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Autobiography of Roberto Todeschini 

 

ROBERTO TODESCHINI 

Milano Chemometrics and QSAR Research Group, Department of Earth and 
Environmental Sciences, University of Milano Bicocca, Milan, Italy 
Website: http://michem.disat.unimib.it/chm/ 
 
 
Born in Rome (Italy) in 1949, Roberto Todeschini graduated 
in chemistry at the University of Milan (Italy) in 1972 with a 
thesis in theoretical chemistry. He got married to Marilena in 
1973 and soon had a daughter Alessia (1975) and some 
years later a son Edoardo (1982). 

In 1975, he was appointed to the position of 
researcher at the same university in Milano and worked in 
the field of theoretical chemistry, with special focus on 
conformational analysis, until the first ‘80s. Then, since 
1985 his research interests have shifted towards 
chemometrics, multivariate analysis and applied statistics, 
QSAR, molecular descriptors, multicriteria decision making, software development, 
starting to publish on these topics. The new research interests arose from the participation 
to an educational project carried out at Escuela Politecnica del Chimborazo (Riobamba, 
Ecuador) in the framework of an official cooperation action between the Foreign Ministers 
of Ecuador and Italy, aimed to propose over there up-to-date but low cost researches. In the 
beginning of ‘90s, Todeschini became associate professor at the University of Milano-
Bicocca (Milan, Italy) and then, in 2001, full professor of chemometrics at the Department 
of Earth and Environmental Sciences in the same Institution, where he founded the Milano 
Chemometrics and QSAR Research Group. The actual staff of the research group includes 
Davide Ballabio, Viviana Consonni and Francesca Grisoni, while past-researchers of the 
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group are Paola Gramatica, Manuela Pavan, Andrea Mauri, Matteo Cassotti, Kamel 
Mansouri, and Faizan Sahigara. 

He was one of the founders of the International Academy of Mathematical 
Chemistry in 2004 and served as President of the Academy from 2008 to 2013. He is also 
President of the Italian Chemometric Society and “ad honorem” professor of the University 
of Azuay (Cuenca, Ecuador) since 2006. 

He is author of more than 200 publications in international peer-reviewed journals 
and co-author of the books: “The Data Analysis Handbook”, by I.E. Frank and R. 
Todeschini (Elsevier, 1994); “Handbook of Molecular Descriptors”, by R. Todeschini and 
V. Consonni (Wiley-VCH, 2000); “Molecular Descriptors for Chemoinformatics” by R. 
Todeschini and V. Consonni (Wiley-VCH, 2009); “Handbook of Bibliometric Indicators” 
by R. Todeschini and A. Baccini (Wiley-VCH, 2016). The first book about the molecular 
descriptors (2000) is among the most cited scientific books, with more 3300 in 2016. 

Todeschini, together with his research group, organized several national and 
international meetings and schools about molecular descriptors, multi-criteria decision 
making, chemometrics, experimental design. 

The complete list of publications of Todeschini can be accessed in Google Scholar 
at “https://scholar.google.com/citations?user=MNyEfBcAAAAJ” with more than 11000 
citations and an h-index of 44 (January 2017).His main scientific results were organized in 
different topics and presented below. 
 
1. CHEMOMETRICS 

The interests of Todeschini about chemometrics include all its theoretical aspects. Critical 
reviews about Q2 metrics proposed in literature for evaluating prediction ability of 
regression models were published and earned a big success. More recently, an extended 
comparison about the different proposals to estimate Q2 was published and a reliable 
solution was proposed. 

About classification methods, he proposed three new methods, called CAIMAN, N3 
and BNN; in particular, the last two methods, proposed together with Ballabio, Cassotti and 
Consonni, were demonstrated to give very good quality classification results. Moreover, 
studies were also made on the KNN classification method, about its dependence on scaling 
and distance measures and for evaluating missing values. 

Several studies were also performed on the concept of the applicability domain of 
classification and regression models and on the topic of variable selection, for which some 
novel methods were also proposed. 

In 1993, Todeschini along with Ildiko Frank released the software SCAN (Software 
for Chemometric Analysis) andin 1994 Todeschini, still with Ildiko Frank, published the 
book “The Data Analysis Handbook” (Elsevier). 
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2. MOLECULAR DESCRIPTORS 

Todeschini proposed in 1994 a set of 3D molecular descriptors, called WHIM, based on the 
Principal Component Analysis and, in 2000 with Consonni, the GETAWAY descriptors, 
based on the statistical concept of leverage. Starting from the publication of the first book 
on molecular descriptors, already mentioned afore, Consonni and Todeschini published 
several reviews and book chapters in this field. About topological descriptors, they 
published a paper where a generalization of graph energy was proposed analysing the 
spectral indices defined in literature as well as the different kinds of topological vertex 
degree. Still with Consonni, a review was also dedicated to analyse all the weighted and 
unweighted topological matrices defined in literature. 

The software DRAGON was also developed by Todeschini and his research group 
since 2000, collecting from time to time always more molecular descriptors. 
 
3. STATISTICS 

Among the main results in statistics, the K multivariate correlation index was proposed in 
two papers, giving the exact definition of an index able to give a measure of global 
correlation in a multivariate dataset.  

Several papers were also dedicated to similarity/diversity measures. Among these, a 
paper with Consonni, Peter Willett et al., on all the binary similarity measures proposed in 
the literature, some papers about canonical distances and similarities between datasets, an 
original variant of the Mahalanobis distance, a similarity measure for DNA sequences, a 
new similarity measure taking into account higher order similarities, a Hausdorff-like 
similarity measure to evaluate the similarity between sets (i.e. molecules) when they are 
partitioned in different constituents (i.e. ionic liquids, metabolites, sub-structures) and a 
review about similarity/diversity measures for the Encyclopaedia of Analytical Chemistry 
by Wiley & Sons.  
 
4. QUANTITATIVE STRUCTURE-ACTIVITY (-PROPERTY) RELATIONSHIPS 

(QSAR/QSPR), DRUG DESIGN 
 
Several chemometric applications were developed by Todeschini’s research group in 
QSAR/QSPR and related fields. 

In the environmental and human health fields, studies were performed on 
biodegradability, aquatic toxicity, tropospheric degradation, bioconcentration factor, 
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bioaccumulation, water quality, non-ionic surfactants, mutagenicity and environmental 
priority settings. In chemistry, studies were performed on the phisico-chemical and 
toxicological behaviour of PAH, PCB, PCDD and PCDF compounds. In food chemistry, 
studies were performed on olive oils, sweetness, dairy cream, spirits, and food quality 
analysis, while in drug design, studies were performed on Cytochrome P450, Ca2+ channel 
antagonists, non-peptide angiotensin II receptor antagonists and virtual compound 
screening for sets of pharmacological targets. 
 
5. MULTICRITERIA DECISION MAKING 

He was the editor, together with Manuela Pavan, of a book for Elsevier about the ranking 
methods and decisions based on multi-criteria. In this field, papers were published about 
indices for the evaluation of Hasse diagrams, generalization of the Power-Weakness Ratio 
(PWR) measure and Hasse theory. 
 
6. BIBLIOMETRIC INDICATORS 

In 2016 he published the “Handbook of Bibliometric Indicators” together with Alberto 
Baccini (Wiley-VCH), following the same encyclopaedic approach used in the past for the 
books about molecular descriptors. 

This topic is actually particularly warm, due to the large interest of researchers, 
institutions, countries, etc. for the research evaluation. 
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constructing this index the atomic characteristics and the interaction 
of the vertices in a molecule are taken into account. The usefulness 
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1. INTRODUCTION  

Graph  theory  is  one  of  the  most  useful  tools  for  studying  systems  in  various  fields  such  as 
chemistry, physics,  computer  science,  economy, and  biology [1–3]. This  powerful  concept, 
which  introduced originally  by a  great  mathematician,  Leonhard  Euler [4],  has been a    useful 
 approach  to  predict  some  key  features  of  such  systems. Chemical graph theory is a branch 
of graph theory that is concerned with analyses of all consequences of connectivity in a 
chemical graph. Chemical graph serves as a convenient model for any real or abstracted 
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chemical system. It can represent different chemical objects as molecules, reactions, 
crystals, polymers, and clusters [5–8]. 

Successful use of chemical graph to quantitative structure–property and structure–
activity relationships (QSPR/QSAR) has led to the emergence of several molecular 
descriptors [9–13]. The molecular descriptors derived there from are commonly named 
topological indices [5]. Regardless of the descriptors used in the development of 
QSPR/QSAR models, all of them share in common a basic approach; molecules are 
represented by vectors constructed in turn by molecular parameters, which are supposed to 
contain relevant information about molecular structure. So far, hundreds of topological 
indices have been proposed in chemical literature [14]. Among these, topological indices 
such as the molecular connectivity indices of the Wiener [15], Balaban [16], Randić [17], 
and Hosoya [18] indices have received greater attention due to their application in 
chemistry. 
  The Wiener index, ܹ, is one of the most frequently used graph descriptors in 
QSPR/QSAR models.  Its  applicability  for  predicting physico–chemical and 
pharmacological properties of organic  compounds  is  well  documented  and was outlined  in 
 quite a  few  reviews [19–21].  In  the  past decades, a remarkably large number of 
modifications and extensions of the Wiener index was put forward and studied by 
mathematical chemists [22,23]. These indices are generally based on the adjacency  matrix 
 or  on  the  distance  matrix. 

However, most of introduced indices lack certain information such as the features 
and interaction of vertices (atoms). Recent attentions of graph theoretical chemists have 
been focused on resolving this problem [24]. In this respect, Yang et al. [25−28] used the 
electronegativity, the energy, the length between vertices, and principal quantum number to 
reform the distance matrix of Wiener so that more information of the distance matrix were 
included in the molecular graph. They have applied these modified Wiener in prediction of 
the retention indices of gas chromatography, the standard formation enthalpy and gaseous 
solubility.  
  However, owing to the complexity of the molecular structure, it seems to be 
impossible to expect that a single set of descriptors would contain all the relevant structural 
information. Hence, introducing topological indices which can predict a wide range of 
physico–chemical properties requiring a minimum number of inputs is the goal of many 
studies. As far as we know the Wiener index and its modification have been widely used to 
account for many physico–chemical properties. In the present study, we intend to propose a 
new topological index based on the reciprocal form of the expanded distance matrix. The 
expanded form of the Wiener index was suggested by Tratch et al. [29] for characterization 
of molecular graphs and structure–property correlations. This index is more sensitive to the 
structural characteristic of alkane molecule as compared with normal Wiener index and 
also can differentiate several graphs having just the same value of the very powerful 
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Balaban index.      On the other hand, the inclusion of the interactions among vertices (atoms) 
as well as the vertex properties is a crucial issue in describing the whole properties of a 
molecule.  

Accordingly, based on the above–mentioned issues, in the present study we have 
introduced a new topological index and named it M–index. This newly proposed index 
includes topological properties of the vertices (atom parameter) and the interaction of such 
vertices in a molecular graph (bond parameter). The applicability of M–index for the 
estimation of physical, chemical, and pharmacological properties such as boiling point, 
enthalpy of formation, refractive index, retention index, toxicity, Gibbs free energy, heat 
capacity, and etc. has been investigated.  We have checked the appropriateness of this index 
for simple molecular compounds such as un–branched alkanes or cycloalkanes as well as 
more complicated systems with various functional groups and isomers.  
 
2. DEFINITION OF THE M–INDEX 

2.1 EXPANDED WIENER NUMBER 

In 1971, Hosoya proposed a modified Wiener number which can be applied to chain and 
cyclic molecules [18], as follows: 


N

ji ijdW
,2

1      (1) 

where N is the total number of the atoms in a molecule and dij’s are the elements of a 
matrix, called distance matrix. dij is defined as the shortest distance between any two given 
atoms iand j in a molecule which is clearly equal to zero for all diagonal elements of i = j. 
Toobtaina higher discriminating ability of the Wiener number, Tratch et al. [29] proposed a 
novel topological index, called expanded Wiener number which is defined as 

.~~  


ji ijijijji ij ddW                                      (2) 

In general, the vertices i and j may be connected by several, ij , shortest paths and for each 

of these paths a set of ij shortest super–paths of the length equal or greater than ijd  must 

be taken into account. It may be easily shown that the number of shortest superpaths is just 
the same for each of the shortest paths connecting i with j. However, because of 
computationally extensive nature of the Eq. 2, an alternative method was proposed to 
compute the expanded Wiener number, 

 


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ji
ijijij

ijji ij

ddd
fW

6
)2)(1(~~                  (3) 

in which the total length of all subpaths for every pair of vertices is taken into account [29]. 
Note that the resulting expanded Wiener numbers calculated from Eqs. 2 and 3 are the 
same. 
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2.2 MODIFIED ADJACENCY MATRIX 

The Wiener index considers the length of shortest paths only, and the properties of vertices 
as well as their interactions are not included. In this article, we try to introduce a novel 
topological index by focusing on some information about the structural details in the 
molecular graph such as the features and interaction of vertices. For this purpose, we 
modify the conventional form of adjacency matrix A, by inclusion of the bond parameters. 
The elements of modified adjacency matrix *A  are defined as: 0* ijA , in the cases where 

ji   and where two vertices are not connected (non–adjacent vertices), otherwise 

ijijij XbA * . The parameter ijb  represents the bond order between atoms i  and j , and is 1, 

2, and 3, respectively for the single, double, and triple bonds. Moreover, we have used the 
definition of Yang et al. [25−28] for the bonding characteristics, ijijij RIX /)1(  . In this 

formula, jiij III 
 
stands for the electronegativity difference between atoms i  and j , 

and jiij nnR  , where in  and jn  are the maximum principal quantum numbers of the 

atoms i  and j . According to its definition, ijX  is a measure for the bonding ability 

between vertices i  and j , i.e., the smaller the value of ijX , the weaker the bonding ability 

between atoms i  and j .  
 
2.3 ELEMENTS OF THE M~ –MATRIX 

The modified version of adjacency matrix has been utilized for constructing the M–index in 
which not only the characteristics of an individual atom but also the role of that atom in 
establishing the connection with other atoms in a molecular graph are taken into account. 
The diagonal elements of the M~ –matrix contain the electronegativity of atom i  as the 

characteristic of that atom and the sum of the i–th row of the *A  matrix divided by ik  (the 
number of neighboring atoms of atom i ) as the average role of atom i  in establishing 
connections with other atoms in the molecule.  

.~
*

i

j ij
ii k

A
IM


         (4) 

If the vertices i and j are adjacent, then ijM~  is obtained by employing the inverse of the 

off–diagonal elements of the expanded Wiener index. Therefore, the elements of M~ –
matrix are summarized as below 
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This matrix includes not only the characteristics of atoms but also the pattern of their 
connections in the molecular graph. 
 
2.4 THE M–INDEX 

Taking into account the symmetric property of the M~  matrix, we introduce our proposed 
M –index as the sum of the upper triangular and diagonal elements of the M~  matrix: 

.~~
1  


N

ji ij
N

i i MMM     (6) 

Now, we take an example to illustrate how to get M–index for a simple cyclic graph 
containing four vertices 

 
The expanded distance matrix of such a graph is obtained by use of Eq. 3: 

.

06/)3*2*1(*16/)4*3*2(*26/)3*2*1(*1
6/)3*2*1(*106/)3*2*1(*16/)4*3*2(*2
6/)4*3*2(*26/)3*2*1(*106/)3*2*1(*1
6/)3*2*1(*16/)4*3*2(*26/)3*2*1(*10

~



















ijf  

Then, we can find *A , 
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The diagonal elements, iM~ s, can be obtained through Eq. 4. 
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Finally, the whole M~  matrix is expressed as 
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XbIIXbIIM

M  

If we suppose that all vertices of the above graph are carbon the resulting graph represents 
a cyclobutane molecule in which 114342312  bbbb , ,55.24321  IIII  and 

24321  nnnn . These quantities give the value of 96.21M  for the cyclobutane. 
 
3. RESULTS AND DISCUSSION 

We have carried out comprehensive studies on the physico–chemical properties of a large 
number of diversified compounds. In this respect, the applicability of the proposed index 
has been checked for a wide range of properties including: partition coefficient, molar 
refraction, molar volume, parachor, polarizability, standard enthalpy of formation, 
toxicity,boiling point, heat capacity, refractive index, and Gibbs free energy. On the other 
hand, our analysis was based on different category of compounds such as: alkanes, 
cycloalkanes, silicon/titanium halides, methyl halides, alcohols, aldehydes and ketones, 
carboxylic acids, as well as isomeric systems. The values of ܯ–index were computed for 
each compound with a view to study their correlation potential in developing QSPR/QSAR 
models.  
 
3.1. UN–BRANCHED ALKANES/CYCLOALKANES  

In the first test, the proposed M –index is evaluated for the prediction of some physico–
chemical properties of a series of simple un–branched alkanes and cycloalkanes. Many 
properties of alkanes vary in a regular manner with molecular mass and because the alkanes 
are nonpolar, complexities due to polarity, polarizability, and hydrogen bonding are 
avoided. Thus, the physico–chemical properties of alkanes are dominated by their inherent 
structural features, such as molecular dimension or shape. Here, we are mainly concerned 
with the size effect and consider hydrogen–depleted graphs, i.e. we do not take into account 
the hydrogen atoms as vertices of the graph. 
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Table 1 collects the calculated M–index for 19 un–branched alkanes together with 
the experimental data for the logarithm of partition coefficient in octanol/water ( plog ), 
molar refraction (MR), molar volume (MV), parachor (PR), and polarizability ( ) [30]. For 
all studied properties, we have reported the correlation coefficient (R) and the standard 
error ( s ). Moreover, the resultant models were validated for generalization and 
productivity by leave–one-out cross–validation (LOO–CV) method, and calculated cvR  and 

svs  are also given. The statistical significance of the obtained models was confirmed by a 
high R with a close cvR  in value and a small s with a close svs  in value. 

 
Table 1. The calculated M –index and the experimental values of five physico–chemical 
properties for un–branched alkanes.a 

 
Compd.  M  plog  MR  MV  PR   

Methane 0 1.53 11.31 61.50 111.70 4.48 

Ethane 8.23 2.06 15.94 78.00 151.50 6.32 

Propane 13.90 2.60 20.58 94.50 191.20 8.15 

Butane 19.68 3.14 25.21 111.00 231.00 9.99 

Pentane 25.50 3.67 29.84 127.50 270.80 11.83 

Hexane 31.36 4.21 34.47 144.00 310.60 13.66 

Heptane 37.23 4.74 39.11 160.50 350.40 15.50 

Octane 43.11 5.28 43.74 177.00 390.20 17.34 

Nonane 49.01 5.82 48.37 193.60 430.00 19.17 

Decane 54.90 6.35 53.01 210.10 469.70 21.01 

Undecane 60.81 6.89 57.64 226.60 509.50 22.85 

Dodecane 66.71 7.42 62.27 243.10 549.30 24.28 

Tridecane 72.62 7.96 66.90 259.60 589.10 26.52 

Tetradecane 78.53 8.50 71.54 276.10 628.90 28.36 

Pentadecane 84.45 9.03 76.17 292.60 668.70 30.19 

Hexadecane 90.36 9.57 80.80 309.10 708.40 32.03 

Heptadecane 96.28 10.10 85.44 325.60 748.20 33.87 

Octadecane 102.19 10.64 90.07 342.10 788.00 35.70 

Nonadecane 108.11 11.18 94.70 358.60 825.80 37.40 
aExperimental data were taken from [30]. 

The correlation results for listed properties in Table 1 as well as corresponding 
statistical quantities are given in Eqs. 7–11. As obvious from these equations, for all five 
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properties, the R  values are near to 1 with very small s . Moreover, the values of cvR  and 

svs  are very close to Rand s , and svs  are slightly larger than s indicating that the resulted 
models are statistically significant and validated for physico–chemical properties of 
alkanes. Further, there is a good correlativity between M –index and the molecular 
structure. Inspection of the results in Table 1 reveals that while the considered properties 
increase with the increase in the alkane size, the values of M –index increase as well.  

Mp 090.0382.1log          (7) 
19     049.0  ,9999.0  ,042.0  ,9999.0  NsRsR cvcv  

 
MMR 783.0050.10          (8) 

19     413.0  ,9999.0  ,354.0  ,9999.0  NsRsR cvcv  
 

MMV 788.257          (9) 
19     477.1  ,9999.0  ,264.1  ,9999.0  NsRsR cvcv  

MPR 714.6100.101          (10) 
19     563.3  ,9999.0  ,055.3  ,9999.0  NsRsR cvcv  

 
M310.0986.3           (11) 

19     189.0  ,9998.0  ,168.0  ,9998.0  NsRsR cvcv  
 
Table 2. The comparison between correlation parameters for modeling physico–chemical 
properties of alkanes using Sz, PI, and M –indices.a 

 
  R    s  

 Sz PI M   Sz PI M  
plog  0.8586 0.9397 0.9999  1.957 1.305 0.042 

MR  0.8586 0.9397 0.9999  16.914 11.283 0.354 
MV  0.8395 0.9402 0.9999  60.194 40.100 1.264 
PR 0.8586 0.9397 0.9999  145.251 96.895 3.055 
  0.8592 0.9401 0.9998  6.691 4.457 0.168 

aThe correlation parameters for Sz, PI were taken from [30] and those for M –index were 
computed in the present work. 

 
The quality of the obtained correlations will be confirmed by comparison of our 

results with other indices. For this reason, we compared the correlation coefficients and the 
standard errors of the considered physico–chemical properties obtained by M –index with 
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those previously reported using Szeged (Sz) and Padmakar–Ivan (PI) indices in Table 2 
[30]. The quality parameters presented in Table 2 confirm the superiority of the M –index 
over Sz and PI for modeling property/activity of alkanes. Inspection of the reported data in 
Table 2 reveals that for all five properties, the models base on the M –index provides 
significantly less standard errors.  

Now, we extend our QSPR models to normal (un–branched) cycloalkanes. Listed in 
Table 3 are the values of M –index and similar experimental physico–chemical properties 
for considered cycloalkanes [30]. The corresponding linear correlation results are as 
follows: 

 
Mp 090.0148.0log          (12) 

17     013.0  ,0000.1  ,012.0  ,0000.1  NsRsR cvcv  
 

MMR 770.0226.1          (13) 
17     133.0  ,0000.1  ,122.0  ,0000.1  NsRsR cvcv  

 
MMV 963.2754.4          (14) 

17     503.0  ,0000.1  ,452.0  ,0000.1  NsRsR cvcv  

MPR 684.6960.10          (15) 
17     994.0  ,0000.1  ,905.0  ,0000.1  NsRsR cvcv  

 
M305.0494.0           (16) 

17     049.0  ,0000.1  ,045.0  ,0000.1  NsRsR cvcv  
 

The Eqs.12–16 can outstandingly reproduce the physico–chemical properties of 
cycloalkanes which in turn imply that M –index can successfully be applied for cyclic 
structures as well as non-cyclic alkanes. 
 

3.2 INORGANIC COMPOUNDS OF SILICON/TITANIUM HALIDES 

To assess the applicability of M –index for inorganic compounds, we considered standard 
enthalpy of formation for a series of silicon/titanium halides with the general formula of 
Si(Ti)Xm (X=F, Cl, Br, I and m=1,2,3,4). The calculated M –index and the corresponding 
experimental standard enthalpy of formation for studied systems are given in Table 4 
[31,32]. 
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Table 3. The calculated M –index and the experimental values of five physico–chemical 
properties for un–branched cycloalkanes.a 

 

Compd. M  plog  MR  MV  PR   

Cyclopropane 16.28 1.61 13.83 53.20 120.10 5.48 

Cyclobutane 21.96 2.14 18.44 70.90 160.10 7.31 

Cyclopentane 28.38 2.68 23.05 88.70 200.20 9.14 

Cyclohexane 34.20 3.22 27.67 106.40 240.20 10.96 

Cycloheptane 40.43 3.75 32.28 124.10 280.20 12.79 

Cyclooctane 46.31 4.29 36.69 141.90 320.30 14.62 

Cyclononane 52.43 4.82 41.50 159.60 360.30 16.41 

Cyclodecane 58.33 5.36 46.11 177.40 400.40 18.28 

Cycloundecane 64.40 5.90 50.72 195.10 440.40 20.11 

Cyclododecane 70.30 6.43 55.34 212.80 480.40 21.93 

Cyclotridecane 76.34 6.97 59.95 230.60 520.50 23.76 

Cyclotetradecane 82.25 7.50 64.54 248.30 560.50 25.59 

Cyclopentadecane 88.26 8.04 69.17 266.00 600.60 27.42 

Cyclohexadecane 94.18 8.58 73.78 283.80 640.60 29.25 

Cycloheptadecane 100.05 9.11 78.39 301.50 680.60 31.07 

Cyclooctadecane 106.09 9.65 83.01 319.30 720.70 32.90 

Cyclononadecane 112.07 10.18 87.67 337.60 760.70 34.73 
aExperimental data were taken from [30]. 
 

The linear correlation equations are given in Eqs. 17 and 18. For both SiXm and 
TiXm series, there are good linear correlations with Requals to 0.9614 and 0.9631, 
respectively.  

MH Sif 720.45100.6580                   (17) 

16     160  ,9374.0  ,156  ,9531.0  NsRsR cvcv  
 

MHTif 290.51900.5830         (18) 

16     146  ,9489.0  ,146  ,9586.0  NsRsR cvcv  
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Table 4. The calculated M –index and the experimental standard enthalpy of formation, 
0Hf  (kJ/mol), for silicon/titanium halides.a 

 

Compd. M  0Hf  Compd. M  0Hf  

SiF 12.77 -20.92 TiF 11.18 -66.90 

SiF2 23.27 -589.94 TiF2 20.50 -688.30 

SiF3 34.03 -999.98 TiF3 30.07 -1188.70 

SiF4 45.03 -1625.90 TiF4 39.88 -1551.40 

SiCl 9.07 154.81 TiCl 8.27 154.40 

SiCl2 16.12 -167.78 TiCl2 14.88 -282.40 

SiCl3 23.42 -334.72 TiCl3 21.73 -539.30 

SiCl4 30.97 -662.75 TiCl4 28.84 -763.20 

SiBr 8.10 196.65 TiBr 7.48 212.50 

SiBr2 14.26 -46.02 TiBr2 13.38 -179.10 

SiBr3 20.67 -158.99 TiBr3 19.52 -374.90 

SiBr4 27.33 -415.47 TiBr4 25.91 -550.20 

SiI 7.11 259.41 TiI 6.63 274.10 

SiI2 12.35 92.05 TiI2 11.75 -57.70 

SiI3 17.85 58.58 TiI3 17.11 -149.80 

SiI4 23.59 -110.46 TiI4 22.72 -287.00 
aExperimental data were taken from [31,32]. 

 
Similarly, for the whole set containing all halides of Table 4 there is a good correlation 
result as well. By taking into account the 32 compounds as a whole, the obtained QSPR 
equation for the correlation between M –index and 0Hf is as follow 

MH TiSif 380.47200.6010          (19) 

32     168  ,9281.0  ,176  ,9362.0  NsRsR cvcv  
 
The overall indication of these results is that the M –index can be applied not only for 
organic compounds but also for inorganic compounds containing transition metals. 
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3.3 METHYL HALIDES 

The usefulness of newly constructed topological indices was demonstrated by correlating 
standard enthalpy of formation of methyl halides. These sets of compounds contain only 
five atoms. For such small molecules, hydrogen atoms have great impact on their properties 
and they cannot be neglected. Thus, the hydrogen atoms must be treated as vertices in the 
molecular graph. Table 5 contains the calculated M–index and the experimental values of 
the standard enthalpy of formation for 41 methyl halides [33]. By using the linear 
regression analysis, we obtain 
 

41     660.30  ,9933.0,000.30  ,9940.0
120.4011710





NsRsR
MH

cvcv

f    (20) 

 
Again, the obtained statistical quantities indicate that there is a good correlation 

between M –index and 0Hf  for methyl halides compounds. 

 
3.4 SATURATED ALCOHOLS, KETONES, DIOLS, CARBOXYLIC ACIDS 

In this part, we intend to study the applicability of our proposed index to predict relative 
toxic potency of aliphatic compounds. Here we consider the population growth inhibition 
of the ciliate Tetrahymenapyri form is to develop such a toxicity–based QSAR. T. 
pyriformis is one of the generally used ciliated protozoa [34,35] in which diverse endpoints 
can be used to originate the cytotoxic effects. The experimental )/1log( 50IGC  values for the 
four groups of aliphatic compounds [36] under consideration as well as the resulted QSAR 
models are provided in Table 6. The statistical parameters reported in Table 6 demonstrate 
very good consistency between R and Rcv. The small s values indicate that the M –index 
can be successfully used as a way for quantifying toxicity of aliphatic compounds even 
when they have not exhibit a common skeleton requirement of QSAR analysis. 

The suitable quality criteria to judge present results can be set up through the 
comparison with other theoretical predictions for the toxicity of these molecular sets. Roy 
et. al. [37] reported results for QSAR calculations on these aliphatic compounds using 
electrophilicity as a possible descriptor. Their statistical parameters for different molecular 
set(for instance; diols: R=0.899, s =0.486 and ketones: R=0.882, s =0.612) are clearly 
inferior with respect to present results (diols: R=0.9864, s =0.192 and ketones: R=0.9850, s 
=0.225, Table 6). 

.  
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Table 5. The calculated M –index and the experimental standard enthalpy of formation, 
0Hf  (kJ/mol), for methyl halides.a 

 

Compd. M  0Hf  Compd. M  0Hf  

CH2F2 40.43 -452.9 CH3Br 28.94 -37.7 

CCl2F2 42.17 -493.3 CBrClF2 41.04 -471.5 

CH2Cl2 30.94 -95.4 CH2BrCl 29.81 -50.2 

CHCl2F 36.56 -284.9 CHBrClF 35.43 -295.0 

CBr2F2 39.91 -429.7 CH2BrI 27.59 50.2 

CBr2Cl2 30.42 -29.3 CHF3 46.05 -693.3 

CH2Br2 28.68 -14.8 CF3I 44.70 -589.9 

CHBr2F 34.30 -223.4 CCl3F 37.43 -284.9 

CHBr2Cl 29.55 -20.9 CHF2Cl 41.30 -483.7 

CBr2ClF 35.17 -231.8 CF3Cl 46.92 -707.9 

CHBr3 28.42 16.7 CF3Br 45.79 -648.9 

CBr3F 34.04 -190.0 CH3F 34.82 -237.7 

CBr3Cl 29.29 12.6 CH2I2 26.49 118.4 

CHI3 25.14 210.9 CH2FCl 35.69 -264.4 

CF4 51.67 -933.0 CH2ClI 28.72 12.6 

CCl4 32.68 -95.8 CH3I 27.84 13.8 

CI4 23.79 262.9 CH2FBr 34.56 -252.7 

CBr4 28.16 79.5 CH4 29.20 -74.9 

CHBrF2 40.17 -463.6 CBrCl3 31.55 -37.2 

CHBrCl2 30.68 -58.6 CHCl3 31.81 -102.9 

CBrCl2F 36.30 -269.4    
aExperimental data were taken from [33]. 

 

An alternative manner for predicting the toxicity is utilizing topological parameters 
derived from the electron density, as previously done in our research group [12]. As shown 
in Ref. [12], predictions improve significantly with respect to the results obtained by Roy et 
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al. [37]. However, despite its successful in predicting the toxicity, such approach is very 
computational demanding because it is necessary to perform quantum chemical calculation 
on each molecule and to derive the topological properties of the electron densities from the 
calculated wave functions. On the contrary, the most important advantage of the proposed 
  .index is its computational ease with no need to complicated calculations–ܯ

 
Table 6. The calculated M –index and the experimental values of the toxicity, 50/1log IGC , 
for aliphatic compounds.a 

Compd. M  50/1log IGC  Correlation Equation b 

Saturated alcohols    

1-Propanol 83.61 -1.7464  

2-Propanol 83.67 -1.8819  

1-Butanol 104.64 -1.4306  

(±)-2-Butanol 104.74 -1.5420  

2-Methyl-1-propanol 104.87 -1.3724  

2-Pentanol 125.93 -1.1596  

3-Pentanol 125.97 -1.2437  

3-Methyl-2-butanol 126.26 -0.9959  

2-Methyl-1-butanol 126.16 -0.9528  

3-Methyl-1-butanol 126.13 -1.0359 MIGC 022.0721.3/1log 50 
 (21) 

164.0  ,9932.0  sR , 

21N   176.0  ,9914.0  cvcv sR
 

2,2-Dimethyl-1-propanol 126.58 -0.8702 

2-Methyl-2-propanol 104.99 -1.7911 

1-Hexanol 147.09 -0.3789 

3,3-Dimethyl-1-butanol 148.06 -0.7368  

1-Heptanol 168.44 0.1050  

1-Octanol 189.83 0.5827  

1-Nonanol 211.26 0.8551  

1-Decano 232.72 1.3354  

1-Undecanol 254.20 1.9547  
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1-Dodecanol 275.70 2.1612  

1-Tridecanol 297.22 2.4497  

Ketones    

Acetone 64.52 -2.2036  

2-Butanone 85.27 -1.7457  

2-Pentanone 106.29 -1.2224  

3-Pentanone 106.19 -1.4561  

4-Methyl-2-pentanone 127.75 -1.2085  

2-Heptanone 148.73 -0.4872  

5-Methyl-2-hexanone 149.08 -0.6459 MIGC 020.0446.3/1log 50 
 (22) 

225.0  ,9850.0  sR  
4-Heptanone 148.51 -0.6690 

2-Octanone 170.07 -0.1455 

2-Nonanone 191.46 0.6598 15N   25.0  ,9779.0  cvcv sR  

2-Decanone 212.89 0.5822  

3-Decanone 212.69 0.6265  

2-Undecanone 234.35 1.5346  

2-Dodecanone 255.84 1.6696  

7-Tridecanone 276.90 1.5214  

Alcohols: diols    

(±)-1,2-Butanediol 118.23 -2.0482  

(±)-1,3-Butanediol 118.22 -2.3013  

1,4-Butanediol 118.12 -2.2365 MIGC 021.0709.4/1log 50 
 (23) 

192.0  ,9864.0  sR  
1,2-Pentanediol 139.46 -1.6269 

1,5-Pentanediol 139.33 -1.9344 

(±)-1,2-Hexanediol 160.77 -1.2669 9N   269.0  ,9653.0  cvcv sR  

1,6-Hexanediol 160.62 -1.4946  

1,2-Decanediol 246.46 0.7640  

1,10-Decanediol 246.30 0.2240  

Carboxylic acids    
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aExperimental data were taken from [36]. 
bFor each series, the correlation equations and statistical quantities were presented in the 
last column.  
 

3.5. KETONES AND ALDEHYDES 

Molar refraction (MR) is a particularly useful physical parameter in chemistry, biological 
chemistry, and pharmaceutical science because it is closely related to the bulkiness and 
polarizability of a molecule. We have checked the ability of M –index to predict the molar 
refraction of a set containing 22 aldehydes and 24 ketones listed in Table 7 [38]. The 
relationship between MR  and M –index is give below 

Propanoic acid 78.00 -0.5123  

Butyric acid 98.91 -0.5720  

Valeric acid 120.01 -0.2674  

Hexanoic acid 141.23 -0.2083  

Heptanoic acid 162.53 -0.1126  

Octanoic acid 183.90 0.0807  

Nonanoic acid 181.25 0.3509  

Decanoic acid 226.75 0.5063 MIGC 007.0181.1/1log 50 
(24) 

Undecanoic acid 248.22 0.8983 124.0  ,9429.0  sR  

20N   139.0  ,9197.0  cvcv sR
 

Iso-Butyric acid 99.04 -0.3334 

Isovalerianic acid 120.26 -0.3415 

Trimethylacetic acid 120.52 -0.2543  

3-Methylvaleric acid 141.62 -0.2331  

4-Methylvaleric acid 141.55 -0.2724  

2-Ethylbutyric acid 141.52 -0.1523  

2-Propylpentanoic acid 184.33 0.0258  

2-Ethylhexanoic acid 184.29 0.0756  

Crotonic acid 81.91 -0.5448  

trans-2-Pentenoic acid 102.55 -0.2774  

trans-2-Hexenoic acid 123.50 -0.1279  
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MMR 217.0223.2         (25) 

 266.0  ,9997.0  ,262.0  ,9997.0  cvcv sRsR  
 

This linear equation indicates an outstanding correlation with high R  and small s , 
implying the reliability of M –index for prediction of molar refraction. 

 
Table 7. The calculated M –index and the experimental molar refraction for aldehydes and 
ketones.a 

 
Compd. M  MR  Compd. M  MR  

Acetaldehyde 44.24 11.5829 2-Butanone 85.27 20.6039 

Propionaldehyde 64.74 16.1632 2-Pentanone 106.29 25.2926 

Butyl aldehyde 85.60 20.8011 3-Pentanone 106.19 25.2487 

2-Methyl propanal 87.31 20.8219 3-Methyl-2-

butanone 

102.74 25.2603 

Pentaldehyde 106.66 25.4983 2-Hexanone 127.46 29.9308 

2-Methyl butanal 106.80 25.3943 3-Hexanone 127.31 29.7251 

3-Methyl butanal 106.90 25.5327 3-Methyl-2-

pentanone 

127.75 29.9453 

Hexanal 127.85 30.9280 4-Methyl-2-

pentanone 

127.75 29.9877 

2-Methylpentanal 128.02 29.8497 3,3-Dimethyl-2-

butanone 

128.14 29.6748 

2-Ethylbutanal 128.07 29.9981 2-Heptanone 148.73 34.5663 

2,3-Dimethylbutanal 128.36 30.0640 3-Heptanone 148.56 34.4230 

Heptanal 149.14 34.7004 4-Heptanone 148.51 34.3083 

2,2-Dimethylpentanal 149.84 34.7537 5-Methyl-2-

hexanone 

149.08 34.5773 

Octanal 170.49 39.4396 2-Octanone 170.07 39.1959 

2-Ethylhexanal 170.78 39.2395 5-Octanone 169.81 39.0616 

2-Ethyl-3- 171.38 38.9423 6-Methyl-3- 170.25 38.9478 
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methylpentanal heptanone 

Nonanal 191.89 44.2669 2-Nonanone 191.46 43.3542 

3,5,5-

Trimethylhexanal 

193.64 43.9887 5-Nonanone 191.15 43.8710 

Decanal 213.33 48.6737 2,6-Dimethyl-4-

heptanone 

191.88 43.8902 

2-Methyldecanal 235.00 53.0003 2-Decanone 212.89 48.5304 

Dodecanal 256.28 58.0913 2-Undecanone 234.35 52.7129 

2-Methylundecanal 256.49 57.9284 6-Undecanone 233.97 53.2109 

Acetone 64.52 16.2963 2-Methyl-4-

undecanone 

255.83 57.7027 

aExperimental data were taken from [38]. 

 

3.6. ISOMERIC SYSTEMS 

One of the main drawbacks of the most topological indices is their poor discrimination of 
isomers and the index has the same value for different isomeric compounds. It is well–
known that this degeneracy increases when the number of atoms in the molecule increases, 
even for simple molecules such as alkanes. In previous studies the capacity of one index to 
discriminate isomers was measured by using a discrimination index, D, which has been 
calculated as the number of isomers having different values of the index divided by the 
total number of isomers [39]. 

Similar to other descriptors, the M –index introduced in the present work requires 
some modifications to be applicable for isomers. Theproposed ܯ–index in Eq. 6 was 
constructed by parameters which are only dependent on the number of atoms, bond strength 
and the property of individual atoms. Thus, the calculated values of the M –index for the 
structural isomers of a specific molecular formula are very close together and cannot well 
discriminate the isomers. To increase the discriminative power of the M –index, we 
introduce a quantity in which the effect of different configurations due to structural isomers 
is taken into account. For the isomeric systems, we first calculate q  as  

,)(
1 


d

i
i d

dnq      (26) 
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where d  is the distance and )(dni  is the number of neighboring nodes in the distance d  of 

the vertex i . Finally, we defined the discrimination parameter, D~  used in the present study 
as 

,~ 1













  

N
q

D
N

i i      (27) 

where N is the total number of vertices in the molecular graph. Finally, the appropriate 
form of our proposed index designed for isomeric systems is MD ~ , where   is a free 
parameter dependent on the considered property.   

The predictive ability of M –index modified by discrimination parameter has been 
checked within two sets of isomeric compounds. First, a large set of 88 aldehydes and 
ketones and their boiling points [40−42] (Table 8) was taken to construct model. For such a 
data set, the correlative model was obtained by setting 1  as following equation 

 
MDBp 1~590.15800.172        (28) 

. 88   647.7  ,9918.0  ,557.7  ,9922.0  NsRsR cvcv  
 
Table 8. The calculated ܯ–index and the experimental boiling points (°C) for aldehydes 
and ketones. a 

 
Compd. Bp  MD ~  Compd. Bp  MD ~  

Acetaldehyde 20.8 12.39 5-Methyl-2-hexanone 144.0 20.02 

Propionaldehyde 48.8 14.07 2-Methyl-3-hexanone 135.0 20.10 

Butyl aldehyde 75.7 15.69 4-Methyl-3-hexanone 134.0 19.99 

2-Methyl propanal 64.4 15.87 5-Methyl-3-hexanone 135.0 20.08 

Pentaldehyde 103.0 17.24 2,2-Dimethyl-3-

pentanone 

125.0 19.75 

2-Methyl butanal 92.5 17.09 2,4-Dimethyl-3-

pentanone 

125.0 19.89 

3-Methyl butanal 92.5 17.05 4,4-Dimethyl-3-

pentanone 

126.0 19.75 

2,2-Dimethylpropanal 77.5 16.88 2-Octanone 172.5 21.59 

Hexanal 128.0 18.71 3-Octanone 167.5 21.65 



126                                                                            MOHAJERI, MANSHOUR AND MOUSAEE 

 

2-Methylpentanal 117.0 18.55 4-Octanone 165.5 21.68 

3-Methylpentanal 118.0 18.46 2-Methyl-4-heptanone 154.0 21.47 

2-Ethylbutanal 117.0 18.50 3-Methyl-4-heptanone 153.0 21.37 

Heptanal 152.8 20.13 3-Methyl-2-heptanone 164.0 21.31 

3-Methylhexanal 143.0 19.85 6-Methyl-2-heptanone 167.0 21.38 

2,2-Dimethylpentanal 126.5 19.66 2-Methyl-3-heptanone 158.0 21.48 

Octanal 171.0 21.50 3,3-Dimethyl-2-hexanone 151.5 20.92 

2-Ethylhexanal 160.0 21.26 2,2-Dimethyl-3-hexanone 146.0 21.03 

2-Propylpentanal 160.0 21.23 2,5-Dimethyl-3-hexanone 147.5 21.27 

Nonanal 191.0 22.83 4,4-Dimethyl-3-hexanone 148.0 20.95 

3,5,5-Trimethylhexanal 170.5 21.96 2,2,4-Trimethyl-3-

pentanone 

135.1 20.91 

Decanal 208.5 24.12 2-Nonanone 195.0 22.91 

Undecanal 233.0 25.38 3-Nonanone 190.0 23.28 

2-Methyldecanal 229.0 24.33 4-Nonanone 187.5 23.31 

Dodecanal 254.0 26.61 5-Nonanone 188.4 23.02 

2-Methylundecanal 246.0 26.48 7-Methyl-3-octanone 182.5 22.77 

Tridecanal 267.0 27.82 3-Methyl-4-octanone 174.0 22.70 

Tetradecanal 287.0 29.00 7-Methyl-4-octanone 178.0 22.80 

Pentadecanal 304.0 30.17 2,6-Dimethyl-4-

heptanone 

169.4 22.61 

Acetone 56.2 14.18 3,5-Dimethyl-4-

heptanone 

162.0 22.37 

2-Butanone 79.6 15.81 2,2,4,4-Tetramethyl-3-

pentanone 

152.0 21.89 

2-Pentanone 102.0 17.35 2-Decanone 210.0 24.20 

3-Pentanone 101.7 17.39 3-Decanone 211.0 24.26 

3-Methyl-2-butanone 93.5 16.57 4-Decanone 206.5 24.29 

2-Hexanone 127.6 18.82 2-Undecanone 231.5 25.45 

3-Hexanone 123.5 18.87 3-Undecanone 227.0 25.51 
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3-Methyl-2-pentanone 118.0 18.57 5-Undecanone 227.0 25.57 

4-Methyl-2-pentanone 117.0 18.61 6-Undecanone 226.0 25.58 

2-Methyl-3-pentanone 115.0 18.75 2-Dodecanone 246.5 26.68 

3,3-Dimethyl-2-

butanone 

106.0 18.33 2-Tridecanone 263.0 27.88 

2-Heptanone 151.4 20.23 7-Tridecanone 261.0 28.02 

3-Heptanone 147.0 20.29 2-Methyl-3-tridecanone 267.0 28.99 

4-Heptanone 144.0 20.31 7-Ethyl-2-methyl-4-

undecanone 

252.5 28.29 

3-Methyl-2-hexanone 143.5 19.95 2-Pentadecanone 294.0 30.23 

4-Methyl-2-hexanone 139.0 19.93 8-Pentadecanone 291.0 30.37 
aExperimental data were taken from [40−42]. 

 
In this model, there is a high R (0.9922) and a small s (7.557) value. The values of 

cvR (0.9918) and cvs  (7.647) are very close to the values of R  and s , and cvs  are only 
slightly larger than s . The correlation results and the cross-validation results demonstrate 
that the obtained model is statistically significant and validated. 

In the second attempt, six physico–chemical properties of 77 hydrocarbons [43] 
(Table 9) including isomers have been studied. For heat capacity and boiling point   is 
zero, while for density, refractive index, Gibbs free energy, and the standard enthalpy of 
formation the obtained values for   are, respectively, 2, 2, 3.5, and −0.9. The correlation 
equations for these six properties are given below 

 
MC p 851.320          (29) 

 77   926.3  ,9894.0  ,886.3  ,9899.0  NsRsR cvcv  
 

MBp 068.4810.66         (30) 
 77   145.5  ,9838.0  ,035.5  ,9849.0  NsRsR cvcv  

 
MD 2~111.05.633         (31) 

 77   455.8  ,9460.0  ,291.8  ,9495.0  NsRsR cvcv  
 

MDeRI 2~5752.5360.1        (32) 
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 77   3010.4  ,9553.0  ,3866.3  ,9584.0  NesResR cvcv  
 

MDeG 5.3~3171.5522.7        (33) 
 77   735.3  ,9586.0  ,675.3  ,9610.0  NsRsR cvcv  

 
MDHf

9.00 ~305.4180.24        (34) 

 77   935.0  ,9810.0  ,923.0  ,9819.0  NsRsR cvcv  
 

As can be seen, all equations have acceptable quality and the propose index used in 
these equations can explain more than 95% of the variance in the considered physico–
chemical properties. The high correlation coefficients of cross validation show that the 
constructed models are statistically significant. 
 

Table 9. The calculated M –index and the experimental heat capacity ( pC , J/mol.K), 
boiling point ( Bp , °C), density (  , kg/m3), refractive index (ܴܫ), Gibbs free energy ( G , 
kJ/mol), and the standard enthalpy of formation ( 0Hf , kJ/mol) for hydrocarbons.a 

 
Compd. 

pC  Bp  MD ~
 

  RI MD ~
 

G
 

MD ~
 

0Hf
 

MD~
 

3-Methylpentane 140.88 63.28 31.63 659.76 1.3739 289.95 -2.12 1527.59 26.32 11.67 

2,2-Dimethylbutane 142.26 49.74 31.98 644.46 1.3660 320.67 -7.42 1807.01 25.40 11.33 

2,3-Dimethylbutane 140.21 57.99 31.83 657.02 1.3723 308.06 -1.77 1690.50 24.77 11.46 

3-Methylhexane 164.50 91.85 37.53 682.88 1.3861 413.46 6.60 2500.07 30.71 12.75 

3-Ethylpentane 166.80 93.48 37.60 693.92 1.3911 423.81 12.70 2606.91 31.71 12.64 

2,2-Dimethylpentane 167.70 79.17 37.90 669.48 1.3800 451.77 2.10 2898.00 29.50 12.43 

2,3-Dimethylpentane 161.80 89.75 37.80 690.81 1.3895 444.39 7.60 2821.19 28.62 12.47 

2,4-Dimethylpentane 171.70 80.47 37.70 668.23 1.3788 430.98 4.90 2679.30 29.58 12.60 

3,3-Dimethylpentane 166.70 86.04 38.00 689.16 1.3884 465.55 4.80 3048.35 29.33 12.31 

2,2,3-Trimethylbutane 164.20 80.86 38.20 685.64 1.3869 487.29 6.30 3288.92 28.28 12.15 

N-Octane 188.70 125.68 43.11 698.54 1.3951 508.91 17.67 3240.89 38.12 14.20 

2-Methylheptane 188.20 117.65 43.35 693.87 1.3926 538.66 13.37 3564.95 35.82 13.95 

3-Methylheptane 186.82 118.93 43.43 701.73 1.3961 552.51 13.79 3721.67 35.31 13.83 

2,4-Dimethylhexane 193.35 109.43 43.69 696.17 1.3929 586.01 13.07 4107.42 33.76 13.58 

2,5-Dimethylhexane 186.52 109.11 43.59 689.37 1.3900 570.22 11.40 3921.96 33.39 13.71 
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3,3-Dimethylhexane 191.96 111.97 43.96 705.95 1.3978 620.91 15.13 4523.98 33.43 13.35 

3,4-Dimethylhexane 182.72 117.73 43.81 715.15 1.4018 605.15 18.43 4336.01 32.47 13.44 

3-Ethyl-2-

Methylpentan 

193.05 115.66 43.83 715.20 1.4017 609.52 20.68 4389.42 34.31 13.41 

2,2,3-

Trimethylpentane 

186.77 109.84 44.23 712.03 1.4007 657.01 19.45 4971.27 32.13 13.13 

2,3,3-

Trimethylpentane 

188.20 114.77 44.28 722.30 1.4052 664.88 20.04 5071.69 32.17 13.08 

2,3,4-

Trimethylpentane 

192.72 113.47 44.03 715.09 1.4020 633.00 20.76 4673.57 32.55 13.27 

2,2,3,3-

Tetramethylbutane 

188.28 106.29 44.68 729.88 1.4057 714.87 24.04 5718.96 31.84 12.83 

2-Methyloctane 210.90 143.28 49.25 709.60 1.4008 689.31 21.60 4988.20 40.42 15.02 

3-Methyloctane 209.70 144.23 49.33 716.70 1.4040 706.26 22.00 5197.81 39.92 14.89 

4-Ethylheptane 214.30 141.20 49.49 722.30 1.4067 738.47 26.80 5606.79 40.50 14.66 

2,2-Dimethylheptane 212.40 132.82 49.72 706.60 1.3995 756.29 19.50 5824.82 38.83 14.61 

2,3-Dimethylheptane 207.70 140.50 49.66 722.00 1.4064 755.25 23.50 5816.87 37.82 14.59 

2,4-Dimethylheptane 217.10 133.20 49.63 711.50 1.4011 751.95 20.80 5774.96 38.16 14.60 

2,5-Dimethylheptane 208.20 136.00 49.58 713.60 1.4015 742.75 18.20 5655.51 37.53 14.67 

2,6-Dimethylheptane 210.40 135.22 49.49 704.50 1.3985 724.43 19.80 5421.28 37.99 14.79 

3,3-Dimethylheptane 214.00 137.02 49.89 721.60 1.4063 787.88 22.00 6241.86 38.20 14.41 

3,4-Dimethylheptane 206.80 140.40 49.76 727.50 1.4091 775.63 24.90 6084.78 37.02 14.46 

3,5-Dimethylheptane 214.60 135.70 49.69 716.60 1.4046 762.93 22.00 5917.94 38.07 14.54 

3-Ethyl-3-

Methylhexane 

214.10 140.60 50.06 736.00 1.4134 821.89 30.50 6703.42 37.36 14.21 

4-Ethyl-2-

Methylhexane 

219.70 133.80 49.72 724.20 1.4054 770.66 24.50 6020.30 39.25 14.48 

2,2,4-

Trimethylhexane 

210.70 129.91 50.09 711.80 1.4010 817.86 23.60 6643.10 36.61 14.25 

2,3,3-

Trimethylhexane 

213.30 137.69 50.26 733.50 1.4119 847.96 29.40 7058.75 36.28 14.09 

2,3,4-

Trimethylhexane 

214.00 138.96 50.06 735.10 1.4120 821.89 28.60 6703.42 36.86 14.21 

2,3,5-

Trimethylhexane 

212.50 131.36 49.92 717.90 1.4037 795.75 22.20 6348.35 36.02 14.36 

2,4,4-Trimethylhexan 213.50 130.66 50.16 720.05 1.4052 831.08 26.60 6824.87 36.44 14.18 
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3-Ethyl-2,2-

Dimethylpentan 

205.00 133.84 50.31 731.00 1.4101 857.89 37.50 7199.46 36.16 14.04 

2,2,3,3-

Tetramethylpentane 

213.34 140.29 50.81 752.97 1.4214 929.70 39.00 8225.65 35.86 13.73 

2,2,3,4-

Tetramethylpentane 

208.50 133.03 50.51 735.22 1.4125 884.63 36.70 7574.18 35.06 13.92 

3-Ethyloctane 235.80 166.50 55.37 735.90 1.4136 903.92 34.90 7341.39 45.31 15.76 

4-Ethyloctane 236.50 163.64 55.42 734.30 1.4131 917.34 33.40 7528.24 45.10 15.67 

2,2-Dimethyloctane 235.10 156.90 55.63 720.80 1.4060 928.65 27.70 7669.23 43.43 15.67 

2,5-Dimethyloctane 231.80 158.50 55.53 726.40 1.4089 924.58 26.90 7620.98 41.92 15.66 

3,4-Dimethyloctane 229.30 163.40 55.69 741.80 1.4159 956.90 33.00 8075.93 41.80 15.49 

3,5-Dimethyloctane 238.30 159.40 55.64 732.90 1.4115 948.37 29.10 7955.70 42.47 15.53 

3,6-Dimethyloctane 229.60 160.80 55.59 732.90 1.4115 935.26 28.90 7769.81 41.63 15.61 

4,4-Dimethyloctane 239.30 157.50 55.87 731.20 1.4122 983.33 31.90 8449.58 42.30 15.37 

4,5-Dimethyloctane 230.10 162.13 55.72 743.20 1.4167 965.17 35.30 8194.87 41.51 15.44 

4-N-Propylheptane 237.70 157.50 55.46 732.10 1.4113 927.67 38.20 7673.21 44.85 15.61 

4-Isopropylheptane 239.20 158.90 55.77 735.40 1.4132 979.10 37.90 8397.48 43.10 15.36 

2-Methyl-3-

Ethylheptane 

238.50 161.20 55.73 739.80 1.4151 967.48 35.70 8228.62 43.30 15.43 

2-Methyl-4-

Ethylheptane 

243.40 156.20 55.69 732.20 1.4114 962.17 31.60 8153.95 43.64 15.45 

3-Methyl-4-

Ethylheptane 

236.20 162.20 55.84 746.60 1.4183 992.87 36.90 8597.02 42.47 15.29 

3-Methyl-5-

Ethylheptane 

240.90 158.20 55.74 736.80 1.4141 970.77 33.10 8276.38 43.35 15.41 

2,2,3-

Trimethylheptane 

232.50 157.60 56.13 738.50 1.4145 1021.76 34.80 9004.99 41.30 15.21 

2,3,3-

Trimethylheptane 

235.10 160.20 56.21 748.80 1.4202 1039.31 37.30 9267.17 41.00 15.12 

2,3,4-

Trimethylheptane 

237.60 159.90 56.03 748.50 1.4195 1016.82 37.20 8940.44 40.96 15.20 

2,3,5-

Trimethylheptane 

233.90 160.70 55.94 754.50 1.4169 997.74 30.30 8659.63 40.12 15.30 

2,3,6-

Trimethylheptane 

228.50 156.00 55.82 734.70 1.4131 972.26 28.50 8289.11 39.75 15.43 
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2,4,5-

Trimethylheptane 

234.10 156.50 55.96 737.30 1.4160 1002.85 36.90 8734.94 39.98 15.27 

3,3,5-

Trimethylheptane 

234.10 155.68 56.19 739.00 1.4170 1038.98 34.10 9264.22 40.46 15.12 

3,4,4-

Trimethylheptane 

235.60 161.10 56.33 753.50 1.4235 1067.62 40.30 9697.26 40.08 14.99 

3,4,5-

Trimethylheptane 

235.10 162.50 56.11 751.90 1.4229 1034.31 39.70 9201.17 41.14 15.12 

2-Methyl-3-

Isopropylhexane 

231.80 166.70 56.09 743.60 1.4172 1033.98 46.80 9198.24 40.46 15.12 

2,3-Dimethyl-3-

Ethylhexane 

238.20 163.70 56.42 759.98 1.4247 1085.61 45.00 9974.15 40.71 14.91 

2,3-Dimethyl-4-

Ethylhexane 

243.00 160.90 56.14 751.60 1.4203 1042.95 42.10 9332.13 42.43 15.08 

2,4-Dimethyl-4-

Ethylhexane 

235.00 160.10 56.29 751.40 1.4202 1061.98 42.30 9612.80 40.29 15.01 

3,3-Dimethyl-4-

Ethylhexane 

228.20 162.90 56.44 759.80 1.4246 1090.98 50.00 10057.7

9 

39.92 14.89 

3,4-Dimethyl-4-

Ethylhexane 

235.50 162.10 56.49 759.60 1.4244 1100.24 47.60 10200.8

9 

40.42 14.85 

2,2,3,3-

Tetramethylhexane 

238.20 160.31 56.82 760.89 1.4260 1143.72 48.80 10869.4

2 

40.00 14.71 

2,3,3,4-

Tetramethylhexan 

241.50 164.59 56.69 765.60 1.4298 1129.30 49.10 10648.7

2 

40.04 14.75 

2,3,4,4-

Tetramethylhexane 

231.80 161.60 56.64 758.60 1.4267 1119.89 49.20 10500.9

2 

38.87 14.79 

2,3,4,5-

Tetramethylhexane 

243.10 156.20 56.34 745.60 1.4204 1071.09 42.70 9751.18 40.71 14.97 

aExperimental data were taken from [43]. 
 
4. CONCLUSIONS 

We have employed the expanded form of the Wiener index to introduce a novel topological 
descriptor, named M –index, which includes both the atom parameter such as 
electronegativity and principle quantum number and the bond parameter. In fact, we 
modified the adjacency matrix for constructing the M –index in such a way that not only 
the characteristics of an individual atom but also the role of that atom in establishing the 
connection with other atoms in a molecular graph is considered. The proposed M –index 
was used to correlate with a wide range of properties in various data sets, including; 
logarithm of partition coefficient in octanol/water, molar refraction, molar volume, 
parachor, and polarizability for alkanes and cycloalkanes; standard enthalpy of formation 
for silicon, titanium, and methyl halides; toxicity of saturated alcohols, ketones, diols, and 
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carboxylic acids; molar refraction, and boiling point of aldehydes and ketones, as well as 
heat capacity, boiling point, density, refractive index, Gibbs energy, and the standard 
enthalpy of formation of isomeric compounds. The predictive ability of the developed 
models has been assessed by leave–one-outcross–validation test. All the constructed 
models have favorable statistical parameters and demonstrate satisfactory predictability.  

Finally, it is important to note that the M –index is easy to generate and the 
developed QSPR/QSAR models based on this index are linearly correlated. This is an 
interesting feature of the M –index when compared with quantum chemical descriptors 
which require vast computational cost and exhibit limitations for large size molecules. 
 
5. SUPPLEMENTARY INFORMATION 

Illustrative examples for computing M–index for the compounds of different tables are 
presented in Supplementary Information. 
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1. INTRODUCTION  

The radial time–independent Schrödinger equation can be written as: 

),()()1()('' 2 xyExV
x
llxy 
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
                                              (1) 

The boundary conditions are y(0) = 0, and a second boundary condition, for large values 
of x, determined by physical considerations. Large research on the algorithmic 
development of numerical methods for the solution of the Schrödinger equation has been 
done in the last decades. The aim and scope of this research is the construction of fast and 
reliable algorithms for the solution of the Schrödinger equation and related problems. 
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Mathematical models in theoretical physics and chemistry, material sciences, quantum 
mechanics and quantum chemistry, electronics etc. can be express via the above boundary 
value problem [1]. The numerical methods for the approximate solution of the 
Schrödinger equation and related problems can be divided into two main categories: 

1. Methods with constant coefficients. 
2. Methods with coefficients depending on the frequency of the problem. 

The main result of this paper is the development of an efficient multistep method for the 
numerical solution of systems of ordinary differential equations with oscillating or 
periodical solutions. The reason of their efficiency, as the analysis proved, is that the 
phase–lag and its derivatives are eliminated. Another reason of the efficiency of the new 
obtained method is that it has high algebraic order. The purpose of this paper is to extend 
the methodology for the development of numerical methods for the approximate solution 
periodic initial–value problems. The new methodology is based on the requirement of the 
phase–lag and its derivatives vanishing. Based on this new methodology we will develop 
a method one will have phase–lag and its first, second, third and fourth derivatives 
vanishing. We will apply the new developed method on the numerical solution of the 
radial Schrödinger equation. We will study the efficiency of the new obtained methods 
via: 

 A comparative error analysis, 
 A comparative stability analysis and finally, 
 The numerical results produced from the numerical solution of the radial 

Schrödinger with application to the specific potential. 
More specifically, we will develop a family of implicit symmetric two–step Obrechkoff 
methods of twelfth algebraic order. The development of the new family of methods is 
based on the requirement of the phase–lag and its first, second, third and fourth 
derivatives vanishing. We will give a comparative error analysis and a comparative 
stability analysis in order to study the efficiency of new proposed method of the family. 
Finally, we will apply both methods to the resonance problem. This is one of the most 
difficult problems arising from the radial Schrödinger equation.  

For several decades, there has been strong interest in searching for better 
numerical methods to integrate first order and second–order initial value problems, 
because these problems are usually encountered in celestial mechanics, quantum 
mechanical scattering theory, theoretical physics and chemistry, and electronics. 
Computational methods involving a parameter proposed by Gautschi [8], Jain et al. [13] 
and Steifel and Bettis [24] yield numerical solution of problems of class (1). Chawla et al. 
[3, 4], Ananthakrishnaiah [1], Shokri and et al. [17, 18,19], Dahlquist [5], Asadzadeh [2], 
Franco [6], Lambert and Watson [14], Simos and et al. [20, 21, 22], Saldanha and Achar 
[16], and Daele and Vanden Berghe [26] have developed methods to solve problems of 
class (2). Consider the class of Obrechkoff methods of the form 
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for the numerical integration of the problem (1). The method (2) is symmetric when 
,,2,1,0,, kjjkjjkj    and it is of order q if the truncation error associated with 

the linear difference operator is given as 
  ,, 11
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qq
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where Cq+2 is a constant dependent on h. We have organized the paper as follows: In 
Section 2 we present the theory of the new methodology. In Section 3 we present the 
development of the new method. A comparative error analysis is presented in Section 4. 
Finally, the numerical results are presented in Section 5. 
 
2. PRELIMINARIES 

In order to define the interval of periodicity of a method the periodic stability analysis of 
this method is very important. The interval of periodicity defines the step size which can 
be used in order the approximation of the solution of problems with high oscillatory or 
periodic solution to be of the same order as the algebraic order of the method. It can be 
seen that when we have a large interval of periodicity then we can have a large step size 
for the same accuracy. To investigate the stability properties of methods for solving the 
initial value problem (l), Lambert and Watson [14] introduced the scalar test equation. 
From the form (2) and without loss of generality we assume 

  ,2 yy ℝ.                                                              (3) 

and the interval of periodicity, where w is defined as the frequency of the problem and 
may be a constant. When we apply a symmetric two–step method to the scalar test 
equation (3), we obtain a difference equation of the form 

,0)(2 11   nnn yyCy                                                      (4) 
where h  , h is the step length, )(/)()(  ABC   where )(A  and )(B  are 

polynomials in  and ny  is the computed approximation to )(nhy , ,...2,1,0n . The 
characteristic equation associated with (4) is 

.01)(22   C                                                        (5) 
We have the following definitions. 
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Definition 2.1. (See [25]). The method of Eq. (4) with the characteristic Eq. (5) is 
unconditionally stable if 1|| 1   and 1|| 1   for all values of h . 
 

Following Lambert and Watson [14], we say that the numerical method (4) has an 
interval of periodicity  2

0,0  , if for all  2
0,0   , 1  and 2  satisfy ))(exp(1  i , and

)),(exp(2  i  where )(  is a real function of v. For any method corresponding to 
the characteristic equation (4) the phase–lag is defined as the leading term in the 
expansion of 

 .)(cos)( 1  Ct                                              (6) 

If the quantity  1 qOt   as 0 , the order of phase–lag is q. 
 
Definition 2.2. Suppose (5) is the characteristic equation of (4), and 

,1|)(| C  .,0 2
0

2    

Then the periodicity interval of the method is  2
0,0  . 

 
Definition 2.2. The method (4) is said to be P–stable if its interval of periodicity is ),0( 
. 
 
Theorem 2.4. (See Ibraheem and Simos [10]) The phase–lag of a symmetric two–step 
method with characteristic equation given by (5) is the leading term in the expansion of 

 .)cos()(
2

 C  

3. DEVELOPMENT AND ANALYSIS 

From the form (2) and without loss of generality we assume 
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When 3m we get 
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3M  for method (8) is 11 so that if 1P , 13K we obtain classic method and the 
coefficients of this method are 

,
3925152

2923,
39251520

127,
12980
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,
2360
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3665,
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229

313021

201110


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                          (9) 

where its phase–lag is given by 

,1412
3280003394722659

45469





  Oclaspl  

and its local truncation error is given by 

).(
6640001697361329

45469 1614)14( hOhyLTE clas   

If 6P , 1K  then we obtain the method with zero phase–lag ),(PL  and the 
coefficients of this case are given in [16]. 

 
3.1. DEVELOPMENT 

Application of the method (8) to the scalar test equation (3) leads to the difference 
equation (4) with  2C  given by 

  6
30

4
20

2
101

6
312

14
212

12
112

11
2









C .                                (10) 

We require the above mentioned method to have the phase–lag and its derivatives 
vanished. Using the Eq. (10) and Theorem 2.4, and requiring the above method (8) to 
have the maximum algebraic order with five free parameters, the following relations are 
obtained: 

.
2
1

2
1

1110    

So the phase–lag is equal to: 
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We require the above mentioned method to have the phase–lag and some of its derivatives 
vanished. Hence we can write 

.4,3,2,1,0,0)(  iPL i
 

Demanding the phase–lag and the first, second, third and fourth derivatives of the phase 
to vanish we can find of all coefficients. For small values of ||  in the coefficients, are 
subject to heavy cancelations. In this case the following Taylor series expansions should 
be used:  
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where h  ,   is the frequency and h is the step length. As 0 , the LTE of the 
method (8) with above derived coefficients, tends to 
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which agrees with the LTE of the three methods due to Wang [27], Simos [20] and Daele 
[26], Achar [1], as 0H . The characteristic equation 
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has complex roots of unit magnitude when  
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i.e. when 0)()( 2   BA . Substituting for )(A  and )(B  for new method, the interval 
of periodicity of the classical Obrechkoff method, PL′ and PL′′ methods [18], the new 
method when 0 are obtained [0, 25.2004], [0,408.04], [0, 1428.84] and [0, 6593.44] 
respectively. The behaviors of the coefficients are given in Figures 1, 2 and 3. 

 
4. COMPARATIVE ERROR ANALYSIS 

We will study the following methods: 
 The ten–step tenth algebraic order method developed by Quinlan and Tremaine 

[15] which is indicated as QT10. 
 The twelve–step twelfth algebraic order method developed by Quinlan and 

Tremaine [15] which is indicated as QT12. 
 The classical two–step method of the family of methods mentioned in Section 3 of 

this paper which is indicated as CL2. 
 The classical ten–step method of the family of methods mentioned in paragraph 3 

of [9] which is indicated as CL10 
 The method with vanished phase–lag produced by Alolyan and Simos [10] which 

is indicated as PF. 
 The ten–step predictor–corrector method produced by Shokri [17] which is 

indicated as PC. 
 High phase–lag order trigonometrically fitted two–step Obrechkoff produced by 

Shokri [18] which is indicated as TFO. 
 The method with vanished phase–lag and its first derivative produced by Alolyan 

and Simos [10] which is indicated as PFDF. 
 The ten–step method with phase–lag and its first and second derivatives equal to 

zero produced by Alolyan and Simos [9] which is indicated as PFDF12. 
 The ten–step method with phase–lag and its first, second and third derivatives 

equal to zero produced by Alolyan and Simos [9] which is indicated as PFDF123. 
 The new developed two–step Obrechkoff method with vanished phase–lag and its 

first, second, third and fourth derivatives obtained in this paper which is indicated 
as new. 
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Figure 1: Behavior of the coefficients 10 and 11 in the new method. 
 

 

 
 

Figure 2: Behavior of the coefficients 20 and 21 in the new method. 
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Figure 3: Behavior of the coefficients 30 and 31 in the new method. 

 
From the above equations we have the following theorem: 

 
Theorem 4.1. For the numerical solution of the time independent radial Schrödinger 
equation the new proposed method produced in this paper is the most accurate method, 
especially for large values of |||| EVG C  . 
 
Proof. The radial time independent Schrödinger equation is of the form 

)()('' xyxfy                                                           (12) 
Based on the paper of Ixaru and Rizea [12], the function f(x) can be written in the form 

Gxgxf  )()( , where gVxVxg C  )()( , and CV  is the constant approximation of the 

potential and EVG C  2 . We express the derivatives )(i
ny , ,...4,3,2i  which are 

terms of the local truncation error formulae, in terms of Eq. (12). The expressions are 
presented as polynomials of G . Finally, we substitute the expressions of the derivatives, 
produced in the previous step, into the local truncation error formulae. We use the 
procedure mentioned above and the formulae: 
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We consider two cases in terms of the value of E : 
1. The energy is close to the potential, i.e. 0 EVG C . So only the free terms of 

the polynomials in G are considered. Thus for these values of G , the methods are of 
comparable accuracy. This is because the free terms of the polynomials in G , are 
the same for the cases of the classical method and of the new developed methods. 

2. G  or 0G . Then || G  is a large number. 
So, we have the following asymptotic expansions of the equations produced from the Local 
Truncation Errors and based on the above procedure: 

a. The ten–step tenth algebraic order method developed by Quinlan and Tremaine 
[15], for the analysis of the local truncation error see [11] 

....)(
912384
52559 612

10 



  GxyhLTEQT                                              (14) 

b. The twelve–step twelfth algebraic order method developed by Quinlan and 
Tremaine [15], for the analysis of the local truncation error see [11] 

....)(
002905943040
31630179610 714

14 



  GxyhLTEQT                                     (15) 

c. The classical two–step Obrechkoff method with 3m  which is indicated as CL2 

....)(
6640001697361329

45469 714
2 



  GxyhLTECL                                  (16) 

d. The classical ten–step method of the family 1, [9] which is indicated as CL10  

....)(
003736212480

547336457 714
10 



  GxyhLTECL                                      (17) 

e. The method with vanished phase–lag produced by Alolyan and Simos [10] which 
is indicated as PF 
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f. The ten–step predictor–corrector method produced by Shokri [17] which is 
indicated as PC 
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g. High phase–lag order trigonometrically fitted two–step Obrechkoff  PL′′ produced 
by Shokri [18] which is indicated as TFO 
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h. The method with vanished phase–lag and its first derivative produced by Alolyan 
and Simos [9] which is indicated as PFDF 
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i. The method with vanished phase–lag and its first and second derivatives produced 
by Alolyan and Simos [9] which is indicated as PFDF12. 
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                            (22) 

j. The method with vanished phase–lag and its first, second and third derivatives 
produced by Alolyan and Simos [9] which is indicated as PFDF123. 
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k. The new two–step Obrechkoff method with phase–lag and its first, second, third 
and fourth derivatives equal to zero obtained in this paper which is indicated as 
new: 
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 Based on the analysis presented above ,  we studied the interval of  periodicity of the eight 
methods mentioned in the previous  paragraph .  The results are presented in Table 1 . 
 

Method  Interval of periodicity 
QT10 
QT12 
CL2 
CL12 
PF(see [10]) 
PC (see [17]) 
TFO (see PL'' in [18]) 
PFDF (see [9]) 
PFDF12(see [9]) 
PFDF (see [9]) 
New method 

(0,0.17) 
(0,0.046) 
(0,25.2004) 
(0,0.8) 
(0,1.2) 
(0,9.89) 
(0,1428.84) 
(0,1.5) 
(0,6.6) 
(0,3.6) 
(0,65559993.44) 

 
Table 1: Comparative interval of periodicity for the methods mentioned in Section 4. 

 
  Hence for the classical two–step Obrechkoff methods ,  the error  increases as the 
seventh power of G  .  For the classical ten–step  methods ,  the error increases as the seventh 
power of G  .  For the  method with vanished phase–lag produced by Alolyan and Simos [10] , 
 the error increases as the sixth power of G  .  For  ten–step predictor–corrector method 
produced by Shokri [17] ,  the error increases as the sixth power of G .  For two–step 
twelfth  order Obrechkoff method produced by Shokri [18] ,  the error  increases as the sixth 
power of G  .  For twelfth order method with   vanished phase–lag and its first derivative 
produced by Alolyan and   Simos [9] ,  the error increases as the fifth power of G.  For   ten-step 
twelfth order method with vanished phase–lag and its first  and second derivatives produced 
by Alolyan and Simos [9] ,  the error increases as the fifth power of G  .  For ten–step 
twelfth  order method with vanished phase–lag and its first ,  second and third  derivatives 
produced by Alolyan and Simos [9] ,  the error  increases as the fourth power of G  .  For the 
new two–step   Obrechkoff method with vanished phase–lag and its first ,  second , third and 
fourth derivatives obtained in this paper ,  the error  increases as the fourth power of G  but it 
has lower coefficients than the method developed in [9] .  So ,  for the numerical  solution of the 
time–independent radial Schrödinger equation the  new obtained two–step Obrechkoff 
method with vanished phase–lag and  its derivatives is the most accurate ones ,  especially for 
large  values of EVG C   .                                                                                                   
 

  Remark 4.2. In  Figures    4 , 5 ,    we present the s plane  and  behavior of stability  
polynomial (respectively)   for the method   developed in this paper ( s is frequency of test 
problem and  is frequency of method) . 
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Figure 4: The stability region for the new method. 

For the solution of the Schrödinger equation the frequency of   the exponential fitting 
is equal to the frequency of the scalar test   equation .  So ,  it is necessary to observe the 
surroundings of the   first diagonal of the s  plane . 
 
5. NUMERICAL RESULTS 

5.1 THE METHODS 
 

We have used several multistep methods for the integration of the five test problems. These 
methods are 

 The ten–step tenth algebraic order method developed by Quinlan and Tremaine [15] 
which is indicated as Method I. 

 The twelve–step twelfth algebraic order method developed by Quinlan and 
Tremaine [15] which is indicated as Method II. 

 The ten–step method with phase–lag and its first and second derivatives equal to 
zero obtained in [9] which is indicated as Method III. 

 The ten–step method with phase–lag and its first, second and third derivatives equal 
to zero obtained in [9] which is indicated as Method IV. 

 The ten–step predictor–corrector method produced by Shokri [17], which is 
indicated as Method V. 
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 The new method obtained in this paper which is indicated as VI. 
 

  
 

Figure 5: Behavior of the stability polynomial for the new method. 
 
5.2. THE PROBLEMS 
 
The efficiency of the new symmetric two–step Obrechkoff method will be measured 
through the integration of five initial value problems with oscillating solution. In order to 
apply the new method to the radial Schrödinger equation the value of parameter  is 
needed. For every problem of the one-dimensional Schrödinger equation given by (1) the 
parameter is given by 

ExVxq  )()( ,                                                 (25) 

where )(xV  is the potential and E  is the energy. 
 
Example 5.1. We consider the Schrödinger equation resonance problem .  We will integrate 
problem (1) with 0l  at the interval ]15,0[  using the well–known Woods–Saxon potential  

   
,exp,

11
)( 0

2
10 
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q
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where 500 u , 6.0a , 70 x , 
a
uu 0

1  .  The behavior of the Woods–Saxon  potential is 

shown in Figure 6  and with boundary condition 0)0( y  .  The potential )(xV  decays   more 
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quickly than 2
)1(

x
ll   ,  so for large x (asymptotic  region) the Schrödinger equation (1) 

becomes  

).()()1('' 2 xyExV
x
lly 






   

 

 
Figure 6: The Woods-Saxon potential. 

  
The last equation has two linearly independent solutions )(kxkxjl    and )(kxkxnl  ,  where lj  

and ln  are the spherical Bessel and   Neumann functions respectively .  When x  
the  solution of Schrödinger has the asymptotic form  
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where l  is called scattering phase shift and it is  calculated by the following expression : 

 
)()()()(
)()()()(tan

11

11









iiii

iiii
l xCxyxCxy

xSxyxSxy  , 

where )()( kxkxjxS l  , )()( kxkxnxC l  and 1 ii xx  both   belong to the asymptotic region . 

 Given the energy we approximate the  phase shift ,  the accurate value of which is /2 for the 
above   problem .  

We will use for the energy the value 701916.989E  .  For   some well–known 
potentials ,  such as the Woods–Saxon potential ,  the   definition of parameter   is not given 
as a function of x  but based on some critical points which have been defined from the   
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study of the appropriate potential (see for details [12]) .  For   the purpose of obtaining our 
numerical results it is appropriate to   choose   as follows (see for details [12]) : 









].15,5.6[
],5.6,0[

,
,50

x
x

E
E  

  
Example 5.2. The almost periodic orbital problem studied by Franco and Palacios [7], can 
be described by 

Cyiyyxiyy  ,)0(',1)0(),exp(''   
or equivalently by 
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where 001.0  and 01.0 . The theoretical solution of this problem is given by 
,),()()( Rxxivxuxy                                               (26) 
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This system of equations has been solved for  1000,0x . For this problem we use 1 . 
 
Example 5.3. The almost periodic orbital problem studied by Stiefel and Bettis [24], can 
be described by 
 

Cyiyyixyy  ,9995.0)0(',1)0(),exp(001.0''  
or equivalently by 
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The theoretical solution of this problem is given by ),()()( xivxuxy  Rvu ,  and 

).cos(0005.0)sin()(
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xxxxv

xxxu
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This system of equations has been solved for  1000,0x . For this problem we use 1 . 
 
Example 5.4. (Inhomogeneous Equation) Consider the initial value problem 

 .1000,0,11)0(,1)0(),sin(99100 '  tyyxyy
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With the exact solution    .10cos10sin)sin()( tttty   For this problem we use 1 . 
  

Example 5.5. We consider the nonlinear undamped Duffing equation 

  )12(,00',672004267280.0)0(),cos('' 3  yyxByyy 
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We use the following exact solution for 

(27), from [23], 
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where }.10374.0,10304016.0,10246946143.0,362001794775.0{},,,{ 9637531  KKKK  
 
 

 
 

Figure 7: Efficiency for the resonance problem using E = 989:701916. 
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Figure 8: Efficiency for the Franco and Palacios equation. 
 
 

 
 

Figure 9: Efficiency for the orbital problem by Stiefel and Bettis. 
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Figure 10: Efficiency for the inhomogeneous equation. 
 

 
 

Figure 11: Efficiency for the Duffing Equation. 
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4. CONCLUSIONS 

In Figure 7, we see the results for the resonance problem for energy 495874.989E . In 
Figure 8, we see the results for the Franco–Palacios almost periodic problem, in Figure 9, 
the results for the Stiefel–Bettis almost periodic problem are present, in Figure 10, the 
results for the inhomogeneous equation are present and finally in Figure 11, we see the 
results for the Duffing equation. 

Among all the methods used the new symmetric two–step Obrechkoff method with 
twelfth algebraic order and vanished some of its derivatives was the most efficient. 
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In the present paper, we develop a modified pseudo spectral scheme 
for solving an optimal control problem which is governed by a 
switched dynamical system. Many real–world processes such as 
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processes can be modeled as such systems. For this purpose, we 
replace the problem with an alternative optimal control problem in 
which the switching times appear as unknown parameters. Using the 
Legendre–Gauss–Lobatto quadrature and the corresponding 
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nonlinear programming problem. At last, we examine three 
examples in order to illustrate the efficiency of the proposed 
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1. INTRODUCTION  

It is well known that pseudospectral (PS) methods are powerful methods for the numerical 
solution of differential equations. In fact, they arose from spectral methods which were 
traditionally used to solve fluid dynamics problems [1, 2]. They can often achieve ten digits 
of accuracy where a finite difference scheme or a finite element method would get two or 
three [3]. The key point in PS methods is that they avoid the poor behavior of the classical 
polynomial interpolation methods by removing the restriction to equally spaced 
interpolation points. 

The variational method of optimal control theory, which typically consists of the 
calculus of variations and Pontryagin’s methods, can be used to derive a set of necessary 
conditions that must be satisfied by an optimal control law and its associated state–control 
equations [4, 5]. These necessary conditions of optimality lead to a generally nonlinear 
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two–point boundary value problem that must be solved to determine the explicit expression 
for the optimal control. Except in some special cases, the solution of this two–point 
boundary value problem is difficult and not practical to obtain. 
Various alternative computational techniques for optimal control problems have been 
developed in the literature. The techniques are basically of three types: parameterization on 
both state and control [6, 7, 8], parameterization on control only [9, 10] and 
nonparameterization [11, 12, 13]. As a technique of the first type, PS methods can be 
interpreted as direct transcription methods for discretizing a continuous optimal control 
problem into a nonlinear programming (NLP) problem [14, 15, 16, 17, 18, 19]. The 
resulting NLP problem can be solved numerically by the well developed algorithms [20, 
21]. 

Although PS methods enjoy many nice properties, but their use in solving problems 
with nonsmooth solutions or problems with switches may cause major difficulties. The 
reason lies in the famous Gibbs phenomenon which happens when a nonsmooth function is 
approximated by means of a finite number of smooth functions [2]. In [22], the authors 
developed the method of PS knotting in order to address this issue. In fact, they introduced 
the concepts of hard and soft knots to eliminate the mentioned difficulties. 

The switched systems are a particular class of hybrid systems. The hybrid systems 
arise in varied contexts in chemical processes, automotive engine control, traffic control, 
and manufacturing processes, etc. The abundance of hybrid phenomena in many 
engineering systems in general, and in the chemical process industries in particular has 
fostered a large and growing body of research work in this area [23, 24, 25, 26, 27, 28, 29, 
30]. In [31], the authors discussed important hybrid aspects of chemical processing plants. 
Recently, optimal control of switched systems arising in fermentation processes has been 
studied in [32]. A hybrid system consists of several subsystems and a switching law, where 
the switching law is determined by a switching sequence and a set of switching times. At 
each time instant, only one subsystem is active. A hybrid system can be described by a 
differential inclusion of the form  
 

 ,},{1,2,:))(),(,()( Mvtutxtftx v                                       (1)  
 
where ,],[ 0 fttt  (ݐ)ݔ  ∈ ℝ௡, (ݐ)ݑ ∈ ℝ௠and for each },{1,2, Mv  , ௩݂:ℝ × ℝ௡ × ℝ௠ →

ℝ௡ , is continuously differentiable with respect to its arguments. A switching law   for 
system (1) is defined as )),(,),,(),,((= 111100  KK ititit  , where  <1 K , 

fK tttt  110  , and },{1,2, Mik   for 1,0,1,= Kk  . Note here 11 ,, Ktt   are 

the switching instants. An optimal control of such a system involves finding a control )(tu , 
and a switching law   such that the corresponding state trajectory subject to the dynamical 
system (1) departs from a given initial state and minimize a given cost functional. In [33], a 
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method which is based on parameterization of the switching instants is proposed for this 
kind of optimal control problems. 

In this paper, we investigate a modified Legendre PS scheme in order to explore 
accurate and efficient solutions of optimal control problems for switched systems. Here, we 
consider the optimal control problems in which a prespecified sequence of active 
subsystems is given. In order to explore numerical solutions of such problems, we need to 
seek the solutions of both the optimal switching instants and the optimal piecewise input. 
The rest of this paper is organized as follows. The problem statement is given in Section 2. 
In Section 3, we describe the preliminaries for subsequent development. The present 
method is proposed in Section 4. Then, three examples are provided in Section 5 to 
illustrate the efficiency of the proposed method. Conclusions are presented in Section 6. 
 
2. PROBLEM STATEMENT 

We consider switched systems defined on the fixed time interval ],[ 0 ftt  with 1K  

switches, consisting of the subsystems  
)2(,,1,2,=),,[)),(),((=)( 1 Kkttttutxftx kkk   

with initial conditions  
)3(,=)( 00 xtx  

 

where (ݐ)ݔ = ,(ݐ)ଵݔ) … ((ݐ)௡ݔ, ∈ ℝ௡ is the state function and (ݐ)ݑ = ,(ݐ)ଵݑ) … , ((ݐ)௠ݑ ∈
ℝ௠ is the corresponding control function. Also, ௞݂:ℝ௡ × ℝ௠ → ℝ௡ , Kk ,1,2,=  , are 
given functions. We assume that the switching sequence is preassigned, such that  

)4(,=110 fKK ttttt    

where the switching times 11 ,, Ktt   are decision variables. Our objective is to find a 
piecewise continuous function )(tu  and switching instants 11 ,, Ktt   subject to the 
condition (4) for the switched system (2) and (3) such that the cost functional  

)5())(),(())((=
0

dttutxgtxJ
ft

tf   

is minimized. It is noted that the considered problem is an optimal control problem in Bolza 
form. Also, the vector functions  ௞݂:ℝ௡ ×ℝ௠ → ℝ௡, Kk ,1,2,=  , and the scalar 
functions ݃:ℝ௡ ×ℝ௠ → ℝ and  ߶:ℝ௡ → ℝ, are assumed to be smooth with respect to all 
their arguments. 
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3. PRELIMINARIES 

Let N <<< 10   be the Legendre–Gauss–Lobatto (LGL) nodes where 1=0  , 1=N  

and 11 ,, N   are the roots of )(NP . Here )(NP  is the derivative of the N –th order 

Legendre polynomial )(NP . In other words, the LGL points N ,,, 10   are the 1N  

roots of )()(1 2  NP . The reader is referred to [1, 34] for details. 
Let )(th  be a continuous real function which is defined on 1,1][ . The Lagrange 

interpolating polynomial of degree N  interpolates the function )(th  at the points 

N ,,, 10  , as  

).()()(
0=

 jj

N

j
Lhh                                               (6) 

Here for Nj ,0,1,=  , )(jL  denotes the Lagrange polynomial of degree N  

corresponding to the point j , defined by  

.=)(
,0= ij

i
N

jii
jL








 

Note that the Lagrange polynomials satisfy in the Kronecker property  

.
0,

=1,
=)(




 ij
ij

L ij   

In order to approximate the derivative of )(th  at the points i , Ni ,0,1,=  , the 
interpolation formula (6) is differentiated yielding  

),()(
0=

jij

N

j
i hdh                                                    (7) 

where )(= ijij Ld  . The 1)(1)(  NN  matrix ][= ijdD  is the so–called derivative 

matrix. According to [1]  

.

0,

==,
4

1)(

0==,
4

1)(

,1
)(
)(

=
























otherwise

NjiNN

jiNN

ji
P
P

d

jijN

iN

ij




 

Furthermore, for approximating the definite integral of )(th  on 1,1][ , the LGL 
quadrature rule is used. According to this quadrature rule, the definite integral is replaced 
by a summation, in which the values of )(th  at the LGL points are utilized, as  
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),()(
0=

1

1 jj

N

j
hwdh   


                                                 (8) 

 where jw , Nj ,0,1,=  , are the LGL weights, corresponding to the LGL points j , 

Nj ,0,1,=  , given by  

  .,0,1,=,
)(

1
1)(

2= 2 Nj
PNN

w
jN

j 





 

 
4. PROPOSED METHOD 

We suppose that in the problem stated in the Eqs. (2)–(5), the switching sequence is 
preassigned and 11 ,, Ktt   are the corresponding unknown switching times for which the 
condition (4) holds. 

We denote the restriction of vector functions )(tx  and )(tu  to the k –th subinterval 

),[ 1 kk tt   by )(txk  and )(tu k , respectively. According to these notations, the dynamic 
subsystems in Eq. (2) are expressed as  

                ,,1,=,<)),(),((=)( 1 Kkttttutxftx kk
kk

k
k                                  (9) 

  

         
.,2,=),(lim=)( 1

1
1 Kktxtx k

ktt
k

k 




                                                    (10) 

Note that in Eq. (10), the continuity constraints are added in order to guarantee the 
continuity of state functions. Accordingly, the cost functional (5) reformulated as  

,))(),(())((=
11=

dttutxgtxJ kkkt

kt

K

k
f

K 


                                           (11) 

 and the initial conditions (3) restated as  
.=)( 00

1 xtx                                                                                 (12) 
To apply the approximations described in the previous section, we must transfer 

each subinterval to the interval 1,1][ . For this purpose, we use the transformation formula 

1

1 )(2=







kk

kk

tt
ttt  in the k –th subinterval ),[ 1 kk tt  . In this respect, the problem is restated 

in the following alternative form:  

 duxgttxJ kkkk
K

k

K ))(),((
2

(1))(=min
1

1
1

1=
 

 





 

                               (13) 

    ,,1,=)),(),((
2

=)(.. 1 Kkuxfttxts kk
k

kkk  





                                           (14) 

        ,,2,=(1),=1)( 1 Kkxx kk                                                               (15) 
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 .=1)( 0
1 xx                                                                                  (16) 

The alternative problem (13)–(16) provides us with some advantage, namely that it 
no longer has varying switching instants. In fact, the switching instants are considered as 
parameters in the alternative problem. 

It has to be noted that for Kk ,1,=  , the components of vector functions )(kx  

and )(ku  are smooth on 1,1][  and then can be expanded in terms of Lagrange basis 
functions according to Eq. (6). Therefore, using the formula (8), the performance index J  
in Eq. (13) is approximated as  

,),(
2

)( )()(

0=

1

=1

)(
j

k
j

k
j

N

j

kk
K

k

K
N wUXgttXJ  






 

                                             (17) 

where )(k
jX  and )(k

jU  are vectors in ℝ௡ and ℝ௠, respectively, and defined by  

.,1,=,,0,1,=),(=),(= )()( KkNjuUxX j
kk

jj
kk

j   

Also, using the formula (7), the alternative dynamical systems (14) are approximated by  

,,1,=0,=
2

)(1)( KkFttXD kkkk 





 

                             (18) 

where )(kX  and )(kF  are nN 1)(  matrices, respectively, defined by  
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
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Furthermore, the continuity constraints (15) and the initial conditions (16), respectively, are 
stated as  

,,2,=0,=1)()(
0 KkXX k

N
k                                  (19) 

and  
.= 0

(1)
0 xX                                                        (20) 

We also assume that no two endpoints of subintervals coincide. Then, for a small given 
0> , we add the extra constraints  

 .,1,=,>1 Kktt kk                                           (21) 
In summary, the alternative optimal control (13)–(16) is discretized to the following NLP 
problem: Find vectors )(k

jX , )(k
jU , Nj ,0,1,=  , Kk ,1,=   and the parameters kt , 

1,1,= Kk   to minimize the expression (17) subject to the constraints (18)–(21). 
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The relations between the solutions of obtained NLP problem and the solutions of 
alternative problem (13)–(16) are given by  

,,1,=),()( )(

0=

)( KkLXx j
k

j

N

j

k    

and  

.,1,=),()( )(

0=

)( KkLUu j
k

j

N

j

k  
 

 
5. ILLUSTRATIVE EXAMPLES 
 
In this section, we consider three examples to illustrate the efficiency of proposed method. 
Here, we consider the numerical examples given in [33]. According to the present method, 
each example in modeled using the mathematical software package Maple 17 and the 
resulting NLP problems are solved by the command NLPSolve. 

 
Example 1. Consider a switched system consisting of nonlinear subsystems 
 

.
)(cos)()(=)(
)(sin)()(=)(

:3

,
)(cos)()(=)(

)(sin)()(=)(
:2

,
)(cos)()(=)(

)(sin)()(=)(
:1

222

111

112

221

222

111






















txtutxtx
txtutxtx

subsystem

txtutxtx
txtutxtx

subsystem

txtutxtx
txtutxtx

subsystem













 

 
Assume that 0=0t , 3=ft  and the system switches at 1= tt  from subsystem 1 to 2 and at 

2= tt  from subsystem 2 to 3 ( 30 21  tt ). The initial conditions are 2=(0)1x  and 
3=(0)2x . We want to find optimal switching instants 1t , 2t  and an optimal input )(tu  such 

that the cost functional  

dttutxtxxxJ )](1))((1))([(
2
11)(3)(

2
11)(3)(

2
1= 22

2
2

1

3

0

2
2

2
1    

is minimized.  
In Table 1, we listed the results of optimal switching instants 1t , 2t  and optimal cost 

J  obtained by the present method with 3=K  and different values of N . In the last of 
Table 1, we reported the CPU time (seconds) for the computations of the corresponding 
results. Also, in Figure 1, we plot the graphs of optimal control and the corresponding state 
trajectory obtained by the present method with 3=K  and 9=N .column  
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Table 1. The results of optimal switching instants 1t , 2t  and optimal cost J  obtained by 
       the present method with 3=K  and different values of N , for Example 1. 

 
  1t  2t  J  CPU time 

(seconds) 
6=3= NK  0.22451889 1.01940266 5.44119735  4.04  

    8=N  0.22452199 1.02006802 5.44100709 5.03 
     10=N  0.22451866 1.02002342 5.44097522 6.20  
     12=N  0.22451838 1.02002491 5.44097350 8.15  
     14=N  0.22451835 1.02002485 5.44097350 9.96 

 
 

 
 
 

Figure 1: The graphs of (a) state trajectory and (b) optimal control obtained by the  
                        present method with 3=K  and 9=N , for Example 1.  
 
Example 2. Consider a switched system consisting 
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Assume that 0=0t , 2=ft  and the system switches once at 1= tt  ( 20 1  t ) from 

subsystem 1 to 2. The initial conditions are 0=(0)1x  and 2=(0)2x . We want to find an 
optimal switching instant 1t  and an optimal input )(tu  such that the cost functional  

dttutxxxJ )](2))([(
2
12)(2)(

2
14)(2)(

2
1= 22

2

2

0

2
2

2
1    

is minimized.  
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 We applied the proposed method to solve this example. In Table 2, we reported the 
results of 1t  and J  obtained by the present method with 2=K  and different values of N . 
Also in Figure 2, we plot the graphs of optimal control and the corresponding state 
trajectory with 2=K  and 9=N . 
 

Table 2. The results of optimal switching instant 1t  and optimal cost J  obtained by the   
  present method with 2=K  and different values of N , for Example 2.  

 
  1t  J  CPU time 

(seconds) 
6=2= NK   0.19007133 9.78402619 2.62  

    8=N   0.18967215 9.76657993 3.04 

     10=N  0.18967109 9.76654884 3.46 

     12=N  0.18967110 9.76654882 4.42  

     14=N  0.18967107 9.76654882 5.60 
 

 

 
 

Figure 2: The graphs of (a) state trajectory and (b) optimal control obtained by the present  
                  method with 2=K  and 9=N , for Example 2.  
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Assume that 0=0t , 2=ft  and the system state starts at 1=(0)1x , 1=(0)2x , 

following subsystem 1 (subsystem 1 is active for 07)()(=))(),(( 2121  txtxtxtxc  and 
subsystem 2 is active for 0))(),(( 21 txtxc ). Assume that upon intersecting the hyper 
surface 0=),( 21 xxc , the system switches from subsystem 1 to 2. Also, assume there is only 
one switching which takes place at time 1t  ( 20 1  t ). We want to find an optimal input 

)(tu  such that the cost functional  

dttuxxJ )(
2
16)(2)(

2
110)(2)(

2
1= 22

0

2
2

2
1   

is minimized.  
Note that we have not considered state constraints in the subsystems of our problem 

modeled by Eqs. (2)–(5). For this reason, we state our technique in order to approximate 
state constraints. By setting 2=K , according to the proposed method, we have two sets of 
state functions values: (1)

jX , Nj ,0,1,=  , are the values of state functions in subsystem 1, 

and (2)
jX , Nj ,0,1,=  , are the values of state functions in subsystem 2. According to this, 

we obtain the constraints 0)( (1) jXc , Nj ,0,1,=  , in subsystem 1, and 0)( (2)  jXc , 

Nj ,0,1,=  , in subsystem 2. These new inequality constraints must be added to Eqs. 
(18)–(21). 

In Table 3, we listed the results of 1t  and J  obtained by the present method with 
2=K  and different values of N . Also in Figure 3, we plot the graphs of optimal control 

and the corresponding state trajectory with 2=K  and 9=N . 
 

Table 3. The results of optimal switching instant 1t  and optimal cost J  obtained by the  
   present method with 2=K  and different values of N , for Example 3.  

 
  1t  J  CPU time 

(seconds) 
6=2= NK   1.16328653 0.11315919 5.78 

    8=N   1.16293205 0.11309541 6.00  

     10=N  1.16278027 0.11306590 6.46  

     12=N  1.16270441 0.11305120 6.84  

     14=N  1.16266144 0.11304283 7.42  
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Figure 3: The graphs of (a) state trajectory and (b) optimal control obtained by the present 
                  method with 2=K  and 9=N , for Example 3.  
 
6. CONCLUSION 

In this paper, we have considered a class of optimal control problems governed by switched 
systems. Such systems arise in varied contexts in chemical processes, automotive engine 
control, traffic control, and manufacturing processes, etc. We have proposed a modified 
Legendre pseudospectral scheme in order to explore accurate solutions. For this purpose, 
we have restated the problem in form of an alternative problem in which the switching 
instants are considered as parameters. Then, we can solve the obtained NLP problem using 
existing subroutines. Three numerical examples considered in order to show the validity 
and applicability of the proposed method. 
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Let  G=(V,E)  be a   simple  connected  graph  with  vertex  set  V     and 
 edge  set    E. The Szeged index  of   G is defined by 

,)|()|()(   Euve GevnGeunGSz
 
where nu(e|G) is the number 

of vertices of  G  closer to  u than    v and nv(e|G) can be defined in a 
similar way. Let     S be a   set  of  size n  8 and   V  be  the  set  of  all 
 subsets  of   S  of  size  3.  We  define  three  types  of  intersection  graphs 
 with  vertex  set V. These graphs are denoted by Gi(n), i=0,1,2    and 
we will find their  Szeged indices. 
 

© 2017 University of Kashan Press. All rights reserved 

Keywords: 

Szeged index  
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Automorphism of graph 

 

1. INTRODUCTION  

Let  G = (V,E)  be a  simple   graph  with  vertex  set V  and  edge  set     E. An  automorphism  of     G  is 
a   one–to–one mapping   :V V    that  preserves  adjacency of vertices in     G. The  distance 
 between two  vertices     u and   v    is  the  length  of  a  shortest  path  from     u to v and is denoted by 
d(u,v). A function f from the set of all graphs into real numbers is called a graph invariant 
if and only if G  H implies that f(G) = f(H). A graph invariant is said to be distance−based 
if it can be can defined by distance function d(−,−). A graph invariant applicable in 
chemistry is called a topological index. 

In  recent  research  in  mathematical  chemistry,  distance–based  graph  invariants  are 
 of particular  interest.   One  of  the  oldest  descriptors  concerned  with  the  molecular  graph  is 
 the  Wiener index, which was  proposed  by   Wiener [8].    The  definition  of  the Wiener  index  in 
 terms  of  distances  between  vertices  of a   graph  is  due  to  Hosoya ]6]. 

The Szeged index [4,5,7]  is a   topological  index  closely  related  to  the  the  Wiener 
 index  and  coincides  with  the  Wiener  index  in  the  case  when  the  graph  is a   tree.  For  the 
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 basic  definition of  the  Szeged  index  of  graph , let    G = (V,E)  be a   connected  simple  graph. 
 Let e uv     be  an  edge  of    G.  We  define  two  subsets  of  vertices  of   G  as  follows: 

( | ) { | ( , ) ( , )}
( | ) { | ( , ) ( , )}

u

v

N e G w V d w u d w v
N e G w V d w v d w u

  

  
 

Let ( | ) | ( | ) |u un e G N e G    and   ( | ) | ( | ) |v vn e G N e G . The Szeged index of the 
graph    G  is  defined  by  the  following  formula:  

 


Euve vu GenGenGSz )|()|()(  

  We see that the Szeged index is a sum of edge–contribution for the edge  e uv  of 
 the  graph    G,  we  set                | |u vsz e n e G n e G , hence  


Ee

eszGSz ).()(  

Let    denote  the  automorphism  group  of  the  graph  G.  Then    acts  as a  
 permutation  group  on  the  vertex  set   V  of     G. If    e uv   is  an  edge  of   G  and ,       then by 

defining ,e u v    we observe  that      acts  on  the  set     E  of  edges  of    G. I f    acts 
 transitively  on   V,  then     G  is  called a   vertex–transitive  graph  and  if  it  acts  transitively  o n  E , 
then    G  is  called  an  edge–transitive  graph.  We  refer  the  reader  to  the  book ]2]  for  further 
reading  about  permutation  groups.  

In [1],  the  case   of    edge–transitive  graph  is  studied.  In  this  case,  the  edge–
distribution  at each edge  is  the  same , i.e.,  ( ) ( )sz e sz e   for  all  edges     e  and e'   of     G  holds, 

 hence    | |Sz G E sz e       for a   single  edge  of   G  holds. The  above  situation  is  also  studied 

 in [9]. 
 
2. PRELIMINARY RESULTS 

In this paper we are concerned with the graphs on triples. Let  S  be a   set  of  size     n  where     n  is 
a   suitable  natural  number.  Let   V  be  the  set  of  all  the  3–element  subsets  of     S.  The graph 
Gi,i= 0, 1, 2, called  intersection  graphs, are  defined  as  , ,iG V E    where     V  is  the  set  of 

 vertices  of     G  and  two  vertices  are  joined  by  an  edge  if  and  only  if  they  intersect  in   i

 elements . It is clear that | |
3
n

V  
  
   

and  the  size  of  each   ; 0,1, 2,iE i     is 
3 3

,3
3 2

n n    
   
     

and

  3 3n    respectively,  it  is  worth  mentioning  that  the  Weiner  indices  of  the  graphs 

  ; 0,1, 2,iG i    were  computed  in [3]. 
 
Lemma 2.1.  Each of the graphs   ; 0,1,2,iG i    is  edge–transitive.  
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Proof. By [3],  the  automorphism  graph  of  each  graph    ; 0,1, 2,iG i   has a subgroup 

isomorphic to the symmetric group S        n. Let e uv  and  e u v    be two edges of   ; 0,1, 2.iG i 
Then | | | | .u v i u v      

Case 1. 0.i   In this case we may take         1, 2,3 , 4,5,6 ,u v 

{1,2 ,3}, {4 ,5 ,6 }u v            where  {1,2 , ,6 } {1,2, ,6}          .The  permutation  

1 2 3 4 5 6
1 2 3 4 5 6

Sn
    





 
 
   

take e to .e  

Case 2. 1.i    In  this  case  we  may  take u = {1,2,3}, v = {1,4,5}, u = {1, 2, 3}, v= 

{1, 4, 5}   and choose 
1 2 3 4

2 3
5
51 4 nS

  
 

   
 which takes    e to e . 

Case 3. 2.i    In  this  case  we  may  choose u = {1,2,3}, v = {1,2,4}, u = {1, 2, 3}, 

v= {1, 2, 4} and  in  this  case  
2 3

1 2 3 4
1 4 nS

  
 

   
                                   takes    e to e .                                ■ 

 
We have the following result from [3]  that  will  be  used. 

 
Result 2.1. Let    u  and    v  be  two  vertices  of   ; 0,1, 2.iG i       Then   ( , ) 2d u v   unless 2i    where 
  ( , ) 3d u v    also  occurs. 

 
3. COMPUTATION OF THE SZEGED INDEX 

Now  because  of Lemma 2.1, we have Sz(Gi) = |Ei|sz(e), i = 0, 1, 2, where  sz(e) = 
nu(e|Gi)nv(e|Gi). By  definition  we  have nu(e|Gi) = |{ w  V | d(w,u) < d(w,v)}|.  By the above 
result d(w,v) = 0, 1, 2  in  the  case   G1   and   G2. 

Case 1.  , 0d w v    is  impossible. 

Case 2. If    , 1,d w v   then  , 0d w v        implying      .w u  

Case 3. If    , 2,d w v   then       , 0d w v   or 1. If    ,   w u   then     , 1d u v   a 

contradiction, hence  , 1.d w u   We conclude that  

( | ) 1 |{ | ( , ) 1}| .un e G v w V d w u      

By  symmetry  we  have ( | ) ( | ).v un e G n e G  
 
Corollary 3.1. The Szeged index of  0G   and 1G  are  as  follows:   
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2

0

2

1

3 6 6
( ) 1 3 3

3 2 1

3 5 5
( ) 3 1 2 2

2 2 1

n n n
Sz G

n n n
Sz G

         
        
      

         
        

      

 

Proof.   According to what we proved earlier  ( ) | | ( ),i iSz G E sz e  where e uv       is a   fixed 

edge  of     , 0,1.iG i    But 

    
 

2

2

( ) ( | ) ( | ) ( | )

1 |{ | ( , ) 1} |
u v usz e n e G n e G n e G

v w V d w u

 

    
 

 Therefore we must find the number of vertices  w v  of   V   with  distance 1   from   u  . 
    Case 1 .      0i  .   In  this  case  we  may  take    1,{ 2,3}u   and   4,5,6v   , the vertex  w  

 should  be  of  distance 2   from   v  ,  hence  should  meet    v  and     .w u  If   w   meets  v  in  one 
 element  we  have  3/2(n − 6)(n − 7) choices for it and if it meets    v  in 2   elements  again  we 
 have     3(n – 6) choices for    it and the formula for   0Sz G   is  obtained  as  above.  

  Case 2.   1i  .  In  this  case  we  may  choose    1, 2,3 ., 1,4,5u v     we  have 

( , ) 2d w v      , hence   w v    or        2   ,w v   but     1    .  w u   

 
If     ,w v   then we have (n – 5)(n – 6)

 
choices  for     W. If   |    |  2,w v  then  if   1   ,w we 

must have  {1,4, }w x  or  1,5, ,w y    hence  the  number  of  choices  for     w  is 2(n – 5)   .For  

1 w  we  don't  obtain a   possibility  for     w.  Therefore  1Sz G   is  as  above.                              ■ 

 
To calculate the Szeged index of 2 G   we  must  calculate  the  size  of  the  set    

( | ) { | ( , ) ( , )}uN e G w V d w u d w v       .In  this  case  , 3d w v     may  occur and    , 1d w u 

 or 2.  If   , 1d w u  , then  , 2d w u  , a contradiction. Therefore  , 2,d w u  i.e there  is a  

 vertex     x   such  that    , 1d w x  . If  we  set 1 { | ( , ) 1}A v w V d w u    and  

2 { | ( , ) 2}A w V d w u    then  we  must  find  the  sizes  of 1A      and   2A . 
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vu

x w  
Let  {1,2,3} , {1,2,4}u v    and  find   1| |A . 

 
In this case  , 2,d w v    hence   | | 2.w v   If   ,w v   then  there  is  no  possibility  for   .w  
 If | | 1,w v     then     {1,3, , 2,3, },w x x   and hence  the  following  corollary  is  proved. There 

 are 2(n – 4) possibilities for w  and |A1| = 2(n – 4).   To find 2| |A    we  may  assume  again   

     1, 2,3 , 1,2,  .4u v   

             
The number of vertices  x  is 2(n – 4).  Now  having  chosen x  the  number  of w  with 

 distance 1   from x  is 2(n – 5) . 

 
Corollary 3.2. For the Szeged index of  2G   we  have  

 
2

2

4 4 5
( ) 3( 3) 1 2

1 1 1
.4

n n n
Sz G n

        
        

     
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The Harary index (ܩ)ܪ of a connected graph ܩis defined as 
(ܩ)ܪ  = ∑ ଵ

ௗಸ(௨,௩)௨,௩∈௏(ீ) , where ݀ீ(ݒ,ݑ) is the distance between 
vertices ݑ and ݒ of ܩ. The Steiner distance in agraph, introduced by 
Chartrand et al. in 1989, is a natural generalization of the concept of 
classical graph distance. For a connected graph ܩ of order at least 2 
and ܵ ⊆  the Steiner distance ݀ீ(ܵ) of the vertices of ܵ is the ,(ܩ)ܸ
minimum size of a connected subgraph whose vertex set contains ܵ. 
Recently, Furtula, Gutman, and Katanić introduced the concept of 
Steiner Harary index and gave its chemical applications. The k-
center Steiner Harary index ܵܪ௞(ܩ) of ܩ is defined by ܵܪ௞(ܩ) =
∑ ଵ

ௗಸ(ௌ)ௌ⊆௏(ீ),|ௌ|ୀ௞ . In this paper, we get the sharp upper and lower 

bounds for  ܵܪ௞(ܩ) + (ܩ)௞ܪܵ ൯ andܩ௞൫ܪܵ ∙  valid for any ,(ܩ)௞ܪܵ
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1. INTRODUCTION  

All graphs in this paper are assumed to be undirected, finite and simple and connected. We 
refer to [5] for graph theoretical notation and terminology not specified here. For a graph ܩ, 
let ܸ(ܩ),(ܩ)ܧ and ݁(ܩ) =  denote the set of vertices, the set of edges and the sizeof|(ܩ)ܧ|
 .respectively ,ܩ
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If ܵ is a vertex-subset of a graph ܩ, the subgraph of ܩ induced by ܵ  is denoted by 
 with one end in ܺ  and the other in ܻ. Ifܩ the set of edges of [ܻ,ܺ]ீܧ We denote by .[ܵ]ܩ
ܺ =  .[ܻ,{ݔ}]ீܧ  for  [ܻ,ݔ]ீܧ we simply write ,{ݔ}

The connectivity of a graph ܩ, written κ(ܩ), is the order of a minimum vertex-
subset ܵ ⊆ ܩ such that  (ܩ)ܸ − ܵ  is disconnected or has only one vertex. Thus, if ܩ  is 
connected, then  κ(ܩ) ≥ 1; if ܩ has cut vertices, then  κ(ܩ) = 1. 

The introduction is divided into the three subsections, in order to state the motivations 
and results of this paper. 

1.1 DISTANCE AND ITS GENERALIZATION 

Distance is one of the basic concepts of graph theory [6]. If ܩ is a connected graph and 
,ݑ ݒ ∈ ,ݑ)݀ then the distance ,(ܩ)ܸ  is the length of a shortest path ݒ andݑ between (ݒ
connecting ݑ and ݒ. 

The distance between two vertices ݑand ݒ in a connected graph ܩ also equals the 
minimum size of a connected subgraph of G containing both ݑ and ݒ. This observation 
suggests a generalization of the distance concept. The Steiner distance of a graph, 
introduced by Chartrand et al. in 1989 [8], is a natural generalization of the classical graph 
distance. For a graph (ܧ,ܸ)ܩ and a set  ܵ ⊆  of at least two vertices, an S-Steiner tree (ܩ)ܸ
or a Steiner tree connecting ܵ (or simply, an S-tree) is a subgraph ܶ(ܸ ′, E′) of ܩ that is a 
tree with ܵ ⊆ ܸ′. Then the Steiner distance ݀ீ(ܵ)  of the vertices of ܵ  (or simply the 
distance of ܵ) is the minimum size of all connected subgraphs whose vertex sets contain ܵ. 
Observe that ݀ீ(ܵ) = min{݁(ܶ)|ܵ ⊆ ܸ(ܶ)}, where ܶ  is subtree of ܩ. Furthermore, if 
ܵ =  .ݒ andݑ then ݀ீ(ܵ) coincides with the classical distance between ,{ݒ,ݑ}

Observation 1.1 Let ܩ be a connected graph of order ݊ and ݇ be an integer, 2 ≤ ݇ ≤ ݊. If 
 ܵ ⊆ |ܵ|  and  (ܩ)ܸ = ݇, then ݇ − 1 ≤ ݀ீ(ܵ) ≤ ݊ − 1. 

The average Steiner distance ߤ௞(ܩ) of a graph ܩ, introduced by Dankelmann et al. [9, 
10], is defined as the average of the Steiner distances of all k-subsets of ܸ(ܩ), i.e., 

(ܩ)௞ߤ   = ൫௡௞൯
ିଵ∑ ݀ீ(ܵ)

ௌ⊆௏(ீ)
|ௌ|ୀ௞

 .                                                      (1.1) 

Let ݊ and ݇  be integers such that 2 ≤ ݇ ≤ ݊. The Steiner k-eccentricity ݁௞(ݒ)  of a 
vertex ݒ of ܩ is defined by ݁௞(ݒ) = ܵ|(ܵ)݀}ݔܽ݉ ⊆ ,(ܩ)ܸ |ܵ| = ݇, ݒ ∈ ܵ}. The Steiner k-
radius of ܩ is ݀ܽݎݏ௞(ܩ) = min{݁௞(ݒ)|ݒ ∈  is  ܩ whereas the Steiner k-diameter of ,{(ܩ)ܸ
(ܩ)௞݉ܽ݅݀ݏ  = ݒ|(ݒ)௞݁}ݔܽ݉ ∈  of any connected graph ݒ Note that for any vertex .{(ܩ)ܸ
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(ݒ)ଶ݁ ,ܩ  = (ܩ)ଶ݀ܽݎݏ and in addition ,(ݒ)݁ = (ܩ)ଶ݉ܽ݅݀ݏ and (ܩ)݀ܽݎ =  For .(ܩ)݉ܽ݅݀
more details on Steiner distance, we refer to [3, 7, 8, 9, 10, 17, 25, 29]. 

Mao [25] obtained the following results. By ∆(ܩ) we denote the greatest degree of a 
vertex of  ܩ. 

Lemma 1.1 [25] Let ܩ be a connected graph with connected complement ܩ. If 
(ܩ)௞݉ܽ݅݀ݏ ≥ 2݇, then ݉ܽ݅݀ݏ௞(ܩ) ≤ ݇. 

Lemma 1.2 [25] Let ܩ be a connected graph of order ݊. Then ݉ܽ݅݀ݏଷ(ܩ) = 2  if and only 
if  0 ≤ (ܩ)∆ ≤ 1. 

Lemma 1.3 [25] Let ݊,݇ be integers such that 2 ≤ ݇ ≤ ݊, and let ܩ  be a connected graph 
of order ݊. If ݉ܽ݅݀ݏ௞(ܩ) = ݇ − 1, then 0 ≤ ∆൫ܩ൯ ≤ ݇ − 2. 

Lemma 1.4 [25] Let ܩ be a connected graph of order ݊ with connected complement. Let ݇  
be an integer such that 3 ≤ ݇ ≤ ݊. Let ݔ = 0  if  ݊ ≥ 2݇ − 2  and  ݔ = 1  if  ݊ < 2݇ − 2. 
Then 

(1) 2݇ − 1 − ݔ ≤ (ܩ)௞݉ܽ݅݀ݏ + (ܩ)௞݉ܽ݅݀ݏ ≤ ݊}ݔܽ݉ + ݇ − 1,4݇ − 2}; 

(2) (݇ − 1)(݇ − (ݔ ≤ (ܩ)௞݉ܽ݅݀ݏ ∙ (ܩ)௞݉ܽ݅݀ݏ ≤ ݊)݇}ݔܽ݉ − 1), (2݇ − 1)ଶ}. 

Lemma 1.5 [25] Let  ܩ  be a graph. Then ݉ܽ݅݀ݏ௡ିଵ(ܩ) = ݊ − 2 if and only if ܩ is 2-
connected. 

The following corollary is immediate from the above lemmas. 

Corollary 1.1 [28] Let ܩ and ܩ be connected graphs. If ݉ܽ݅݀ݏଷ(ܩ) ≥ 6, then 
൯ܩଷ൫݉ܽ݅݀ݏ = 3. 

1.2 WIENER INDEX AND ITS GENERALIZATION 

The Wiener index is defined as the sum of ordinary distances of all pairs of vertices of the 
underlying graph, i.e., as ܹ(ܩ) = ∑ ,ݑ)݀ (ீ)௨,௩∈௏(ݒ   and its mathematical theory is 
nowadays well elaborated. For details see the surveys [13, 34]. 

Li et al. [22] generalized the concept of Wiener index using Steiner distance, by 
defining the Steiner k-Wiener index ܵ ௞ܹ(ܩ) of the connected graph ܩ as  

ܵ ௞ܹ(ܩ) = ෍ ݀ீ(ܵ)
ௌ⊆௏(ீ)

|ௌ|ୀ௞

 . 
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However, with regard to this definition, one should bear in mind Eq. (1.1), and the 
references [9, 10]. 

For ݇ =  2, the Steiner Wiener index coincides with the ordinary Wiener index. It is 
usual to consider ܵ ௞ܹ   for 2 ≤  ݇ ≤  ݊ −  1, but the above definition implies  ܵ ଵܹ(ܩ) =
0  and  ܵ ௡ܹ(ܩ) = ݊ − 1. 

An application in chemistry of the Steiner Wiener index was reported in [18]. 
Expressions for ܵ ௞ܹ  for some special graphs were reported in [22]. Li et al. [22] also gave 
sharp upper and lower bounds on ܵ ௞ܹ , and established some of its properties in the case of 
trees. For more details on the Steiner Wiener index, we refer to [18, 22, 23, 27]. 

1.3  HARARY INDEX AND ITS GENERALIZATION 

The Harary index (ܩ)ܪ of ܩis defined by (ܩ)ܪ = ∑ ଵ
ௗಸ(௨,௩)௨,௩∈௏(ீ)  . For more details on 

the Harary index, we refer to [4, 21, 24, 33]. 

Furtula et al. [15] introduced the concept of Steiner Harary index. The Steiner Harary 
k-index or k-center Steiner Harary index ܵܪ௞(ܩ) of ܩ is defined as 

(ܩ)௞ܪܵ = ෍
1

݀ீ(ܵ)
ௌ⊆௏(ீ)

|ௌ|ୀ௞

 . 

For ݇ = 2, the above defined Steiner Harary index coincides with the ordinary Harary 
index. It is usual to consider ܵܪ௞  for 2 ≤ ݇ ≤ ݊ − 1, but the above definition 
implies ܵܪଵ(ܩ) = 0 and ܵܪ௡(ܩ) = ଵ

௡ିଵ
. 

The following results will be needed later. 

Lemma 1.6 [26] Let ܶ be a tree of order  ݊, and let ݇ be an integer such that 2 ≤ ݇ ≤ ݊. 
Then 

݊ ෍
1
ݐ ൬
ݐ − 1
݇ − 2൰ − ൬

݊ − 1
݇ − 1൰ ≤ (ܶ)௞ܪܵ

௞ିଵஸ௧ஸ௡ିଵ

≤
݇݊ − ݊ + ݇
݇ଶ(݇ − 1) ൬

݊ − 1
݇ − 1൰. 

Moreover, among all trees of order  ݊, the star  ܵ௡   maximizes the Steiner Harary k-index 
whereas the path ௡ܲ   minimizes the Steiner Harary k-index. 

Lemma 1.7 [26] Let ௡ܲ be the path of order ݊ (݊ ≥ 3), and let ݇ be an integer such that 
 2 ≤  ݇ ≤ ݊. Then 



Computing Szeged Index of Graphs on Triples                                                                      185 

)௞ܪܵ ௡ܲ) = ݊    ෍
1
ݐ

௞ିଵஸ௧ஸ௡ିଵ

൬
ݐ − 1
݇ − 2൰ − ൬

݊ − 1
݇ − 1൰. 

 
2. MAIN RESULTS 

Let ݂(ܩ) be a graph invariant and ݊a positive integer, ݊ ≥ 2. The Nordhaus–Gaddum 
Problem is to determine sharp bounds for ݂(ܩ) + (ܩ)݂ and (ܩ)݂ ·  ranges over  ܩ as ,(ܩ)݂
the class of all graphs of order ݊, and to characterize the extremal graphs, i.e., graphs that 
achieve the bounds. Nordhaus–Gaddum type relations have received wide attention; see the 
recent survey [2] by Aouchiche and Hansen. 

Denote by ࣡(݊) the class of connected graphs of order ݊  whose complements are also 
connected. In the studies of Nordhaus–Gaddum–type relations it must be assumed that 
 exist. Therefore, such relations are examined in the case of Wiener and (ܩ)݂ and (ܩ)݂
Steiner Wiener indices, one must restrict the consideration to the class ࣡(݊), ݊ ≥ 2. 

Mao et al. [28] studied the Nordhaus-Gaddum type results for the Wiener index. In 
this paper, we investigate the analogous problem for the Steiner Harary index. Our basic 
idea is from [28]. 

2.1  RESULTS PERTAINING TO GENERAL ܓ 

For general ݇, we obtain the following result: 

Theorem 2.1 Let ܩ ∈ ࣡(݊) and let ݇ be an integer such that 3 ≤ ݇ ≤ ݊. Then: 

(1)  ൫௡௞൯
ଶ௞ିଶ

௠௔௫{௞(௡ିଵ),(ଶ௞ିଵ)మ}
≤ (ܩ)௞ܪܵ + ൯ܩ௞൫ܪܵ ≤

(௡ା௞ିଶ)൫೙ೖ൯
(௞ିଵ)మ

. 

(2)  ଵ
௠௔௫{௞(௡ିଵ),(ଶ௞ିଵ)మ}

൫௡௞൯
ଶ
≤ (ܩ)௞ܪܵ ∙ ൯ܩ௞൫ܪܵ ≤

ଵ
(௞ିଵ)మ

൫௡௞൯
ଶ

. 

Moreover, the lower bounds are sharp. 

Proof. Proof of part (1):  

For any ܵ ⊆ |ܵ| and  (ܩ)ܸ = ݇, from the definition of Steiner diameter, we have  ݀ீ(ܵ) +
݀ீ(ܵ) ≤ max{݊ + ݇ − 2,2݇ − 2} = ݊ + ݇ − 2. Then 
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(ܩ)௞ܪܵ + ൯ܩ௞൫ܪܵ = ෍
1

݀ீ(ܵ) + ෍
1

݀ீ(ܵ)
ௌ⊆௏൫ீ൯ௌ⊆௏(ீ)

= ෍
݀ீ(ܵ)+݀ீ(ܵ)
݀ீ(ܵ)݀ீ(ܵ)

ௌ⊆௏(ீ)

≤
(݊ + ݇ − 2)൫௡௞൯

(݇ − 1)ଶ . 

By the same reason, Lemma 1.4 implies 

(ܩ)௞ܪܵ + ൯ܩ௞൫ܪܵ = ∑ ௗಸ(ௌ)ାௗಸ(ௌ)

ௗಸ(ௌ)ௗಸ(ௌ)ௌ⊆௏(ீ) ≥ ൫௡௞൯
ଶ௞ିଶ

௠௔௫{௞(௡ିଵ),(ଶ௞ିଵ)మ}
. 

Proof of part (2): 

For any ܵᇱ ⊆ |ᇱܵ| ,(ܩ)ܸ = ݇ and any ܵᇱᇱ ⊆ |ᇱᇱܵ| ,(ܩ̅)ܸ = ݇, from the definition of Steiner 
diameter and Lemma 1.4, we have  ݀ீ(ܵᇱ) ∙ ݀ீ̅  (ܵᇱᇱ) ≤ max{݇(݊ − 1), (2݇ − 1)ଶ}. Then 

(ܩ)௞ܪܵ ⋅ ൯ܩ௞൫ܪܵ = ෍
1

݀ீ(ܵᇱ)
ௌᇲ⊆௏(ீ)

∙ ෍
1

݀ீ(ܵᇱᇱ)
ௌᇲᇲ⊆௏൫ீ൯

= ෍
1

݀ீ(ܵᇱ)
ௌᇲ⊆௏(ீ),ௌᇲᇲ⊆௏൫ீ൯

∙
1

݀ீ(ܵᇱᇱ)

≥
1

max{݇(݊ − 1), (2݇ − 1)ଶ} ቀ
݊
݇ቁ

ଶ
. 

For any ܵᇱ ⊆ |ᇱܵ| ,(ܩ)ܸ = ݇ and any ܵᇱᇱ ⊆ |ᇱᇱܵ| ,(ܩ)ܸ = ݇, from the definition of 
Steiner diameter and Lemma 1.4, we have  ݀ீ(ܵᇱ) ∙ ݀ீ(ܵᇱᇱ) ≥ (݇ − 1)ଶ. Then 

(ܩ)௞ܪܵ ⋅ ൯ܩ௞൫ܪܵ = ෍
1

݀ீ(ܵᇱ)
ௌᇲ⊆௏(ீ)

∙ ෍
1

݀ீ(ܵᇱᇱ)
ௌᇲᇲ⊆௏൫ீ൯

= ෍
1

݀ீ(ܵᇱ)
ௌᇲ⊆௏(ீ),ௌᇲᇲ⊆௏൫ீ൯

∙
1

݀ீ(ܵᇱᇱ)

≤
1

(݇ − 1)ଶ ቀ
݊
݇ቁ

ଶ
, 

as desired. 

3.  FOR SOME ܓ 

For ݇ =  ݊,݊ − 1, 3, we can improve the results in Theorem 2.1. 

3.1 THE CASE ܓ = –ܖ,ܖ ૚ 

For ݇ = ݊, the following result is immediate. 

Observation 3.1 Let ܩ ∈ ࣡(݊). Then 
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(ܩ)௡ܪܵ (1) + ൯ܩ௡൫ܪܵ = ଶ
௡ିଵ

; 

(ܩ)௡ܪܵ (2) ⋅ ൯ܩ௡൫ܪܵ = ଵ
(௡ିଵ)మ

. 

Akiyama and Harary [1] characterized the graphs for which both ܩ and ܩ are connected. 

Lemma 3.1 [1] Let ܩ be graph with ݊ vertices and maximal vertex degree  ∆(ܩ). Then 

(ܩ)ߢ = ൯ܩ൫ߢ = 1 if and only if ܩ satisfies the following conditions. 

i. (ܩ)ߢ = 1 and ∆(ܩ) = ݊ − 2; 

ii. (ܩ)ߢ = (ܩ)∆,1 ≤ ݊ − 3, and ܩ has a cut vertex ݒwith pendent edge ݒݑ, 
such that ܩ −  .contains a spanning complete bipartite subgraph  ݑ

For ݇ = ݊ − 1, we have the following result: 

Proposition 3.1 Let ܩ be a graph of order ݊  (݊ ≥ 5). 

1.  If ܩ and ܩ are both 2-connected, then ܵܪ௡ିଵ(ܩ) + ൯ܩ௡ିଵ൫ܪܵ = ଶ௡
௡ିଶ

 and 

(ܩ)௡ିଵܪܵ ⋅ ൯ܩ௡ିଵ൫ܪܵ = ௡మ

(௡ିଶ)మ
. 

2.  If (ܩ)ߢ = 1 and ܩ is 2-connected, then ܵܪ௡ିଵ(ܩ) + ൯ܩ௡ିଵ൫ܪܵ = ௣
௡ିଵ

+ ଶ௡ି௣
௡ିଶ

 

and ܵܪ௡ିଵ(ܩ) ⋅ ൯ܩ௡ିଵ൫ܪܵ = ௣௡
(௡ିଵ)(௡ିଶ)

+ ௡(௡ି௣)
(௡ିଶ)మ

 , where ݌ is the number of 

cut vertices in ܩ. 

3.  If (ܩ)ߢ = ൯ܩ൫ߢ = (ܩ)∆ ,1 ≤ ݊ − 3, and ܩ has a cut vertex ݒ  with pendent 
edge ݒݑ such that ܩ −  contains a spanning complete bipartite subgraph, and ݑ

∆൫ܩ൯ ≤ ݊ − 3 and ܩ has a cut vertex ݍ with pendent edge ݍ݌ such that ܩ −   ݌
contains a spanning complete bipartite subgraph, then ܵܪ௡ିଵ(ܩ) +

൯ܩ௡ିଵ൫ܪܵ = ଶ௡మିଶ௡ିଶ
(௡ିଵ)(௡ିଶ)

 and ܵܪ௡ିଵ(ܩ) ⋅ ൯ܩ௡ିଵ൫ܪܵ = (௡మି௡ିଵ)మ

(௡ିଵ)మ(௡ିଶ)మ
. 

4.  If  (ܩ)ߢ = ൯ܩ൫ߢ = 1, ∆൫ܩ൯ = ݊ − (ܩ)∆ ,2 ≤ ݊ − 3 and ܩ has a cut vertex ݒ 
with pendent edge ݒݑ such that ܩ −  contains a spanning complete bipartite ݑ

subgraph, then ܵܪ௡ିଵ(ܩ) + ൯ܩ௡ିଵ൫ܪܵ = ଶ௡మିଶ௡ିଶ
(௡ିଵ)(௡ିଶ)

  or  ܵܪ௡ିଵ(ܩ) +
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൯ܩ௡ିଵ൫ܪܵ = ଶ௡మିଶ௡ିଷ
(௡ିଵ)(௡ିଶ)

 and ܵܪ௡ିଵ(ܩ) ⋅ ൯ܩ௡ିଵ൫ܪܵ = (௡మି௡ିଵ)మ

(௡ିଵ)మ(௡ିଶ)మ 
  or 

(ܩ)௡ିଵܪܵ ⋅ ൯ܩ௡ିଵ൫ܪܵ = (௡మି௡ିଵ)(௡ାଵ)
(௡ିଵ)మ(௡ିଶ)

. 

5. If (ܩ)ߢ = ൯ܩ൫ߢ = (ܩ)∆ ,1 = ∆൫ܩ൯ = ݊ − 2, then ଶ(௡ାଵ)
௡ିଵ

≤ (ܩ)௡ିଵܪܵ +

൯ܩ௡ିଵ൫ܪܵ ≤
ଶ௡మିଶ௡ିଶ

(௡ିଵ)(௡ିଶ)
 and  (௡ାଵ)మ

(௡ିଵ)మ
≤ (ܩ)௡ିଵܪܵ ⋅ ൯ܩ௡ିଵ൫ܪܵ ≤

(௡మି௡ିଵ)మ

(௡ିଵ)మ(௡ିଶ)మ
. 

Proof. (1): From Lemma 1.5, if ܩ and ܩ  are both connected, then ݀ீ(ܵ) = ݊ − 2  and 

 ݀ீ(ܵ) = ݊ − 2  for any ܵ ⊆ |ܵ| and (ܩ)ܸ = ݊ − 1. Therefore,  ܵܪ௡ିଵ(ܩ) + ܩ௡ିଵܪܵ =
ଶ௡
௡ିଶ

  and ܵܪ௡ିଵ(ܩ) ⋅ ൯ܩ௡ିଵ൫ܪܵ = ௡మ

(௡ିଶ)మ
. 

(2): Since ܩ  is 2-connected, it follows that ݀ீ(ܵ) = ݊ − 2 for any ܵ ⊆ |ܵ|  and  (ܩ)ܸ =

݊ − 1, and hence  ܵܪ௡ିଵ൫ܩ൯ = ௡
௡ିଶ

. Note that  (ܩ)ߢ = 1 and there are exactly ݌  cut 

vertices in ܩ. For any ܵ ⊆ |ܵ| and (ܩ)ܸ = ݊ − 1, if the unique vertex in ܸ (ܩ) \ ܵ is a cut 
vertex, then  ݀ீ(ܵ) = ݊ − 1. If the unique vertex in ܸ (ܩ)\ ܵ is not a cut vertex, then 

݀ீ(ܵ) = ݊ − 2. Therefore, we have  ܵܪ௡ିଵ(ܩ) = ௣
௡ିଵ

+ ௡ି௣
௡ିଶ

, and hence ܵܪ௡ିଵ(ܩ) +

൯ܩ௡ିଵ൫ܪܵ = ௣
௡ିଵ

+ ଶ௡ି௣
௡ିଶ

  and ܵܪ௡ିଵ(ܩ) ⋅ ൯ܩ௡ିଵ൫ܪܵ = ௣௡
(௡ିଵ)(௡ିଶ)

+ ௡(௡ି௣)
(௡ିଶ)మ

, where ݌  is the 

number of cut vertices in ܩ. 

(3), (4), (5): We have  (ܩ)ߢ = κ൫ܩ൯ = 1. By condition (݅) of Lemma 3.1, since ∆(ܩ) =
݊ − 2, there is a vertex of degree ݊ − 2, say ݔ. Let the set of first neighbors of ݔ  be 
(ݔ)ܰீ  = ,ଵݕ} ⋯,ଶݕ {ݔ})\(ܩ)ܸ ௡ିଶ}. Letݕ, ∪ ((ݔ)ܰீ = ݔݖ Since .{ݖ} ∉  there must ,(ܩ)ܧ
exist a vertex in  ீܰ(ݔ), say ݕଵ, such that ݕݖଵ ∈ ,ݔ is connected. Since ܩ since ,(ܩ)ܧ  ଵݕ
may be the cut vertices in ܩ, it follows that there are one or two cut vertices in ܩ. So 

(ܩ)௡ିଵܪܵ = ଵ
௡ିଵ

+ ௡ିଵ
௡ିଶ

= ௡మି௡ିଵ
(௡ିଵ)(௡ିଶ)

  or ܵܪ௡ିଵ(ܩ) = ଶ
௡ିଵ

+ ௡ିଶ
௡ିଶ

= ௡ାଵ
௡ିଵ

. 

By condition (݅݅) of Lemma 3.1, since ∆(ܩ) ≤ ݊ − 3 and ܩ has a cut vertex ݒ with 
pendent edge ݒݑ such that ܩ −  contains a spanning complete bipartite subgraph, it ݑ

follows that ݒ is the unique cut vertex. So  ܵܪ௡ିଵ(ܩ) = ଵ
௡ିଵ

+ ௡ିଵ
௡ିଶ

= ௡మି௡ିଵ
(௡ିଵ)(௡ିଶ)

. From this 

argument, (3), (4), (5) are true. 

3.2 THE CASE ܓ = ૜ 

The following lemmas and corollaries will be used later. 
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Lemma 3.2 [28] Let ܶ be a tree of order ݊, and let ݇ be an integer such that 3 ≤  ݇ ≤ ݊. 
Then there exist at least (݊ − ݇ + 1) subsets of ܸ(ܶ) for which the Steiner k-distance is 
equal to ݇ − 1. 

Corollary 3.1 [28] Let ܩ be a connected graph of order ݊, and let ݇ be an integer such that 
3 ≤  ݇ ≤ ݊. Then there exist at least (݊ − ݇ + 1) subsets of ܸ(ܩ) whose Steiner k-distance 
is ݇ − 1. 

Lemma 3.3 [28] Let ܶ be a tree of order ݊, and let ݇ be an integer such that 3 ≤ ݇ ≤ ݊ −
1. Then there exist at least (݊ − ݇) subsets of ܸ(ܶ)  whose Steiner k-distance is ݇. 

In this section, we focus our attention on the case ݇ = 3. For ݇ = 3 and ݊ ≥ 10, from 

Theorem 2.1, we have ൫௡ଷ൯
ସ

ଷ(௡ିଵ)
≤ (ܩ)ଷܪܵ + ൯ܩଷ൫ܪܵ ≤

(௡ାଵ)൫೙య൯
ସ

 and ଵ
ଷ(௡ିଵ)

൫௡ଷ൯
ଶ
≤

(ܩ)ଷܪܵ ⋅ ൯ܩଷ൫ܪܵ ≤
ଵ
ସ
൫௡ଷ൯

ଶ
. 

We improve these bounds and prove the following result. 

Theorem 3.1 Let ܩ ∈ ࣡(݊) with ݊ ≥ 4. Then 

1. ହ
଺
൫௡ଷ൯ ≥ (ܩ)ଷܪܵ + ൯ܩଷ൫ܪܵ ≥

⎩
⎨

⎧
଻
ଵ଴
൫௡ଷ൯ + ଵଵ

଺଴
݊ − ଵ

ଶ
              ݂݅ ݊ = (ܩ)ଷ݉ܽ݅݀ݏ ݀݊ܽ 6,7 = 5

݊ ݎ݋                                                  = (ܩ̅)ଷ݉ܽ݅݀ݏ ݀݊ܽ 6,7 = 5
ଵ
ଶ
൫௡ିଷଷ ൯ − ∑ ௡

௜
+ ଻௡మିଶଷ௡ାଶ଴

଺
௡ିଵ
௜ୀଶ .݁ݏ݅ݓݎℎ݁ݐ݋             

 

2.   ଶହ
ଵସସ

ቂ൫௡ଷ൯
ଶቃ ≥ (ܩ)ଷܪܵ ⋅ ≤ ൯ܩଷ൫ܪܵ ቂ ଵ

௡ିଵ
൫௡ଷ൯ + (௡ିଷ)(௡ିଶ)

ଶ(௡ିଵ)
ቃ ቂଵ

ଶ
൫௡ଷ൯ −

(௡ିଷ)(௡ିଶ)
ଶ(௡ିଵ)

ቃ.  

Moreover, the bounds are sharp. 

 

We first need the following lemma. 

Lemma 3.4 [28] Let ܩ be a connected graph. If ݉ܽ݅݀ݏଷ(ܩ) = 5, then ݉ܽ݅݀ݏଷ൫ܩ൯ ≤ 4. 

Lemma 3.5 Let ܩ ∈ ࣡(݊). Then 

(ܩ)ଷܪܵ + ൯ܩଷ൫ܪܵ ≤
ହ
଺
൫௡ଷ൯                                                                                        (3.1) 

(ܩ)ଷܪܵ  ⋅ ൯ܩଷ൫ܪܵ ≤
ଶହ
ଵସସ

൫௡ଷ൯
ଶ

                                                                                    (3.2) 
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and 

(ܩ)ଷܪܵ  ⋅ ൯ܩଷ൫ܪܵ ≥ ቂ ଵ
௡ିଵ

൫௡ଷ൯ + (௡ିଷ)(௡ିଶ)
ଶ(௡ିଵ)

ቃ ቂଵ
ଶ
൫௡ଷ൯ −

(௡ିଷ)(௡ିଶ)
ଶ(௡ିଵ)

ቃ .             (3.3) 

Moreover, the bounds are sharp. 

Proof. (1) For any ܵ ⊆ |ܵ| and  (ܩ)ܸ = [ܵ]ܩ ,3 ≅ [ܵ]ܩ ଷ orܭ ≅ ଷܲ or ܩ[ܵ] ≅ ଶܭ ∪  ଵ orܭ
[ܵ]ܩ ≅ [ܵ]ܩ ଵ. Ifܭ3 ≅ [ܵ]ܩ ଷ orܭ ≅ ଷܲ, then ݀ீ(ܵ) = 2. If ܩ[ܵ] ≅ ଶܭ ∪ [ܵ]ܩ ଵ orܭ ≅
(ܵ)ீ݀ ଵ, thenܭ3 ≥ 3. Let ଵܵ, ܵଶ,⋯ , ܵ൫೙య൯  be all the 3-subsets of ܸ(ܩ). Without loss of 

generality, let ଵܵ, ܵଶ,⋯ , ܵ௫ be all the 3-subsets of ܸ(ܩ) such that ܩ[ ௜ܵ] ≅ ]ܩ ଷ orܭ ௜ܵ] ≅ ଷܲ, 
where 1 ≤ ݅ ≤ )ீ݀ ,Therefore .ݔ ௜ܵ) = 2 and ݀ீ( ௜ܵ) ≥ 3 for each ݅ (1 ≤ ݅ ≤  .(ݔ

Furthermore, for any ௝ܵ ݔ)  + 1 ≤ ݆ ≤ ൫௡ଷ൯), we have 

(ܩ)ଷܪܵ                                            ≤ ௫
ଶ

+ ൣ൫೙య൯ି௫൧
ଷ

= ଵ
ଷ
൫௡ଷ൯ + ௫

଺
 

൯ܩଷ൫ܪܵ                                            ≤
௫
ଷ

+ ൣ൫೙య൯ି௫൧
ଶ

= ଵ
ଶ
൫௡ଷ൯ −

௫
଺
 

                                           Sܪଷ(ܩ) ≥ ௫
ଶ

+ ൣ൫೙య൯ି௫൧
௡ିଵ

= ଵ
௡ିଵ

൫௡ଷ൯ + (௡ିଷ)௫
ଶ(௡ିଵ)

. 

and 

                                            Sܪଷ൫ܩ൯ ≥
௫

௡ିଵ
+ ൣ൫೙య൯ି௫൧

ଶ
= ଵ

ଶ
൫௡ଷ൯ −

(௡ିଷ)௫
ଶ(௡ିଵ)

. 

implying inequality (3.1). 

By Corollary 3.1, there exist at least ݊ − 2 subsets of ܸ(ܩ) whose Steiner 3-distances 

are equal to 2. The same is true for ܩ. Therefore, ݊ − 2 ≤ ݔ ≤ ൫௡ଷ൯ − ݊ + 2, and hence 

Sܪଷ(ܩ) ∙ Sܪଷ൫ܩ൯ ≤ ൤
1
3 ቀ
݊
3ቁ +

ݔ
6൨ ൤

1
2 ቀ
݊
3ቁ −

ݔ
6൨ 

                             =
1
6 ቀ
݊
3ቁ

ଶ
+
ݔ

36 ቀ
݊
3ቁ −

ଶݔ

36 

                             ≤
1

36 ൤6 ቀ
݊
3ቁ

ଶ
+

1
4 ቀ
݊
3ቁ

ଶ
൨ 

            =
25

144 ൤ቀ
݊
3ቁ

ଶ
൨ 

i.e., inequality (3.2) holds. 
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Sܪଷ(ܩ) ∙ Sܪଷ൫ܩ൯ ≥ ൤
1

݊ − 1 ቀ
݊
3ቁ +

(݊ − ݔ(3
2(݊ − 1)൨ ൤

1
2 ቀ
݊
3ቁ −

(݊ − ݔ(3
2(݊ − 1)൨    

=
1

2(݊ − 1) ቀ
݊
3ቁ

ଶ
+

(݊ − 3)ଶݔ
4(݊ − 1)ଶ ቀ

݊
3ቁ −

(݊ − 3)ଶݔଶ

4(݊ − 1)ଶ

≥ ൤
1

݊ − 1 ቀ
݊
3ቁ +

(݊ − 3)(݊ − 2)
2(݊ − 1) ൨ ൤

1
2 ቀ
݊
3ቁ −

(݊ − 3)(݊ − 2)
2(݊ − 1) ൨ 

i.e., inequality (3.3) holds. 

The sharpness of the above bounds is illustrated by the following example. 

Example 3.2 Let ܩ ≅ ସܲ. Then  ܩ ≅ ସܲ. By Lemma 1.7, ܵܪଷ(ܩ) = ൯ܩଷ൫ܪܵ = ହ
ଷ
, and 

hence Sܪଷ(ܩ) + Sܪଷ൫ܩ൯ = ଵ଴
ଷ

= ହ
଺
൫௡ଷ൯ and Sܪଷ(ܩ) ∙ Sܪଷ൫ܩ൯ = ଶହ

ଽ
= ଶହ

ଵସସ
ቂ൫௡ଷ൯

ଶቃ =

ቂ ଵ
௡ିଵ

൫௡ଷ൯ + (௡ିଷ)(௡ିଶ)
ଶ(௡ିଵ)

ቃ ቂଵ
ଶ
൫௡ଷ൯ −

(௡ିଷ)(௡ିଶ)
ଶ(௡ିଵ)

ቃ, which confirms that the lower and upper bounds 

are sharp. 

Let ܵ∗ be a tree obtained from a star of order ݊ − 2 and a path of length 2 by 

identifying the center of the star and a vertex of degree one in the path. Then ܵ∗ is a graph 
obtained from a clique of order ݊ − 1 by deleting an edge ݒݑ and then adding an pendent 
edge at ݒ. 

Observation 3.2 

(∗ܵ)ଷܪܵ  (1) = ଵଷ
ଵଶ
൫௡ିଷଶ ൯ + ଵ

ଷ
൫௡ିଷଷ ൯ + ଻

଺
݊ − 3; 

ଷ൫ܵ∗൯ܪܵ (2) = ସ
ଷ
൫௡ିଷଶ ൯ + ଵ

ଶ
൫௡ିଷଷ ൯ + ସ

ଷ
݊ − ଵଵ

ଷ
. 

Proof. From the structure of ܵ∗and ܵ∗, we conclude 

           Sܪଷ(ܵ∗) =  
1
4 ൬
݊ − 3

2 ൰+
1
2 ൤൬

݊ − 3
2 ൰ + (݊ − 3) + 1൨  

+
1
3 ൤൬

݊ − 3
2 ൰ + ൬

݊ − 3
3 ൰ + 2(݊ − 3)൨      

=
13
12 ൬

݊ − 3
2 ൰+

1
3 ൬
݊ − 3

3 ൰+
7
6݊ − 3 

and 
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            Sܪଷ൫ܵ∗൯ =
1
2 ൤2 ൬

݊ − 3
2 ൰+ 2(݊ − 3) + ൬

݊ − 3
3 ൰൨+

1
3 ൤൬

݊ − 3
2 ൰+ (݊ − 2)൨

=
4
3 ൬
݊ − 3

2 ൰+
1
2 ൬
݊ − 3

3 ൰ +
4
3݊ −

11
3 . 

In order to show the sharpness of the above bounds, we consider the following 
example. 

Example 3.3 Let ܵ∗ be the same tree as before. From Observation 3.2, we have 

Sܪଷ(ܵ∗) + Sܪଷ൫ܵ∗൯ =
29
12൬

݊ − 3
2 ൰ +

5
6 ൬
݊ − 3

3 ൰+
15
6 ݊ −

20
3  

and 

Sܪଷ(ܵ∗) ∙ Sܪଷ൫ܵ∗൯ =
52
36 ൬

݊ − 3
2 ൰

ଶ

+
1
6 ൬
݊ − 3

3 ൰
ଶ

+
71
72൬

݊ − 3
2 ൰ ൬

݊ − 3
3 ൰ 

                                   + ൬
27
9 ݊ −

287
36 ൰൬

݊ − 3
2 ൰+ ൬

37
36݊ −

49
18൰ ൬

݊ − 3
3 ൰ 

                                                         + ൬
4
3݊ −

11
3 ൰ ൬

7
6݊ − 3൰. 

The following lemmas are preparations for deducing an upper bound on ܵܪଷ(ܩ) +

 .൯ܩଷ൫ܪܵ

Lemma 3.6 Let ܩ be a connected graph of order ݊, and let ܶ be a spanning tree of ܩ. If 

൯ܩଷ൫݉ܽ݅݀ݏ = 3, then 

Sܪଷ(ܶ) + ଷ൫ܶ൯ܪܵ ≤ Sܪଷ(ܩ) +  .൯ܩଷ൫ܪܵ

Proof. Note that ܩ is a spanning subgraph of ܶ. It suffices to prove that 

Sܪଷ൫ܶ൯ − ൯ܩଷ൫ܪܵ ≤ Sܪଷ(ܩ) −  .(ܶ)ଷܪܵ

Since sdia݉ଷ൫ܩ൯ = 3, it follows that ݀ீ(ܵ) = 2 or ݀ீ(ܵ) = 3 for any ܵ ⊆  and  (ܩ)ܸ

|ܵ| = 3. Since ܩ is a spanning subgraph of ܶ and ݉ܽ݅݀ݏଷ൫ܩ൯ = 3, it follows that 

ଷ൫ܶ൯݉ܽ݅݀ݏ ≤ 3, and hence ்݀(ܵ) = 2  or  ்݀(ܵ) = 3  for any ܵ ⊆ ܸ(ܶ) and |ܵ| = 3. 

Then 0 ≤ ଵ
ௗ೅(ௌ)

− ଵ
ௗಸ(ௌ)

≤ ଵ
଺
. We claim that ଵ

ௗ೅(ௌ)
− ଵ

ௗಸ(ௌ)
≤ ଵ

ௗಸ(ௌ)
− ଵ

ௗ೅(ௌ)
 for ܵ ⊆ ܸ(ܶ)  and 
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 |ܵ| = 3. Because ܩ is a spanning subgraph of ܶ, ଵ
ௗಸ(ௌ)

≤ ଵ
ௗ೅(ௌ)

 for any ܵ ⊆ ܸ(ܶ) and 

|ܵ| = 3. Similarly, since ܶ is a spanning subgraph of ܩ, ଵ
ௗ೅(ௌ)

≤ ଵ
ௗಸ(ௌ)

 for any ܵ ⊆ ܸ(ܶ) and 

|ܵ| = 3. If ଵ
ௗ೅(ௌ)

− ଵ
ௗಸ(ௌ)

= 0, then ଵ
ௗ೅(ௌ)

− ଵ
ௗಸ(ௌ)

= 0 ≤ ଵ
ௗಸ(ௌ)

− ଵ
ௗ೅(ௌ)

, as desired. If  ଵ
ௗ೅(ௌ)

−

ଵ
ௗಸ(ௌ)

= ଵ
଺
, then ݀ீ(ܵ) = 3 and ்݀(ܵ) = 2, and hence  ݀ீ(ܵ) = 2 and ்݀(ܵ) ≥ 3. 

Therefore, ଵ
ௗಸ(ௌ)

− ଵ
ௗ೅(ௌ)

≥ ଵ
଺

= ଵ
ௗ೅(ௌ)

− ଵ
ௗಸ(ௌ)

, as desired. The result follows from the 

arbitrariness of ܵ and the definition of Steiner Wiener index. 

Lemma 3.7 Let ܶ be a tree of order ݊, different from the star ܵ௡. Let ܵ∗ be the tree same as 

in Observation 3.2. If ݉ܽ݅݀ݏଷ൫ܩ൯ = 3, then 

Sܪଷ( ௡ܲ) + ଷ൫ܵ∗൯ܪܵ ≤ Sܪଷ(ܶ) +  .ଷ൫ܶ൯ܪܵ

Proof. Note first that the complements of all trees, except of the star, are connected. 

Therefore, ܵܪଷ൫ܶ൯ in Lemma 3.7 is always well defined. 

By Lemma 1.6 and 1.7, Sܪଷ( ௡ܲ) ≤ ଷ൫ܵ∗൯ܪܵ ଷ(ܶ). It suffices to proveܪܵ ≤  .ଷ൫ܶ൯ܪܵ

Since ݉ܽ݅݀ݏଷ൫ܩ൯ ≤ 3, it follows that ݉ܽ݅݀ݏଷ൫ܶ൯ ≤ 3. For any ܵ ⊆ ܸ(ܶ) and |ܵ| = 3, if 
ܶ[ܵ] is not connected, then  ்݀(ܵ) = 2. If ܶ[ܵ] is connected, then ்݀(ܵ) ≥ 3. So if we 

want to obtain the minimum value of ܵܪଷ൫ܶ൯  for a tree ܶ, then we need to find as less as 

possible 3-subsets of ܸ(ܶ) whose induced subgraphs in ܶ are disconnected. Since the 

complement of  ܵ௡   is not connected, it follows that ܵ∗ is our desired. So ܵܪଷ൫ܵ∗൯ ≤

)ଷܪܵ  ଷ൫ܶ൯, and henceܪܵ ௡ܲ) + ଷ൫ܵ∗൯ܪܵ ≤ (ܶ)ଷܪܵ +  .ଷ൫ܶ൯ܪܵ

We are now in the position to complete the proof of Theorem 3.1. This will be 
achieved by combining Lemmas 3.5 and 3.8. 

Let ܩ ∈ ࣡(݊). If ݊ = 6, 7  and ݉ܽ݅݀ݏଷ(ܩ) = 5, then the validity of Theorem 3.1 can 
be verified by direct checking. 

Lemma 3.8 Let ܩ ∈ ࣡(݊). Let ݊ ≥ 8, or  ݊ ≤ 5, or ݊ = 6, 7 and ݉ܽ݅݀ݏଷ(ܩ) ≠ 5, or 

݊ = 6, 7 and ݉ܽ݅݀ݏଷ൫ܩ൯ ≠ 5. Then the lower bounds in parts (1) and (2) of Theorem 3.1 
are obeyed. Moreover, these bounds are sharp. 

Proof. We need to separately examine three cases. 
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Case 1. ݉ܽ݅݀ݏଷ(ܩ) ≥ 6 or ݉ܽ݅݀ݏଷ൫ܩ൯ ≥ 6. Without loss of generality, let ݉ܽ݅݀ݏଷ(ܩ) ≥

6. From Corollary 1.1 it is known that ݉ܽ݅݀ݏଷ൫ܩ൯ = 3, and hence ܵܪଷ(ܩ) + ൯ܩଷ൫ܪܵ ≥

)ଷܪܵ ௡ܲ) + )ଷܪܵ  ,ଷ(ܵ∗). By Lemma 1.7ܪܵ ௡ܲ) = (௡ାଵ)(௡ିଶ)
ଶ

−∑ ௡
௜

௡ିଵ
௜ୀଶ . Note that ܵ∗ is a 

graph obtained from a clique of order  ݊ − 1  by deleting an edge ݒݑ and then adding a 

pendent edge at ݒ. Then ܵܪଷ൫ܵ∗൯ = ସ
ଷ
൫௡ିଷଶ ൯ + ଵ

ଶ
൫௡ିଷଷ ൯ + ସ

ଷ
݊ − ଵଵ

ଷ
, and hence Sܪଷ(ܩ) +

൯ܩଷ൫ܪܵ ≥
(௡ାଵ)(௡ିଶ)

ଶ
−∑ ௡

௜
௡ିଵ
௜ୀଶ + ସ

ଷ
൫௡ିଷଶ ൯ + ଵ

ଶ
൫௡ିଷଷ ൯ + ସ

ଷ
݊ − ଵଵ

ଷ
 = ଵ

ଶ
൫௡ିଷଷ ൯ − ∑ ௡

௜
௡ିଵ
௜ୀଶ +

଻௡మିଶଷ௡ାଶ଴
଺

. 

Case 2. ݉ܽ݅݀ݏଷ(ܩ) = 5or݉ܽ݅݀ݏଷ൫ܩ൯ = 5. In view of Lemma 3.4, we can assume that 

(ܩ)ଷ݉ܽ݅݀ݏ = 5  and ݉ܽ݅݀ݏଷ൫ܩ൯ ≤ 4. Let  ଵܵ,ܵଶ,⋯,ܵ൫೙య൯  be all the 3-subsets of ܸ(ܩ). 

Without loss of generality, assume that ଵܵ,ܵଶ,⋯,ܵ௫   are the 3-subsets of ܸ(ܩ) for which 
]ܩ ௜ܵ] ≅ ]ܩ ଷ orܭ ௜ܵ] ≅ ଷܲ, where 1 ≤ ݅ ≤  .ݔ

For each ݅ (1 ≤ ݅ ≤ )ீ݀ ,(ݔ ௜ܵ) = 2. For any ௝ܵ (ݔ + 1 ≤ ݆ ≤ ൫௡ଷ൯), ൣܩ ௝ܵ൧ ≅ ଶܭ ∪  ଵܭ

or ൣܩ ௝ܵ൧ ≅  is connected, it follows that there exists a spanning tree, say ܶ. By ܩ ଵ. Sinceܭ3
Lemmas 3.2 and 3.3, there exist at least (݊ − 3) subsets of ܸ(ܶ) whose Steiner 3-distance 
is 3, and there exist at least (݊ − 2) subsets of ܸ(ܶ) whose Steiner 3-distance is 2. 
Therefore, there exist at least (2݊ − 5) subsets of ܸ(ܩ) whose Steiner 3-distance is at most 
3. Without loss of generality, let ݀ீ  ൫ ௝ܵ൯ = 3for ௝ܵ (ݔ + 1 ≤ ݆ ≤ 2݊ − 5). Then ݀ீ  ൫ ௝ܵ൯ ≤

5 and ݀ீ൫ ௝ܵ൯ = 2 for each j  (2n− 4 ≤ ݆ ≤ (݊3)). For each ݅ (1 ≤ ݅ ≤ )  ீ݀ ,(ݔ ௜ܵ) = 2. By 

Lemma 3.3, there exist at least (݊ − 3) subsets of V(Gഥ) whose Steiner 3-distance is 3. Then 
there exist at most ݔ − (݊ − 3) subsets of V(Gഥ) whose Steiner 3-distance is 4. If ݔ ≤ 2݊ −

5, then ܵܪଷ(ܩ) ≥ ଵ
ଶ
ݔ + ଵ

ଷ
(2݊ − 5 − (ݔ + ଵ

ହ
ቂቀ݊3ቁ − 2݊ + 5ቃ and ܵ ଷܹ൫ܩ൯ ≥

ଵ
ଷ

(݊ − 3) +
ଵ
ସ

ݔ) − ݊ + 3) + ଵ
ଶ
ቂቀ݊3ቁ − (ܩ)ଷܪቃ, and hence Sݔ + ൯ܩଷ൫ܪܵ ≥

଻
ଵ଴
ቀ݊3ቁ −

ଵ
ଵଶ
ݔ + ଻

ଶ଴
݊ − ଵଵ

ଵଶ
≥

଻
ଵ଴
ቀ݊3ቁ + ଵଵ

଺଴
݊ − ଵ

ଶ
. If ݔ ≥ 2݊ − 5, then Sܪଷ(ܩ) ≥ ଵ

ଶ
ݔ + ଵ

ହ
ቂቀ݊3ቁ − ൯ܩଷ൫ܪܵ ቃ andݔ ≥

ଵ
ଷ

(݊ − 3) + ଵ
ସ

ݔ) − ݊ + 3) + ଵ
ଶ
ቂቀ݊3ቁ − (ܩ)ଷܪቃ, and hence Sݔ + ൯ܩଷ൫ܪܵ ≥

଻
ଵ଴
ቀ݊3ቁ + ଵ

ଶ଴
ݔ +

ଵ
ଵଶ
݊ − ଵ

ସ
≥ ଻

ଵ଴
ቀ݊3ቁ + ଵଵ

଺଴
݊ − ଵ

ଶ
. 

Case 3. sdia݉ଷ(ܩ) ≤ 4  and  ݉ܽ݅݀ݏଷ(ܩ) ≤4. Let ଵܵ, ܵଶ,⋯,ܵቀ௡ଷቁ  be the 3-subsets of ܸ(ܩ). 

Without loss of generality, let ଵܵ, ܵଶ,⋯,ܵ௫  be the 3-subsets of ܸ(ܩ) for which ܩ[ ௜ܵ] ≅  ଷ orܭ
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]ܩ ௜ܵ] ≅ ଷܲ, where 1 ≤ ݅ ≤ For each ݅ (1 .ݔ ≤ ݅ ≤ )ீ݀ ,(ݔ ௜ܵ) = 2. For any ௝ܵ ݔ)  + 1 ≤ ݆ ≤

൫௡ଷ൯), ൣܩ ௝ܵ൧ ≅ ଶܭ ∪ ൣܩ ଵ orܭ ௝ܵ൧ ≅  ,is connected, there exists a spanning tree ܩ ଵ.Sinceܭ3

say ܶ. By Lemmas 3.2 and 3.3, there exist at least (݊ −  3) subsets of ܸ(ܶ) whose Steiner 
3-distance is equal to 3, and there exist at least (݊ − 2) subsets of ܸ(ܶ) whose Steiner 3-
distance is 2. Therefore, there exist at least (2݊ − 5) subsets of ܸ(ܩ) whose Steiner 3-
distance is at most 3. Without loss of generality, let ݀ீ  ൫ ௝ܵ൯ = 3 for ௝ܵ (ݔ + 1 ≤ ݆ ≤ 2݊ −

5). Then ݀ீ  ൫ ௝ܵ൯ ≤ 4 and ݀ீ൫ ௝ܵ൯ = 2 for each  ݆ ൬2݊ − 4 ≤ ݆ ≤ ቀ݊3ቁ൰.  For each ݅ (1 ≤

݅ ≤ )  ீ݀ ,(ݔ ௜ܵ) = 2. By Lemma 3.3, there exist at least (݊ − 3) subsets of ܸ(ܩ) whose 

Steiner 3-distance in ܩ is 3. Then there exist at most ݔ − (݊ − 3) subsets of ܸ൫ܩ൯ whose 

Steiner 3-distance in ܩ is 4. If ݔ ≤ 2݊ − 5, then ܵܪଷ(ܩ) ≥ ଵ
ଶ
ݔ + ଵ

ଷ
(2݊ − 5− (ݔ +

ଵ
ସ
ቂቀ݊3ቁ − 2݊ + 5ቃ and ܵܪଷ൫ܩ൯ ≥

ଵ
ଷ

(݊ − 3) + ଵ
ସ

ݔ) − ݊ + 3) + ଵ
ଶ
ቂቀ݊3ቁ −  ቃ. Thusݔ

Sܪଷ(ܩ) + ൯ܩଷ൫ܪܵ ≥
3
4 ቀ
݊
3ቁ −

1
ݔ12 +

1
4݊ −

2
3 ≥

3
4 ቀ
݊
3ቁ +

1
12݊ −

3
12 . 

If ݔ ≥ 2݊ − 5, then ܵܪଷ(ܩ) ≥ ଵ
ଶ
ݔ + ଵ

ସ
ቂቀ݊3ቁ − ൯ܩଷ൫ܪܵ ቃ andݔ ≥

ଵ
ଷ

(݊ − 3) + ଵ
ସ

ݔ) − ݊ +

3) + ଵ
ଶ
ቂቀ݊3ቁ − (ܩ)ଷܪቃ. Thus Sݔ + ൯ܩଷ൫ܪܵ ≥

ଷ
ସ
ቀ݊3ቁ + ଵ

ଵଶ
݊ − ଷ

ଵଶ
. 

For ݊ ≥ 6, one can check that ଵ
ଶ
൫௡ିଷଷ ൯ − ∑ ௡

௜
+ ଻௡మିଶଷ௡ାଶ଴

଺
௡ିଵ
௜ୀଶ ≤ ଷ

ସ
൫௡ଷ൯ + ଵ

ଵଶ
݊ − ଷ

ଵଶ
 and 

 ଻
ଵ଴
൫௡ଷ൯ + ଵଵ

଺଴
݊ − ଵ

ଶ
≤ ଷ

ସ
൫௡ଷ൯ + ଵ

ଵଶ
݊ − ଷ

ଵଶ
. So we only need to consider the lower bounds in 

Cases 1 and 2. 

From the above argument, we conclude the following: 

1. For ݊ ≥ 8, ଵ
ଶ
൫௡ିଷଷ ൯ − ∑ ௡

௜
+ ଻௡మିଶଷ௡ାଶ଴

଺
௡ିଵ
௜ୀଶ ≤ ଻

ଵ଴
൫௡ଷ൯ + ଵଵ

଺଴
݊ − ଵ

ଶ
 and ܵܪଷ(ܩ) +

൯ܩଷ൫ܪܵ ≥
ଵ
ଶ
ቀ݊ − 3

3 ቁ − ∑ ௡
௜

+ ଻௡మିଶଷ௡ାଶ଴
଺

௡ିଵ
௜ୀଶ . 

2.  For ݊ ≤ 5, the lower bound in Case 2 does not exist. Then Sܪଷ(ܩ) +

൯ܩଷ൫ܪܵ ≥
ଵ
ଶ
ቀ݊ − 3

3 ቁ − ∑ ௡
௜

+ ଻௡మିଶଷ௡ାଶ଴
଺

௡ିଵ
௜ୀଶ . 

3.  If ݊ = 6, 7, sdia݉ଷ(ܩ) ≠ 5, and sdia݉ଷ൫ܩ൯ ≠ 5, then Sܪଷ(ܩ) + ൯ܩଷ൫ܪܵ ≥
ଵ
ଶ
ቀ݊ − 3

3 ቁ − ∑ ௡
௜

+ ଻௡మିଶଷ௡ାଶ଴
଺

௡ିଵ
௜ୀଶ . 
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4.  If ݊ = 6, 7 and sdia݉ଷ(ܩ) = 5, or ݊ = 6, 7 and sdiamଷ൫ܩ൯ = 5, then 

Sܪଷ(ܩ) + ൯ܩଷ൫ܪܵ ≥
7

10 ቀ
݊
3ቁ +

11
60݊ −

1
2 . 

This completes the proof. 

In order to demonstrate the sharpness of the above bounds, we point out the following 
example. 

Example 3.4 Let ܩ ≅ ସܲ. Then ܩ ≅ ସܲ. By Lemma 1.1, Sܪଷ(ܩ) = ൯ܩଷ൫ܪܵ = ହ
ଷ
 , and 

hence Sܪଷ(ܩ) + ൯ܩଷ൫ܪܵ = ଵ଴
ଷ

= ଵ
ଶ
൫௡ିଷଷ ൯ − ∑ ௡

௜
+ ଻௡మିଶଷ௡ାଶ଴

଺
௡ିଵ
௜ୀଶ  and Sܪଷ(ܩ) ∙ ൯ܩଷ൫ܪܵ =

ଶହ
ଽ

= ቂ ଵ
௡ିଵ

൫௡ଷ൯ + (௡ିଷ)(௡ିଶ)
ଶ(௡ିଵ)

ቃ ቂଵ
ଶ
൫௡ଷ൯ −

(௡ିଷ)(௡ିଶ)
ଶ(௡ିଵ)

ቃ, which implies that the upper and lower 

bounds are sharp. 
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This study presents some mathematical methods for estimating the 
critical properties of 40 different types of alkanes and their 
derivatives including critical temperature, critical pressure and 
critical volume. This algorithm used QSPR modeling based on 
graph theory, several structural indices, and geometric descriptors 
of chemical compounds. Multiple linear regression was used to 
estimate the correlation between these critical properties and 
molecular descriptors using proper coefficients. To achieve this 
aim, the most appropriate molecular descriptors were chosen from 
among 11 structural and geometric descriptors in order to 
determine the critical properties of the intended molecules. The 
results showed that among all the proposed models to predict 
critical temperature, pressure and volume, a model including the 
combination of such descriptors as hyper-Wiener, Platt, MinZL is 
the most appropriate one. 
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1. INTRODUCTION  

Alkanes are considered as one of the most significant aliphatic hydrocarbons used in such 
various industries as food, pharmaceutical, petrochemical and oil [1]. Since these chemicals 
are present in many refining processes (crude oil), it is quite essential to take their various 
physical and chemical properties– especially critical properties– into consideration. Critical 
point is a state in which there is no boundary between the two phases of a matter. This state 
occurs for every matter at the presence of a certain amount of temperature, pressure and 
combination. Theoretically, it is possible to estimate most of the thermodynamic properties 
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of chemicals using their critical properties. Practically, a large amount of theoretical 
correlations are based on these properties [2–4].  

The initial methods for estimating critical properties were experimental and were 
used for hydrocarbon systems. Due to the fact that experimental values of critical properties 
are not available for heavy alkanes, it is important to take advantage of appropriate 
methods for estimating these properties. In this study, the model of multiple linear 
regression was applied for the first time to find out the most appropriate molecular 
descriptors in order to estimate critical temperature, critical pressure and critical volume of 
alkanes and their derivatives [5]. The independent variables in multiple regression model 
can be obtained through the use of various methods [6–7]. In addition, the graph theory 
provides us with a suitable means for calculating topological descriptors which function as 
independent variables [8–9]. 

The graph theory has a long history in mathematics and its application dates back to 
about 200 years ago. In 1730, Euler was recognized as the father of graph theory after 
publishing the “Seven Bridges of Königsberg”. This theory is one the most practical 
branches of mathematics in other disciplines. It has a wide range of applications in such 
disciplines as biology, chemistry, nanotechnology, operational research and engineering 
[10]. 

Chemical Graph Theory is one of the branches of mathematical chemistry which is 
typically related to theoretical chemistry [11]. According to this theory, a graph indicates a 
set of elements of a group and their interrelationships. In chemical graphs, the hydrogen 
atoms are ignored since these atoms do not usually play a significant role in determining 
the molecular structure. After drawing the chemical graph for a molecule, it would not be 
difficult to extract topological indices–which are some constant numbers–for that graph. 
Mathematicians call such constant numbers topological indices. These indices include the 
structure, size, molecular polymerization, number of atoms and types of freaking molecular 
atoms. The concept topological indices were initially expressed in 1947. Wiener and Platt 
were the first to develop graph theory–based quantitative topological variables in 1947 
known as Wiener index and Platt index, respectively, and reported Quantitative Structure 
Property Relationship (QSPR) models on boiling points of hydrocarbones. At that time, this 
concept was most often used for physical properties such as alkanes and paraffin’s boiling 
points. QSPRs have provided a valuable approach in research into physico–chemical 
properties of organic compounds [12–13]. In 1994, Ivan Gutman paid much more attention 
to these issues, specifically the distances and weighted functions, in his paper entitled “on 
the sum of all distances in composite graphs”. In theoretical chemistry, these indices help to 
predict the chemical and pharmaceutical properties of materials. QSPR is a model that 
relates the predictor variables of a molecule to its physico–chemical properties. The 
essential problem in the development of a suitable correlation between chemical structures 
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and properties can be imputed to the quantitative nature of chemical structures. Graph 
theory was successfully applied through the translation of chemical structures into 
characteristic numerical descriptors by resorting to graph invariants.  

Hosseini and Shafiei proposed QSPR model for the prediction of gas heat capacity 
of benzene derivatives through the use of topological indices. The best model was obtained 
as follows: Cv = −84.569 + 43.9701χ − 2.298W + 1.463Sz. This means that 1χ, W, Sz 
descriptors play an important role in affecting heat capacity (Cv) of benzene derivatives 
[14]. 

QSPR modeling produces predictive model derived from application of statistical 
tools correlating physico–chemical properties in QSPR models of chemicals with 
descriptors representative of molecular structure [15–17]. 

In a nutshell, the aim of present research is to investigate the relationship between 
all critical properties (as dependent variables) and 2–dimentional and 3–dimentional 
descriptors (as independent variables) using QSPR and multiple linear regression (MLR) 
methods for estimating the critical properties of 40 different types of alkanes and their 
derivatives including critical temperature (Tc), critical pressure (Pc) and critical volume 
(Vc). 

 

2. TOPOLOGICAL INDICES 

Considering the research studies in which several two–dimensional indices (topological) 
were used, the current paper makes an attempt to investigate several three–dimensional 
(geometrical) indices as molecular descriptors and their application for prediction of critical 
properties of alkanes [16–17]. As a matter of fact, critical properties are sensitive to 
molecular geometry; hence, some of the geometric descriptors were employed as 
independent variables in this research. The statistical formulas used in this regard are 
presented below. 

2.1  WIENER INDEX 

In 1947, Harold Wiener [18] introduced one of the first molecular descriptors of 
topological nature for acyclic saturated hydrocarbons. The Wiener index W(G) of a graph 
G is defined as the half of the sum of the distances between every pair of vertices of G, Dij, 
is the distance of two vertices i and j in the graph G). 


 


n

i

n

j
ijDW

12
1

                                                          
(1) 

2.2  HYPER WIENER INDEX 

Another related distance–based structural descriptor of the graph G is the hyper–Wiener 
index [19], WW(G) [5]. WW(G) index is introduced as: 
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  2/),(),()( 2 VUdVUdGWW
                                           

(2) 

where d(U, V) denotes the distance between the vertices U and V in the graph G and the 
summations run over all (unordered) pairs of vertices of G. 
 
2.3  RANDIĆ INDEX 

In 1975, Milan Randić a Croatian–American scientist introduced the Randić index [20–23], 
the first connectivity index. The Randić index of a chemical graph is the sum of all the 
bonds contributions:  

 2
1

)1(
jidd


                                                               

(3) 

where di and dj are the degrees of the vertices representing atoms “i”, “j”. 
 

2.4  BALABAN INDEX 

Defined by the Romanian chemist Alexandru T. Balaban in 1982, Balaban index is: J=J(G) 
of a Graph G on n node and m edges and Di are the sum of all entries in the ith row (or 
column) of graph distance matrix [24–25]: 

  5/0

1 1

))((
1



 


 ji

n

i

n

j

DDmJ
                                                   (4)

 

where 1 nm is the cyclomatic number. 
 
2.5  HARARY INDEX 

The Harary index of a graph G was defined from the inverse of the squared elements of the 
distance matrix according to the expression [26]: 

  )5(
1 1

2
2
1
 
 


n

i

n

j
ijD

 
where D−2 is the matrix whose elements are the squares of the reciprocal distances. 
 

2.6  GEOMETRIC INDICES 

Geometric analysis provides characteristic values related to the geometrical 
structure of a molecule such as minimal and maximal z length, minimal and 
maximal projection area, force field energies or van der Waals volume. 
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3. COMPUTATIONAL METHODS 

To analyze the relationship between critical properties such as temperature (Tc), 
pressure (Pc) and volume (Vc) of alkanes derivatives in contrast with molecular 
descriptors, the research data were collected in two stages as follow: 

First, the structure and existing laboratory quantities (experimental) of 40 different 
types of alkanes and their derivatives in the present investigation were taken from National 
Institute of Standard and Technology chemistry webbook and were listed in Table 1. 

Second, the values of Randić (χ), Harary (H), Balaban (J), Wiener (W), Platt (Platt) 
and hyper–Wiener (WW) topological indices were calculated by formulas 1–5 using graph 
theory for 40 different types of alkanes derivatives, and the values of geometry descriptors 
such as the minimal projection area (MinPA/A°2), the maximal projection area 
(MaxPA/A°2), the minimal z length (MinZL/A°), the maximal z length (MaxZL/A°), the van 
der Waals volume (V/A°3) were taken for 40 compounds of mentioned training set from the 
book and webbook [27].  

Third, the relationships between Tc, Pc, Vc with all the used molecular indices were 
investigated for 40 different types of alkanes derivatives using excel software and relevant 
equations were extracted.  

Fourth, the estimation of critical properties was performed by SPSS software 
version 16 with MLR method and backward procedure. According to the important 
determining factors of this method such as correlation coefficient, square correlation 
coefficient, adjust square correlation coefficient, Fisher statistics, Durbin Watson, the best 
topological indices were determined for estimating the properties. 

The linear regression model is a statistical means for analyzing the correlation 
between an independent variable and a dependent variable. Now, if we increase the number 
of independent variables to more than one, the regression model is called multiple 
regression model [28]. The simple linear regression equation is indicated as y=a+bx, while 
the multiple regression equation is introduced as: 

ekxkbxbby  110                                                                            (6) 
where, y: dependent variable; b0: regression constant; b1: regression coefficient for first 
independent variable x1; bk: regression coefficient for kth independent variable xk; e: the 
observed amount of error. 

The simple regression model is linear since the increase of a descriptor x value 
causes the increase of dependent variable y (if the coefficient bi is positive). One of the 
assumptions behind the multiple regression model is that there is a linear correlation (a 
straight line) between the independent variables and dependent one. Several independent 
variables form a model which predicts the amount of dependent variable. 

This research paper attempts to scrutinize the correlation between critical properties 
of alkanes derivatives and molecular descriptors through the use of MLR method. 



204                                                                                                                                                               MOHAMMADINASAB 

 

4. RESULTS AND DISCUSSION  

The experimental data of Tc, Pc and Vc  of alkanes and their derivatives were shown in 
Table 1: 

 
Table 1. Used compound, experimental data of critical temperature (Tc/K), critical pressure 
                (Pc/Pa), critical volume (Vc/m3) of alkanes derivatives. 

 

Vc×104/m  Pc×10-6/Pa  Tc/K       Alkane No 

1.47 4.9 305.3 Ethane 1 

2.0 4.25 369.9 Propane 2 

2.55 3.80 425.1 n-Butane 3 

2.59 3.65 407.7 2-Methylpropane 4 

3.11 3.36 469.8 n-Pentane 5 

3.06 3.38 461.0 2-Methylbutane 6 

3.07 3.20 433.8 2,2-Dimethylpropane 7 

3.68 3.02 507.6 n-Hexane 8 

3.68 3.03 497.8 2-Methylpentane 9 

3.68 3.11 504.0 3-Methylpentane 10 

3.58 3.10 489.0 2,2-Dimethylbutane 11 

3.61 3.15 500.1 2,2-Dimethylbutane 12 

4.28 2.74 540.0 n-Heptane 13 

4.21 2.74 530.5 2-Methylhexane 14 

4.04 2.81 535.2 3-Methylhexane 15 

4.16 2.77 520.5 2,2-Dimethylpentane 16 

3.93 2.91 537.3 2,3-Dimethylpentane 17 

4.18 2.74 519.8 2,4-Dimethylpentane 18 

4.14 2.95 536.4 3,3-Dimethylpentane 19 

3.98 2.95 531.1 2,2,3-Trimethylbutane 20 
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Table 1. (Continued). 
 

  

Vc×104/m3  Pc ×10-6/ Pa  Tc/K  Alkane  No  

4.16 2.89 540.6 3-ethylpentane 21  

4.92 2.49 568.9 n-octane 22  

4.36 2.73 563.5 2,2,3-trimethylpentane 23  

4.55 2.82 573.5 2,3,3-trimethylpentane 24  

4.68 2.57 543.9 2,2,4-Trimethylpentane 25  

4.78 2.53 549.8 2,2-Dimethylhexane 26  

4.43 2.65 562.0 3,3-Dimethylhexane 27  

4.55 2.81 576.5 3-Methyl-3-ethylpentane 28  

4.6 2.73 566.4 2,3,4-Trimethylpentane 29  

4.68 2.63 563.5 2,3-Dimethylhexane 30  

4.42 2.70 567.1 2-Methyl-3-ethylpentane 31  

4.66 2.69 568.8 3,4-Dimethylhexane 32  

4.72 2.56 553.5 2,4-Dimethylhexane 33  

4.82 2.49 550.0 2,5-Dimethylhexane 34  

4.88 2.50 559.7 2-Methylheptane 35  

4.64 2.55 563.6 3-Methylheptane 36  

4.76 2.54 561.7 4-Methylheptane 37  

4.55 2.61 565.5 3-Ethylhexane 38  

5.55 2.30 595.0 n-Nonane 39  

6.24 2.11 617.8 n-Decane  40  

 

The values of used topological indices of 40 different types of alkanes and their 
derivatives were calculated by formula 1–5, and the values of the geometry descriptors of 
all the mentioned compounds were taken from the book and webbook [27].  

In the first section, in order to apply simple linear regression method the 
relationship between critical properties of the used compound with all used indices was 
investigated using excel software (see equations 7–39). 

The following equations indicated the relationship between Tc and the 
values of molecular indices. 
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Number Equation R2 

(7) TC=0.2974 Platt + 7.0538 0.5219 

(8) TC=0.0609 X + 1.9244 0.8051 

(9) TC=0.0255J + 2.353 0.294 2 

(10) TC=0.3181H + 5.2614 0.8193 

(11) TC=2.349 W + 5.4462 0.7733 

(12) TC=5.9864 WW + 9.9962 0.6133 

(13) TC=2.1433 V+84.807 0.7969 

(14) TC=0.2754 Min PA+21.597 0.4973 

(15) TC=0.1149 Min Z L+7.0897 0.4415 

(16) TC=0.6768 Max PA+29.759 0.7547 

(17) TC=0.0113 Max Z L +5.5147 0.0718 
 

According to equations (7 to 17) and the square correlation coefficients 
(R2), it can be inferred that there was better correlations between Tc and H>X>V 
of this type of alkanes, respectively. 

Also, research results indicated that the correlation coefficients values of 
equations (8), (10), and (13) are very close to each other and there is a significant 
distinction between these values and other regression coefficients. On the other 
hand, the correlation coefficients of the equations (7), (9), (11), (14), (15), (16), 
and (17) demonstrate that there is not a strong correlation between Tc and J, Platt, 
W, WW, MinPA, MinZL, MaxPA, MaxZL descriptors. Consequently, the 
descriptors MaxZL and J which possess a lower correlation compared with other 
descriptors were not used for predicting Tc of alkanes using the MLR method. 

According to the square correlation coefficient of equations (18–28), the 
following rank was found among Pc and molecular descriptors: V>X>MaxPA>H:  

 

Number Equation R2 

(18) PC= −86352 Platt +4×106  0.6427 

(19) PC= −615873 X +5×106  0.8877 

(20) PC=−645673 J + 5×106 0.4705 

(21) PC=−116735 H + 4×106 0.8562 

(22) PC=−13768 W + 4×106  0.6881 
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(23) PC=−4210.3 WW + 3×106 0.5269 

(24) PC= −17730 V+ 5×106 0.9219 

(25) PC= −81662 MinPA+ 5×106 0.5172 

(26) PC= −198960 MinZL+5×106 0.6020 

(27) PC= −52914 MaxPA+ 5×106 0.8645 

(28) PC= −370030 MaxZL + 5×106 0.1238 
 

Therefore, the descriptors MaxZL and J which showed a weak correlation were 
ignored and the descriptors X, H, V, MaxPA which had a higher correlation were preserved 
for prediction of alkanes Pc through the use of MLR method. Also, a linear relationship 
between Vc and X, V, H, MaxPA of this class alkanes was obtained. In accordance with the 
equations (29–39) it was observed that the Randic index and Volume geometry descriptor 
had the highest linear relationship with Vc, (R2 > 0.97). 

According to the R2 values of equations (30), (32), (35), and (38) the following rank 
was found among Vc and efficient molecular descriptors: X>V >H >MaxPA. 

Also, the descriptors Platt, X, H, W, WW, V, MinPA, MinZL, MaxPA which 
illustrated a correlation coefficient above 0.5 were used for prediction of alkanes Vc using 
the MLR method, and the descriptors J, MaxZL which possessed a fairly weak correlation 
were removed. 
 

Number Equation R2 

(29) VC=41667 Platt − 3.9284  0.6240 

(30) VC=8563X − 0.3378  0.9706 

(31) VC=3704.6 J + 1.3583  0.3767 

(32) VC=43537 H  − 6.0622 0.9345 

(33) VC=320744 W − 77.865  0.8780 

(34) VC=835066 WW – 229.55  0.7267 

(35) VC=303037 V+ 4.5371  0.9700 

(36) VC=35070MinPA+ 12.867 0.4912 

(37) VC=18439 MinZL+ 1.8871 0.6926 

(38) VC=96265  MaxPA+ 4.1775 0.9297 

(39) VC=1757.2 MaxZL+ 5.026 0.1058 
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In addition, the autocorrelation of descriptors used in the selected model was tested. 
If the regression coefficients of the diagrams indicating interrelationship between the 
independent variables were above 0.9, one of the independent variables was ignored. 

Following MLR guidelines, the experimental critical properties, i.e. Tc, Pc, 
Vc were selected as the dependent variables and the suitable molecular 
descriptors– as the independent variables– were chosen on SPSS software and 
backward procedure. 

Then, different models were examined and the best model was defined using 
correlation coefficient (Pearson's r), determination coefficient, Std. Error of estimate, mean 
square, the Fischer statistic, sum of squares of residual and specifically Fisher statistic and 
the associated significance values (see Table 2). 

Table 2. Property, Equations, R, R2, R2
Adjust,. RMSE, F statistic, SS, SSE and Sig for 

                     estimating of Tc, Pc, Vc. 

 

Mod. Prop. Equation R R2 R2
Adjust RMSE F  SS SSE 

40 Tc Tc=8.75 Platt – 0.113 

WW+ 19.995 MinZL+ 

232.130      

0.959 0.920 0.913 1.8509 

E1 

137.877 141718.56 12334.32 

41 Pc Pc= -68615.237 

Platt+1413.541 

WW – 194862.228 

MinZL+ 

5494998.974   

0.961 0.923 0.917 1.4933 

E5 

144.619 9.67E12 8.028 

E11 

42 VC Vc=1.006E-5 Platt 

+1.931E-7 WW+ 

2.123E-5 MinZL 

+5.526 E-5 

0.986 0.972 0.970 1.5879 

E5 

417.097 3.15E-7 9.076 

E-9 

 

4.1  STATISTICAL PARAMETERS 

4.1.1. Significance Level (sig): A coefficient used in the statistical method is 
significance level. The more the significance level is close to zero, the smaller the 
significance level and the linear model will be more meaningful. Therefore, the 
higher the Fisher statistic, the lesser significance level. As it’s seen in Table 2, the 
best three descriptors, as predictors of Tc, Pc and VC in terms of non–standardized 
coefficients, are represented using the models (40), (41) and (42), respectively. 
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4.1.2. Correlation Coefficients (R): It indicates  the correlation between two 
variables. Statistically, the higher correlation between variables X and Y, the more 
accurate the prediction will be. R=0.959 in equation (40) illustrates a strong 
correlation between Tc and Platt, WW, MinZL descriptors using the MLR method. 
 

4.1.3. Determination Coefficient (R2): For example, the value of R2=0.972 in equation (42) 
illustrates that 97.2% of variation is residing in the residual meaning that the fitted line or 
model is very good. 
 

4.1.4. Adjusted Determination Coefficient (R2
Adjust): the percentage of adjusted 

determination coefficient does not represent the influence of all the independent variables, 
but it only illustrates the real influence of applied independent variables on the dependent 
variable. Thus, the high value of R2

Adjust (%97.0) can be used to explain the values of the 
Vc(exp) variations in terms of the values of Platt, WW, MinZL independent variables. 
 

4.1.5. Also, adjusted determination coefficient R2
adjust indicates the percentage of dependent 

variable that is justified by the independent variable. The small differences between R2
adjust 

and R2 indicates that independent variables added to the model have been chosen more 
appropriately. The slight difference between the above amounts in the proposed model 
verifies the precision and accuracy of the model for predicting the critical properties. So, in 
accordance with the unstandardized coefficients, the models (40), (41) and (42) were 
determined for estimation of Tc, Pc and Vc, respectively. 
 

4.1.6. If the standard deviation of a set of data is close to zero, it indicates that the data are 
close to the average and have low dispersion.                                                   
 

4.1.7. Standard Error of Estimate (STD) or RMSE is used to indicate the spread of values 
in a distribution. It is a standard method for determining the normal, above–normal and 
below–normal values. It measures the error rate between the two datasets. RMSE usually 
compares a predicted value and an observed value.  

Finally, the comparison between equations and the values of statistical coefficients 
showed the best models for predicting Tc, Pc and Vc of alkanes using the MLR method 
which are summarized as follow: 

Tc=8.75 Platt – 0.113 WW+ 19.995 MinZL+ 232.130 ; DW=2.01  
Pc=−68615.237 Platt+1413.541 WW – 194862.228 MinZL+ 5494998.974; DW=1.55  

Vc=1.006E−5 Platt +1.931E-7 WW+ 2.123E-5 MinZL +5.526 E-5; DW=1.85 
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4.1.8. Standard Coefficient β: The values of standard coefficients of β related to effective 
descriptors used for predicting Tc and Vc in the final equations using MLR method were 
obtained as follow: 
 

Table 3. The standard coefficients β values of Platt, WW, MinZL 
 

Descriptor/ Β Descriptor / β Descriptor / β 

Tc   Pc   Vc   

Platt 0.670  Platt -0.637 Platt 0.531 

WW -0.160 WW 0.244 WW 0.189 

MinZL 0.643 MinZL -0.760 MinZL 0.470 

      

The standard correlation coefficient β value is a measure of how strongly 
each predictor variable influences the dependent variable. For example, the 
standard coefficients β=0.670, 0.531 for the Platt variable which are used for 
predicting Tc and Vc, respectively, illustrate that compared to WW and MinZL 
predictors, the Platt index has the strongest influence on Tc and Vc. Similar to 
above explanations, the correlation coefficient β=-0.760 reveals that the descriptor 
MinZL has the highest influence on dependent variable Pc than Platt index. Table 
4 indicates the definitive values of Tc(pred), Pc(pred), Vc(pred) of alkanes and their 
residuals using the equations (40), (41), (42) and MLR method. 
 

Table 4. The values of predicted critical properties and residuals of alkanes derivatives. 
 

No Tc Pred/K Res(Tc)/K Pc Pred ×10-6/Pa Res(Pc)/Pa Vc Pred×104/m3 Res (Vc) /m3 

1 330.59 −25.293 4.53574 364258.3 1.60 −1.31E-05 
2 379.43 −9.535 4.09433 155665.5 2.15 −1.48E-05 
3 422.80 2.298 3.70817 91824.6 2.65 −1.05E-05 
4 418.04 −10.346 3.78689 −136899 2.61 −2.05E-06 
5 466.63 3.160 3.32056 39437.23 3.20 −8.85E-06 
6 455.33 5.663 3.46183 −81833.6 3.07 −1.20E-06 
7 453.63 −19.824 3.54328 −343284 3.07 4.18E-07 
8 500.99 6.614 3.03014 −10149.5 3.69 −8.11E-07 
9 499.84 −2.046 3.07081 -35818.8 3.65 2.61E-06 
10 484.50 19.499 3.21910 -109106 3.48 2.02E-05 
11 510.43 −21.433 3.02988 70110.85 3.75 −1.73E-05 
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12 489.79 10.305 3.19864 −48641 3.53 8.19E-06 
13 538.36 1.637 2.71680 23192.17 4.28 4.36E-07 
14 535.29 −4.799 2.77432 −34327.9 4.20 7.80E-07 
15 517.92 17.280 2.94087 −130879 3.99 5.05E-06 
16 549.01 −28.515 2.69977 70223.33 4.30 −1.44E-05 
17 531.62 5.673 2.83559 74406.4 4.10 −1.70E-05 
18 515.73 4.0718 2.99304 −253049 3.96 2.23E-05 
19 534.92 1.478 2.83461 115385 4.13 1.11E-06 
20 542.61 −11.514 2.79076 159233.3 4.20 −2.24E-05 
21  500.54 40.060 3.10743 −217431 3.78 3.83E-05 
22  572.58 −3.680 2.44304 46954.71 4.92 2.74E-07 
23  572.12 −8.621 2.55097 179022.4 4.68 −3.17E-05 
24  563.77 9.725 2.63106 188937.2 4.58 −2.56E-06 
25  579.56 −35.665 2.48220 87799.26 4.79 −1.13E-05 
26  583.38 −33.576 2.41864 111356.9 4.89 −1.07E-05 
27  570.81 −8.811 2.53545 114551.2 4.70 −2.67E-05 
28  547.68 28.816 2.75675 53246.74 4.41 1.39E-05 
29  563.03 3.371 2.60846 121533.7 4.59 1.33E-06 
30  569.55 −6.052 2.51816 111837 4.71 −2.63E-06 
31  526.94 40.157 2.92901 −229019 4.21 2.10E-05 
32  548.57 20.227 2.71979 −29789.5 4.46 2.05E-05 
33  549.50 3.994 2.71478 −154782 4.51 2.14E-05 
34  563.72 −13.722 2.58063 −90630.5 4.70 1.19E-05 
35  569.70 −10.007 2.49651 3483.528 4.82 5.61E-06 
36  557.60 5.997 2.60976 −59768.3 4.65 −8.46E-07 
37  556.17 5.532 2.62218 −82186.8 4.62 1.42E-05 
38  532.46 33.0340 2.84845 −238459 4.32 2.31E-05 
39  602.54 −7.535 2.22211 77881.14 5.63 −7.63E-06 
40  625.41 −7.615 2.08428 25712 6.40 −1.61E-05 

 
Figures 1, 2 and 3, show that there was a high linear correlation between the 

experimental and obtained critical properties and the estimated critical properties using the 
models. Figure 1 shows a high linear correlation ( R2=0.9199) between the experimental 
and the obtained Tc using the equation (40). This diagram illustrates the values of Tc(pred) 
variations obtained from equation (40) using a MLR method in terms of the Tc(exp). The 
value of R2=0.9199, in this diagram, indicates the fact that 91.99% of the Tc(pred) variations 
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can appropriately be determined in terms of one unit variation in Tc(exp). Figure 2, shows a 
high linear correlation ( R2=0.9234) between the experimental and the obtained Pc using the 
equation (41). In this diagram, the high correlation between Pc(exp) and Pc(pred) was obtained 
using the MLR. The obtained value of 0.9234 for R2 indicates that %92.34 of the Pc(pred) 
variations can be determined in terms of one unit variation in Pc(exp).  

According to Figure 3, the indicative equation relationship between Vc(pred) obtained 
from MLR model (42) was calculated as Y=X−1E-18. The value of 0.972 for R2 shows that 
%97.2 of the Vc(pred) variations can be determined in terms of one unit variation in Vc(exp).  

 

 

  Figure 1. The plot of observed Tc vs Predicted Tc. 
                                                                                                                                                              

   
Figure 2. The plot of observed Pc vs Predicted Pc. 

 

 

Figure 3. The plot of observed Vc vs Predicted Vc. 
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It is obviously determined that the predicted values are so close to the experimental 
ones. So, it’s inferred that the proposed patterns in these models have been selected 
correctly for determining critical properties of the studied molecules. The residual values 
are shown at a fairly random pattern (see Figures. 4, 5 and 6). Residuals are used to assess 
the normality of assumption. Figures 4, 5 and 6 show that the errors around x–axis have 
almost a uniform distribution. This proves the suitability of the selected pattern for 
proposed critical properties of alkanes. 
             

 

Figure 4. The plot of experimental Tc vs the residuals. 
 

 

Figure 5. The plot of experimental Pc vs the residuals. 

 
Figure 6. The plot of experimental Vc vs the residuals. 
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5. QSAR MODEL VALIDATION 

Typically, there are numerous methods for validation of QSAR models. Various 
statistical tests and coefficients can be used for validation of applied algorithms 
which, in the following, the most significant ones are represented. The statistical 
tests and coefficients used for estimation of TC, PC and VC are as follow: 

5.1. LEAVE–ONE–OUT CROSS–VALIDATION (LOOCV)   

To determine the LOOCV, at first, a molecule from training set of 40 primary alkanes was 
removed. Then, QSPR was examined on the 39 remaining molecules. Considering the 
amounts of RSS and TSS, the amount of Q2 was calculated based on the formula (43) and 
this cycle was repeated resulting in elimination of 25% of alkanes which were being 
studied leading to examining and calculating Q2 for the remaining alkanes. Finally, the 
mean value of Q2 was compared with R2 in the final graphs, the results were shown in 
Table 5.  

TSS
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YY
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trainpredtrain 





 1

)(
)(

1 2
)exp(

2
)()exp(2

                                       (43) 

where, RSS refers to the residual sum of squares and TSS represents the total sum 
of square. This formula is the most widely used measure of the ability of a QSPR 
model to reproduce the data in the training set. We have computed the values of 
Q2 (Eq. 43) using %25 of training set randomly. The values of Q2 are defined as 
positive and less than one.  

The small differences between mean Q2 values of Tc, Pc, Vc are equal to 0.9295, 
0.9286, 0.9761, respectively, and the R2 values of them verify the precision and accuracy of 
the model for predicting the critical properties. 

 
Table 5. The values of Q2 LOO of Tc, Pc, Vc. 

 

No. Q2LOO(Tc) Q2LOO(Pc) Q2LOO(Vc) Number Q2LOO(Tc) Q2LOO(Pc) Q2LOO(Vc) 
        
1 0.9206 0.9250 0.9720 6 0.9350 0.9295 0.9755 
2 0.9209 0.9252 0.9729 7 0.9353 0.9307 0.9757 
3 0.9216 0.9254 0.9744 8 0.9355 0.9316 0.9802 
4 0.9268 0.9259 0.9745 9 0.9359 0.9339 0.9803 
5 0.9277 0.9283 0.9754 10 0.9360 0.9351 0.9805 
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5.2.  MULTICOLLINEARITY TEST 

Multicollinearity test was performed to avoid habits in the decision making process 
regarding the partial effect of independent variables on the dependent variable. A good 
regression model is a model in which there is not a high correlation between the 
independent variables. Multicollinearity test is performed through the use of SPSS software 
and the value of variance inflation factor (VIF) to avoid linear correlation between the 
independent variables. If the VIF value line is a number between 1 and 10, then there is no 
multicollinearity, and if VIF<1 or >10, then there is multicollinearity. In all our final 
models, the multicollinearity did not exist, because the values of correlations between 
independent variables are not close to one, and VIF values line between the numbers 1 to 
10. The analysis of VIF values for all the descriptors indicated that the best models for 
predicting Tc, Pc and Vc values are: Platt, WW, and MinZL. 

5.3.  TEST FOR AUTOCORRELATION USING THE DURBIN–WATSON STATISTIC  

From a statistical regression analysis lens of view, Durbin–Watson (DW) statistic 
is a number to examine autocorrelation in the residuals. The DW values 2.01, 
1.55, 1.85 in final models are considered acceptable indicating that there is poor 
correlation between the errors and the independence of residuals. These numerical 
values indicate that our final models are perfect.  

5.4.  SKEWNESS AND KURTOSIS TEST 

The normality of residuals represents whether the distribution function is 
symmetrical or asymmetrical. For a completely symmetrical distribution, the 
skewness and kurtosis are equal to zero. In a non–symmetrical distribution, when 
most of the scores “scrunch up” towards a few high scores it is positively skewed, 
and when most of the scores cluster towards a few low scores it is negatively 
skewed. Generally, if the skewness and kurtosis are placed at an interval between 
[2,-2], the data follow a normal distribution. The observed values for residuals 
skewness are 0.094, 0.076, 0.060, and the observed values for residuals kurtosis of 
variables Tc, Pc and Vc, are 0.624, 0.500, -0.578, respectively. These indicate the 
normality of them. 

5.5.  APPLICABILITY DOMAIN 

The applicability domain (AD) of QSAR model was used to verify the prediction 
reliability, identify the problematic compounds and predict the compounds with 
acceptable activity that fall within this domain. The most common methods used 
for determination of the AD of QSAR models have been described by Gramatica 
that used the leverage values for each compound. The leverage approach allows 
the determination of the position of new chemical in the QSAR model, i.e. 
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whether a new chemical will lie within the structural model domain or outside of 
it. The leverage approach along with the Williams Plot are used to determine the 
applicability domain in all QSAR models. 

To construct the William Plot, the leverage hi for each chemical compound– in 
which QSAR model was used to predict its property– was calculated according to the 
following equation: 

 
hi=xT(XTX)-1x                                                           (44) 

where, x refers to the descriptor vector of the considered compound and X 
represents the descriptor matrix derived from the training set descriptor values. 
The warning leverage (h*) was determined as:  
 

h*=3(p+1)/n                                                      (45) 
where n is the number of training compounds and p is the number of predictor variables.  
In this research, in each of the three models, the descriptor vector x includes the 
Platt, WW, MinZL descriptors and X is Platt, WW, MinZL descriptors matrix 
related to training set of alkanes. (The leverage values are shown in Table 6). 
Also, according to equation (45), the value of h* is equal to 0.3 (n=40 and p=3). 
Then, the defined applicability domain (AD) was visualized using a Williams plot, 
the plot of the standardized residuals versus the leverage values (h). A compound 
with hi > h* seriously influences the regression performance and may be excluded 
from the applicability domain (See Figs. 7, 8, 9). The results indicated that among 
40 different types of alkanes, there is just one outlier.  

 
Table 6. The leverage values of used alkanes 

 

Alkane hi Alkane hi Alkane hi Alkane hi 
1 0.0836 11 0.0494 21 0.0234 31 0.0444 
2 0.1047 12 0.0363 22 0.0946 32 0.0350 
3 0.1146 13 0.0832 23 0.0952 33 0.0363 
4 0.0569 14 0.0545 24 0.1050 34 0.0358 
5 0.1193 15 0.0303 25 0.0864 35 0.0483 
6 0.0558 16 0.0443 26 0.0458 36 0.0383 
7 0.0453 17 0.0338 27 0.0512 37 0.0364 
8 0.0979 18 0.0285 28 0.0673 38 0.0287 
9 0.0556 19 0.0493 29 0.0560 39 0.2072 
10 0.0417 20 0.0843 30 0.0329 40 0.5754 
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Figure 7. Williams plot of residual Tc vs leverage.  

 

 
Figure 8. Williams plot of residual Pc vs leverage.  

 

 
Figure 9. Williams plot of residual Vc vs leverage.  
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Thus, the analyses of various statistical coefficients, tables, diagrams and QSPR 
model validation through the use of MLR method show that they possess the necessary and 
sufficient validity for predicting the critical properties of alkanes. 

6. Conclusion 

The afore–mentioned computational methods involve methods which all focus on the 
molecular structures and properties. The underlying concept of these methods is based on 
the fact that the molecular and geometric structures are responsible for all the physical and 
chemical properties of molecules including t. The results of the present study indicate that 
the simple linear regression model with dispersion coefficient (alone) is not sufficient for 
determining the critical properties of alkanes. However, the multiple linear and regression 
model benefiting from various descriptors, factors and efficient coefficients can suggest the 
best algorithm for determining these properties. It was also witnessed that among the 
proposed models to predict the critical properties, the model including a combination of 
descriptors Hyper–Wiener, Platt, and MinZL is the most appropriate one. And the last but 
not least, this was the first time that the relationship between critical properties with 
molecular descriptors of alkanes and their derivatives was investigated through the use of 
SPSS software and MLR method. 
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1. INTRODUCTION  

A benzenoid system is obtained by using the regular hexagons consecutively so that two 
hexagons are either disjoint or have a common edge [1]. An example of benzenoid chain is 
illustrated in Figure 1. 

 
  

Figure 1. A Benzenoid Chain. 
 

In connection with the benzenoid chains the ܣܮ–sequence is defined as an ordered 
ℎ–tuple (ℎ > 1) of the symbols ܮ and ܣ. The ݅–th symbol is ܮ if the ݅–th hexagon is of 
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modeܮଵ or ܮଶ. The ݅–th symbol is ܣ if the ݅–th hexagon is of mode ܣ. The definition of ܮଵ, 
 .modes of hexagons is clear from Figure 2ܣ ଶ andܮ

 
Figure 2. Illustration of ܮଵ, ܮଶ and ܣ modes of hexagons, respectively. 

 
For instance, the LA–sequence of the benzenoid chain in Figure 1 is 

 ଶ. Each perfect matching of aܮଶܣଷܮܣଶܮܣଷܮ or, in the abbreviated form ܮܮܣܣܮܮܮܣܮܮܣܮܮܮ
benzenoid system (if any exists) represents a Kekulé structure. The number of Kekulé 
structures of benzenoid chains is called its“ܭ number”. The ܭ–number of a benzenoid 
chain is calculated by its ܣܮ–sequence.  

Balaban and Tomescu coined the term isoarithmicity for the benzenoid chains 
which their K numbers are same [2]. It is denoted by 〈ݔଵ,ݔଶ, … ,  ௡〉 the class of isoarithmicݔ
benzenoid chains with the ܣܮ–sequence  

 ௫೙ܮܣ… ܣ௫మܮܣ௫భܮ
where ݊ ≥ 1, and ݔଵ ≥ 1, ௡ݔ ≥ 1, ௜ݔ ≥ 0   for ݅ = 2,3, … , ݊ − 1. For example isoarithmic 
class of the benzenoid chain which is depicted in Figure 1 is 〈3, 2, 3, 0, 2〉. 

Every benzenoid chain can be represented in this form. It is denoted by 
,ଶݔ,ଵݔ〉௡ܭ … , ,ଵݔ〉 ௡〉  the number of Kekulé structures of the chainݔ ,ଶݔ …  ௡〉.It is definedݔ,
for the initial terms of the K numbers such that ([1]) ܭ଴ = 〈ଵݔ〉ଵܭ,1 = 1 +  .ଵݔ
 
Theorem 1. If ݊ ≥ 2 then for arbitrary ݔଵ ≥ ௡ݔ   ,1 ≥ ௜ݔ   ,1 ≥ 0, (݅ = 2,3, … ,݊ − 1), the 
following recurrence relation holds [1] 

,ଶݔ,ଵݔ〉௡ܭ … , 〈௡ݔ = ௡ݔ) + ,ଶݔ,ଵݔ〉௡ିଵܭ(1 … , 〈௡ିଵݔ + ,ଶݔ,ଵݔ〉௡ିଶܭ …  .〈௡ିଶݔ,
 
2. THE HOSOYA INDEX AND MORGAN–VOYCE POLYNOMIALS 

The Hosoya or ܼ–index was defined by Hosoya in 1971 [3] and the Hosoya index of a 
graph ܩ is denoted by ܼ(ܩ). The ܼ(ܩ), is the total number of ݇–matchings which are the 
number of ݇ choosing from a graph ܩ such that the ݇ lines are non–adjacent where ܰ is the 
number of points.  
 
Definition 1. The number of ݇–matchings is denoted by ݉(ܩ, ݇) and the ܼ(ܩ) is defined 
as ܼ(ܩ) = ∑ ⌊ே/ଶ⌋(݇,ܩ)݉

௞ୀ଴  such that ݉(ܩ, 0) = 1 for any graph ܩ. 
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Theorem 2. The number of ݇–matchings of the path graph is calculated by the following 
equation [4] 

,ܩ)݉ ݇) = ൫ேି௞௞ ൯, for 0 ≤ ݇ ≤ ⌊ܰ/2⌋. 
 

Relations between topological indices and some orthogonal polynomials for 
example Hermite, Laguerre and Chebyshev polynomials were found by Hosoya ([5]). 
Another relation between the sextet polynomial of a hexagonal chain and the matching 
polynomial of a caterpillar tree was discovered by Gutman [6]. As a result of this paper, it 
has been shown that the ܭ–number of a hexagonal chain is equal to the Hosoya index of 
the corresponding caterpillar [7]. For instance, corresponding caterpillar tree of the 
hexagonal chain which is depicted in Figure 1 is on the below. 
 

 
 

Figure 3. The hexagonal chain in Figure 1 has 14 hexagons and 
             the corresponding caterpillar tree has 14 edges. 

 
The caterpillar tree of the hexagonal chain in Figure 3 is ܥହ(4, 3, 4, 1, 3).   

 
Definition 2. The Morgan–Voyce polynomials ܤ௡(ݔ) is defined by [8] as 

(ݔ)௡ܤ = ෍൬
݊ + ݅ + 1
݊ − ݅ ൰

௡

௜ୀ଴

 ௜ݔ

and the first five Morgan–Voyce polynomials are found from this equation like that  
(ݔ)଴ܤ = 1 

(ݔ)ଵܤ = ݔ + 2 
(ݔ)ଶܤ = ଶݔ + ݔ4 + 3 

(ݔ)ଷܤ = ଷݔ + ଶݔ6 + ݔ10 + 4 
(ݔ)ସܤ = ସݔ + ଷݔ8 + ଶݔ21 + ݔ20 + 5 . 

 
 

3. REGULARLY ZIG–ZAG NON−BRANCHED CATACONDENSED BENZENOIDS 

The Kekulé number of regularly zig–zag non-branched cata condensed benzenoids was 
found by He, He and Xie [9] by Peak–Valley matrix. 
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(a)  
 

(b)  

Figure 4. Dualist graph of a general non-branched cata–condensed benzenoids. 
 
In Figure 4, ܽ௜ ∈  (݅ = 1,2, … and ௜ܾ (ݏ ∈  (݅ = 1,2, … ′ݏ where (′ݏ =  for ݏ

Figure 4(a) and ݏ′ = ݏ + 1 for Figure 4(b). ܽ௜ + 1 and ௜ܾ + 1 represent the numbers of 
linearly condensed six–membered rings horizontally and diagonally, respectively. For the 
benzenoid shown in Figure 4(a) and 4(b), the Peak–Valley matrix is as follows. 

௡ܣ =

⎣
⎢
⎢
⎢
⎢
⎡
ଵݐ 1 0
1 ଶݐ 1
0 1 ଷݐ

0

0
⋱ 1 0
1 ݐ ିଵ 1
0 1 ݐ ⎦

⎥
⎥
⎥
⎥
⎤

 

where ݐ௜ = ቊ
ܾ௞ାଵ + 2, ݂݅ ݅ = ∑ ௝ܽ + 1௞

௝ୀ଴

2,                   ݂݅  ݅ ≠ ∑ ௝ܽ + 1௞
௝ୀ଴

, ݇ = 1,2, … , ;ݏ  ݅ = 1,2, … , . Here  is the 

number of peaks (or valleys) in a graph G. The Kekulé number of a graph ܩ is shown by 
݊ )(ܩ)௡ܭ = 1, … , ). 
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Figure 5. Simple binary regularly cata–condensed benzenoids. 

 
Lemma 1. From Figure 5, the ܭ–number of the graph G is calculated by the following 
tri−diagonal determinantal expression[9]:  
 

(ܩ)୬ܭ = ௡ܣݐ݁݀ =
ተ

ተ

ܾ + 2 1 0
1 ܾ + 2 1
0 1 ܾ + 2

0

0
⋱ 1 0
1 ܾ + 2 1
0 1 ܾ + 2

ተ

ተ
. 

The order of the above determinant is ݏ + 1, where ݏ is the repeat times of horizontal linear 
segments on the graphܩ. 
 

4. CONTINUANTS AND CATERPILLAR TREES 

Lemma 2. If ܪ is a hexagonal chain whose ܣܮ–sequence is ܮ௫భܮܣ௫మܣ…  ,௫೙ܮܣ௫೙షభܮ
then the number (ܪ)ܭ of its Kekulé structures is equal to the ܼ–index of the caterpillar 
tree ܥ௡(ݔଵ,ݔଶ, … ,  .௡)[7]ݔ

 
If it is written (ܪ)ܥ for caterpillar tree of a ܪ hexagonal chain, Lemma 2 is 

equivalent to the equality (ܪ)ܭ = Z((ܪ)ܥ). 
 
Definition 3.The continuants (or continuant polynomials) are introduced by Euler [10] 
as ܮ௡(ݔଵ,ݔଶ, … (௡ݔ, = ,ଶݔ,ଵݔ)௡ିଵܮ௡ݔ … , (௡ିଵݔ + ,ଶݔ,ଵݔ)௡ିଶܮ …  ௡ିଶ) with initialݔ,
conditions ܮ଴() = (ଵݔ)ଵܮ ,1 = (ଶݔ,ଵݔ)ଶܮ  ଵ  andݔ  = ଶݔଵݔ + 1. 
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From this it is shown that the ܼ–index of the caterpillar trees coincides with Euler ’s 
continuant like the following lemma. 
 
Lemma 3.  ܼ൫ܥ௡(ݔଵ, ,ଶݔ … ௡)൯ݔ, = ,ଶݔ,ଵݔ)௡ܮ … ,  .௡)[7]ݔ

 
5. MAIN RESULTS 

Theorem 3. The coefficients of a ܤ௡(ݔ) Morgan–Voyce polynomial are equal to the 
number of ݇–matchings (݉(ܩ, ݇)) of a path graph which has ܰ = 2݊ + 1 points. 
 
Proof. We denote the coefficients of Morgan–Voyce polynomials with  

൯(ݔ)௡ܤ൫ܥ = ൬
݊ + ݅ + 1
݊ − ݅ ൰ 

such that 0 ≤ ݅ ≤ ݊ and we take the point number of the path graph ܰ = 2݊ + 1. The 
number of ݇–matchings of a path graph for 0 ≤ ݇ ≤ ⌊ܰ/2⌋ is 

,ܩ)݉ ݇) = ൬
ܰ − ݇
݇ ൰ 

and ⌊ܰ/2⌋ = ⌊(2݊ + 1)/2⌋ = ݊ by the definition of the Hosoya index. Now we 
demonstrate the coefficients of the Morgan–Voyce polynomials in combinatorial form 
with respectively for 0 ≤ ݅ ≤ ݊ 

൯(ݔ)௡ܤ൫ܥ = ൬
݊ + 1
݊ ൰ , ൬

݊ + 2
݊ − 1൰ , … , ൬

2݊
1 ൰ , ൬

2݊ + 1
0 ൰ 

and ݉(ܩ,݇) = ൫ேି௞௞ ൯ for 0 ≤ ݇ ≤ ⌊ܰ/2⌋ = ݊ with respectively 

,ܩ)݉ ݇) = ൬
2݊ + 1

0 ൰ , ൬
2݊
1 ൰ , … , ൬

݊ + 2
݊ − 1൰ , ൬

݊ + 1
݊ ൰ . 

It is clear that ܥ൫ܤ௡(ݔ)൯ and ݉(ܩ, ݇) are same in reverse order. From this we say for 
every ݊௧௛ degree Morgan–Voyce polynomial there is a path graph ( ேܲ) which has 
ܰ = 2݊ + 1 points such that the coefficients of the Morgan–Voyce polynomials equal 
to the number of ݇–matchings of ேܲ.  
 
Example 1. We show an application of the previous theorem for the first three 
Morgan–Voyce polynomials. For ܤ଴(ݔ), ܥ൫ܤ଴(ݔ)൯ = 1 equals to ݉(ܩ, ݇) for ܰ = 2 ×
0 + 1 = 1. For ܤଵ(ݔ), ܥ൫ܤଵ(ݔ)൯ = 1, 2  equal to ݉(ܩ, ݇) for ܰ = 2 × 1 + 1 = 3.  
For ܤଶ(ݔ),ܥ൫ܤଶ(ݔ)൯ = 1, 4, 3  equal to ݉(ܩ, ݇) for ܰ = 2 × 2 + 1 = 5. 
 
Lemma 4. If  ܾଵ + 1 = ܾଶ + 1 = ⋯ = ܾ௦ + 1 = ܾ + 1  (numbers of the regular 
hexagons on diagonal wise are same) like in Figure 5 and we take ݔ instead of ௜ܾ, then 
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(the right equation is used to express many properties of the Morgan–Voyce 
polynomials like in [8]) 

(ܩ)௡ܭ = ௡ܣݐ݁݀ =  .(ݔ)௡ܤ
Proof. 

(x)3B410x26x3x
2x10

12x1
012x

(G)3K

(x)2B34x2x12)2)(x(x
2x1

12x
(G)2K

(x)1B2x2x(G)1K

















 

and by the determinant of the tri−diagonal matrix in Lemma 1, 
(ܩ)௡ܭ = (ݔ)௡ܤ = ݔ) + −(ݔ)௡ିଵܤ(2  .(ݔ)௡ିଶܤ

In Lemma 1, the (݊) indice on the notatin ܭ௡ is the number of the repetition of the 
diagonal hexagons. We also take the number of the hexagons ௜ܾ + 1 on diagonal wise 
like the previous lemma. For Figure 5, ܾଵ + 1 = ܾଶ + 1 = ⋯ = ܾ௦ + 1 = ܾ + 1 and its 
corresponding caterpillar tree is ܥଶ௡(ܾ + 1, 1,ܾ, 1, … ,ܾ, 1). 

 
There is a relation between the ܭ–number of the hexagonal chain in Figure 5 and 

ܼ–index of its corresponding caterpillar tree as noted in the next theorem. 
 
Theorem 4. ܭ௡(ܩ) = ܼ൫ܥଶ௡(ܩ)൯. 
 
Proof. Induct on n. For ݊ = 1, (ܩ)ଵܭ = ܼ൫ܥଶ(ܾ + 1, 1)൯ = ܾ + 2, as desired. We 
assume that the equality is true for ݊ ≤ ݇ and we will show that it is true for ݊ = ݇ + 1. 
This means 

(ܩ)௞ାଵܭ = ܼ൫ܥଶ௞ାଶ(ܾ + 1, 1,ܾ, 1, … , ܾ, 1)൯. 
By assumption  

(ܩ)௞ܭ = ܼ൫ܥଶ௞(ܾ + 1, 1, ܾ, 1, … ,ܾ, 1)൯ 
and  

(ܩ)௞ିଵܭ = ܼ൫ܥଶ௞ିଶ(ܾ + 1, 1,ܾ, 1, … , ܾ, 1)൯. 
By Lemma 1, 
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This complete the proof. 
 
Example 2. We calculate the Kekulé number of simple binary regularly catacondensed 
benzenoid in Figure 5 by two ways mentioned in the Theorem 4. The matrix form of 
 number of the chain shown in Figure 5 is–ܭ

(ܩ)ଷܭ = ൥
4 1 0
1 4 1
0 1 4

൩ 

and ܭଷ(ܩ) = ܣݐ݁݀ = 56. Now we use the corresponding caterpillar tree of the 
hexagonal chain as the follows: 

 
Figure 6. The hexagonal chain in Figure 5 has 9 hexagons and the corresponding 
caterpillar  tree has 9 edges.  
 

This caterpillar tree is denoted by ܥ଺(3, 1, 2, 1, 2, 1) and  ܼ(ܥ଺(3, 1, 2, 1, 2, 1) = 56. 
So that ܭଷ(ܩ) = ,଺(3ܥ)ܼ 1, 2, 1, 2, 1). 
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A novel topological descriptor based on the expanded 
wiener index: applications to QSPR/QSAR studies 
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 :نریو افتهیمیتعم شاخص هیپا بر نینو یکیتوپولوژ گرفیتوص ارائه

  QSPR/QSAR مطالعات در ییکاربردها
  

اشرفی علیرضا : رابط ادیتور  
 

 چکیده

 نریو سیماتر افتهی میشکل تعم هیبر پا M به نام شاخص یکیتوپولوژ دیشاخص جد کیمقاله،  نیدر ا
ملکول در نظر  کیا در هراس نینش بکو برهم یاتم اتیشاخص، خصوص نیساخت ا يبرا. شودیم یمعرف

 اتیخصوص يگوناگون برا QSPR/QSAR يهامدل لهیبه وس M بودن شاخص دیمف. وندشیگرفته م
به . دشویمختلف نشان داده م باتیاز ترک يادیتعداد ز یستیز ياهتیو فعال ییایمیش-یکیزیمختلف ف

در هر مورد، . شده است یبررس زین يزومریا باتیترک نیب يشنهادیبودن شاخص پ يعلاوه، کاربرد
رو  شیپ يلعهمطا جینتا .شودیم دییمتقابل تا یآزمون اعتبار سنج يلهیمدل بدست آمده به وس يداریپا

 همبسته دایشد يهامدل يتوسعه يبخش برا دیراه ام کی M دهد که شاخصینشان م

QSPR/QSAR  شاخص گر،ید ياز سو. آوردیرا فراهم م  M ياهو توسعه مدل شده دیتول یبه سادگ 
QSPR  جالب شاخص تیخاص کی نیا. همبسته هستند یشاخص به صورت خط نیا يهیبر پا M  در

بوده و  عیوس یمحاسبات يهانهیهز ازمندیکه ناست  ییایمیشیکوانتوم ياهکننده فیتوص اب سهیمقا
  .دهندیبزرگ از خود نشان م يهاملکول يرا برا ییهاتیمحدود

  .QSPR، QSAR یافته،تعمیم وینر شاخص گراف، ينظریهشاخص توپولوژیکی،  :لغات کلیدي
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A new two-step Obrechkoff method with vanished 
phase-lag and some of its derivatives for the 
numerical solution of radial Schrödinger equation and 
related IVPs with oscillating solutions 
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 از رخیب و تاخیري فاز کردن صفر با جدید ابرشکوف دوگامی روش یک

 مقدار مسائل و شعاعی شرودینگر معادله عددي حل براي آن هاي مشتق

  نوسانی جوابهاي با آن به وابسته اولیه
  

گوتمن ایوان : رابط ادیتور  
 

 چکیده

یک روش جدید صریح خطی دوگامی ابرشکوف از مرتبه جبري دوازدهم با صفر کردن فاز  ،در این مقاله
هدف این مقاله توسعه الگوریتم کارا براي . دهیمارائه میهاي اول، دوم، سوم و چهارم را تاخیري و مشتق

این الگوریتم در رسته . باشدبعدي و مسائل وابسته می-حل تقریبی معادله شرودینگر شعاعی تک
هاي آن مورد براي تهیه روش چندگامی کارا، خاصیت فاز تاخیري و مشتق. هاي چندگامی قرار دارد روش

هاي دیگر مورد و مقایسه آن با روش، ل خطا و تحلیل پایداري نیز بررسییتحل. گیرند میاستفاده قرار 
  .شود میدقت روش جدید با استفاده از تحلیل نظري و کاربردهاي عددي اثبات . گیرد میمطالعه قرار 
  .هاي چندگامی متقارنمعادله شرودینگر، فاز تاخیري، معادلات دیفرانسیل معمولی، روش :لغات کلیدي
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 طیفی شبه روش یک از استفاده با سوییچ هاي سیستم ي بهینه کنترل

  بهبودیافته

  
اشرفی علیرضا : رابط ادیتور  

 
 چکیده

اي که توسط یک  ي کنترل بهینه طیفی بهبودیافته به منظور حل مساله در این مقاله، یک طرح شبه
بسیاري از فرایندهاي واقعی مانند فرایندهاي . گردد شود، ارایه می سیستم دینامیکی سوییچ کنترل می

صورت این  توان به هاي اتومبیل و فرایندهاي صنعتی را می شیمیایی، فرایندهاي مربوط به سیستم
ي دیگر، که در آن  ي کنترل بهینه ي اصلی با یک مساله براي این منظور، مساله. سازي کرد ها مدل سیستم

روش سپس با استفاده از . شود اند، جایگزین می هاي سوییچ به عنوان پارامترهاي مجهول ظاهر شده زمان
سازي گردیده و  ي جایگزین گسسته سالهلوباتو و ماتریس مشتق متناظر با آن، م-گاوس- لژاندر سازي مربع

در آخر، براي نشان دادن کارایی روش، سه مثال . شود ریزي غیرخطی تبدیل می ي برنامه به یک مساله
  .گیرد مورد آزمایش قرار می

  .طیفی لژاندر هاي سوییچ، روش شبه کنترل بهینه، سیستم :لغات کلیدي
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  ها گانه سه روي گرافها سگد اندیس محاسبه
  

اشرفی علیرضا : رابط ادیتور  
 

 چکیده

اندیس . باشد E   ي یال  و مجموعه Vي اندیس  یک گراف همبند ساده با مجموعه G=(V,E)فرض کنیم 
)بصورت  Gسگد  | ) ( | )( )

e uv E
u ve G e GSz G n n

 

 شود که   تعریف می( | )un e G هاي  تعداد راسG 

)است و  uنسبت به  vو نزدیکتر به  vنسبت به    u ر به نزدیکت | )vn e G شود صورت مشابه تعریف می به .
8nیک مجموعه با اندازه  Sگیریم   و V هاي  زیرمجموعه ي ي همه مجموعهS سه . باشد 3ي  با اندازه

,ها را با  این گراف. کنیم را تعریف می Vي اندیس  هاي اشتراك با مجموعه نوع از گراف 0,1) 2( ,iG in  
  .آوریم ها را بدست می هاي سگد آن نمایش داده و اندیس

  .گرافاندیس سگد، گراف اشتراك، خودریختی  :لغات کلیدي
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Nordhaus-Gaddum Type Results for the Harary Index  
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ZHAO WANG1, YAPING MAO2, XIA WANG2 AND CHUNXIA WANG2 
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ها گراف هراري شاخص براي گادم- نوردهاوس نوع نتایج  
 داسلیک میسلاووت : رابط ادیتور

 
 چکیده

          
  به صورت G همبنداز یک گراف  H(G)  شاخص هراري




)(, ),(

1)(
GVvu G vud

GH شود  میتعریف

),( که در آن vudG ، ي بین رئوس فاصله u,v  ازG توسط چارترندکه در گراف، ستینر ي ا فاصله. است 
ي گراف کلاسیک معرفی شده  ، بعنوان تعمیم طبیعی مفهوم فاصلهمعرفی شد 1989در سال همکاران و

رئوس  براي SdG)(ي استینر ، فاصلهS⫃V(G) و n≥2از مرتبه حداقل Gهمبند براي یک گراف . است
S ،شاملمجموعه ي رئوس آن، است که  همبندي یک زیرگراف  اندازه کمترین S اخیرا، فورتولا. است ،

و کاربردهاي شیمی آن را بیان ند ا هرا معرفی کرد تمن و کاتانیک مفهوم شاخص هراري استینرگو
  به صورت ،G زا   SHk(G)مرکز-k استینر شاخص هراري .اند نموده




ksGVs G

k sd
GSH

||),( )(
1)(   

)()( دراین مقاله، ما کران هاي بالایی و پایینی تیز را براي. تعریف شده است GSHGSH kk  و 

)(.)( GSHGSH kk  همبندبراي هر گراف  کهبه دست آوردیم G  است، همبند نیز که مکمل آن 

  .قابل قبول است
 مرکز -kستینر ي استینر، شاخص هراري، شاخص هراري ا فاصله، فاصله :لغات کلیدي
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 خطی رگرسیون از استفاده با ها آلکان مشتقات بحرانی خواص تعیین

  چندگانه
  

اشرفی علیرضا : رابط ادیتور  
 

 چکیده

نوع مختلف از  40بحرانی  و حجم هاي محاسباتی ریاضی براي تخمین دما و فشار برخی روش ،در این پژوهش
 با برخیگراف  نظریهخاصیت بر اساس -رابطه کمی ساختار ،در این مدل. ئه شده استآلکانها و مشتقاتشان ارا

بررسی همبستگی میان خواص  رايب. ه شده استگرفتبه کار  ترکیبات شیمیایی شاخصهاي ساختاري و هندسی
 .است  مدل رگرسیون خطی چندگانه با کمک ضرایب مناسب بکار گرفته شده ،گرهاي مولکولی بحرانی و توصیف
ترین آنها براي تعیین خواص  مناسب ،گر ساختاري و هندسی مورد مطالعه ین یازده توصیفاز ب، براي این منظور

 و حجم فشاربراي پیش بینی دما و  که از بین مدلهاي پیشنهاديند نتایج نشان داد. بحرانی آلکانها انتخاب شدند
 hyper-Wiener ،Platt ،MinZL مدل شامل ترکیبی از توصیف گرهاي ،بحرانی آلکانهاي مورد مطالعه

  .می باشد ترین مدل مناسب
  QSPR ،خواص بحرانی، MLR، آلکانها :ات کلیديلغ
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Some Relation between Kekule Structure and Morgan-
Voyce Polynomials 
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 چکیده

 
 

که  شده است نشان داده. اند گرفتههاي بنزوئیدي مورد توجه قرار  از زنجیر ککول هايساختاراین مقاله،  در
xBn)(وویس-اي مورگان چندجمله ضرایب  از یک گراف مسیر که (m(G,K)) جفتهاي--k د، با تعدا 

N=2n+1 ،بنزوئیدي کاملا متراکم  طور منظم بهزنجیرهاي  رابطه بین دو، بعلاوه. برابر است رأس دارد
بنزوئیدي کاملا متراکم  طور منظم بهو زنجیرهاي  ،وویس- ایهاي مورگان اي مورب و چندجمله غیر شاخه

  .به دست آمده است متناظرغیرشاخه اي مورب و درختان کاترپیلار 
  درختان کاترپیلار ،وویس- هاي مورگان اي چندجمله ،، شاخص هوسویاساختار ککول :لغات کلیدي
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