 -1188.70
SiF, 4503  -1625.90 TiF,  39.88 -1551.40
SiCl 9.07 15481  TiCl 827  154.40
SiCl, 1612  -167.78 TiCl,  14.88 -282.40
SiCl; 2342  -33472 TiCl,  21.73 -539.30
SiCl, 3097 -662.75 TiCl, 28.84 -763.20
SiBr 8.10 196.65  TiBr  7.48 21250
SiBr, 1426  -46.02  TiBr, 13.38 -179.10
SiBr;  20.67 -15899 TiBrs  19.52  -374.90
SiBr,  27.33  -41547 TiBry 2591 -550.20
Sil 7.11 259.41 il 6.63  274.10
Sil, 12.35  92.05 Til, 11.75 -57.70
Sil, 17.85  58.58 Tils 17.11  -149.80
Sil, 2359  -110.46  Tily 22.72  -287.00

®Experimental data were taken from [31,32].

Similarly, for the whole set containing all halides of Table 4 there is a good correlation
result as well. By taking into account the 32 compounds as a whole, the obtained QSPR

equation for the correlation between M —index and A, H°is as follow

A, H? .. =601.200—47.380M
R=0.9362, s=176, R, =0.9281, s, =168 N =32

(19)

The overall indication of these results is that the M —index can be applied not only for
organic compounds but also for inorganic compounds containing transition metals.
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3.3 METHYL HALIDES

The usefulness of newly constructed topological indices was demonstrated by correlating
standard enthalpy of formation of methyl halides. These sets of compounds contain only
five atoms. For such small molecules, hydrogen atoms have great impact on their properties
and they cannot be neglected. Thus, the hydrogen atoms must be treated as vertices in the
molecular graph. Table 5 contains the calculated M—index and the experimental values of
the standard enthalpy of formation for 41 methyl halides [33]. By using the linear
regression analysis, we obtain

A¢H? =1171-40.120M

(20)
R=0.9940, s=30.000, R, =0.9933 sy, =30.660 N =41

Again, the obtained statistical quantities indicate that there is a good correlation
between M —index and A, H® for methyl halides compounds.

3.4 SATURATED ALCOHOLS, KETONES, DIoLS, CARBOXYLIC ACIDS

In this part, we intend to study the applicability of our proposed index to predict relative
toxic potency of aliphatic compounds. Here we consider the population growth inhibition
of the ciliate Tetrahymenapyri form is to develop such a toxicity—based QSAR. T.
pyriformis is one of the generally used ciliated protozoa [34,35] in which diverse endpoints
can be used to originate the cytotoxic effects. The experimental log(1/1GC,,) values for the

four groups of aliphatic compounds [36] under consideration as well as the resulted QSAR
models are provided in Table 6. The statistical parameters reported in Table 6 demonstrate
very good consistency between R and R¢,. The small svalues indicate that the M —index
can be successfully used as a way for quantifying toxicity of aliphatic compounds even
when they have not exhibit a common skeleton requirement of QSAR analysis.

The suitable quality criteria to judge present results can be set up through the
comparison with other theoretical predictions for the toxicity of these molecular sets. Roy
et. al. [37] reported results for QSAR calculations on these aliphatic compounds using
electrophilicity as a possible descriptor. Their statistical parameters for different molecular
set(for instance; diols: R=0.899, s =0.486 and ketones: R=0.882, s =0.612) are clearly
inferior with respect to present results (diols: R=0.9864, s =0.192 and ketones: R=0.9850, s
=0.225, Table 6).
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Table 5. The calculated M —index and the experimental standard enthalpy of formation,
A H® (kJ/mol), for methyl halides.?

Compd. M A, H° Compd. M A, H°

CH:F; 40.43 -452.9 CHasBr 28.94  -37.7
CCl R 4217 -493.3 CBrCIF, 41.04 -4715
CH.Cl, 3094 -954 CH.BrCl 29.81 -50.2
CHCLF 36.56 -284.9 CHBrCIF 3543 -295.0
CBr;F; 39.91 -429.7 CHBrl 27.59 50.2

CBr,Cl, 3042 -29.3 CHFRs 46.05 -693.3
CH:Br; 28.68 -148 CFsl 4470  -589.9
CHBroF 3430 -223.4 CCIF 3743 -284.9
CHBr,Cl 2955 -20.9 CHF.CI 41.30 -483.7

CBr,CIF 3517 -231.8 CFsCl 46.92 -707.9
CHBr3 28.42 16.7 CFsBr 45.79  -648.9
CBr3F 34.04 -190.0 CHsF 3482 -237.7
CBrsCl 29.29 126  CHals 26.49 1184
CHI3 2514 2109 CH,FCI 35.69 -264.4
CF, 51.67 -933.0 CHCII 28.72 12.6

CCly 32.68 -95.8 CHzsl 27.84 13.8

Cly 23.79 2629 CHyFBr 3456 -252.7
CBr, 28.16 79.5 CH, 20.20 -74.9

CHBrF,  40.17 -463.6 CBrCls 3155  -37.2
CHBrCl, 30.68 -58.6 CHCIs 31.81 -102.9
CBrCLF 36.30 -269.4

4Experimental data were taken from [33].

An alternative manner for predicting the toxicity is utilizing topological parameters
derived from the electron density, as previously done in our research group [12]. As shown
in Ref. [12], predictions improve significantly with respect to the results obtained by Roy et
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al. [37]. However, despite its successful in predicting the toxicity, such approach is very
computational demanding because it is necessary to perform quantum chemical calculation
on each molecule and to derive the topological properties of the electron densities from the
calculated wave functions. On the contrary, the most important advantage of the proposed
M—index is its computational ease with no need to complicated calculations.

Table 6. The calculated M —index and the experimental values of the toxicity, logl/1GC,,,

for aliphatic compounds.?

Compd. M log1/1GC., Correlation Equation °
Saturated alcohols

1-Propanol 83.61 -1.7464

2-Propanol 83.67 -1.8819

1-Butanol 104.64 -1.4306

(+)-2-Butanol 104.74 -1.5420

2-Methyl-1-propanol 104.87 -1.3724

2-Pentanol 125.93 -1.1596

3-Pentanol 125.97 -1.2437

3-Methyl-2-butanol 126.26 -0.9959

2-Methyl-1-butanol 126.16 -0.9528

3-Methyl-1-butanol 126.13 -1.0359 logl/1GC,, = -3.721+0.022M
2,2-Dimethyl-1-propanol  126.58 -0.8702 (21)
2-Methyl-2-propanol 104.99 -1.7911 R =0.9932, s =0.164,
1-Hexanol 147.09 -0.3789 R, =0.9914, s, =0.176 N =21
3,3-Dimethyl-1-butanol 148.06 -0.7368

1-Heptanol 168.44 0.1050

1-Octanol 189.83 0.5827

1-Nonanol 211.26 0.8551

1-Decano 232.72 1.3354

1-Undecanol 254.20 1.9547
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1-Dodecanol
1-Tridecanol

Ketones

Acetone

2-Butanone
2-Pentanone
3-Pentanone
4-Methyl-2-pentanone
2-Heptanone
5-Methyl-2-hexanone
4-Heptanone
2-Octanone
2-Nonanone

2-Decanone
3-Decanone
2-Undecanone
2-Dodecanone
7-Tridecanone
Alcohols: diols
(¥)-1,2-Butanediol
(x)-1,3-Butanediol
1,4-Butanediol
1,2-Pentanediol
1,5-Pentanediol
(¥)-1,2-Hexanediol
1,6-Hexanediol
1,2-Decanediol
1,10-Decanediol

Carboxylic acids

275.70
297.22

64.52
85.27
106.29
106.19
127.75
148.73
149.08
148.51
170.07
191.46

212.89
212.69
234.35
255.84
276.90

118.23
118.22
118.12
139.46
139.33
160.77

160.62
246.46
246.30

2.1612
2.4497

-2.2036
-1.7457
-1.2224
-1.4561
-1.2085
-0.4872
-0.6459
-0.6690
-0.1455
0.6598

0.5822
0.6265
1.5346
1.6696
1.5214

-2.0482
-2.3013
-2.2365
-1.6269
-1.9344
-1.2669

-1.4946
0.7640
0.2240

logl/ IGC,, = —3.446 + 0.020M
(22)
R =0.9850, s =0.225

R, =0.9779, s, =0.25 N=15

log1/ IGC,, = —4.709 +0.021M
(23)
R =0.9864, s =0.192

R, =0.9653, s, =0.269 N=9
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Propanoic acid
Butyric acid
Valeric acid
Hexanoic acid
Heptanoic acid
Octanoic acid
Nonanoic acid
Decanoic acid

Undecanoic acid
Iso-Butyric acid
Isovalerianic acid
Trimethylacetic acid
3-Methylvaleric acid
4-Methylvaleric acid
2-Ethylbutyric acid
2-Propylpentanoic acid
2-Ethylhexanoic acid
Crotonic acid
trans-2-Pentenoic acid

trans-2-Hexenoic acid

78.00
98.91
120.01
141.23
162.53
183.90
181.25
226.75

248.22
99.04
120.26
120.52
141.62
141.55
141.52
184.33
184.29
81.91
102.55
123.50

-0.5123
-0.5720
-0.2674
-0.2083
-0.1126
0.0807
0.3509
0.5063

0.8983
-0.3334
-0.3415
-0.2543
-0.2331
-0.2724
-0.1523
0.0258
0.0756
-0.5448
-0.2774
-0.1279

MOHAJERI, MANSHOUR AND MOUSAEE

logl/I1GCy, =-1.181+0.007M
(24)
R =0.9429, s =0.124

R, =0.9197, s, =0.139 N =20

4Experimental data were taken from [36].

®For each series, the correlation equations and statistical quantities were presented in the

last column.

3.5. KETONES AND ALDEHYDES

Molar refraction (MR) is a particularly useful physical parameter in chemistry, biological
chemistry, and pharmaceutical science because it is closely related to the bulkiness and
polarizability of a molecule. We have checked the ability of M —index to predict the molar
refraction of a set containing 22 aldehydes and 24 ketones listed in Table 7 [38]. The
relationship between MR and M —index is give below
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MR =2223+0.217TM

R =0.9997, 5=0.262, R, =0.9997, s, =0.266

123

(25)

This linear equation indicates an outstanding correlation with high R and small s,

implying the reliability of M —index for prediction of molar refraction.

Table 7. The calculated M —index and the experimental molar refraction for aldehydes and

ketones.?

Compd. M MR Compd. M MR

Acetaldehyde 4424  11.5829 2-Butanone 85.27  20.6039

Propionaldehyde 64.74 16.1632 2-Pentanone 106.29  25.2926

Butyl aldehyde 85.60 20.8011 3-Pentanone 106.19  25.2487

2-Methyl propanal 87.31 20.8219 3-Methyl-2- 102.74  25.2603
butanone

Pentaldehyde 106.66 25.4983 2-Hexanone 127.46  29.9308

2-Methyl butanal 106.80 25.3943 3-Hexanone 127.31 29.7251

3-Methyl butanal 106.90 25.5327 3-Methyl-2- 127.75  29.9453
pentanone

Hexanal 127.85 30.9280 4-Methyl-2- 127.75  29.9877
pentanone

2-Methylpentanal 128.02 29.8497 3,3-Dimethyl-2- 128.14  29.6748
butanone

2-Ethylbutanal 128.07 29.9981 2-Heptanone 148.73  34.5663

2,3-Dimethylbutanal 128.36  30.0640 3-Heptanone 148.56 34.4230

Heptanal 149.14 34.7004 4-Heptanone 148.51 34.3083

2,2-Dimethylpentanal 149.84 34.7537 5-Methyl-2- 149.08 34.5773
hexanone

Octanal 170.49 39.4396 2-Octanone 170.07  39.1959

2-Ethylhexanal 170.78 39.2395 5-Octanone 169.81 39.0616

2-Ethyl-3- 171.38 38.9423 6-Methyl-3- 170.25 38.9478
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methylpentanal heptanone

Nonanal 191.89 44.2669 2-Nonanone 19146 43.3542

3,5,5- 193.64 43.9887 5-Nonanone 191.15 43.8710

Trimethylhexanal

Decanal 213.33 48.6737 2,6-Dimethyl-4- 191.88 43.8902
heptanone

2-Methyldecanal 235.00 53.0003 2-Decanone 212.89 48.5304

Dodecanal 256.28 58.0913 2-Undecanone 234.35 52.7129

2-Methylundecanal 256.49 57.9284 6-Undecanone 233.97 53.2109

Acetone 64.52  16.2963 2-Methyl-4- 255.83  57.7027
undecanone

4Experimental data were taken from [38].

3.6. ISOMERIC SYSTEMS

One of the main drawbacks of the most topological indices is their poor discrimination of
isomers and the index has the same value for different isomeric compounds. It is well-
known that this degeneracy increases when the number of atoms in the molecule increases,
even for simple molecules such as alkanes. In previous studies the capacity of one index to
discriminate isomers was measured by using a discrimination index, D, which has been
calculated as the number of isomers having different values of the index divided by the
total number of isomers [39].

Similar to other descriptors, the M —index introduced in the present work requires
some modifications to be applicable for isomers. Theproposed M-index in Eq. 6 was
constructed by parameters which are only dependent on the number of atoms, bond strength
and the property of individual atoms. Thus, the calculated values of the M —index for the
structural isomers of a specific molecular formula are very close together and cannot well
discriminate the isomers. To increase the discriminative power of the M —index, we
introduce a quantity in which the effect of different configurations due to structural isomers
is taken into account. For the isomeric systems, we first calculate q as

! =Z@ (26)
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where d is the distance and n,(d) is the number of neighboring nodes in the distance d of

the vertex i. Finally, we defined the discrimination parameter, D used in the present study

as
N _ Zi'\ilqi

where N is the total number of vertices in the molecular graph. Finally, the appropriate
form of our proposed index designed for isomeric systems is D”M , where B is a free
parameter dependent on the considered property.

The predictive ability of M —index modified by discrimination parameter has been
checked within two sets of isomeric compounds. First, a large set of 88 aldehydes and
ketones and their boiling points [40—42] (Table 8) was taken to construct model. For such a
data set, the correlative model was obtained by setting g = —1 as following equation

Bp = —172.800 +15.590D M (28)
R=0.9922, s=7.557, R, =0.9918, s, =7.647 N =88.

Table 8. The calculated M-index and the experimental boiling points (°C) for aldehydes
and ketones. ®

Compd. Bp  Dfm Compd. BD D’M

Acetaldehyde 20.8  12.39  5-Methyl-2-hexanone 1440 20.02

Propionaldehyde 48.8 14.07 2-Methyl-3-hexanone 135.0 20.10

Butyl aldehyde 75.7 15.69 4-Methyl-3-hexanone 134.0 19.99

2-Methy! propanal 64.4  15.87 5-Methyl-3-hexanone 135.0 20.08

Pentaldehyde 103.0 17.24 2,2-Dimethyl-3- 125.0 19.75
pentanone

2-Methyl butanal 925 17.09 2,4-Dimethyl-3- 125.0 19.89
pentanone

3-Methyl butanal 925 17.05 4,4-Dimethyl-3- 126.0 19.75
pentanone

2,2-Dimethylpropanal 775 16.88 2-Octanone 1725 21.59

Hexanal 128.0 18.71 3-Octanone 1675 21.65
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2-Methylpentanal 117.0 1855 4-Octanone 1655 21.68
3-Methylpentanal 118.0 18.46 2-Methyl-4-heptanone 154.0 21.47
2-Ethylbutanal 117.0 1850 3-Methyl-4-heptanone 153.0 21.37
Heptanal 152.8 20.13 3-Methyl-2-heptanone 164.0 21.31
3-Methylhexanal 143.0 19.85 6-Methyl-2-heptanone 167.0 21.38
2,2-Dimethylpentanal 126.5 19.66 2-Methyl-3-heptanone 158.0 21.48
Octanal 171.0 2150 3,3-Dimethyl-2-hexanone  151.5 20.92
2-Ethylhexanal 160.0 21.26 2,2-Dimethyl-3-hexanone  146.0 21.03
2-Propylpentanal 160.0 21.23 2,5-Dimethyl-3-hexanone  147.5 21.27
Nonanal 191.0 22.83 4,4-Dimethyl-3-hexanone  148.0 20.95
3,5,5-Trimethylhexanal ~ 170.5 21.96 2,2,4-Trimethyl-3- 135.1 20.91
pentanone
Decanal 208.5 24.12 2-Nonanone 195.0 2291
Undecanal 233.0 25.38 3-Nonanone 190.0 23.28
2-Methyldecanal 229.0 24.33 4-Nonanone 1875 23.31
Dodecanal 254.0 26.61 5-Nonanone 188.4  23.02
2-Methylundecanal 246.0 26.48 7-Methyl-3-octanone 1825 2277
Tridecanal 267.0 27.82 3-Methyl-4-octanone 1740 22.70
Tetradecanal 287.0 29.00 7-Methyl-4-octanone 178.0 22.80
Pentadecanal 304.0 30.17 2,6-Dimethyl-4- 169.4 22.61
heptanone
Acetone 56.2 14.18 3,5-Dimethyl-4- 162.0 22.37
heptanone
2-Butanone 79.6 15.81 2,2,4,4-Tetramethyl-3- 152.0 21.89
pentanone
2-Pentanone 102.0 17.35 2-Decanone 210.0 24.20
3-Pentanone 101.7 17.39  3-Decanone 211.0 24.26
3-Methyl-2-butanone 93,5 16.57 4-Decanone 206.5 24.29
2-Hexanone 127.6 18.82 2-Undecanone 2315 25.45

3-Hexanone 123.5 18.87 3-Undecanone 227.0 2551
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3-Methyl-2-pentanone
4-Methyl-2-pentanone
2-Methyl-3-pentanone
3,3-Dimethyl-2-
butanone

2-Heptanone
3-Heptanone

4-Heptanone

3-Methyl-2-hexanone
4-Methyl-2-hexanone

118.0
117.0
115.0
106.0

1514
147.0
144.0

143.5
139.0

18.57
18.61
18.75
18.33

20.23
20.29
20.31

19.95
19.93

5-Undecanone
6-Undecanone
2-Dodecanone

2-Tridecanone

7-Tridecanone
2-Methyl-3-tridecanone
7-Ethyl-2-methyl-4-
undecanone

2-Pentadecanone

8-Pentadecanone

227.0
226.0
246.5
263.0

261.0
267.0
252.5

294.0
291.0

127

25.57
25.58
26.68
27.88

28.02
28.99
28.29

30.23
30.37

4Experimental data were taken from [40—42].

In this model, there is a high R(0.9922) and a small s (7.557) value. The values of
R, (0.9918) and s, (7.647) are very close to the values of R and s, and s, are only

slightly larger than s. The correlation results and the cross-validation results demonstrate
that the obtained model is statistically significant and validated.

In the second attempt, six physico—chemical properties of 77 hydrocarbons [43]
(Table 9) including isomers have been studied. For heat capacity and boiling point g is
zero, while for density, refractive index, Gibbs free energy, and the standard enthalpy of
formation the obtained values for j are, respectively, 2, 2, 3.5, and —0.9. The correlation
equations for these six properties are given below

C, =20 +3.851M
R=0.9899, s=3.886, R, =0.9894, s, =3.926 N =77

Bp = —66.810 + 4.068M

R=0.9849, s=5.035 R, =0.9838, s, =5.145 N =77

p =633.5+0.111D*M

R=0.9495, s=8.291, R, =0.9460, s, =8.455 N =77

Rl =1.360+5.752e —5D2M

(29)

(30)

(31)

(32)
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R =0.9584, s =3.866e -3, R, =0.9553, s, =4.010e -3 N =77

AG =-7.522+5.171e —3D*M (33)
R=0.9610, s=3.675, R, =0.9586, s, =3.735 N =77

A H® =-24.180+4.305D°°M (34)
R=0.9819, s=0.923, R, =0.9810, s, =0.935 N =77

As can be seen, all equations have acceptable quality and the propose index used in
these equations can explain more than 95% of the variance in the considered physico-
chemical properties. The high correlation coefficients of cross validation show that the
constructed models are statistically significant.

Table 9. The calculated M —index and the experimental heat capacity (C,, J/mol.K),
boiling point (Bp, °C), density (o, kg/m®), refractive index (RI), Gibbs free energy (AG,
kJ/mol), and the standard enthalpy of formation (A, H®, kJ/mol) for hydrocarbons.?

Compd. Cp Bp 5/3'\/ Jo RI BﬁM AG BﬁM AfHo 5pM
3-Methylpentane 140.88 63.28 31.63  659.76 1.3739 289.95 -2.12 1527.59 26.32 11.67
2,2-Dimethylbutane 142.26 49.74 31.98  644.46 1.3660 320.67 -7.42 1807.01 25.40 11.33
2,3-Dimethylbutane 140.21 57.99 31.83  657.02 1.3723 308.06 -1.77 1690.50 24.77 11.46
3-Methylhexane 164.50 91.85 3753 682.88 1.3861 413.46 6.60 2500.07 30.71 12.75
3-Ethylpentane 166.80 93.48 37.60 693.92 1.3911 423.81 12.70  2606.91 31.71 12.64
2,2-Dimethylpentane 167.70 79.17 3790 669.48 1.3800 451.77 2.10 2898.00 29.50 12.43
2,3-Dimethylpentane 161.80 89.75 37.80 690.81 1.3895 444.39 7.60 2821.19 28.62 12.47
2,4-Dimethylpentane 171.70 80.47 37.70  668.23 1.3788 430.98 4.90 2679.30 29.58 12.60
3,3-Dimethylpentane 166.70 86.04 38.00 689.16 1.3884 465.55 4.80 3048.35 29.33 12.31

2,2,3-Trimethylbutane 164.20 80.86 38.20 685.64 1.3869  487.29 6.30 3288.92 28.28 12.15

N-Octane 188.70 125,68 43.11 69854 13951  508.91 17.67  3240.89 38.12 14.20
2-Methylheptane 188.20 117.65 4335 693.87 13926  538.66 13.37  3564.95 35.82 13.95
3-Methylheptane 186.82 118.93 4343 701.73 13961 55251 13.79  3721.67 35.31 13.83
2,4-Dimethylhexane 193.35 109.43 43.69 696.17 13929  586.01 13.07  4107.42 33.76 13.58

2,5-Dimethylhexane 186.52 109.11 4359 689.37 13900 570.22 1140  3921.96 33.39 13.71
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3,3-Dimethylhexane 191.96 111.97 4396 70595 13978 62091 1513  4523.98 33.43 13.35
3,4-Dimethylhexane 182.72 117.73 4381 71515 14018 605.15 1843  4336.01 32.47 13.44
3-Ethyl-2- 193.05 115.66 43.83 71520 14017 609.52 20.68  4389.42 34.31 1341
Methylpentan

2,2,3- 186.77 109.84 4423 71203 14007 657.01 1945  4971.27 32.13 13.13
Trimethylpentane

2,3,3- 188.20 11477 4428 72230 14052 664.88 20.04 5071.69 32.17 13.08
Trimethylpentane

2,3,4- 192.72 11347 4403 71509 14020 633.00 20.76  4673.57 32.55 13.27
Trimethylpentane

2,2,3,3- 188.28 106.29 44.68 729.88 14057 71487 24.04 5718.96 31.84 12.83
Tetramethylbutane

2-Methyloctane 210.90 14328 49.25 709.60 14008 689.31 21.60  4988.20 40.42 15.02
3-Methyloctane 209.70 14423 49.33 716.70 14040 706.26  22.00 5197.81 39.92 14.89
4-Ethylheptane 214.30 14120 4949 72230 14067 73847 26.80 5606.79 40.50 14.66

2,2-Dimethylheptane 212.40 132.82 49.72 706.60 1.3995  756.29 1950 5824.82 38.83 14.61
2,3-Dimethylheptane 207.70 14050 49.66 722.00 1.4064  755.25 2350 5816.87 37.82 14.59

2,4-Dimethylheptane 217.10 133.20 49.63 71150 14011 75195 20.80 5774.96 38.16 14.60

2,5-Dimethylheptane 208.20 136.00 49.58 713.60 1.4015  742.75 18.20  5655.51 37.53 14.67

2,6-Dimethylheptane 210.40 13522 4949 70450 1.3985  724.43 19.80 5421.28 37.99 14.79

3,3-Dimethylheptane 214.00 137.02 49.89 72160 14063 787.88 22.00 6241.86 38.20 14.41

3,4-Dimethylheptane 206.80 14040 49.76 72750 14091  775.63  24.90 6084.78 37.02 14.46

3,5-Dimethylheptane 214.60 135.70  49.69 716.60 1.4046 76293  22.00 5917.94 38.07 14.54

3-Ethyl-3- 214.10 140.60 50.06  736.00 14134 821.89 30.50 6703.42 37.36 14.21
Methylhexane

4-Ethyl-2- 219.70 133.80 49.72  724.20 1.4054 770.66 2450  6020.30 39.25 14.48
Methylhexane

2,2,4- 210.70 12991 50.09 711.80 1.4010 817.86 23.60 6643.10 36.61 14.25
Trimethylhexane

2,3,3- 213.30 137.69 50.26  733.50 1.4119 847.96 29.40  7058.75 36.28 14.09
Trimethylhexane

2,3,4- 214.00 138.96 50.06 735.10 1.4120 821.89 28.60 6703.42 36.86 14.21
Trimethylhexane

2,3,5- 212.50 131.36 4992 71790 1.4037 795.75 2220 6348.35 36.02 14.36

Trimethylhexane
2,4,4-Trimethylhexan 213.50 130.66 50.16 720.05 1.4052 831.08 26.60 6824.87 36.44 14.18
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3-Ethyl-2,2- 205.00 133.84 5031 731.00 14101 857.89 3750  7199.46 36.16 14.04
Dimethylpentan

2,2,3,3- 213.34 140.29 50.81 75297 14214  929.70  39.00 8225.65 35.86 13.73
Tetramethylpentane

2,2,3,4- 208.50 133.03 5051 73522 14125 884.63 36.70 7574.18 35.06 13.92
Tetramethylpentane

3-Ethyloctane 235.80 166.50 55.37 73590 14136  903.92 3490 7341.39 4531 15.76
4-Ethyloctane 236.50 163.64 5542 73430 14131 917.34 3340 7528.24 45.10 15.67
2,2-Dimethyloctane 235.10 156.90 55.63 720.80 1.4060 928.65 27.70  7669.23 43.43 15.67
2,5-Dimethyloctane 231.80 15850 55.53  726.40 14089 92458 26.90 7620.98 41.92 15.66
3,4-Dimethyloctane 229.30 16340 55.69 74180 14159  956.90 33.00 8075.93 41.80 15.49
3,5-Dimethyloctane 238.30 15940 55.64 73290 14115 94837  29.10  7955.70 42.47 15.53
3,6-Dimethyloctane 229.60 160.80 55.59 73290 14115 93526 28.90  7769.81 41.63 15.61
4,4-Dimethyloctane 239.30 15750 55.87 73120 14122  983.33 3190 8449.58 42.30 15.37
4,5-Dimethyloctane 230.10 162.13 55.72 74320 14167 965.17 3530 8194.87 4151 15.44
4-N-Propylheptane 237.70 15750 5546 73210 14113 927.67 3820 7673.21 44.85 15.61
4-I1sopropylheptane 239.20 158.90 55.77 73540 14132  979.10 37.90 8397.48 43.10 15.36
2-Methyl-3- 238.50 161.20 55.73  739.80 14151  967.48 3570 8228.62 43.30 15.43
Ethylheptane

2-Methyl-4- 243.40 156.20 55.69 73220 14114  962.17 31.60 8153.95 43.64 15.45
Ethylheptane

3-Methyl-4- 236.20 162.20 55.84 746.60 14183  992.87 36.90 8597.02 42.47 15.29
Ethylheptane

3-Methyl-5- 240.90 15820 55.74 736.80 14141  970.77 33.10 8276.38 43.35 1541
Ethylheptane

2,2,3- 232.50 157.60 56.13 73850 14145 1021.76 34.80  9004.99 41.30 15.21
Trimethylheptane

2,3,3- 235.10 160.20 56.21  748.80 14202 1039.31 37.30 9267.17 41.00 15.12
Trimethylheptane

2,3,4- 237.60 159.90 56.03 74850 14195 1016.82 37.20 8940.44 40.96 15.20
Trimethylheptane

2,3,5- 233.90 160.70 55.94 75450 14169 997.74  30.30  8659.63 40.12 15.30
Trimethylheptane

2,3,6- 228.50 156.00 55.82 73470 14131 972.26 2850  8289.11 39.75 15.43

Trimethylheptane
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2,4,5- 234.10 156.50 55.96  737.30 14160 1002.85 36.90 8734.94 39.98 15.27
Trimethylheptane

3,3,5- 234.10 155.68 56.19  739.00 14170 1038.98 3410 9264.22 40.46 15.12
Trimethylheptane

3,4,4- 235.60 161.10 56.33  753.50 14235 1067.62 40.30 9697.26 40.08 14.99
Trimethylheptane

3,4,5- 235.10 16250 56.11  751.90 14229 103431 39.70 9201.17 41.14 15.12
Trimethylheptane

2-Methyl-3- 231.80 166.70 56.09  743.60 14172 1033.98 46.80 9198.24 40.46 15.12
Isopropylhexane

2,3-Dimethyl-3- 238.20 163.70 56.42  759.98 14247 1085.61 45.00 9974.15 40.71 1491
Ethylhexane

2,3-Dimethyl-4- 243.00 160.90 56.14  751.60 14203 104295 4210 9332.13 42.43 15.08
Ethylhexane

2,4-Dimethyl-4- 235.00 160.10 56.29  751.40 14202 1061.98 4230 9612.80 40.29 15.01
Ethylhexane

3,3-Dimethyl-4- 228.20 16290 56.44  759.80 14246 1090.98 50.00 10057.7 39.92 14.89
Ethylhexane 9

3,4-Dimethyl-4- 235.50 162.10 56.49  759.60 14244  1100.24  47.60 10200.8 40.42 14.85
Ethylhexane 9

2,2,3,3- 238.20 160.31 56.82  760.89 14260 1143.72 48.80 10869.4 40.00 14.71
Tetramethylhexane 2

2,3,3,4- 241.50 16459 56.69  765.60 14298 1129.30 49.10 10648.7 40.04 14.75
Tetramethylhexan 2

2,34,4- 231.80 161.60 56.64  758.60 14267 1119.89 49.20 10500.9 38.87 14.79
Tetramethylhexane 2

2,3,4,5- 243.10 156.20 56.34  745.60 14204 1071.09 4270 9751.18 40.71 14.97

Tetramethylhexane

4Experimental data were taken from [43].

4, CONCLUSIONS

We have employed the expanded form of the Wiener index to introduce a novel topological
descriptor, named M —index, which includes both the atom parameter such as
electronegativity and principle quantum number and the bond parameter. In fact, we
modified the adjacency matrix for constructing the M —index in such a way that not only
the characteristics of an individual atom but also the role of that atom in establishing the
connection with other atoms in a molecular graph is considered. The proposed M —index
was used to correlate with a wide range of properties in various data sets, including;
logarithm of partition coefficient in octanol/water, molar refraction, molar volume,
parachor, and polarizability for alkanes and cycloalkanes; standard enthalpy of formation
for silicon, titanium, and methyl halides; toxicity of saturated alcohols, ketones, diols, and
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carboxylic acids; molar refraction, and boiling point of aldehydes and ketones, as well as
heat capacity, boiling point, density, refractive index, Gibbs energy, and the standard
enthalpy of formation of isomeric compounds. The predictive ability of the developed
models has been assessed by leave—one-outcross—validation test. All the constructed
models have favorable statistical parameters and demonstrate satisfactory predictability.
Finally, it is important to note that the M —index is easy to generate and the
developed QSPR/QSAR models based on this index are linearly correlated. This is an
interesting feature of the M —index when compared with quantum chemical descriptors
which require vast computational cost and exhibit limitations for large size molecules.

5. SUPPLEMENTARY INFORMATION

Ilustrative examples for computing M—index for the compounds of different tables are
presented in Supplementary Information.
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A new two-step implicit linear Obrechkoff twelfth algebraic order
method with vanished phase-lag and its first, second, third and
fourth derivatives is constructed in this paper. The purpose of this
paper is to develop an efficient algorithm for the approximate
solution of the one—dimensional radial Schrédinger equation and
related problems. This algorithm belongs in the category of the
multistep methods. In order to produce an efficient multistep
method the phase-lag property and its derivatives are used. An
error analysis and a stability analysis are also investigated and a
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1. INTRODUCTION

The radial time—independent Schrddinger equation can be written as:
" I(1+1

y (x){ L )+V(x)—Ejy(x), &
The boundary conditions are y(0) = 0, and a second boundary condition, for large values
of x, determined by physical considerations. Large research on the algorithmic
development of numerical methods for the solution of the Schrédinger equation has been
done in the last decades. The aim and scope of this research is the construction of fast and
reliable algorithms for the solution of the Schrédinger equation and related problems.

* Corresponding Author: (Email address: mortazatahnmoras@gmail.com)
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Mathematical models in theoretical physics and chemistry, material sciences, quantum
mechanics and quantum chemistry, electronics etc. can be express via the above boundary
value problem [1]. The numerical methods for the approximate solution of the
Schrddinger equation and related problems can be divided into two main categories:

1. Methods with constant coefficients.

2. Methods with coefficients depending on the frequency of the problem.
The main result of this paper is the development of an efficient multistep method for the
numerical solution of systems of ordinary differential equations with oscillating or
periodical solutions. The reason of their efficiency, as the analysis proved, is that the
phase—lag and its derivatives are eliminated. Another reason of the efficiency of the new
obtained method is that it has high algebraic order. The purpose of this paper is to extend
the methodology for the development of numerical methods for the approximate solution
periodic initial-value problems. The new methodology is based on the requirement of the
phase—lag and its derivatives vanishing. Based on this new methodology we will develop
a method one will have phase-lag and its first, second, third and fourth derivatives
vanishing. We will apply the new developed method on the numerical solution of the
radial Schrodinger equation. We will study the efficiency of the new obtained methods
via:

e A comparative error analysis,

e A comparative stability analysis and finally,

e The numerical results produced from the numerical solution of the radial

Schrodinger with application to the specific potential.

More specifically, we will develop a family of implicit symmetric two—step Obrechkoff
methods of twelfth algebraic order. The development of the new family of methods is
based on the requirement of the phase-lag and its first, second, third and fourth
derivatives vanishing. We will give a comparative error analysis and a comparative
stability analysis in order to study the efficiency of new proposed method of the family.
Finally, we will apply both methods to the resonance problem. This is one of the most
difficult problems arising from the radial Schrédinger equation.

For several decades, there has been strong interest in searching for better
numerical methods to integrate first order and second—order initial value problems,
because these problems are usually encountered in celestial mechanics, quantum
mechanical scattering theory, theoretical physics and chemistry, and electronics.
Computational methods involving a parameter proposed by Gautschi [8], Jain et al. [13]
and Steifel and Bettis [24] yield numerical solution of problems of class (1). Chawla et al.
[3, 4], Ananthakrishnaiah [1], Shokri and et al. [17, 18,19], Dahlquist [5], Asadzadeh [2],
Franco [6], Lambert and Watson [14], Simos and et al. [20, 21, 22], Saldanha and Achar
[16], and Daele and Vanden Berghe [26] have developed methods to solve problems of
class (2). Consider the class of Obrechkoff methods of the form
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k Lk .
20 = 20D By Wi (2
j=0 j=0

i=1
for the numerical integration of the problem (1). The method (2) is symmetric when
a;=a,_;,B;=pB_; ] =012k, and it is of order g if the truncation error associated with

the linear difference operator is given as
TE =C,,h™?y@?  x . <n<x

q+2 n+1?

where Cg+2 is a constant dependent on h. We have organized the paper as follows: In
Section 2 we present the theory of the new methodology. In Section 3 we present the
development of the new method. A comparative error analysis is presented in Section 4.
Finally, the numerical results are presented in Section 5.

2. PRELIMINARIES

In order to define the interval of periodicity of a method the periodic stability analysis of
this method is very important. The interval of periodicity defines the step size which can
be used in order the approximation of the solution of problems with high oscillatory or
periodic solution to be of the same order as the algebraic order of the method. It can be
seen that when we have a large interval of periodicity then we can have a large step size
for the same accuracy. To investigate the stability properties of methods for solving the
initial value problem (I), Lambert and Watson [14] introduced the scalar test equation.
From the form (2) and without loss of generality we assume

y'=-0’y, weR. (3)

and the interval of periodicity, where w is defined as the frequency of the problem and
may be a constant. When we apply a symmetric two-step method to the scalar test
equation (3), we obtain a difference equation of the form

Yo —2C(V)Y, + ¥, =0, (4)
where v =wh, his the step length, C(v) =B(v)/A(v) where A(v) and B(v) are
polynomials in v and Yy, is the computed approximation to y(nh),n=012,.... The
characteristic equation associated with (4) is

c2-2Cc()¢ +1=0. 5)
We have the following definitions.
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Definition 2.1. (See [25]). The method of Eq. (4) with the characteristic Eq. (5) is
unconditionally stable if | £, |<1 and | ¢, |<1 for all values of wh.

Following Lambert and Watson [14], we say that the numerical method (4) has an
interval of periodicity (0,v2), if for all v € (0,v2), ¢, and ¢, satisfy ¢, = exp(i0(v)), and
¢, =exp(—i0f(v)), where 8(v) is a real function of v. For any method corresponding to

the characteristic equation (4) the phase—lag is defined as the leading term in the
expansion of

t=v—-0(v)=v—cos HC(v)]. (6)
If the quantity t = O(vq”) as v — 0, the order of phase—lag is qg.

Definition 2.2. Suppose (5) is the characteristic equation of (4), and
|C(v) k1, Vv?e (O,VOZ)
Then the periodicity interval of the method is (O,VOZ).

Definition 2.2. The method (4) is said to be P-stable if its interval of periodicity is (0,)

Theorem 2.4. (See lbraheem and Simos [10]) The phase—lag of a symmetric two-step
method with characteristic equation given by (5) is the leading term in the expansion of

[C(v) - cos(v)]
V2 .

3. DEVELOPMENT AND ANALYSIS

From the form (2) and without loss of generality we assume
. m
a; =0y i By =Pimj 1= 00—){3}
and we can write

ynﬂ B 2yn + y”’l = Z hZi [ﬁioyn+1(2i) + ﬁilyn(Zi) + ﬁioyn—l(Zi)] (7)

i=1

When m =3 we get
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Yn+1—2Yn+Yn-1= hz[ﬁlO(Ynﬂ(Z) + Yn—l(z)) + ﬂ11Yn(2)}

+h? :ﬂZO(Yn+l(4) +yna®)+ 521Yn(4)} (8)

+h0 :ﬂgo(yn+1(6) + Yn—1(6)) + ﬂ31)’n(6)} :

M —3 for method (8) is 11 so that if P =-1, K =13we obtain classic method and the
coefficients of this method are

229 3665 1
ﬁ1°_7788’ ﬁ“_3894’ P = 2360 )
5, - 711 5. - 127 5, = 2923

212080" ¥ 39251520 " 3925152
where its phase—lag is given by

plclas = — 45469 Vlz +O(V14) y

3394722659%328000

and its local truncation error is given by

LTE g, = 45469 y“ht* +0(h').

9~ 1697361329664000
If P=6, K=-1 then we obtain the method with zero phase-lag (PL), and the

coefficients of this case are given in [16].

3.1. DEVELOPMENT

Application of the method (8) to the scalar test equation (3) leads to the difference
equation (4) with C(vz) given by

1 2 1 4 1 6
1- =B v+ Bov == Pagv
C(v2)= 2711 2721 2731 (10)

L+ B = o™ + Bag®
We require the above mentioned method to have the phase-lag and its derivatives
vanished. Using the Eq. (10) and Theorem 2.4, and requiring the above method (8) to

have the maximum algebraic order with five free parameters, the following relations are
obtained:

1 1
:BlO :E_E,Bn-

So the phase-lag is equal to:
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1 1 1
1- Eﬁnvz + Eﬁz1v4 - Eﬁmve
PL = —cos(v) (v 2.

1 1
1+ (2 _Zﬁnjvz ~ Bogv" + Pogv*

We require the above mentioned method to have the phase—lag and some of its derivatives
vanished. Hence we can write

PLY =0, i=01234.
Demanding the phase—lag and the first, second, third and fourth derivatives of the phase
to vanish we can find of all coefficients. For small values of |v | in the coefficients, are
subject to heavy cancelations. In this case the following Taylor series expansions should
be used:

5 229 45469 2 24889175 4 678202459751 6
= + v - vo- v
10 7788 262829424 21492613318176 17615223060643802880
35019787379195 8 51820722922675986337 10
+ v+ v
1824591850710709359831552 1979239042857375626001274828800
640261689488085567511 12
+ 14
621981077741727283564653249884160
305831417285687021551777934669 14

+ v
11073950059127779543752189341357114253312000

3665 45469 9 24889175 4 678202459751 6
= - v+ v+ v
117 3894 131414712 10746306659088 8807611530321901440
35019787379195 8 51820722922675986337 10
- v - v
912295925355354679915776 989619521428687813000637414400
640261689488085567511 12
- v
310990538870863641782326624942080
305831417285687021551777934669 14

- v
5536975029563889771876094670678557126656000

5 1 45469 2 805517 4 441092244757 6
= - - v - v+ v
20 2360 6021183168 58616218140480 134516248826734494720
5333451495777199 8 1166381440358669133769 10
+ v+ v
41799740579918068970686464 352664411272768747905681696768000
73168428536999510080433 12
+ v
1052844333413723819997622137531187200
37396229930111340972105463871 14

+ v
30042725758494980867499958643777434361856000
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5 711 5228935 47774789 4 4726497723443 6
= - v+ v+ v
217 12080 33116507424 40298649971580 147967873709407944192
63080459663327759 8 2330989829190428205673 10
- v - v
229898573189549379338775552 387930852400045622696249866444800
12281012353250799618959 12
- v
62941780801907402282466540830668800
2468604944991863950283930434259 14
=

_-627892968352545100130749135654948378162790400

5 127 45469 2 5624977 4 14566546103957 6
= + v+ v+ v
30 39251520 305690837760 1289556799090560 143415016056810776678400
184980240090953987 8 41313447360649468349 10
+ v+ v
91959429275819751735510220800 1193633392000140377526922665984000
22457771382822810779232493 12
+ v
43777267383342636435501128478546763776000
20012234957709499586085136211 14+

+ 1%
3219963940269462051952559670025376298270720000

2923 14231797 2 26183459 4 255261508015541 6
= - v+ v o= v
317 3925152 1986990445440 257911359818112 932197604369270048409600
6643202390908931 8 768504540290345312837 10
+ v - v
9195942927581975173551022080 7758617048000912453924997328896000
2818055834584169721163 12
- 14
1152033352193227274618450749435441152
336906392707210170648185126081 14
vt

_-6976588537250501112563879285054981979586560000

hence

pL 3111088424219822024€000327708149886658237506483999939597 30
= 1%
New ™ 3706259208163314268929977306836020716126560618326079160070087321067278298400000

and

LTE _ 45469 (5w8y(6’ +10a)4y(10) +5a)zy(12) +y(14) +1Oa)6y(8) +a>1°y(4’)h“,

New 1697361329 664000

where v =wh, o is the frequency and h is the step length. As v — 0, the LTE of the
method (8) with above derived coefficients, tends to

45469 hl4y(l4) +O(h16)
169736132%6400 ’
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which agrees with the LTE of the three methods due to Wang [27], Simos [20] and Daele
[26], Achar [1], as H — 0. The characteristic equation
Qls;v?)= A(v)s? —2B(v)s + A(v) =0
has complex roots of unit magnitude when
B(v)

lcos(0(v))| = ‘m <1,

i.e. when A(v)* £B(v) >0. Substituting for A(v) and B(v) for new method, the interval

of periodicity of the classical Obrechkoff method, PL" and PL" methods [18], the new
method when v — 0 are obtained [0, 25.2004], [0,408.04], [0, 1428.84] and [0, 6593.44]
respectively. The behaviors of the coefficients are given in Figures 1, 2 and 3.

4. COMPARATIVE ERROR ANALYSIS

We will study the following methods:

e The ten-step tenth algebraic order method developed by Quinlan and Tremaine
[15] which is indicated as QT10.

e The twelve-step twelfth algebraic order method developed by Quinlan and
Tremaine [15] which is indicated as QT12.

e The classical two—step method of the family of methods mentioned in Section 3 of
this paper which is indicated as CL2.

e The classical ten—step method of the family of methods mentioned in paragraph 3
of [9] which is indicated as CL10

e The method with vanished phase—lag produced by Alolyan and Simos [10] which
is indicated as PF.

e The ten-step predictor—corrector method produced by Shokri [17] which is
indicated as PC.

e High phase-lag order trigonometrically fitted two—step Obrechkoff produced by
Shokri [18] which is indicated as TFO.

e The method with vanished phase-lag and its first derivative produced by Alolyan
and Simos [10] which is indicated as PFDF.

e The ten-step method with phase—lag and its first and second derivatives equal to
zero produced by Alolyan and Simos [9] which is indicated as PFDF12.

e The ten-step method with phase-lag and its first, second and third derivatives
equal to zero produced by Alolyan and Simos [9] which is indicated as PFDF123.

e The new developed two—-step Obrechkoff method with vanished phase—lag and its
first, second, third and fourth derivatives obtained in this paper which is indicated
as new.
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Figure 1: Behavior of the coefficients g,,and f,, in the new method.
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Figure 2: Behavior of the coefficients f,,and j,, in the new method.
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Figure 3: Behavior of the coefficients B,,and S, in the new method.

From the above equations we have the following theorem:

Theorem 4.1. For the numerical solution of the time independent radial Schrédinger
equation the new proposed method produced in this paper is the most accurate method,

especially for large values of| G ||V, —E]|.

Proof. The radial time independent Schrodinger equation is of the form

y'=f(x)y(x) (12)
Based on the paper of Ixaru and Rizea [12], the function f(x) can be written in the form
f(X)=g(x)+G, where g(x) =V(X)-V. =g, and V. is the constant approximation of the

potential and G=v* =V, -E. We express the derivatives y®, i=234,... which are
terms of the local truncation error formulae, in terms of Eq. (12). The expressions are
presented as polynomials of G. Finally, we substitute the expressions of the derivatives,
produced in the previous step, into the local truncation error formulae. We use the

procedure mentioned above and the formulae:



A New Two-Step Obrechkoff Method with Vanished Phase-Lag 147

v =V 0-ve + 6,
2 2
yi" {jXZV(x)}y(xm[j V(x)j[—y(x)j (V(x)vC+G{jX—2y(x)}
4 3 2 2
6 _[d° av d a” =
Yn _£dx4 (X)}y(x)+4£dx3v(x)}[dx y(X)j+3£dX2 V(X)}£dxzy(x)} (13)
4

2
+ [iV(x)j y(x)+6(v(x)—v +Gxiv(x)j[i y(X)j

42
+alv(0-vg +G 52V ® v+ 0~V +6F| < ZY(X)
X

We consider two cases in terms of the value of E :
1. The energy is close to the potential, i.e. G=V,. —E ~0. So only the free terms of

the polynomials in G are considered. Thus for these values of G, the methods are of
comparable accuracy. This is because the free terms of the polynomials in G, are
the same for the cases of the classical method and of the new developed methods.
2. G>>o0r G<<0.Then |G| is a large number.
So, we have the following asymptotic expansions of the equations produced from the Local
Truncation Errors and based on the above procedure:
a. The ten-step tenth algebraic order method developed by Quinlan and Tremaine
[15], for the analysis of the local truncation error see [11]

52559
LTEqrso = h“[— 6 }

X)G® + 14
912384 y() (14)

b. The twelve-step twelfth algebraic order method developed by Quinlan and
Tremaine [15], for the analysis of the local truncation error see [11]

16301796103
LTE =h"| - X)G" +... | 15
oria [ 290594304000 y() } (15)
c. The classical two-step Obrechkoff method with m =3 which is indicated as CL2
45469
LTE,, , =h"| - X)G' +...|. 16
o2 [ 1697361329664000 y(x) } (16)
d. The classical ten—step method of the family 1, [9] which is indicated as CL10
547336457
LTE =h"| - )G’ +...|. 17
cio [ 373621248000 y() } (17

e. The method with vanished phase—lag produced by Alolyan and Simos [10] which
is indicated as PF
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547336457 6
X)Yy(X)G” +... |. 18
3736212480009( )y } (18)
f. The ten-step predictor—corrector method produced by Shokri [17] which is
indicated as PC

LTEm::h“[—

96506469327691 6
X)V(X)G® +... | 19
47345284546560000 909y() } (19)

g. High phase-lag order trigonometrically fitted two—-step Obrechkoff PL" produced
by Shokri [18] which is indicated as TFO

45469
LTE,., =h"| - X)Y(X)G® +... |. 20
” [ 1697361329664000 V) } (20)

h. The method with vanished phase—lag and its first derivative produced by Alolyan
and Simos [9] which is indicated as PFDF

{ o 900 Jy) ) y(x)}

LTEM::h“[—

17791488000 373621248000 i 21
LTE o =h G +...[(21)
(547336457 [_ ()J_y(x)
186810624000

I.  The method with vanished phase—lag and its first and second derivatives produced
by Alolyan and Simos [9] which is indicated as PFDF12.

547336457 ( d?
LTE =h - G* 22
PFDF12 { 17791488000[dx2g( )Jy(x) i } (22)

J. The method with vanished phase-lag and its first, second and third derivatives
produced by Alolyan and Simos [9] which is indicated as PFDF123.

44 43 ]
547336457 547336457 d
17791488000[d (X%J(X)_373621248000[d 39(Xi]dxy(xi
LTEPFDF123 =h'* G4t
547336457 547336457
+[: 31135104000(dxg(x)j y09 - 233513280009(X)y(x) 2 g(x)]
‘ (23)

k. The new two-step Obrechkoff method with phase-lag and its first, second, third
and fourth derivatives equal to zero obtained in this paper which is indicated as

new:
45469 g
LTE ., = ™| - X)G* +... . 24
New { 106085083104000(d 79(x )jy() + } (24)
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Based on the analysis presented above, we studied the interval ofperiodicity of the eight
methods mentioned in the previousparagraph. The results are presented in Table 1.

Method Interval of periodicity
QT10 (0,0.17)

QT12 (0,0.046)

CL2 (0,25.2004)
CL12 (0,0.8)

PF(see [10]) 0,1.2)

PC (see [17]) (0,9.89)

TFO (see PL" in [18]) (0,1428.84)
PFDF (see [9]) (0,1.5)
PFDF12(see [9]) (0,6.6)

PFDF (see [9]) (0,3.6)

New method (0,65559993.44)

Table 1: Comparative interval of periodicity for the methods mentioned in Section 4.

Hence for the classical two-step Obrechkoff methods, the errorincreases as the
seventh power of G . For the classical ten—stepmethods, the error increases as the seventh
power of G . For themethod with vanished phase—lag produced by Alolyan and Simos [10],
the error increases as the sixth power of G. Forten-step predictor—corrector method
produced by Shokri [17], the error increases as the sixth power of G. For two-step
twelfthorder Obrechkoff method produced by Shokri [18], the errorincreases as the sixth
power of G. For twelfth order method with vanished phase—lag and its first derivative
produced by Alolyan and Simos [9], the error increases as the fifth power of G. For ten-step
twelfth order method with vanished phase—lag and its firstand second derivatives produced
by Alolyan and Simos [9], theerror increases as the fifth power of G. For ten-step
twelfthorder method with vanished phase—lag and its first, second and thirdderivatives
produced by Alolyan and Simos [9], the errorincreases as the fourth power of G . For the
new two-step Obrechkoff method with vanished phase—lag and its first, second,third and
fourth derivatives obtained in this paper, the errorincreases as the fourth power of G but it
has lower coefficientsthan the method developed in [9]. So, for the numericalsolution of the
time—independent radial Schrodinger equation thenew obtained two-step Obrechkoff
method with vanished phase—lag andits derivatives is the most accurate ones, especially for

largevalues of G| =]V, —E|. n

Remark 4.2. In Figures 4, 5, we present the s—vplane and behavior of stability
polynomial (respectively) for the method developed in this paper (sis frequency of test
problem and v is frequency of method).
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Figure 4: The stability region for the new method.

For the solution of the Schrodinger equation the frequency of the exponential fitting

is equal to the frequency of the scalar test equation. So, it is necessary to observe the
surroundings of the first diagonal of the s—v plane.

5. NUMERICAL RESULTS

5.1 THE METHODS

We have used several multistep methods for the integration of the five test problems. These
methods are

The ten-step tenth algebraic order method developed by Quinlan and Tremaine [15]
which is indicated as Method |I.

The twelve-step twelfth algebraic order method developed by Quinlan and
Tremaine [15] which is indicated as Method II.

The ten—step method with phase—lag and its first and second derivatives equal to
zero obtained in [9] which is indicated as Method IlI.

The ten—step method with phase—lag and its first, second and third derivatives equal
to zero obtained in [9] which is indicated as Method 1V.

The ten-step predictor—corrector method produced by Shokri [17], which is
indicated as Method V.
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e The new method obtained in this paper which is indicated as V1.

Figure 5: Behavior of the stability polynomial for the new method.
5.2. THE PROBLEMS

The efficiency of the new symmetric two-step Obrechkoff method will be measured
through the integration of five initial value problems with oscillating solution. In order to
apply the new method to the radial Schrodinger equation the value of parameter wis
needed. For every problem of the one-dimensional Schrddinger equation given by (1) the
parameter m is given by

=10 =V () -E], (25)

where V (x) is the potential and E is the energy.

Example 5.1. We consider the Schrddinger equation resonance problem. We will integrate
problem (1) with 1 =0 at the interval [0,15] using the well-known Woods—Saxon potential

Uy u,q o (X=%
(+q)" @rqf’ q_eXp( a J

where U, =50, a=0.6, X, =7, U, =% The behavior of the Woods—Saxonpotential is
a

V(x)=

shown in Figure 6 and with boundary condition y(0)=0. The potential V (x) decays more
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1(1+1)

)(2

quickly than

, so for large x (asymptotic region) the Schrddinger equation (1)

becomes

y"{'('xtl) V() E}y(x).

=204
—logwi E)

-304

-40

=50

Figure 6: The Woods-Saxon potential.

The last equation has two linearly independent solutions kxj,(kx) and kxn (kx), where j,
and n, are the spherical Bessel and Neumann functions respectively. When x— o
thesolution of Schrddinger has the asymptotic form

y(x) = Akxj, (kx) — Bkxn, (kx)

~ D{sin(kx—%ﬂj +tan(g, )cos(kx —%ﬂ

where ¢, is called scattering phase shift and it iscalculated by the following expression:

tan(5, ) _ Y(%)S(X.1) = Y(%i.1)S(X;) ’
Y(%.1)C (%) = y(X)C(X,,)
where S(X) =kxj, (kx), C(x)=kxn (kx) and x; <X, , both belong to the asymptotic region.

Given the energy we approximate thephase shift, the accurate value of which is =/2 for the
above problem.

We will use for the energy the value E =989.701916 . For some well-known
potentials, such as the Woods—Saxon potential, the definition of parameter @ is not given
as a function of x but based on some critical points which have been defined from the

i+l
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study of the appropriate potential (see for details [12]). For the purpose of obtaining our
numerical results it is appropriate to choose @ as follows (see for details [12]):

. JE+50 , xe[0,6.5],
1 JE , xe[6515].

Example 5.2. The almost periodic orbital problem studied by Franco and Palacios [7], can
be described by

y'+y=ceexpiyx), y(0)=1 y(0)=i, yeC
or equivalently by
u'+u=e¢cos(iyx), u(0)=1 u'(0)=0
{ v'+v =gsin(yx), u(0)=0, v'(0)=1
where ¢ =0.001 and w =0.01. The theoretical solution of this problem is given by
y(xX)=u(x)+iv(x), xeR, (26)
where

_ _ 2
u(x) =18—Wcos(x)+ i 5 COS(wX),
1-yw 1

2

2

l-esy — &
V(X):#

sin(x) + 5 Sin(wx).
1-y

This system of equations has been solved for x €[0,10007]. For this problem we use o =1.

Example 5.3. The almost periodic orbital problem studied by Stiefel and Bettis [24], can
be described by

y'+y=0.001lexp(ix), y(0)=1 y'(0)=0.9995, yeC
or equivalently by
u"+u =0.001cos(ywx), u(0)=1, u'(0)=0,
{v' +v =0.001sin(ywx), u(0)=0, v'(0)=0.9995i.

The theoretical solution of this problem is given by y(x) = u(x) +iv(x), u,ve R and

u(x) = cos(x) +0.0005cos(x),

v(x) =sin(x) +0.0005x cos(x).
This system of equations has been solved for x [0,10007]. For this problem we use o =1.

Example 5.4. (Inhomogeneous Equation) Consider the initial value problem

y"=-100y +99sin(x), y(0)=1 y(0)=11 te[0,1000z].
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With the exact solution y(t) =sin(t) +sin(10t)+cos(10t). For this problem we use @ =1.
Example 5.5. We consider the nonlinear undamped Duffing equation
y'=—y—-y*+Bcos(wx),  y(0)=0.200426728067, y'(0)=0, (12)

where B=0.002, @ =1.01 and x e {o, 41051”

}. We use the following exact solution for
(27), from [23],
3
g(x) = Y. Ky, c0((2i + Dex),

i=0

where {K1, K3.,Kg,K7}={0.2001794775 36,0.246946143 x 10_3, 0.304016 x 10_6 ,0.374 x 10_9}.

Resonance Problem. E=989.701916
-

Figure 7: Efficiency for the resonance problem using E = 989:701916.
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Franco-palacios

Figure 8: Efficiency for the Franco and Palacios equation.

Stifel-Bettis

Figure 9: Efficiency for the orbital problem by Stiefel and Bettis.
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Inhomogeneous

(//

Figure 10: Efficiency for the inhomogeneous equation.

Dumng'sEqV_ '
/
7
i

| E

Figure 11: Efficiency for the Duffing Equation.
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4. CONCLUSIONS

In Figure 7, we see the results for the resonance problem for energy E =989.495874 . In
Figure 8, we see the results for the Franco—Palacios almost periodic problem, in Figure 9,
the results for the Stiefel-Bettis almost periodic problem are present, in Figure 10, the
results for the inhomogeneous equation are present and finally in Figure 11, we see the
results for the Duffing equation.

Among all the methods used the new symmetric two—step Obrechkoff method with
twelfth algebraic order and vanished some of its derivatives was the most efficient.

Acknowledgments. The authors wish to thank the anonymous referees for their careful
reading of the manuscript and their fruitful comments and suggestions.
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1. INTRODUCTION

It is well known that pseudospectral (PS) methods are powerful methods for the numerical
solution of differential equations. In fact, they arose from spectral methods which were
traditionally used to solve fluid dynamics problems [1, 2]. They can often achieve ten digits
of accuracy where a finite difference scheme or a finite element method would get two or
three [3]. The key point in PS methods is that they avoid the poor behavior of the classical
polynomial interpolation methods by removing the restriction to equally spaced
interpolation points.

The variational method of optimal control theory, which typically consists of the
calculus of variations and Pontryagin’s methods, can be used to derive a set of necessary
conditions that must be satisfied by an optimal control law and its associated state—control
equations [4, 5]. These necessary conditions of optimality lead to a generally nonlinear
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two—point boundary value problem that must be solved to determine the explicit expression
for the optimal control. Except in some special cases, the solution of this two—point
boundary value problem is difficult and not practical to obtain.

Various alternative computational techniques for optimal control problems have been
developed in the literature. The techniques are basically of three types: parameterization on
both state and control [6, 7, 8], parameterization on control only [9, 10] and
nonparameterization [11, 12, 13]. As a technique of the first type, PS methods can be
interpreted as direct transcription methods for discretizing a continuous optimal control
problem into a nonlinear programming (NLP) problem [14, 15, 16, 17, 18, 19]. The
resulting NLP problem can be solved numerically by the well developed algorithms [20,
21].

Although PS methods enjoy many nice properties, but their use in solving problems
with nonsmooth solutions or problems with switches may cause major difficulties. The
reason lies in the famous Gibbs phenomenon which happens when a nonsmooth function is
approximated by means of a finite number of smooth functions [2]. In [22], the authors
developed the method of PS knotting in order to address this issue. In fact, they introduced
the concepts of hard and soft knots to eliminate the mentioned difficulties.

The switched systems are a particular class of hybrid systems. The hybrid systems
arise in varied contexts in chemical processes, automotive engine control, traffic control,
and manufacturing processes, etc. The abundance of hybrid phenomena in many
engineering systems in general, and in the chemical process industries in particular has
fostered a large and growing body of research work in this area [23, 24, 25, 26, 27, 28, 29,
30]. In [31], the authors discussed important hybrid aspects of chemical processing plants.
Recently, optimal control of switched systems arising in fermentation processes has been
studied in [32]. A hybrid system consists of several subsystems and a switching law, where
the switching law is determined by a switching sequence and a set of switching times. At
each time instant, only one subsystem is active. A hybrid system can be described by a
differential inclusion of the form

x(t) e {f,(t,x@),u)): ve{l,2,...,M}}, (1)

where te[t,,t;], x(t) € R*, u(t) € R™and for eachve{1,2,..., M},f,; Rx R* x R™ —
R™, is continuously differentiable with respect to its arguments. A switching law o for
system (1) is defined as o =({,1,),(,1),...,{t 1 1c4)), where 1<K <oo,
t, <t <---<t,,<t;,and i, €{1,2,...,M} for k=0,1,...,K-1. Note here t,...,t,, are
the switching instants. An optimal control of such a system involves finding a control u(t),

and a switching law o such that the corresponding state trajectory subject to the dynamical
system (1) departs from a given initial state and minimize a given cost functional. In [33], a
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method which is based on parameterization of the switching instants is proposed for this
kind of optimal control problems.

In this paper, we investigate a modified Legendre PS scheme in order to explore
accurate and efficient solutions of optimal control problems for switched systems. Here, we
consider the optimal control problems in which a prespecified sequence of active
subsystems is given. In order to explore numerical solutions of such problems, we need to
seek the solutions of both the optimal switching instants and the optimal piecewise input.
The rest of this paper is organized as follows. The problem statement is given in Section 2.
In Section 3, we describe the preliminaries for subsequent development. The present
method is proposed in Section 4. Then, three examples are provided in Section 5 to
illustrate the efficiency of the proposed method. Conclusions are presented in Section 6.

2. PROBLEM STATEMENT

We consider switched systems defined on the fixed time interval [t,,t;] with K-1
switches, consisting of the subsystems
x(t) = f, (xt),u(t)), telt ,.t), k=12,...,K, (2)
with initial conditions
X(ty) = X, 3

where x(t) = (x,(t),...,x,(t)) € R" is the state function and u(t) = (u,(¢), ..., u,,(t)) €
R™ is the corresponding control function. Also, f,:R* x R™ - R" , k=1,2,...,K, are
given functions. We assume that the switching sequence is preassigned, such that

to <t <---<t., <t =t;, (4)
where the switching times t,...,t,, are decision variables. Our objective is to find a
piecewise continuous function u(t) and switching instants t,...,t,, subject to the
condition (4) for the switched system (2) and (3) such that the cost functional

tf
J=g(xt) + [ g(x(®).u(e)at ©)
is minimized. It is noted that the considered problem is an optimal control problem in Bolza
form. Also, the vector functions f,:R" x R™ - R", k=1,2,...,K, and the scalar
functions g: R" x R™ - R and ¢: R™ — R, are assumed to be smooth with respect to all
their arguments.
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3. PRELIMINARIES

Let 7, <7, <.---<r, be the Legendre-Gauss-Lobatto (LGL) nodes where 7, =-1, 7, =1
and t,,...,7,_, are the roots of P, (r). Here P,(r) is the derivative of the N —th order
Legendre polynomial P, (z). In other words, the LGL points z,,7,,...,7, are the N+1
roots of (1-72)P, (). The reader is referred to [1, 34] for details.

Let h(t) be a continuous real function which is defined on [-1,1]. The Lagrange
interpolating polynomial of degree N interpolates the function h(t) at the points

TosTyye-s Ty s AS
h(r) = Y h(e,)L; (0). (6)

Here for j=0,1,...,N, L;(r) denotes the Lagrange polynomial of degree N
corresponding to the point z;, defined by

N

L) = ] —=

i=0,i%j Tj — T

Note that the Lagrange polynomials satisfy in the Kronecker property

1, j=i
L.(z)= .
J(T|) {01 J ” |
In order to approximate the derivative of h(t) at the points z,, i =0,1,...,N, the
interpolation formula (6) is differentiated yielding
. N
h(ri):Zdijh(rj), (7
j=0

where d; = Lj (r;). The (N +1)x(N+1) matrix D=[d;] is the so—called derivative
matrix. According to [1]

I:)N(Ti) . 1 |¢J
Pu(z;) 7-7,
—N(N +1) ..
_ _ =1=0
d, = 2 i=j=0
N(N +1)7 i=j=N
4
0, otherwise

Furthermore, for approximating the definite integral of h(t) on [-1,1], the LGL

quadrature rule is used. According to this quadrature rule, the definite integral is replaced
by a summation, in which the values of h(t) at the LGL points are utilized, as
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[ hz)dz = iwjh(rj), (8)

where w;, j=0,1,...,N, are the LGL weights, corresponding to the LGL points 7,
i=01,...,N, given by
W, = 2 1
FON(N+D) [Ry(e)f

j=0.1,..,N.

4. PROPOSED METHOD

We suppose that in the problem stated in the Egs. (2)—(5), the switching sequence is
preassigned and t,,...,t, , are the corresponding unknown switching times for which the
condition (4) holds.

We denote the restriction of vector functions x(t) and u(t) to the k —th subinterval
[t_..t) by x“(t) and u*(t), respectively. According to these notations, the dynamic
subsystems in Eq. (2) are expressed as

X“(t) = f (x(),u@), t_ <t<t, k=1,..,K, (9)
X(t) = lim X', k=2,...K. (10)

Note that in Eg. (10), the continuity constraints are added in order to guarantee the
continuity of state functions. Accordingly, the cost functional (5) reformulated as
K ot
RN CEDY R CHCRTN O (12)
k=1"k-1
and the initial conditions (3) restated as
X' (t,) = X, (12)
To apply the approximations described in the previous section, we must transfer
each subinterval to the interval [-1,1]. For this purpose, we use the transformation formula

— +t.) . . . .
T= 2= (e +t) in the k—th subinterval [t, ,,t,). In this respect, the problem is restated

tk _tk—l
in the following alternative form:
min J = (1)) + z[%j [ g(x* (). u (0))dr (13)
stx(r) = [%j f (@)U (@), k=1,...K, (14)

x¥(-1) = x**(1), k=2,..,K, (15)
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X' (=1) = X,. (16)
The alternative problem (13)-(16) provides us with some advantage, namely that it

no longer has varying switching instants. In fact, the switching instants are considered as
parameters in the alternative problem.

It has to be noted that for k =1,..., K, the components of vector functions x*(z)
and u“(zr) are smooth on [-1,1] and then can be expanded in terms of Lagrange basis

functions according to Eq. (6). Therefore, using the formula (8), the performance index J
in Eq. (13) is approximated as

K . N
3= g(X9) + Z(—tk Ztkljzg(x CRTISIVS (17)
k=1 i=0

where X {9 and U are vectors in R™ and R™, respectively, and defined by
X =x(r;), U =u(r;), j=01..N, k=1..K
Also, using the formula (7), the alternative dynamical systems (14) are approximated by

Dx(k)_[%jpmzo, k=1,...,K, (18)

where X® and F® are (N +1)xn matrices, respectively, defined by

Xg? f(Xg”,Ug”)
— Xl(k) EF®k = fk(xl(k)vul(k)) .

Xy (X, UR)

Furthermore, the continuity constraints (15) and the initial conditions (16), respectively, are
stated as

XP—x&P=0, k=2,..,K, (19)
and
X0 =x,. (20)
We also assume that no two endpoints of subintervals coincide. Then, for a small given
€ >0, we add the extra constraints
t -t,>e k=1,...,K. (21)
In summary, the alternative optimal control (13)—(16) is discretized to the following NLP
problem: Find vectors X{?, U, j=01,..,N, k=1,...,K and the parameters t,,

k=1,...,K -1 to minimize the expression (17) subject to the constraints (18)—(21).
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The relations between the solutions of obtained NLP problem and the solutions of
alternative problem (13)—(16) are given by

N
x‘k)(r)=ZX§k)Lj(r), k=1,..., K,
j=0
and

N
U9 =SUNL ),  k=1,.,K.
j=0

5. ILLUSTRATIVE EXAMPLES

In this section, we consider three examples to illustrate the efficiency of proposed method.
Here, we consider the numerical examples given in [33]. According to the present method,
each example in modeled using the mathematical software package Maple 17 and the
resulting NLP problems are solved by the command NLPSolve.

Example 1. Consider a switched system consisting of nonlinear subsystems

_ X () = x(t)+u(t)sinx(t)
subsystemt: {}Ao = () - u(t)cosx, (1)
[0 = %0+ usin,©
“mwﬂmm"hxo = x40 -u()cosx, ()
C}® = =x ) —u)sinxy (t)
subsystem3: {)‘(z(t) = %, (1) +u(t)cosx, (t)

Assume that t, =0, t, =3 and the system switches at t =t, from subsystem 1 to 2 and at

t=t, from subsystem 2 to 3 (0<t <t, <3). The initial conditions are x (0)=2 and
X,(0) = 3. We want to find optimal switching instants t , t, and an optimal input u(t) such
that the cost functional

1 1 1 ¢3
3= 2 (3) -1+ 2 (@) +1)° + 21060 -1)° + (6 (1) +1)° +u? ()]dt
IS minimized.
In Table 1, we listed the results of optimal switching instants t,, t, and optimal cost
J obtained by the present method with K =3 and different values of N . In the last of
Table 1, we reported the CPU time (seconds) for the computations of the corresponding

results. Also, in Figure 1, we plot the graphs of optimal control and the corresponding state
trajectory obtained by the present method with K =3 and N =9 .column
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Table 1. The results of optimal switching instants t,, t, and optimal cost J obtained by
the present method with K =3 and different values of N, for Example 1.

t, t, J CPU time
(seconds)
K=3N=6 | 0.22451889 | 1.01940266 | 5.44119735 4.04
N=8 | 0.22452199 | 1.02006802 | 5.44100709 5.03
N =10 | 0.22451866 | 1.02002342 | 5.44097522 6.20
N =12 | 0.22451838 | 1.02002491 | 5.44097350 8.15
N =14 | 0.22451835 | 1.02002485 | 5.44097350 9.96
T —y

xz u

e L T o . e & 1
(a) x1 (b)

Figure 1: The graphs of (a) state trajectory and (b) optimal control obtained by the
present method with K =3 and N =9, for Example 1.

Example 2. Consider a switched system consisting

subsystem1: Fl(t)}= {0'6 1'2}{)(1('[)}{1}(0,
X, (t) -0.8 34| x,(t)| |1

X, (t 4 3| x(t 2
subsystem2:: _1() = ) +| 7 ub).
X, (t) -1 0 x, ()| |-1
Assume that t, =0, t; =2 and the system switches once at t =t, (0<t, <2) from

subsystem 1 to 2. The initial conditions are x,(0)=0 and x,(0)=2. We want to find an
optimal switching instant t, and an optimal input u(t) such that the cost functional

J= %(Xl(z) _4)2 +%(Xz (2) - 2)2 +%Ioz[(xz (t) - 2)2 + uz(t)]dt

is minimized.
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We applied the proposed method to solve this example. In Table 2, we reported the
results of t, and J obtained by the present method with K =2 and different values of N .
Also in Figure 2, we plot the graphs of optimal control and the corresponding state
trajectory with K =2 and N =9.

Table 2. The results of optimal switching instant t, and optimal cost J obtained by the

present method with K =2 and different values of N , for Example 2.

t, J CPU time

(seconds)
K=2N=6 | 0.19007133 | 9.78402619 2.62
N=38 0.18967215 | 9.76657993 3.04
N =10 | 0.18967109 | 9.76654884 3.46
N =12 | 0.18967110 | 9.76654882 4.42
N =14 | 0.18967107 | 9.76654882 5.60

28 " e \
-1 3 Uigy 2 H e (b) 0’s i 4 15

(a)

Figure 2: The graphs of (a) state trajectory and (b) optimal control obtained by the present
method with K =2 and N =9, for Example 2.

Example 3. Consider a switched system with internally forced switching only consisting of

S R@® ] (15 0 x ()] (1
subsystem1: L(z(t)}_ {0 J{Xz(t)}tuu(t),

I x@®]_ | 05 0866 x ()| |1
subsystem 2 : L(z(t)}_ {0.866 —0-5}{&0)}{1}(0'
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Assume that t, =0, t, =2 and the system state starts at x (0)=1, x,(0)=1,

following subsystem 1 (subsystem 1 is active for c(x,(t),x,(t)) = x,(t)+x,(t)-7<0 and
subsystem 2 is active for c(x,(t),x,(t))>0). Assume that upon intersecting the hyper
surface c(x;,X,) =0, the system switches from subsystem 1 to 2. Also, assume there is only
one switching which takes place at time t, (0<t, <2). We want to find an optimal input
u(t) such that the cost functional
] :%(xl(z)—m)2 +%(x2(2)—6)2 +%I02u2(t)dt

IS minimized.

Note that we have not considered state constraints in the subsystems of our problem

modeled by Egs. (2)—(5). For this reason, we state our technique in order to approximate
state constraints. By setting K = 2, according to the proposed method, we have two sets of

state functions values: X", j=0,1,...,N, are the values of state functions in subsystem 1,
and X, j=0,1,...,N, are the values of state functions in subsystem 2. According to this,
we obtain the constraints ¢(X®)<0, j=0,1,...,N, in subsystem 1, and —c(X?)<0,
j=0,1,...,N, in subsystem 2. These new inequality constraints must be added to Egs.
(18)-(21).

In Table 3, we listed the results of t, and J obtained by the present method with

K =2 and different values of N . Also in Figure 3, we plot the graphs of optimal control
and the corresponding state trajectory with K =2 and N =9.

Table 3. The results of optimal switching instant t, and optimal cost J obtained by the
present method with K =2 and different values of N , for Example 3.

t, J CPU time
(seconds)
K=2N=6 | 1.16328653 | 0.11315919 5.78
N=8 1.16293205 | 0.11309541 6.00
N =10 | 1.16278027 | 0.11306590 6.46
N =12 | 1.16270441 | 0.11305120 6.84
N =14 | 1.16266144 | 0.11304283 7.42
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T 3 4 5 % 6 7 8 5 10 0
(@) ! (b)

Figure 3: The graphs of (a) state trajectory and (b) optimal control obtained by the present
method with K =2 and N =9, for Example 3.

6. CONCLUSION

In this paper, we have considered a class of optimal control problems governed by switched
systems. Such systems arise in varied contexts in chemical processes, automotive engine
control, traffic control, and manufacturing processes, etc. We have proposed a modified
Legendre pseudospectral scheme in order to explore accurate solutions. For this purpose,
we have restated the problem in form of an alternative problem in which the switching
instants are considered as parameters. Then, we can solve the obtained NLP problem using
existing subroutines. Three numerical examples considered in order to show the validity
and applicability of the proposed method.
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1. INTRODUCTION

Let G = (V,E) be a simple graph with vertex set V and edge set E. An automorphism of G is
a one-to—one mapping o :V —V that preserves adjacency of vertices in G. The distance
between two vertices u and v is the length of a shortest path from u to v and is denoted by
d(u,v). A function f from the set of all graphs into real numbers is called a graph invariant
if and only if G = H implies that f(G) = f(H). A graph invariant is said to be distance—based
if it can be can defined by distance function d(——). A graph invariant applicable in
chemistry is called a topological index.

In recent research in mathematical chemistry, distance-based graph invariants are
of particular interest. One of the oldest descriptors concerned with the molecular graph is
the Wiener index, which was proposed by Wiener [8]. The definition of theWiener index in
terms of distances between vertices of a graph is due to Hosoya ]6].

The Szeged index [4,5,7] is a topological index closely related to the the Wiener
index and coincides with the Wiener index in the case when the graph is a tree. For the
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DOI: 10.22052/ijmc.2017.80007.1275
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basic definition of the Szeged index of graph, let G = (V,E) be a connected simple graph.
Let e=uv be an edge of G. We define two subsets of vertices of G as follows:
N,(e|G)={weV |[d(w,u) <d(w,V)}
N,(e|G)={weV |d(w,v)<d(w,u)}
Let n,(e|G)=|N,(e|G)| and n,(e|G)=|N,(e|G)|. The Szeged index of the
graph G is defined by the following formula:
S2(G) =) _,.N(elG)n,(e|G)
We see that the Szeged index is a sum of edge—contribution for the edge e=uv of
the graph G, we set sz(e)=n,(e|G)n,(e|G) , hence Sz(G) = ZEEE sz(e).
Let ' denote the automorphism group of the graph G. Then I' acts as a
permutation group on the vertex set V of G. If e=uv is an edge of G and o €T, then by
defining e° =u’v’, we observe that I" acts on the set E of edges of G. If T" acts

transitively on V, then G is called a vertex—transitive graph and if it acts transitively on E,
then G is called an edge—transitive graph. We refer the reader to the book ]2] for further
reading about permutation groups.

In [1], the case of edge-transitive graph is studied. In this case, the edge—
distribution at each edge is the same, i.e., sz(e) =sz(e") for all edges e and e' of G holds,

hence Sz(G)=|E|sz(e) for asingle edge of G holds. The above situation is also studied
in [9].

2. PRELIMINARY RESULTS

In this paper we are concerned with the graphs on triples. Let S be a set of size n where n is
a suitable natural number. Let V be the set of all the 3—element subsets of S. The graph

Gi,i= 0, 1, 2, called intersection graphs, are defined as G :(V, Ei),where V is the set of
vertices of G and two vertices are joined by an edge if and only if they intersect in i

2

3(n—3) respectively, it is worth mentioning that the Weiner indices of the graphs

n . . (n=3 n-3
elements. It is clear that |V |:(3J and the size of each E;;i=0,1,2,is [ 3 j3[ J and

G,;;i=0,1,2, were computed in [3].

Lemma 2.1. Each of the graphs G;;i =0,1,2, is edge—transitive.
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Proof. By [3], the automorphism graph of each graph G,;i=0,1,2, has a subgroup
isomorphic to the symmetric group S,. Let e=uvand e’=u'v’be two edges of G,;i=0,1,2.
Then [uv|=i=u'NV'].
Case 1. i=0. In this case we may take u={123},v={45,6},
u'={l,2,3}v ={4,5,6} where {1,2,..,6%c{,2,---,6} .The permutation
_(1 2 3 4 5 6
1 203 4 5 ¢
Case 2. i =1. Inthis case we may take u = {1,2,3}, v={1,4,5}, u' ={1', 2", 3'}, v'=
1 2 3 4 5
1 20 3 4 5
Case 3. i =2. In this case we may choose u = {1,2,3}, v={1,2,4}, u' = {1', 2, 3'},
1 2 3 4
1 2 3 4

jeSn take eto €.

{1', 4, 5'} and choose & =[ j e S, which takeseto e’.

v'={1', 2", 4’} and in this case o =[ je S, takeseto e'. ]

We have the following result from [3] that will be used.

Result 2.1. Let u and v be two vertices of G;;i =0,1,2. Then d(u,v) <2 unless i =2 where
d(u,v) =3 also occurs.

3. COMPUTATION OF THE SZEGED INDEX

Now because of Lemma 2.1, we have Sz(G;) = |Eilsz(e), i = 0, 1, 2, where sz(e) =
nu(e|Gi)ny(e|Gi). By definition we have ny(e|G;) = { w € V| d(w,u) < d(w,v)}|. By the above
result d(w,v) =0, 1, 2 in the case G; and G..

Case 1. d(w,v)=0 is impossible.

Case 2. If d(w,v)=1, then d(w,v)=0 implying w=u.
Case3. If d(w,v)=2, then d(w,v)=0 or 1. If w=u, then d(u,v)=1 a
contradiction, hence d (w,u)=1. We conclude that
n,(e|G)=1+|{veweV |d(w,u)=1}|.
By symmetry we have n,(e|G)=n,(e|G).

Corollary 3.1. The Szeged index of G, and G, are as follows:
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s (o)
oo LoV

Proof. According to what we proved earlier Sz(G,) = E; | sz(e), where e=uv is a fixed
edge of G,,i=0,1. But
sz(e)=n,(e|G) n,(e|G) =n,(e| G)*
=(Lr|[fv=weV |d(w,u) =1’
Therefore we must find the number of vertices w = v of V with distance 1 from u.
Case 1. i =0. In this case we may take u={1,2,3} and v={4,5,6}, the vertex w

should be of distance 2 from v, hence should meet v and w(\u =¢.If w meets v in one
element we have 3/2(n — 6)(n — 7) choices for it and if it meets v in 2 elements again we
have 3(n - 6) choices for it and the formula for Sz(G; ) is obtained as above.

Case 2. i=1. In this case we may chooseu={123},v={145}.we have
d(w,v) =2, hence wNv=¢ or wN v|=2, but |lwu|=1.

u={1,2,3) v ={1,4,5}

P——

.
w

If w1 v=¢, then we have (n — 5)(n — 6) choices for W. If |w[) v|=2, then if 1ew,we
must have w={L,4,x}or w= {1, 5, y},hence the number of choices for w is 2(n — 5) .For

1¢ w we don't obtain a possibility for w. Therefore Sz(G,) is as above. m

To calculate the Szeged index of G, we must calculate the size of the set
N,(e|G)={weV |d(w,u) <d(w,v)} .In this case d(w,v)=3 may occur and d(w,u)=1
or 2. If d(w,u)=1, then d(w,u)=2, a contradiction. Therefore d(w,u)=2,i.e there is a
vertex x such that d(w,x)=1. If we set A={v=weV |d(w,u)=1Tand
A, ={weV |d(w,u) =2} then we must find the sizes of A and A,.
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Letu={1,2,3},v={12,4} and find | A |.
u={1,23} v=1{1,2,4}

In this case d(w,v)=2, hence |[wNV]= 2. If wNv =4,then there is no possibility for w.

If [ wNv]=1,then w={1,3,x},{2,3,x}, and hence the following corollary is proved. There
are 2(n — 4) possibilities for w and |A1| = 2(n — 4). To find | A,| we may assume again
u=1{123},v={124}.

u={1,2,3} v={1,2,4)
\ x={1,3,a}
{2,3,a}

The number of vertices xis 2(n — 4). Now having chosen x the number of wwith
distance 1 from xis 2(n - 5).

u={1,2,3} v={1,2,4}

z={1,3,0} w={1,a, 3}
{3,0,0}

Corollary 3.2. For the Szeged index of G, we have
2
n-4 n-4\(n-5
Sz(G,)=3(n-3)| 1+2 4 .
ea=so-sfoed " ("))

1. M. R. Darafsheh, Computation of topological indices of some graphs, Acta. Appl.
Math. 110 (2010) 1225-1235.

2. J. D. Dixon and B. Mortimer, Permutation Groups, Springer-Verley, NewYork,
1996.
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The Harary index H(G) of a connected graph Gis defined as
H(G) = Zu,vev(c)ﬁ, where d; (u,v) is the distance between
vertices u and v of G. The Steiner distance in agraph, introduced by
Chartrand et al. in 1989, is a natural generalization of the concept of
classical graph distance. For a connected graph G of order at least 2
and S < V(G), the Steiner distance d;(S) of the vertices of S is the
minimum size of a connected subgraph whose vertex set contains S.
Recently, Furtula, Gutman, and Katani¢ introduced the concept of
Steiner Harary index and gave its chemical applications. The k-
center Steiner Harary index SH,(G) of G is defined by SH, (G) =

Yscv(c) |5|=kd;(s)' In this paper, we get the sharp upper and lower
' G

bounds for SH,(G) + SH,(G) and SH,(G) - SH,(G), valid for any
connected graph G whose complement G is also connected.

© 2017 University of Kashan Press. All rights reserved

1. INTRODUCTION

All graphs in this paper are assumed to be undirected, finite and simple and connected. We
refer to [5] for graph theoretical notation and terminology not specified here. For a graph G,
let V(G),E(G) and e(G) = |E(G)|denote the set of vertices, the set of edges and the sizeof

G, respectively.
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If S is a vertex-subset of a graph G, the subgraph of G induced by S is denoted by
G[S]. We denote by E;[X, Y] the set of edges of Gwith one end in X and the other in Y. If
X = {x}, we simply write E;[x, Y] for E;[{x},Y].

The connectivity of a graph G, writtenk(G), is the order of a minimum vertex-
subset S € V(G) such that G — S is disconnected or has only one vertex. Thus, if G is
connected, then «(G) = 1; if G has cut vertices, then «(G) = 1.

The introduction is divided into the three subsections, in order to state the motivations
and results of this paper.

1.1 DISTANCE AND ITS GENERALIZATION

Distance is one of the basic concepts of graph theory [6]. If G is a connected graph and
u,v € V(G), then the distance d(u,v) between uand v is the length of a shortest path
connecting u and v.

The distance between two vertices uand v in a connected graph G also equals the
minimum size of a connected subgraph of G containing both u and v. This observation
suggests a generalization of the distance concept. The Steiner distance of a graph,
introduced by Chartrand et al. in 1989 [8], is a natural generalization of the classical graph
distance. For a graph G(V,E) and a set S € V(G) of at least two vertices, an S-Steiner tree
or a Steiner tree connecting S (or simply, an S-tree) is a subgraph T(V',E’) of G that is a
tree with S € V'. Then the Steiner distance d;(S) of the vertices of S (or simply the
distance of S) is the minimum size of all connected subgraphs whose vertex sets contain S.
Observe that d;(S) = min{e(T)|S < V(T)}, where T is subtree of G. Furthermore, if
S = {u, v}, then d(S) coincides with the classical distance between uand v.

Observation 1.1 Let G be a connected graph of order n and k be an integer, 2 < k < n. If
ScV(G) and |S| =k, thenk —1<d;(S) <n-1.

The average Steiner distance u, (G) of a graph G, introduced by Dankelmann et al. [9,
10], is defined as the average of the Steiner distances of all k-subsets of V(G), i.e.,

1

w@=0G) "X de(S). (L.1)

scv(G)

IS|=k
Let n and k be integers such that 2 < k < n. The Steiner k-eccentricity e, (v) of a
vertex v of G is defined by e, (v) = max{d(S)|S € V(G),|S| = k,v € S}. The Steiner k-
radius of G is srad,(G) = min{e,(v)|v € V(G)}, whereas the Steiner k-diameter of G is
sdiam,(G) = max{e,(v)|v € V(G)}. Note that for any vertex v of any connected graph
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G, e,(v) = e(v), and in addition srad,(G) = rad(G) and sdiam,(G) = diam(G). For
more details on Steiner distance, we refer to [3, 7, 8, 9, 10, 17, 25, 29].

Mao [25] obtained the following results. By A(G) we denote the greatest degree of a
vertex of G.

Lemma 1.1 [25] Let G be a connected graph with connected complement G. If
sdiam;,(G) > 2k, then sdiam; (G) < k.

Lemma 1.2 [25] Let G be a connected graph of order n. Then sdiam;(G) = 2 if and only
if 0<A(G) <1.

Lemma 1.3 [25] Let n, k be integers such that 2 < k < n, and let G be a connected graph
of order n. If sdiam, (G) =k — 1,then 0 < A(G) < k — 2.

Lemma 1.4 [25] Let G be a connected graph of order n with connected complement. Let k
be an integer suchthat 3<k <n.Letx=0if n>2k—2 and x=1 if n <2k —2.
Then

(1) 2k — 1 — x < sdiam,(G) + sdiam,(G) < max{n + k — 1,4k — 2};

(2) (k — 1)(k — x) < sdiam,(G) - sdiam, (G) < max{k(n — 1), (2k — 1)2}.
Lemma 1.5 [25] Let G be a graph. Then sdiam,,_,(G) =n —2 if and only if G is 2-
connected.

The following corollary is immediate from the above lemmas.

Corollary 1.1 [28] Let G and G be connected graphs. If sdiam;(G) =6, then
sdiam3(5) =3

1.2 WIENER INDEX AND ITS GENERALIZATION

The Wiener index is defined as the sum of ordinary distances of all pairs of vertices of the
underlying graph, ie., as W(G) =X, ev(e)d(u,v) and its mathematical theory is
nowadays well elaborated. For details see the surveys [13, 34].

Li et al. [22] generalized the concept of Wiener index using Steiner distance, by
defining the Steiner k-Wiener index SW, (G) of the connected graph G as

SW,(G) = Z d.(S) .

Scv(G)
IS|=k
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However, with regard to this definition, one should bear in mind Eqg. (1.1), and the
references [9, 10].

For k = 2, the Steiner Wiener index coincides with the ordinary Wiener index. It is
usual to consider SW, for 2 < k < n — 1, but the above definition implies SW,(G) =
0 and SW,(G) =n—1.

An application in chemistry of the Steiner Wiener index was reported in [18].
Expressions for SW, for some special graphs were reported in [22]. Li et al. [22] also gave
sharp upper and lower bounds on SW,,, and established some of its properties in the case of
trees. For more details on the Steiner Wiener index, we refer to [18, 22, 23, 27].

1.3 HARARY INDEX AND ITS GENERALIZATION

The Harary index H(G) of Gis defined by H(G) = X, ver(c) . For more details on

the Harary index, we refer to [4, 21, 24, 33].

1
dg(u,w)

Furtula et al. [15] introduced the concept of Steiner Harary index. The Steiner Harary
k-index or k-center Steiner Harary index SH, (G) of G is defined as

1
SHL(G) = Z e

Scv(G)
|S|=k

For k = 2, the above defined Steiner Harary index coincides with the ordinary Harary
index. It is usual to consider SH, for 2<k <n-—1, but the above definition

implies SH,(G) = 0and SH,,(G) = L

n-1

The following results will be needed later.

Lemma 1.6 [26] Let T be a tree of order n, and let k be an integer such that 2 < k < n.

Then
Z 1<t—1) <n—1)<SH(T)<kn—n+k<n—1)
n t\k—2) \k—1)=>" =020 ") k1)
k—-1<tsn-1

Moreover, among all trees of order n, the star S,, maximizes the Steiner Harary k-index
whereas the path P, minimizes the Steiner Harary k-index.

Lemma 1.7 [26] Let P, be the path of order n (n = 3), and let k be an integer such that
2< k<n.Then
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me=r Y MY

k—1<tsn-1

2. MAIN RESULTS

Let f(G) be a graph invariant and na positive integer, n > 2. The Nordhaus—-Gaddum

Problem is to determine sharp bounds for £(G) + f(G) and f(G) - f(G), as G ranges over
the class of all graphs of order n, and to characterize the extremal graphs, i.e., graphs that
achieve the bounds. Nordhaus—Gaddum type relations have received wide attention; see the
recent survey [2] by Aouchiche and Hansen.

Denote by G(n) the class of connected graphs of order n whose complements are also
connected. In the studies of Nordhaus—Gaddum-type relations it must be assumed that

f(G) and f(G) exist. Therefore, such relations are examined in the case of Wiener and
Steiner Wiener indices, one must restrict the consideration to the class G(n), n > 2.

Mao et al. [28] studied the Nordhaus-Gaddum type results for the Wiener index. In
this paper, we investigate the analogous problem for the Steiner Harary index. Our basic
idea is from [28].

2.1 RESULTS PERTAINING TO GENERAL k

For general k, we obtain the following result:

Theorem 2.1 Let G € G(n) and let k be an integer such that 3 < k < n. Then:

2k-2

D G oo G S SH(G) + SH (6) <

(n+k—2)(7]:)
(k-1)2

1
max{k(n-1),(2k-1)?}

()

(1) < sH(6) - SH () < 7 ()

Moreover, the lower bounds are sharp.
Proof. Proof of part (1):

For any S € V(G) and |S| = k, from the definition of Steiner diameter, we have d;(S) +
dz(S) <max{n+k—-22k -2} =n+k—2. Then
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_ 1 1 de(S)+d=(S
SH,(G) + SH,(G) = Z RG] + Z RO —5 ( (;) d_G(g))
svie) ¢ sev(e) © sév(e) e
- (n+k-2)(})
- (k—-1)?
By the same reason, Lemma 1.4 implies
dg(S)+dz(S) 2k-2

~\ — n
SHk(G) + SHk (G) - ZSEV(G) dG(S)dE(S) 2 (k) max{k(n-1),(2k-1)?}

Proof of part (2):

Forany S’ € V(G), |S'| = k and any S” € V(G), |S"| = k, from the definition of Steiner
diameter and Lemma 1.4, we have d;(S’) - dg (S") < max{k(n — 1), (2k — 1)2}. Then

. 1 1 1 1
SH(G) - SHi(G) = Z d(s) ”Z a-(s") Z ds(s) dg(s")

s'cv(6) s"cv(G) s'cv(6),s"cv(G)
1 n
>
— max{k(n—1), (2k — 1)?} (k) '

For any S’ € V(G), |S'| =k and any S” € V(G), |S"| = k, from the definition of
Steiner diameter and Lemma 1.4, we have d;(S") - dz(S") = (k — 1)2. Then

. 1 1 1 1
SH(G) - SH(C) = ) dg () Z &z 2. ds () dz(S")

s'cv(6) s"cv(G) S'cv(6),s"<v(G)
1 n

< -

<t

as desired.

3. ForRsoMEk

For k = n,n — 1,3, we can improve the results in Theorem 2.1.

3.1 THECASEKk=n,n-1

For k = n, the following result is immediate.

Observation 3.1 Let G € G(n). Then
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(1) SH,(G) + SH, (G) = ==;

n-1'

(2) SH,(G) - SH, (G) = ﬁ

Akiyama and Harary [1] characterized the graphs for which both G and G are connected.

Lemma 3.1 [1] Let G be graph with n vertices and maximal vertex degree A(G). Then
k(G) = k(G) = 1 ifand only if G satisfies the following conditions.

i. k(G)=1and A(G)=n-2;
ii. k(G)=1A(G)<n-3, and G has a cut vertex vwith pendent edge uv,
such that G — u contains a spanning complete bipartite subgraph.

For k = n — 1, we have the following result:

Proposition 3.1 Let G be a graph of ordern (n = 5).

2n

1. If Gand G are both 2-connected, then SH,_,(G)+ SH,_,(G) =-— and

—_ 2
SH,_1(G) - SH,_,(G) = (nf—z)z

2. Ifk(G) = 1and G is 2-connected, then SH,,_,(G) + SH,_,(G) = ni 4 2P

-1 n-2

and SH,_,(G) - SH,_,(G) = (n—1z;?n—2) + ’(f:;’z) , where p is the number of

cut vertices in G.

3. Ifk(G) =x(G)=1, A(G) <n—3, and G has a cut vertex v with pendent
edge uv such that G — u contains a spanning complete bipartite subgraph, and
A(G) < n—3and G has a cut vertex g with pendent edge pq such that G — p
contains a spanning complete bipartite subgraph, then SH,_,(G)+

(nz—n—l)2
(n-1)%2(n-2)%

SHn_1 (E) — (2n2—2n—2

Doy A SHy 1 (G) - SHy, 1 (G) =

4. If k(G)=x(G) =1,A(G) =n—-2, A(G) <n—3and G has a cut vertex v
with pendent edge uv such that G — u contains a spanning complete bipartite

— 2_9m_
subgraph, then SH,_,(G) + SH,_,(G) = % or SH,_,(G)+
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2n2-2n-3

=\ _ . =\ _ (nz—n—l)2
SHi-1(G) = gy A0 SHaa(6) - SHua(6) = G50 o
-\ _ (nz—n—l)(n+1)
SHy—1(G) - SHy—1(G) =~ =505 —
5. If k(G)=x(G)=1, AG)=A(G)=n-2 then XD <sH, ,(6)+
— 2n?-2n-2 (n+1)? — (n?-n-1)>2
SHn-1(G) < (D2 (1?2 = SHn—1(G) - SHyp-1(G) < (n-1)?(n-2)%

Proof. (1): From Lemma 1.5, if G and G are both connected, then d.(§) =n—2 and
dz(S) =n—2 for any S € V(G) and |S| = n— 1. Therefore, SH,_,(G) + SH,_,G =

2n 3 _—nz
E and SHn_l(G) : SHn—l(G) - (n-2)%'

(2): Since G is 2-connected, it follows that dz(S) =n—2forany S < V(G) and |S| =
n—1, and hence SH,_,(G)= % Note that x(G) =1 and there are exactly p cut

vertices in G. For any S € V(G) and |S| = n — 1, if the unique vertex in V (G) \ S is a cut

vertex, then d;(S) =n — 1. If the unique vertex in ¥V (G)\ Sis not a cut vertex, then
d;(S) =n—2. Therefore, we have SH,_,(G) = ﬁ+%, and hence SH,_,(G) +
2n-p
n-—2

and SH,_1(G) - SH,_,(G) = —2—+ 2np) \where p s the

N P
SH”—l(G) =aaT (n-1)(n-2) (n-2)?’

number of cut vertices in G.

(3), (4), (5): We have k(G) =«(G) = 1. By condition (i) of Lemma 3.1, since A(G) =
n — 2, there is a vertex of degree n — 2, say x. Let the set of first neighbors of x be
Ng(x) ={y1,¥2,*, Yn-2} Let V(G)\({x} U N;(x)) = {z}. Since zx ¢ E(G), there must
exist a vertex in N;(x), say y,, such that zy, € E(G), since G is connected. Since x, y;
may be the cut vertices in G, it follows that there are one or two cut vertices in G. So

— 2_p_ —
SHn—l(G):L+n—1——n n 1) OrSHn_l(G):%+n_2:n_+1

n-1 n-2  (n—1)(n-2 n-1 n-2 n-1

By condition (ii) of Lemma 3.1, since A(G) <n —3 and G has a cut vertex v with
pendent edge uv such that ¢ —u contains a spanning complete bipartite subgraph, it

— 2_npn-— .
follows that v is the unique cut vertex. So SH,,_,(G) = n—il + Z—_; = % From this

argument, (3), (4), (5) are true.

3.2THECASEk =3

The following lemmas and corollaries will be used later.
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Lemma 3.2 [28] Let T be a tree of order n, and let k be an integer such that 3 < k < n.
Then there exist at least (n — k + 1) subsets of V(T) for which the Steiner k-distance is
equal to k — 1.

Corollary 3.1 [28] Let G be a connected graph of order n, and let k be an integer such that
3 < k < n. Then there exist at least (n — k + 1) subsets of V(G) whose Steiner k-distance
isk—1.

Lemma 3.3 [28] Let T be a tree of order n, and let k be an integer suchthat 3 <k <n —
1. Then there exist at least (n — k) subsets of V(T) whose Steiner k-distance is k.
In this section, we focus our attention on the case k = 3. For k = 3 and n > 10, from

Theorem 2.1, we have (} - 1)S5H3(G)+SH3(E)g(”+1)(3) and 3(711_1)(,31)2_

— 2
SH;(G) - SHy(G) <7 (3)".
We improve these bounds and prove the following result.

Theorem 3.1 Let G € G(n) withn > 4. Then

1. 2(7) = SHy(G) + SH,(G) =

( %(§)+£n—% if n=6,7 and sdiam3(G) =5
orn = 6,7 and sdiam;(G) =5
k (n 3) > 1? 4 Inio23n420 _263n+20 otherwise.
(Tl 3)(n-2) (n-3)(n-2)
144 [(n ] > SH3(G) - SHy (G) [ 2(n-1) ] [ (n 2(n-1) I

Moreover, the bounds are sharp.

We first need the following lemma.
Lemma 3.4 [28] Let G be a connected graph. If sdiam;(G) = 5, then sdiams(G) < 4.
Lemma 3.5 Let G € G(n). Then
SH;(G) + SH;(G) < 2(%) (3.1)

SH3(G) - SH3(G) < — (“) (3.2)
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and

SHy(G) - SHy(G) 2 [ (1) + L2202 2 (m) _ (D), (3.3)

2(n-1) 2(n-1)
Moreover, the bounds are sharp.
Proof. (1) Forany S € V(G) and |S| = 3, G[S] = K; or G[S] P; or G[S] = K, UK, or

G[S] = 3K;. If G[S] = K5 or G[S] = P;, then d;(S) =2. If G[S] = K, UK, or G[S] =
3K, then d;(S) = 3. Let 51,8z, S(my be all the 3-subsets of V(G). Without loss of

generality, let S;,S,, -+, S, be all the 3-subsets of V(G) such that G[S;] = K; or G[S;] = P,
where 1<i<x. Therefore, ds(S;) =2 and dg(S;)) =3 for each i(1<i<x).

Furthermore, for any S; (x + 1 < j < (%)), we have
SH3(G) < + ( ) x] (n)

sta(B) < T+ 121 =3 () -

[(D- X _ 1 my, (=3
SH3(G) == + n—1 n— 1(3)+2(n—1)'

and

SH3(E) > > - ( ) x] (n) (n—3)x.

2(n-1)
implying inequality (3.1).

By Corollary 3.1, there exist at least n — 2 subsets of V(G) whose Steiner 3-distances
are equal to 2. The same is true for G. Therefore, n — 2 < x < (%) —n + 2, and hence

sis(@) 5@ <[5 () + 5] () 3]

I.e., inequality (3.2) holds.
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G 1 (n—=3)xr1 (n—3)
sis()-51:(0) = [ =3 (3) * 2= [ (3) 2= )
L) oy o3

T2m—D\3) Tam-—12\3) T am -1y

1 (n-=3)(n—-2)11 (n—-3)(n—-2)
Z[n—l(g)+ n2(n—n1) Hi(g)_ n2(n—n1) ]

I.e., inequality (3.3) holds.

The sharpness of the above bounds is illustrated by the following example.

Example 3.2 Let G = P,. Then G = P,. By Lemma 1.7, SH5(G) :SH3(E) :5 and

10 n ~\ — —_ n
hence  SH3(G) + SH3(G) == _( ) and  SH53(G)- SH3(G) T 9 T 144 [( ) ]
[ﬁ ™) (“2(373(”1)2)] [ ™ %} which confirms that the lower and upper bounds
are sharp.

Let S* be a tree obtained from a star of ordern —2 and a path of length 2 by

identifying the center of the star and a vertex of degree one in the path. Then S* is a graph
obtained from a clique of order n — 1 by deleting an edge uv and then adding an pendent
edge at v.

Observation 3.2
%y — 13 n— 1/n-— 7 .
(1) SHy(s) = (") +3 (%) + In -3,
11

() SH;(S7) == (") +5 (") +7n—=
Proof. From the structure of S*and S*, we conclude
1m-3 1r/n—3
SH3(5*):Z< 2 )+§[< 2 )+(”_3)+1]
+1[<n—3 . n—3 42 3
3 2) (3) (n )]

_13 n—3 +1 n—3 +7 3
‘12(2) 3(3) 6"

and
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1) =3 (") 209 ([ r-2)

4 /m—3 1/m—-—3 4 11
== + = +-n——.
3( 2 ) 2< 3 ) 3 3

In order to show the sharpness of the above bounds, we consider the following
example.

Example 3.3 Let S* be the same tree as before. From Observation 3.2, we have

29<n—3) 5<n—3) 15 20
6

St (5 + sHy(5) = 55" )2

and
SH, (S*) - SHy(57) _52<n—3)2+1<n—3)2+71<n—3)<n—3)
3 W36\ 2 6\ 3 72\ 2 3
27 287\ /m—3 37 49\ /m—3
+—n—— +|l=n——
(9 36)( 2 ) (36 18)( 3 )
N 4 11\ /7 3
(3" 3)(6" )
The following lemmas are preparations for deducing an upper bound on SH;(G) +
SH;(G).
Lemma 3.6 Let G be a connected graph of order n, and let T be a spanning tree of G. If
sdiam3(5) = 3, then
SH3(T) + SH3(T) < SH3(G) + SH5(G).
Proof. Note that G is a spanning subgraph of T. It suffices to prove that
SH5(T) — SH5(G) < SH5(G) — SH5(T).

Since sdiam; (G ) = 3, it follows that dz(S) = 2 or dz(S) = 3 for any S < V(G) and
|S| = 3. Since G is a spanning subgraph of T and sdiam;(G) =3, it follows that
sdiams(T) < 3, and hence d(S) =2 or dz(S) =3 for any S € V(T) and [S| = 3.

Then 0 < —— — -1 <1 We claim that — 1 < 1 forscv(T) an
¢ O_df(S) dz(s) — 6 € cla a az(s)  dg(s) T dg(s) dr(s) ° ()ad




Computing Szeged Index of Graphs on Triples 193

IS =

d—(S) = d—(S)

|S| = 3. Similarly, since T i ' (S) <
1 1
= = =0 — -
IS| = 3. d_(s) da(s) = 0, then T(S) ) 0<% dT(S) as desired. If T(S)
d_l(s):%, then dz(S) =3 and d(S) =2, and hence dg(S) =2 and d,(S) =3.
G
Therefore, -2 11 L as desired. The result follows from the

dG(S) ar(s) T 6 ap(s)  ag(s)’

arbitrariness of S and the definition of Steiner Wiener index.

Lemma 3.7 Let T be a tree of order n, different from the star S,,. Let S* be the tree same as
in Observation 3.2. If sdiams(G) = 3, then

SH;(P,) + SH;(S*) < SH5(T) + SH;(T).

Proof. Note first that the complements of all trees, except of the star, are connected.
Therefore, SH;(T) in Lemma 3.7 is always well defined,

By Lemma 1.6 and 1.7, SH3(P,) < SH,(T). It suffices to prove SH;(S*) < SH;(T).
Since sdiam;(G) < 3, it follows that sdiams(T) < 3. For any S € V(T) and |S| = 3, if
T[S] is not connected, then dz(S) = 2. If T[S]is connected, then dz(S) = 3. So if we
want to obtain the minimum value of SH;(T) for atree T, then we need to find as less as
possible 3-subsets of V(T) whose induced subgraphs in T are disconnected. Since the
complement of S, is not connected, it follows that S* is our desired. So SH;(S*) <
SH5(T), and hence SH;(P,) + SH;(S*) < SH;(T) + SH5(T).

We are now in the position to complete the proof of Theorem 3.1. This will be
achieved by combining Lemmas 3.5 and 3.8.

Let G € G(n). If n =6,7 and sdiam;(G) =5, then the validity of Theorem 3.1 can
be verified by direct checking.

Lemma 3.8 Let G € G(n). Let n>8, or n <5, or n =6,7 and sdiam3(G) # 5, or
n = 6,7 and sdiam;(G) # 5. Then the lower bounds in parts (1) and (2) of Theorem 3.1
are obeyed. Moreover, these bounds are sharp.

Proof. We need to separately examine three cases.
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Case 1. sdiam;(G) = 6 or sdiam;(G) > 6. Without loss of generality, let sdiam;(G) >
6. From Corollary 1.1 it is known that sdiams(G) = 3, and hence SH;(G) + SH3(G) =

SH;(P,) + SH5(S*). By Lemma 1.7, SHs(P,) —(n“)zﬂ > 1:,1 Note that $* is a

graph obtained from a clique of order n —1 Dby deleting an edge uv and then adding a
pendent edge at v. Then SH;(S*) = i(”‘3) (“ )+ n —13—1, and hence SH;(G) +

S, (F) 2 £ g2 () () et = A0

7n%2-23n+420
6

Case 2. sdiam;(G) = 5orsdiams(G) = 5. In view of Lemma 3.4, we can assume that
sdiams;(G) =5 and sdiam;(G) < 4. Let 51:82,..5(m) be all the 3-subsets of V(G).

Without loss of generality, assume that S;,S,..S, are the 3-subsets of V(G) for which
G[S;] = K5 or G[S;] = P;, where 1 < i < x.

For each i (1 < i<x), dg(S) =2. Forany S; (x +1<j < (%)), G[S;] =K, UK,
or G[ ] = 3K;. Since G is connected, it follows that there exists a spanning tree, say T. By
Lemmas 3.2 and 3.3, there exist at least (n — 3) subsets of V(T) whose Steiner 3-distance
is 3, and there exist at least (n —2) subsets of V(T) whose Steiner 3-distance is 2.
Therefore, there exist at least (2n — 5) subsets of V(G) whose Steiner 3-distance is at most
3. Without loss of generality, let d; (S;) = 3for S; (x + 1 < j <2n—5). Then d; (S;) <

5 and dg(Sj) =2foreachj 2n—-4<j < (g)). Foreachi (1 <i<x),d; (5) =2. By
Lemma 3.3, there exist at least (n — 3) subsets of V(G) whose Steiner 3-distance is 3. Then
there exist at most x — (n — 3) subsets of V(G) whose Steiner 3-distance is 4. If x < 2n —

5, then SHy(G) >Sx+;(@n—5-x)+1|(3)—2n+5| and sW,(G) =1 (n—3)+

i(x—n+3)+%[(g)—x], and hence SH;(G) + SH;(G) 2%(2)—ix+ln—22

12 20 12

l(n)+ﬂn—%. If x>2n-5, then SH3(G)2%x+%[(g)—x] and SH;(G) =

10 \3 60
1

g(n—3)+i(x—n+3)+%[(g)—x], and hence SH;(G) + SH;(G) 2%(731)+5x+

1 1_ 7 (n 11 1
Ly 1n (M), 1
12 4~ 10\3

Case 3. sdiam;(G) < 4 and sdiam;(G) <4. Let 51,52,...,5(71) be the 3-subsets of V(G).
3

Without loss of generality, let S;,S, ... S, be the 3-subsets of V' (G) for which G[S;] = K5 or
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G[S;] = P;,where1 <i<x.Foreachi (1<i<x),dg(S;)) =2 ForanyS;(x+1<j<
(3. G[S;] = K, UK, or G[S;] = 3K;.Since G is connected, there exists a spanning tree,

say T. By Lemmas 3.2 and 3.3, there exist at least (n — 3) subsets of V(T) whose Steiner
3-distance is equal to 3, and there exist at least (n — 2) subsets of V(T) whose Steiner 3-
distance is 2. Therefore, there exist at least (2n — 5) subsets of V(G) whose Steiner 3-
distance is at most 3. Without loss of generality, let d;; (Sj) =3forSj(x+1<j<2n-

5). Then d (5;) <4 and dg(s;) = 2 for each j (2n—4 < < (3)). For eachi (1 <

i <x), d; (5;) =2. By Lemma 3.3, there exist at least (n — 3) subsets of V(G) whose
Steiner 3-distance in G is 3. Then there exist at most x — (n — 3) subsets of V(G) whose

Steiner 3-distance in G is 4. If x <2n—5, then SH;(G) > ix +§(2n —5—x)+

H[(3) - 20+ 5 and s (@) 22 (-3 + 2 e —n+ D +2[(3) - ] Thus

4

_ 3/mn 1 1 2 3 1 3
Sty (@) +5Hs(6) 2 5 (3) -7 +3n 32 3(6) *

Ifx > 2n—5, then SH3(G)2§x+i[(g)—x] and SH3(E)2§(n—3)+i(x—n+

n — n
3) +%[(3) - x]. Thus SH5(G) + SH3(G) = %(3) +%n _%'

For n > 6, one can check that = (“ N -Tn 17.1 +w ‘(n) _n _% and
% 3) _n_— —(”) _n_E' So we only need to consider the lower bounds in

Cases 1 and 2.

From the above argument, we conclude the following:
7n“—-23n+20 1
1. Forn > 8, (n 3) Y- 1Til u (n) _n_E and SH,(G) +

sH;(6) 23 (" 5 st w_

6
2. For n <5, the lower bound in Case 2 does not exist. Then SH;(G) +
- 1 n . 7n®-23n+20
sty (@) 22(" 5 %) - mp m e TR0

6

3. Ifn=6,7, sdiam;(G) # 5, and sdiams(G) # 5, then SH5(G) + SH5(G) =
n—3 n-1n 71 2-23n+20
2 ( ) Z i '

6



196 WANG, MAO, WANG AND WANG

4. Ifn =6,7 and sdiam;(G) =5, or n = 6,7 and sdiam;(G) = 5, then

11 1

— 7 m
SH,(G) + SH5(G) 21—0(3)+%n—§.

This completes the proof.

In order to demonstrate the sharpness of the above bounds, we point out the following
example.

Example 3.4 LetG = P,. Then G = P,. By Lemma 1.1, SH;(G) = SH;(G) zg , and

2_ —
hence SH;(G) + SH5(G) —E (“ ) -Ti s+ # and SH;(G) - SH3(G) =
25 n (n 3)(n-2) n (n-3)(n-2) . . .

5 = [n 1( 2(n—D) ” ( W] which implies that the upper and lower

bounds are sharp.
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1. INTRODUCTION

Alkanes are considered as one of the most significant aliphatic hydrocarbons used in such
various industries as food, pharmaceutical, petrochemical and oil [1]. Since these chemicals
are present in many refining processes (crude oil), it is quite essential to take their various
physical and chemical properties— especially critical properties— into consideration. Critical
point is a state in which there is no boundary between the two phases of a matter. This state
occurs for every matter at the presence of a certain amount of temperature, pressure and
combination. Theoretically, it is possible to estimate most of the thermodynamic properties
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of chemicals using their critical properties. Practically, a large amount of theoretical
correlations are based on these properties [2-4].

The initial methods for estimating critical properties were experimental and were
used for hydrocarbon systems. Due to the fact that experimental values of critical properties
are not available for heavy alkanes, it is important to take advantage of appropriate
methods for estimating these properties. In this study, the model of multiple linear
regression was applied for the first time to find out the most appropriate molecular
descriptors in order to estimate critical temperature, critical pressure and critical volume of
alkanes and their derivatives [5]. The independent variables in multiple regression model
can be obtained through the use of various methods [6-7]. In addition, the graph theory
provides us with a suitable means for calculating topological descriptors which function as
independent variables [8-9].

The graph theory has a long history in mathematics and its application dates back to
about 200 years ago. In 1730, Euler was recognized as the father of graph theory after
publishing the “Seven Bridges of Konigsberg”. This theory is one the most practical
branches of mathematics in other disciplines. It has a wide range of applications in such
disciplines as biology, chemistry, nanotechnology, operational research and engineering
[10].

Chemical Graph Theory is one of the branches of mathematical chemistry which is
typically related to theoretical chemistry [11]. According to this theory, a graph indicates a
set of elements of a group and their interrelationships. In chemical graphs, the hydrogen
atoms are ignored since these atoms do not usually play a significant role in determining
the molecular structure. After drawing the chemical graph for a molecule, it would not be
difficult to extract topological indices—which are some constant numbers—for that graph.
Mathematicians call such constant numbers topological indices. These indices include the
structure, size, molecular polymerization, number of atoms and types of freaking molecular
atoms. The concept topological indices were initially expressed in 1947. Wiener and Platt
were the first to develop graph theory—based quantitative topological variables in 1947
known as Wiener index and Platt index, respectively, and reported Quantitative Structure
Property Relationship (QSPR) models on boiling points of hydrocarbones. At that time, this
concept was most often used for physical properties such as alkanes and paraffin’s boiling
points. QSPRs have provided a valuable approach in research into physico—chemical
properties of organic compounds [12-13]. In 1994, Ivan Gutman paid much more attention
to these issues, specifically the distances and weighted functions, in his paper entitled “on
the sum of all distances in composite graphs”. In theoretical chemistry, these indices help to
predict the chemical and pharmaceutical properties of materials. QSPR is a model that
relates the predictor variables of a molecule to its physico—chemical properties. The
essential problem in the development of a suitable correlation between chemical structures
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and properties can be imputed to the quantitative nature of chemical structures. Graph
theory was successfully applied through the translation of chemical structures into
characteristic numerical descriptors by resorting to graph invariants.

Hosseini and Shafiei proposed QSPR model for the prediction of gas heat capacity
of benzene derivatives through the use of topological indices. The best model was obtained
as follows: C, = —84.569 + 43.970%y — 2.298W + 1.463Sz. This means that 'y, W, Sz
descriptors play an important role in affecting heat capacity (C,) of benzene derivatives
[14].

QSPR modeling produces predictive model derived from application of statistical
tools correlating physico—chemical properties in QSPR models of chemicals with
descriptors representative of molecular structure [15-17].

In a nutshell, the aim of present research is to investigate the relationship between
all critical properties (as dependent variables) and 2-dimentional and 3-dimentional
descriptors (as independent variables) using QSPR and multiple linear regression (MLR)
methods for estimating the critical properties of 40 different types of alkanes and their
derivatives including critical temperature (T.), critical pressure (P;) and critical volume
(Vo).

2. TOPOLOGICAL INDICES

Considering the research studies in which several two—dimensional indices (topological)
were used, the current paper makes an attempt to investigate several three—dimensional
(geometrical) indices as molecular descriptors and their application for prediction of critical
properties of alkanes [16-17]. As a matter of fact, critical properties are sensitive to
molecular geometry; hence, some of the geometric descriptors were employed as
independent variables in this research. The statistical formulas used in this regard are
presented below.

2.1 WIENER INDEX

In 1947, Harold Wiener [18] introduced one of the first molecular descriptors of
topological nature for acyclic saturated hydrocarbons. The Wiener index W(G) of a graph
G is defined as the half of the sum of the distances between every pair of vertices of G, Dj;,
is the distance of two vertices i and j in the graph G).

l n n

W=2>%"D, (1)

2T j=1

2.2 HYPER WIENER INDEX

Another related distance—based structural descriptor of the graph G is the hyper—Wiener
index [19], WW(G) [5]. WW(G) index is introduced as:
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WW (G)=>dU,V)*+>.dU,V)/2 (2)

where d(U, V) denotes the distance between the vertices U and V in the graph G and the
summations run over all (unordered) pairs of vertices of G.

2.3 RANDIC INDEX

In 1975, Milan Randi¢ a Croatian—American scientist introduced the Randi¢ index [20-23],
the first connectivity index. The Randi¢ index of a chemical graph is the sum of all the
bonds contributions:

1
X= Z(rdj) 3

where d; and d; are the degrees of the vertices representing atoms “i”, “j”.

2.4 BALABAN INDEX

Defined by the Romanian chemist Alexandru T. Balaban in 1982, Balaban i_ndex is: J=J(G)
of a Graph G on n node and m edges and D; are the sum of all entries in the 'th row (or
column) of graph distance matrix [24—-25]:

n n

P CH DR

_m
u+1593 4
where g =m-n+1is the cyclomatic number.

J:

2.5 HARARY INDEX

The Harary index of a graph G was defined from the inverse of the squared elements of the
distance matrix according to the expression [26]:

1 n n
H=22 > (02 ()
i=1j=1
where D2 is the matrix whose elements are the squares of the reciprocal distances.

2.6 GEOMETRIC INDICES

Geometric analysis provides characteristic values related to the geometrical
structure of a molecule such as minimal and maximal z length, minimal and
maximal projection area, force field energies or van der Waals volume.
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3. COMPUTATIONAL METHODS

To analyze the relationship between critical properties such as temperature (To),
pressure (P.) and volume (V. of alkanes derivatives in contrast with molecular
descriptors, the research data were collected in two stages as follow:

First, the structure and existing laboratory quantities (experimental) of 40 different
types of alkanes and their derivatives in the present investigation were taken from National
Institute of Standard and Technology chemistry webbook and were listed in Table 1.

Second, the values of Randic¢ (), Harary (H), Balaban (J), Wiener (W), Platt (Platt)
and hyper—Wiener (WW) topological indices were calculated by formulas 1-5 using graph
theory for 40 different types of alkanes derivatives, and the values of geometry descriptors
such as the minimal projection area (MinPA/A?), the maximal projection area
(MaxPA/A™), the minimal z length (MinZL/A"), the maximal z length (MaxZL/A"), the van
der Waals volume (V/A™) were taken for 40 compounds of mentioned training set from the
book and webbook [27].

Third, the relationships between T, P¢, V¢ with all the used molecular indices were
investigated for 40 different types of alkanes derivatives using excel software and relevant
equations were extracted.

Fourth, the estimation of critical properties was performed by SPSS software
version 16 with MLR method and backward procedure. According to the important
determining factors of this method such as correlation coefficient, square correlation
coefficient, adjust square correlation coefficient, Fisher statistics, Durbin Watson, the best
topological indices were determined for estimating the properties.

The linear regression model is a statistical means for analyzing the correlation
between an independent variable and a dependent variable. Now, if we increase the number
of independent variables to more than one, the regression model is called multiple
regression model [28]. The simple linear regression equation is indicated as y=a+bx, while
the multiple regression equation is introduced as:

y=bg +byxqg +---+byxg +e (6)
where, y: dependent variable; by: regression constant; by: regression coefficient for first
independent variable xi; by regression coefficient for k™ independent variable x; e: the
observed amount of error.

The simple regression model is linear since the increase of a descriptor x value
causes the increase of dependent variable y (if the coefficient b; is positive). One of the
assumptions behind the multiple regression model is that there is a linear correlation (a
straight line) between the independent variables and dependent one. Several independent
variables form a model which predicts the amount of dependent variable.

This research paper attempts to scrutinize the correlation between critical properties
of alkanes derivatives and molecular descriptors through the use of MLR method.
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4, RESULTS AND DISCUSSION

The experimental data of T, P and V. of alkanes and their derivatives were shown in
Table 1:

Table 1. Used compound, experimental data of critical temperature (T/K), critical pressure
(P/Pa), critical volume (V¢/m?) of alkanes derivatives.

No  Alkane TJ/K P.x10-/Pa  Vx10%/m
1 Ethane 305.3 4.9 1.47
2 Propane 369.9 4.25 2.0
3 n-Butane 425.1 3.80 2.55
4 2-Methylpropane 407.7 3.65 2.59
5 n-Pentane 469.8 3.36 3.11
6 2-Methylbutane 461.0 3.38 3.06
7 2,2-Dimethylpropane 433.8 3.20 3.07
8 n-Hexane 507.6 3.02 3.68
9 2-Methylpentane 497.8 3.03 3.68
10 3-Methylpentane 504.0 3.11 3.68
11 2,2-Dimethylbutane 489.0 3.10 3.58
12 2,2-Dimethylbutane 500.1 3.15 3.61
13 n-Heptane 540.0 2.74 4.28
14 2-Methylhexane 530.5 2.74 4.21
15 3-Methylhexane 535.2 2.81 4.04
16 2,2-Dimethylpentane 520.5 2.77 4.16
17 2,3-Dimethylpentane 537.3 291 3.93
18 2,4-Dimethylpentane 519.8 2.74 4.18
19 3,3-Dimethylpentane 536.4 2.95 4.14
20 2,2,3-Trimethylbutane 5311 2.95 3.98
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Table 1. (Continued).

No Alkane TJ/K  Pcx10-%Pa  Vx10Ym®
21  3-ethylpentane 540.6 2.89 4.16
22 n-octane 568.9 2.49 4.92
23 2,2,3-trimethylpentane 563.5 2.73 4.36
24 2,3,3-trimethylpentane 573.5 2.82 4.55
25  2,2,4-Trimethylpentane 543.9 2.57 4.68
26 2,2-Dimethylhexane 549.8 2.53 4.78
27  3,3-Dimethylhexane 562.0 2.65 4.43
28  3-Methyl-3-ethylpentane 576.5 2.81 4.55
29  2,3,4-Trimethylpentane 566.4 2.73 4.6
30  2,3-Dimethylhexane 563.5 2.63 4.68
31  2-Methyl-3-ethylpentane 567.1 2.70 4.42
32 3,4-Dimethylhexane 568.8 2.69 4.66
33  2,4-Dimethylhexane 553.5 2.56 4.72
34 2,5-Dimethylhexane 550.0 2.49 4.82
35  2-Methylheptane 559.7 2.50 4.88
36  3-Methylheptane 563.6 2.55 4.64
37  4-Methylheptane 561.7 2.54 4.76
38  3-Ethylhexane 565.5 2.61 4.55
39  n-Nonane 595.0 2.30 5.55
40  n-Decane 617.8 211 6.24

205

The values of used topological indices of 40 different types of alkanes and their
derivatives were calculated by formula 1-5, and the values of the geometry descriptors of
all the mentioned compounds were taken from the book and webbook [27].

In the first section, in order to apply simple linear regression method the
relationship between critical properties of the used compound with all used indices was

investigated using excel software (see equations 7-39).
The following equations

values of molecular indices.

indicated the

relationship between T,

the
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Number Equation R?

(7) Tc=0.2974 Platt + 7.0538 0.5219
(8) Tc=0.0609 X + 1.9244 0.8051
9 Tc=0.0255] + 2.353 0.294 2
(10) Tc=0.3181H + 5.2614 0.8193
(12) Tc=2.349 W + 5.4462 0.7733
(12) T¢=5.9864 WW + 9.9962 0.6133
(13) Tc=2.1433 \/+84.807 0.7969
(14) Tc=0.2754 Min PA+21.597 0.4973
(15) Tc=0.1149 Min Z L+7.0897 0.4415
(16) Tc=0.6768 Max PA+29.759 0.7547
a7) Tc=0.0113 Max Z L +5.5147 0.0718

According to equations (7 to 17) and the square correlation coefficients
(R?), it can be inferred that there was better correlations between T. and H>X>V
of this type of alkanes, respectively.

Also, research results indicated that the correlation coefficients values of
equations (8), (10), and (13) are very close to each other and there is a significant
distinction between these values and other regression coefficients. On the other
hand, the correlation coefficients of the equations (7), (9), (11), (14), (15), (16),
and (17) demonstrate that there is not a strong correlation between Tc and J, Platt,
W, WW, MinPA, MinZL, MaxPA, MaxZL descriptors. Consequently, the
descriptors MaxZL and J which possess a lower correlation compared with other
descriptors were not used for predicting T, of alkanes using the MLR method.

According to the square correlation coefficient of equations (18-28), the
following rank was found among P, and molecular descriptors: V>X>MaxPA>H:

Number Equation R?

(18) Pc= —86352 Platt +4x10° 0.6427
(19) Pc= —615873 X +5x10° 0.8877
(20) Pc=—645673 J + 5x10° 0.4705
(21) Pc=—116735 H + 4x10° 0.8562

(22) Pc=—13768 W + 4x10° 0.6881
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(23) Pc=—4210.3 WW + 3x10° 0.5269
(24) Pc= —17730 V+ 5x10° 0.9219
(25) Pc= —81662 MinPA+ 5x10° 0.5172
(26) Pc= —198960 MinZL+5x10° 0.6020
(27) Pc= —52914 MaxPA+ 5x10° 0.8645
(28) Pc= —370030 MaxZL + 5x10° 0.1238

Therefore, the descriptors MaxZL and J which showed a weak correlation were
ignored and the descriptors X, H, V, MaxPA which had a higher correlation were preserved
for prediction of alkanes P. through the use of MLR method. Also, a linear relationship
between V. and X, V, H, MaxPA of this class alkanes was obtained. In accordance with the
equations (29-39) it was observed that the Randic index and VVolume geometry descriptor
had the highest linear relationship with V¢, (R2> 0.97).

According to the R? values of equations (30), (32), (35), and (38) the following rank
was found among V. and efficient molecular descriptors: X>V >H >MaxPA.

Also, the descriptors Platt, X, H, W, WW, V, MInPA, MinZL, MaxPA which
illustrated a correlation coefficient above 0.5 were used for prediction of alkanes V. using
the MLR method, and the descriptors J, MaxZL which possessed a fairly weak correlation
were removed.

Number Equation R?

(29) \V/c=41667 Platt — 3.9284 0.6240
(30) Vc=8563X — 0.3378 0.9706
(31) \V=3704.6 J + 1.3583 0.3767
(32) Vc=43537 H — 6.0622 0.9345
(33) Vc=320744 W — 77.865 0.8780
(34) Vc=835066 WW — 229.55 0.7267
(35) V=303037 V+ 4.5371 0.9700
(36) Vc=35070MinPA+ 12.867 0.4912
(37) Vc=18439 MinZL+ 1.8871 0.6926
(38) V=96265 MaxPA+ 4.1775 0.9297

(39) Vc=1757.2 MaxZL+ 5.026 0.1058
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In addition, the autocorrelation of descriptors used in the selected model was tested.
If the regression coefficients of the diagrams indicating interrelationship between the
independent variables were above 0.9, one of the independent variables was ignored.

Following MLR guidelines, the experimental critical properties, i.e. T P,
V. were selected as the dependent variables and the suitable molecular
descriptors— as the independent variables— were chosen on SPSS software and
backward procedure.

Then, different models were examined and the best model was defined using
correlation coefficient (Pearson's r), determination coefficient, Std. Error of estimate, mean
square, the Fischer statistic, sum of squares of residual and specifically Fisher statistic and
the associated significance values (see Table 2).

Table 2. Property, Equations, R, R?, R®agjus,. RMSE, F statistic, SS, SSE and Sig for
estimating of T, Pc, V.

Mod.  Prop. Equation R R? R adjust RMSE F SS SSE

40 T. =8.75Platt-0.113 0.959 0.920 0.913 1.8509 137.877 14171856 12334.32
VW+ 19.995 MinZL+

El
'32.130
41 P, P.= -68615.237 0.961 0.923 0.917 1.4933 144.619 9.67E12 8.028
Platt+1413.541 E5 E11
WW - 194862.228
MinZL+
5494998.974

42 Ve V=1.006E-5 Platt 0.986 0.972 0.970 1.5879 417.097 3.15E-7 9.076
+1.931E-7 WW+
2.123E-5 MinZL
+5.526 E-5

E5 E-9

4.1 STATISTICAL PARAMETERS

4.1.1. Significance Level (sig): A coefficient used in the statistical method is
significance level. The more the significance level is close to zero, the smaller the
significance level and the linear model will be more meaningful. Therefore, the
higher the Fisher statistic, the lesser significance level. As it’s seen in Table 2, the
best three descriptors, as predictors of T, P.and V¢ in terms of non-standardized
coefficients, are represented using the models (40), (41) and (42), respectively.
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4.1.2. Correlation Coefficients (R): It indicates the correlation between two
variables. Statistically, the higher correlation between variables X and Y, the more
accurate the prediction will be. R=0.959 in equation (40) illustrates a strong
correlation between T, and Platt, WW, MinZL descriptors using the MLR method.

4.1.3. Determination Coefficient (R?): For example, the value of R?=0.972 in equation (42)
illustrates that 97.2% of variation is residing in the residual meaning that the fitted line or
model is very good.

4.1.4. Adjusted Determination Coefficient (RZAdjust): the percentage of adjusted
determination coefficient does not represent the influence of all the independent variables,
but it only illustrates the real influence of applied independent variables on the dependent
variable. Thus, the high value of RzAdjust (%97.0) can be used to explain the values of the
V(exp) Variations in terms of the values of Platt, WW, MinZL independent variables.

4.1.5. Also, adjusted determination coefficient Rzadjust indicates the percentage of dependent
variable that is justified by the independent variable. The small differences between Rzadjust
and R? indicates that independent variables added to the model have been chosen more
appropriately. The slight difference between the above amounts in the proposed model
verifies the precision and accuracy of the model for predicting the critical properties. So, in
accordance with the unstandardized coefficients, the models (40), (41) and (42) were
determined for estimation of T, P; and V., respectively.

4.1.6. If the standard deviation of a set of data is close to zero, it indicates that the data are
close to the average and have low dispersion.

4.1.7. Standard Error of Estimate (STD) or RMSE is used to indicate the spread of values
in a distribution. It is a standard method for determining the normal, above—-normal and
below—normal values. It measures the error rate between the two datasets. RMSE usually
compares a predicted value and an observed value.

Finally, the comparison between equations and the values of statistical coefficients
showed the best models for predicting T, P, and V. of alkanes using the MLR method
which are summarized as follow:

T.=8.75 Platt — 0.113 WW+ 19.995 MinZL+ 232.130 ; DW=2.01
P.=—68615.237 Platt+1413.541 WW — 194862.228 MinZL+ 5494998.974, DW=1.55

V=1.006E-5 Platt +1.931E-7 WW+ 2.123E-5 MinZL +5.526 E-5; DW=1.85
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4.1.8. Standard Coefficient B: The values of standard coefficients of 3 related to effective
descriptors used for predicting T. and V. in the final equations using MLR method were
obtained as follow:

Table 3. The standard coefficients  values of Platt, WW, MinZL

Descriptor/ B Descriptor/ B Descriptor / B

Te Pc V.

Platt 0.670  Platt -0.637 Platt 0.531
WW -0.160 WW 0.244 WW 0.189
MinZL 0.643 MinZL -0.760 MinZL 0.470

The standard correlation coefficient P value is a measure of how strongly
each predictor variable influences the dependent variable. For example, the
standard coefficients [=0.670, 0.531 for the Platt variable which are used for
predicting T. and V., respectively, illustrate that compared to WW and MinZL
predictors, the Platt index has the strongest influence on Tc and V. Similar to
above explanations, the correlation coefficient p=-0.760 reveals that the descriptor
MinZL has the highest influence on dependent variable P. than Platt index. Table
4 indicates the definitive values of Tcpred), Pcgredy Veprey Of alkanes and their
residuals using the equations (40), (41), (42) and MLR method.

Table 4. The values of predicted critical properties and residuals of alkanes derivatives.

No  Tepred/K ReS(T)/K  Peprea x10%/Pa Res(P.)/Pa Vepreax10/m®  Res (Vo) /m?

1 330.59 —25.293 4.53574 364258.3 1.60 —1.31E-05
2 379.43 —9.535 4.09433 155665.5 2.15 —1.48E-05
3 422.80 2.298 3.70817 91824.6 2.65 —1.05E-05
4 418.04 —10.346 3.78689 —136899 2.61 —2.05E-06
5 466.63 3.160 3.32056 39437.23 3.20 —8.85E-06
6 455.33 5.663 3.46183 —81833.6 3.07 —1.20E-06
7 453.63 —19.824 3.54328 —343284 3.07 4.18E-07
8 500.99 6.614 3.03014 —10149.5 3.69 —8.11E-07
9 499.84 —2.046 3.07081 -35818.8 3.65 2.61E-06
10 484.50 19.499 3.21910 -109106 3.48 2.02E-05
11 510.43 —21.433 3.02988 70110.85 3.75 —1.73E-05
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

489.79
538.36
535.29
517.92
549.01
531.62
515.73
534.92
542.61
500.54
572.58
572.12
563.77
579.56
583.38
570.81
547.68
563.03
569.55
526.94
548.57
549.50
563.72
569.70
557.60
556.17
532.46
602.54
625.41

10.305
1.637
—4.799
17.280
—28.515
5.673
4.0718
1.478
—11.514
40.060
—3.680
—8.621
9.725
—35.665
—33.576
—8.811
28.816
3.371
—6.052
40.157
20.227
3.994
—13.722
—10.007
5.997
5.532
33.0340
—7.535
—7.615

3.19864
2.71680
2.77432
2.94087
2.69977
2.83559
2.99304
2.83461
2.79076
3.10743
2.44304
2.55097
2.63106
2.48220
2.41864
2.53545
2.75675
2.60846
2.51816
2.92901
2.71979
2.71478
2.58063
2.49651
2.60976
2.62218
2.84845
2.22211
2.08428

—48641
23192.17
—34327.9
—130879
70223.33

74406.4
—253049

115385
159233.3
—217431
46954.71
179022.4
188937.2
87799.26
111356.9
114551.2
53246.74
121533.7

111837
—229019
—29789.5
—154782
—90630.5
3483.528
—59768.3
—82186.8
—238459
77881.14

25712

3.53
4.28
4.20
3.99
4.30
4.10
3.96
4.13
4.20
3.78
4.92
4.68
4.58
4.79
4.89
4.70
4.41
4.59
4.71
421
4.46
451
4.70
4.82
4.65
4.62
4.32
5.63
6.40

211

8.19E-06
4.36E-07
7.80E-07
5.05E-06
—1.44E-05
—1.70E-05
2.23E-05
1.11E-06
—2.24E-05
3.83E-05
2.74E-07
—3.17E-05
—2.56E-06
—1.13E-05
—1.07E-05
—2.67E-05
1.39E-05
1.33E-06
—2.63E-06
2.10E-05
2.05E-05
2.14E-05
1.19E-05
5.61E-06
—8.46E-07
1.42E-05
2.31E-05
—7.63E-06
—1.61E-05

Figures 1, 2 and 3, show that there was a high linear correlation

between the

experimental and obtained critical properties and the estimated critical properties using the
models. Figure 1 shows a high linear correlation ( R?=0.9199) between the experimental
and the obtained Tc using the equation (40). This diagram illustrates the values of Te(preq)
variations obtained from equation (40) using a MLR method in terms of the Texp). The
value of R*=0.9199, in this diagram, indicates the fact that 91.99% of the Tcreq Variations
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can appropriately be determined in terms of one unit variation in Tcexp). Figure 2, shows a
high linear correlation ( R?=0.9234) between the experimental and the obtained P using the
equation (41). In this diagram, the high correlation between Pcexp) and P(preq) Was obtained
using the MLR. The obtained value of 0.9234 for R* indicates that %92.34 of the Pe(preq)
variations can be determined in terms of one unit variation in Peexp).

According to Figure 3, the indicative equation relationship between V gpreq) Obtained
from MLR model (42) was calculated as Y=X—1E-18. The value of 0.972 for R? shows that
%97.2 of the V(req) Variations can be determined in terms of one unit variation in Veexp).

700
600

500

400

300

300 350 400 450 500 550 600 650

Figure 1. The plot of observed T, vs Predicted T..
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Figure 2. The plot of observed P vs Predicted Pe.
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Figure 3. The plot of observed V. vs Predicted V..
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It is obviously determined that the predicted values are so close to the experimental
ones. So, it’s inferred that the proposed patterns in these models have been selected
correctly for determining critical properties of the studied molecules. The residual values
are shown at a fairly random pattern (see Figures. 4, 5 and 6). Residuals are used to assess
the normality of assumption. Figures 4, 5 and 6 show that the errors around x—axis have
almost a uniform distribution. This proves the suitability of the selected pattern for
proposed critical properties of alkanes.

60 -
40 ' 2 ¢
%
20 - L JPSR 2
0 Q “‘!30 Tcexp
100 200 300 ®add 500 :0 o 700
-20 - ® o
* .
240 - . 4
Figure 4. The plot of experimental T, vs the residuals.
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Figure 5. The plot of experimental P; vs the residuals.
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Figure 6. The plot of experimental V. vs the residuals.
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5. QSAR MODEL VALIDATION

Typically, there are numerous methods for validation of QSAR models. Various
statistical tests and coefficients can be used for validation of applied algorithms
which, in the following, the most significant ones are represented. The statistical
tests and coefficients used for estimation of T¢, Pc and V¢ are as follow:

5.1. LEAVE-ONE-OUT CR0OSS-VALIDATION (LOOCV)

To determine the LOOCV, at first, a molecule from training set of 40 primary alkanes was
removed. Then, QSPR was examined on the 39 remaining molecules. Considering the
amounts of RSS and TSS, the amount of Q? was calculated based on the formula (43) and
this cycle was repeated resulting in elimination of 25% of alkanes which were being
studied leading to examining and calculating Q? for the remaining alkanes. Finally, the
mean value of Q? was compared with R? in the final graphs, the results were shown in
Table 5.

2 —1_ Z(Yexp(train) _Y_pred(train))2 =1_@

D" Vexpirainy — Y Training ) TSS (43)
where, RSS refers to the residual sum of squares and TSS represents the total sum
of square. This formula is the most widely used measure of the ability of a QSPR
model to reproduce the data in the training set. We have computed the values of
Q? (Eq. 43) using %25 of training set randomly. The values of Q? are defined as
positive and less than one.

The small differences between mean Q? values of T, P., V. are equal to 0.9295,
0.9286, 0.9761, respectively, and the R? values of them verify the precision and accuracy of
the model for predicting the critical properties.

Q

Table 5. The values of Q*LOO of T, P, V..

No. Q’LOO(T) Q’LOO(P) Q°’LOO(V, Number Q?LOO(T) Q’LOO(P,) Q?LOO(V.)

1 0.9206 0.9250 0.9720 6 0.9350 0.9295 0.9755
2 0.9209 0.9252 0.9729 7 0.9353 0.9307 0.9757
3 0.9216 0.9254 0.9744 8 0.9355 0.9316 0.9802
4 0.9268 0.9259 0.9745 9 0.9359 0.9339 0.9803
5 0.9277 0.9283 0.9754 10 0.9360 0.9351 0.9805
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5.2. MULTICOLLINEARITY TEST

Multicollinearity test was performed to avoid habits in the decision making process
regarding the partial effect of independent variables on the dependent variable. A good
regression model is a model in which there is not a high correlation between the
independent variables. Multicollinearity test is performed through the use of SPSS software
and the value of variance inflation factor (VIF) to avoid linear correlation between the
independent variables. If the VIF value line is a number between 1 and 10, then there is no
multicollinearity, and if VIF<1 or >10, then there is multicollinearity. In all our final
models, the multicollinearity did not exist, because the values of correlations between
independent variables are not close to one, and VIF values line between the numbers 1 to
10. The analysis of VIF values for all the descriptors indicated that the best models for
predicting T, Pc and V. values are: Platt, WW, and MinZL.

5.3. TEST FOR AUTOCORRELATION USING THE DURBIN-WATSON STATISTIC

From a statistical regression analysis lens of view, Durbin~Watson (DW) statistic
IS a number to examine autocorrelationin the residuals. The DW values 2.01,
1.55, 1.85 in final models are considered acceptable indicating that there is poor
correlation between the errors and the independence of residuals. These numerical
values indicate that our final models are perfect.

5.4. SKEWNESS AND KURTOSIS TEST

The normality of residuals represents whether the distribution function is
symmetrical or asymmetrical. For a completely symmetrical distribution, the
skewness and kurtosis are equal to zero. In a non-symmetrical distribution, when
most of the scores “scrunch up” towards a few high scores it is positively skewed,
and when most of the scores cluster towards a few low scores it is negatively
skewed. Generally, if the skewness and kurtosis are placed at an interval between
[2,-2], the data follow a normal distribution. The observed values for residuals
skewness are 0.094, 0.076, 0.060, and the observed values for residuals kurtosis of
variables T., P. and V. are 0.624, 0.500, -0.578, respectively. These indicate the
normality of them.

5.5. APPLICABILITY DOMAIN

The applicability domain (AD) of QSAR model was used to verify the prediction
reliability, identify the problematic compounds and predict the compounds with
acceptable activity that fall within this domain. The most common methods used
for determination of the AD of QSAR models have been described by Gramatica
that used the leverage values for each compound. The leverage approach allows
the determination of the position of new chemical in the QSAR model, i.e.
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whether a new chemical will lie within the structural model domain or outside of
it. The leverage approach along with the Williams Plot are used to determine the
applicability domain in all QSAR models.

To construct the William Plot, the leverage h; for each chemical compound- in
which QSAR model was used to predict its property— was calculated according to the
following equation:

hi=x"(XTX)*x (44)
where, x refers to the descriptor vector of the considered compound and X
represents the descriptor matrix derived from the training set descriptor values.
The warning leverage (h*) was determined as:

h"=3(p+1)/n (45)
where n is the number of training compounds and p is the number of predictor variables.
In this research, in each of the three models, the descriptor vector x includes the
Platt, WW, MinZL descriptors and X is Platt, WW, MinZL descriptors matrix
related to training set of alkanes. (The leverage values are shown in Table 6).
Also, according to equation (45), the value of h” is equal to 0.3 (n=40 and p=3).
Then, the defined applicability domain (AD) was visualized using a Williams plot,
the plot of the standardized residuals versus the leverage values (h). A compound
with h; > h* seriously influences the regression performance and may be excluded
from the applicability domain (See Figs. 7, 8, 9). The results indicated that among
40 different types of alkanes, there is just one outlier.

Table 6. The leverage values of used alkanes

Alkane h; Alkane h; Alkane h; Alkane hj

1 0.0836 11 0.0494 21 0.0234 31 0.0444
2 0.1047 12 0.0363 22 0.0946 32 0.0350
3 0.1146 13 0.0832 23 0.0952 33 0.0363
4 0.0569 14 0.0545 24 0.1050 34 0.0358
5 0.1193 15 0.0303 25 0.0864 35 0.0483
6 0.0558 16 0.0443 26 0.0458 36 0.0383
7 0.0453 17 0.0338 27 0.0512 37 0.0364
8 0.0979 18 0.0285 28 0.0673 38 0.0287
9 0.0556 19 0.0493 29 0.0560 39 0.2072

=
o

0.0417 20 0.0843 30 0.0329 40 0.5754
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Thus, the analyses of various statistical coefficients, tables, diagrams and QSPR
model validation through the use of MLR method show that they possess the necessary and
sufficient validity for predicting the critical properties of alkanes.

6. Conclusion

The afore—-mentioned computational methods involve methods which all focus on the
molecular structures and properties. The underlying concept of these methods is based on
the fact that the molecular and geometric structures are responsible for all the physical and
chemical properties of molecules including t. The results of the present study indicate that
the simple linear regression model with dispersion coefficient (alone) is not sufficient for
determining the critical properties of alkanes. However, the multiple linear and regression
model benefiting from various descriptors, factors and efficient coefficients can suggest the
best algorithm for determining these properties. It was also witnessed that among the
proposed models to predict the critical properties, the model including a combination of
descriptors Hyper—Wiener, Platt, and MinZL is the most appropriate one. And the last but
not least, this was the first time that the relationship between critical properties with
molecular descriptors of alkanes and their derivatives was investigated through the use of
SPSS software and MLR method.
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1. INTRODUCTION
A benzenoid system is obtained by using the regular hexagons consecutively so that two

hexagons are either disjoint or have a common edge [1]. An example of benzenoid chain is
illustrated in Figure 1.

Figure 1. A Benzenoid Chain.

In connection with the benzenoid chains the LA-sequence is defined as an ordered
h—tuple (h > 1) of the symbols L and A. The i-th symbol is L if the i—th hexagon is of
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modeL, or L,. The i—th symbol is A if the i—th hexagon is of mode A. The definition of L.,
L, and Amodes of hexagons is clear from Figure 2.

Figure 2. Illustration of L, L, and A modes of hexagons, respectively.

For instance, the LA-sequence of the benzenoid chain in Figure 1 is
LLLALLALLLAALL or, in the abbreviated form L3AL2AL3A%L2. Each perfect matching of a
benzenoid system (if any exists) represents a Kekulé structure. The number of Kekulé
structures of benzenoid chains is called its“K number”. The K-number of a benzenoid
chain is calculated by its LA-sequence.

Balaban and Tomescu coined the term isoarithmicity for the benzenoid chains
which their K numbers are same [2]. It is denoted by (x;, x5, ..., x,,) the class of isoarithmic
benzenoid chains with the LA-sequence

L*1AL*2A ... AL*n
wheren>1,andx; =1, x, =1, x; =0 fori=23,..,n— 1. For example isoarithmic
class of the benzenoid chain which is depicted in Figure 1 is (3,2, 3,0, 2).

Every benzenoid chain can be represented in this form. It is denoted by
K, (x1, x5, ..., x,) the number of Kekulé structures of the chain (x;, x5, ..., x;,).It is defined
for the initial terms of the K numbers such that ([1]) K, = 1,K;{(x;) = 1 + x;.

Theorem 1. If n > 2 then for arbitrary x; > 1, x, =21, x; =20, (i =23,..,n—1), the
following recurrence relation holds [1]
Ko (x1, %5, ., %) = (a6, ¥ DK {01, X0, 0o, Xppeq) + K0 {xq, X0, oo, X)),

2. THE HOSOYA INDEX AND MORGAN-VOYCE POLYNOMIALS

The Hosoya or Z-index was defined by Hosoya in 1971 [3] and the Hosoya index of a
graph G is denoted by Z(G). The Z(G), is the total number of k—matchings which are the
number of k choosing from a graph G such that the k lines are non—adjacent where N is the
number of points.

Definition 1. The number of k—matchings is denoted by m(G, k) and the Z(G) is defined

as Z(G) = YV2lm (G, k) such that m(G, 0) = 1 for any graph G.
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Theorem 2. The number of k—matchings of the path graph is calculated by the following
equation [4]
m(G, k) = (" *), for 0 < k < |N/2|.

Relations between topological indices and some orthogonal polynomials for
example Hermite, Laguerre and Chebyshev polynomials were found by Hosoya ([5]).
Another relation between the sextet polynomial of a hexagonal chain and the matching
polynomial of a caterpillar tree was discovered by Gutman [6]. As a result of this paper, it
has been shown that the K-number of a hexagonal chain is equal to the Hosoya index of
the corresponding caterpillar [7]. For instance, corresponding caterpillar tree of the
hexagonal chain which is depicted in Figure 1 is on the below.

VARV

Figure 3. The hexagonal chain in Figure 1 has 14 hexagons and
the corresponding caterpillar tree has 14 edges.

The caterpillar tree of the hexagonal chain in Figure 3 is C5(4,3,4, 1, 3).

Definition 2. The Morgan—Voyce polynomials B, (x) is defined by [8] as

=3 ("7

i=0
and the first five Morgan—-Voyce polynomials are found from this equation like that
Bo(x) =1
Bi(x)=x+2
B,(x) =x?+4x+3
By(x) =x3+6x2+10x+ 4
B,(x) = x*+8x3+21x?>+20x +5 .

3. REGULARLY ZIG-ZAG NON—BRANCHED CATACONDENSED BENZENOIDS

The Kekulé number of regularly zig—zag non-branched cata condensed benzenoids was
found by He, He and Xie [9] by Peak—Valley matrix.
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(@)

W, +1
()

Figure 4. Dualist graph of a general non-branched cata—condensed benzenoids.

In Figure 4, ;€ (=12 ..s) and b€ (i=12,..5) where s =s for
Figure 4(a) and s' = s + 1 for Figure 4(b). a; + 1 and b; + 1 represent the numbers of
linearly condensed six-membered rings horizontally and diagonally, respectively. For the
benzenoid shown in Figure 4(a) and 4(b), the Peak—Valley matrix is as follows.

t; 1 0 7
1 ¢ 1 0
|0 1 ¢t
An = . 1 0
0 1 t_, 1
i O 1 ¢t
b1+ 2, ifi=Yk o a;,+1
where t; = ot f ) ’;0 / , k=12 ..,s;i=12,.., . Here s the
2, Lfl¢2j=0aj+1

number of peaks (or valleys) in a graph G. The Kekulé number of a graph G is shown by
K,(G)(n=1,.., ).
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Figure 5. Simple binary regularly cata—condensed benzenoids.

Lemma 1. From Figure 5, the K—number of the graph G is calculated by the following
tri-diagonal determinantal expression[9]:

b+ 2 1 0
1 b+2 1 0
K.(G) = deta, =| © 1 b+2 . 0
0 1 b+2 1
0 1 b+2

The order of the above determinant is s + 1, where s is the repeat times of horizontal linear
segments on the graphG.

4, CONTINUANTS AND CATERPILLAR TREES

Lemma 2. If H is a hexagonal chain whose LA-sequence is L**AL*2A ... L*n-1AL*n,
then the number K (H) of its Kekulé structures is equal to the Z—index of the caterpillar
tree C,(x1, x5, ..., x)[7].

If it is written C(H) for caterpillar tree of a H hexagonal chain, Lemma 2 is
equivalent to the equality K (H) = Z(C(H)).

Definition 3.The continuants (or continuant polynomials) are introduced by Euler [10]
as Ln(x1, %5, ..., %) = XpLp_1(x1, %5, ..., Xp_1) + Ly_5(xq,%5, ..., x_5) with initial
conditions Ly() = 1, L1(x;) = x; and L,(xq,x,) = x3x, + 1.
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From this it is shown that the Z—index of the caterpillar trees coincides with Euler ’s
continuant like the following lemma.

Lemma 3. Z(C,(xy, %2, ., %)) = L (g, 22, .., x)[7].

5. MAIN RESULTS

Theorem 3. The coefficients of a B, (x) Morgan-Voyce polynomial are equal to the
number of k—matchings (m(G, k)) of a path graph which has N = 2n + 1 points.

Proof. We denote the coefficients of Morgan—-Voyce polynomials with
n+i+1
C(By() = < n—i )
such that 0 < i < n and we take the point number of the path graph N = 2n + 1. The
number of k—matchings of a path graph for 0 < k < |[N/2] is

o= (")

and [N/2] = [(2n+ 1)/2] = n by the definition of the Hosoya index. Now we
demonstrate the coefficients of the Morgan—\VVoyce polynomials in combinatorial form
with respectively for0 <i<n

n+1y m+2 2n\ /2n+1
c@@)=(", )G 1) () ()
and m(G, k) = (") for 0 < k < |N/2] = n with respectively

o= ) () (T 0

It is clear that C(B,(x)) and m(G, k) are same in reverse order. From this we say for
every n'" degree Morgan-Voyce polynomial there is a path graph (Py) which has
N = 2n + 1 points such that the coefficients of the Morgan—Voyce polynomials equal
to the number of k—matchings of Py.

Example 1. We show an application of the previous theorem for the first three
Morgan-Voyce polynomials. For By(x), C(B,y(x)) = 1 equals to m(G, k) for N = 2 x
0 +1=1. For B;(x), C(By(x)) =1,2 equal to m(G, k) for N=2x1 +1=3
For B,(x),C(B,(x)) = 1,4,3 equaltom(G,k) for N =2x2 +1 =5,

Lemma 4. If by+1=b,+1=--=b,+1=>b+1 (numbers of the regular
hexagons on diagonal wise are same) like in Figure 5 and we take x instead of b;, then
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(the right equation is used to express many properties of the Morgan—-Voyce
polynomials like in [8])
K,(G) = detA,, = B, (x).

Proof.
Ki(G) =|x+2| =X+2 = B1(X)
2 1
K2 (G) X =(x+2)(x+2)-1 :x2+4x+3 =Bo(x)
1 x+2
x+2 1 0

K3(G) =| 1 x+2 1 :x3+6x2+10x+4 =B3(x)
0 1 x+2

and by the determinant of the tri-diagonal matrix in Lemma 1,

K,(G) = B,(x) = (x + 2)B,,_;(x) — B, _,(x).
In Lemma 1, the (n) indice on the notatin K,, is the number of the repetition of the
diagonal hexagons. We also take the number of the hexagons b; + 1 on diagonal wise
like the previous lemma. For Figure 5, by + 1 =b, +1 =--=b,+1= b+ 1 and its
corresponding caterpillar tree is C,,,(b +1,1,b,1,...,b,1).

There is a relation between the K-number of the hexagonal chain in Figure 5 and
Z-index of its corresponding caterpillar tree as noted in the next theorem.

Theorem 4. K,,(G) = Z(C,,(G)).

Proof. Induct on n. For n =1, K;(G) = Z(C,(b+ 1,1)) = b + 2, as desired. We
assume that the equality is true for n < k and we will show that it is true forn = k + 1.
This means
Ki+1(G) = Z(Cors2(b+1,1,b,1,...,b,1)).
By assumption
Ke(G) = Z(Cp(b+1,1,b,1,...,b, 1))
and
K 1(G) = Z(Coe_,(b+1,1,b,1,..,b,1)).
By Lemma 1,
Kii(G) =(b+2K(G)-K,,(G)
=(b+2)Z(C, (G)) - Z(Cy,(G))
=bZ(C, (G)) + 2 Z(Cy1(G)) + Z(Cpy,(C)]-Z(Cy,(G))
=bz(C, (G))+Z2(C, ,(G))+Z(C,, ,(G))+Z(C, _,(G))
=Z(Cy1(G)) + Z(Cy (G)) = Z(Cy ,,(G))
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This complete the proof.

Example 2. We calculate the Kekulé number of simple binary regularly catacondensed
benzenoid in Figure 5 by two ways mentioned in the Theorem 4. The matrix form of
K—number of the chain shown in Figure 5 is

4 1 0

K;(G) = [1 4 1]

0 1 4
and K;(G) = detA =56. Now we use the corresponding caterpillar tree of the
hexagonal chain as the follows:

\ 4 @ ®
Figure 6. The hexagonal chain in Figure 5 has 9 hexagons and the corresponding
caterpillar tree has 9 edges.

This caterpillar tree is denoted by C.(3,1,2,1,2,1) and Z(C4(3,1,2,1,2,1) = 56.
So that K5(G) = Z(C4(3,1,2,1,2, 1).
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