


Iranian Journal of Mathematical Chemistry 
 

Iranian Journal of Mathematical Chemistry  (IJMC)  publishes quality original research  papers 
and survey articles in Mathematical Chemistry and related areas that are of the highest possible 
quality. 
 

Research  papers  and  review  articles  are selected  through a  normal refereeing  process  by a 
member of editorial  board. 
 
It is intended  that the journal  may act as an interdisciplinary  forum for publishing chemically 
important mathematical papers. Papers published in this journal must have a clear connection to 
chemistry with non-trivial mathematics. 
 
Aims  and  Scopes:  Iranian  Journal  of  Mathematical  Chemistry  is  a  bi  publication  of  the 
University of Kashan. It contains research and expository papers as well as short 
communications on chemically important mathematical problems. 
 
Preparation of Manuscripts:  An  abstract  of 150 words  or less and  keywords  clarifying  the 
subject of the manuscripts are required. Authors should submit the paper electronically in word 
file to ijmc@kashanu.ac.ir. 
 
The language of the journal is English. Authors who are less familiar with English language are 
advised to seek assistance from proficient scholars to prepare manuscripts that are 
grammatically and linguistically free from errors. Manuscripts should be typed with double 
spacing and wide margins. Papers submitted for consideration for publication have to be 
prepared concisely and must not exceed 30 typewritten pages, (font 12, 1.15 spacing, including 
tables & graphs). Diagrams and figures should be submitted as original drawings. Figures and 
tables are to be numbered in the sequence in which they are cited in the manuscript. Every table 
must have a caption that explains its content. Tables and diagrams are to be prepared in separate 
pages and placed at the end of the manuscript. References to the literature should be numbered 
in square brackets in the order in which they appear in the text. A complete list of references 
should be presented in numerical order at the end of the manuscript. References to journals, 
books, proceedings and patents must be presented  in  accordance with the following  examples: 
 

Journals: I. Gutman, B. Zhou and  B. Furtula, The Laplacian-energy like invariant is an energy 
like invarint MATCH Commun. Math. Comput. Chem., 64(1) (2010), 85-96. 
 

Patents: Primack, H.S.; Method of  Stabilizing  Polyvalent  Metal  Solutions, U.S. patent No. 4, 
373, 104(1983). 
 

Indexing/ Abstracting: The Iranian Journal of Mathematoical Chemistry is indexed/abstracted 
in the following: 
 

• Islamic World Science Citation Center (ISC) 
• Zentralblatt für Mathematik 
 

• Web of Science (ISI) 



EditorialBoard 
A R Ashrafi 
 

University of Kashan, I R Iran 
E-mail:ashrafi@kashanu.ac.ir 

B Bazigaran 
 

University of Kashan, I R Iran 
E-mail:bazigaran@kashanu.ac.ir 

M R Darafsheh 
 

University of Tehran, I RIran 
E-mail:darafsheh@ut.ac.ir 

M Diudea 
 

Babes–Bolyai University, Romania 
E-mail:diudea@chem.ubbcluj.ro 

T Došlić 
 

University of Zagreb, Croatia 
E-mail:doslic@faust.irb.hr 

G H Fath-Tabar University of Kashan, I R Iran 
E-mail:fathtabar @kashanu.ac.ir 

A Gholami 
 

University of Qom, I R Iran 
E-mail:a.gholami@qom.ac.ir 

I Gutman 
 

University of Kragujevac, Serbia 
E-mail:gutman@kg.ac.yu 

A Iranmanesh 
 

Tarbiat Modares University, I R Iran 
E-mail:iranmanesh@modares.ac.ir 

M A Iranmanesh 
 

Yazd University, I R Iran 
E-mail:iranmanesh@yazduni.ac.ir 

P E John 
 

Technical Univesity of IImenau, Germany 
E-mail:peter.john@tu-ilmenau.de 

S Klavžar 
 

University of Maribor, Slovenia 
E-mail:sandi.klavzar@fmf.uni-lj.si 

X Li 
 

Nankai University,Tianjin300071,Tianjin, P RChina 
E-mail:lxl@nankai.edu.cn 

H R Maimani 
 

Shahid Rajaee Teacher Training University, I R Iran 
E-mail:maimani@ipm.ir 

S Masoum University of Kashan, I RIran 
E-mail:masoum@kashanu.ac.ir 

O Ori 
 

Actinum Chemical Research, Rome, Italy 
E-mail:ottorino.ori@ gmail.com 

M V Puts 
 

West University of Timisoara, Timisoara, Romania 
E-mail:mv_putz@yahoo.com 

M Salavati–Niasar 
 

University of Kashan, I R Iran 
E-mail:Salavati@kashanu.ac.ir 

B Shareghi–Boroujeni 
 

Shahrekord University, I R Iran 
E-mail:share.beh@sci.sku.ac.ir 

B Taeri 
 

Isfahan University of Technology, I R Iran 
E-mail: b.taeri@cc.iut.ac.ir 

H Yousefi-Azari 
 

University of Tehran, I R Iran 
E-mail:hyousefi@ut.ac.ir 

S Yousefi 
 

Malek–Ashtar University of Technology, I R Iran 
E-mail:yousefi100@yahoo.com 

B Zhou 
 

South China Normal University, P RChina 
E-mail:zhoubo@scnu.edu.cn 
 

 Past Editors 
A Graovac Ruđer  Bošković Institute, Croatia 

E-mail:graovac@irb.hr 
M Deza 
 

École Normale Supérieure, France 
E-mail:Michel.Deza@ens.fr 

 

Editor-in-Chief: 
 
Ali Reza Ashrafi 
Department of Pure Mathematics, Faculty 
of Mathematical Sciences, University of 
Kashan, Kashan87317-53153, I R IRAN 
mail:ashrafi@kashanu.ac.ir 

Managing Director: 
 
Behnam Bazigaran 
Department of Pure Mathematics, Faculty 
of Mathematical Sciences, University of 
Kashan,  Kashan87317-53153, I R IRAN 
E-mail:bazigaran@kashanu.ac.ir 

Language Editor: 
 

Seyfollah Mosazadeh 
Department of Pure Mathematics, Faculty 
of Mathematical Sciences, University of 
Kashan, Kashan 87317-53153, I R IRAN 
E-mail: s.mosazadeh@kashanu.ac.ir 
 

Technical Manager: 
 

Marzieh Pourbabaee 
Department of Applied Mathematics,  
Faculty of Mathematical Sciences, University 
of Kashan, Kashan 87317-53153,  I R IRAN 
Email:m.pourbabaee@kashanu.ac.ir 

 
 

 

 



 



Iranian Journal of Mathematical Chemistry 

Vol. 8, No. 1  March 2017 

CONTENTS                                                                                                                                     pages 
 

Stirling Numbers and Generalized Zagreb Indices                                                                                  1 

 T. Doslic, S. Sedghi and N. Shobe 

Relationship between Coefficients of Characteristic Polynomial and Matching Polynomial of   7   
Regular Graphs and its Applications 

 F. Taghvaee and G. Fath-Tabar 

The Topological Indices of some Dendrimer Graphs                                                                             25 
M. R. Darafsheh, M. Namdari and  S. Shokrolahi 

On the Multiplicative Zagreb Indices of Bucket Recursive   Trees                                                        37 

 R. Kazemi 

The Conditions of the Violations of Le Chatlier’s Principle in Gas Reactions at Constant T          47 
and P 

 M. Torabi Rad and A. Abbasi 

Neighbourly Irregular Derived Graphs                                                                                                      53 

 B. Basavanagoud,  S. Patil,  V. R. Desai, M. Tavakoli and  A. R. Ashrafi 

Splice Graphs and their Vertex-Degree-Based Invariants                                                                     61 
 M. Azari and F. Falahati-Nezhad 

An Upper Bound on the First Zagreb Index in Trees                                                                              71 
R. Rasi,  S. M. Sheikholeslami and  A. Behmaram 

Distance-Based Topological Indices and Double graph                                                                         83 

 M. K. Jamil 
 



 



Iranian J. Math. Chem. 8(1) March (2017) 1−5 

 

 

Stirling Numbers and Generalized Zagreb Indices 
 
TOMISLAV DOŠLIĆ1,, SHABAN SEDGHI2 AND NABI SHOBE3 
 
1Department of Mathematics, Faculty of Civil Engineering, University of Zagreb, Kačićeva 26, 
10000 Zagreb, Croatia  
2Department of Mathematics, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran 
3Department of Mathematics, Islamic Azad University, Babol Branch, Babol, Iran 
 
 
ARTICLE INFO  ABSTRACT 
Article History: 

Received  1 January 2016 
Accepted  4 March 2016 
Published online 5 September 2016 
Academic Editor:  Sandi Klavžar 

We show how generalized Zagreb indices M1
k(G) can be 

computed by using a simple graph polynomial and Stirling 
numbers of the second kind. In that way we explain and clarify the 
meaning of a triangle of numbers used to establish the same result 
in an earlier reference. 
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1. INTRODUCTION AND PRELIMINARIES 

The Zagreb indices belong to the oldest and the best researched topological indices.Since 
their introduction in early seventies [7] they have also given rise to numerous 
generalizations. (For a survey, see [6].) In this note we show how the information about one 
of the generalizations, the first general Zagreb index, introduced by Li and Zheng in 2005 
[8], can be extracted from a simple, yet neglected, graph polynomial. To the best of our 
knowledge, the polynomial was introduced and studied in 2008 by two of the present 
authors and a third one [9], and received no attention afterwards. Crucial to our approach is 
a family of combinatorial numbers known as the Stirling numbers of the second kind. 
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1.1. DEGREE SEQUENCE POLYNOMIAL OF A GRAPH 

Let G  be a simple connected graph with the degree sequence  == 1 mdd  . Its 

degree sequence polynomial )(xSG  is defined as the generating polynomial of its degree 
sequence, i.e., as  

,==)(
=
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j

j
j

GVu
ud

G xaxxS 





 

where ja  denotes the number of vertices of degree j . The evaluations of the polynomial 

and its first derivative at 1 give, respectively, the number of vertices and twice the number 
of edges of G . Hence, |)(=|(1) GVSG  and |)(|2=(1) GESG . Given its simplicity, and 
proliferation of other graph polynomials, it is surprising that this polynomial attracted no 
attention of researchers so far. In the following we show that the degree sequence 
polynomial encodes far more information on G . In order to extract it, we need a family of 
combinatorial numbers known as Stirling numbers of the second kind. 

 
1.2. STIRLING NUMBERS 

The Stirling numbers of the second kind, denoted by







k
n

, count the number of partitions 

of a set of n  elements into k  non-empty subsets. They form a triangular array whose few 
beginning rows are shown in Table 1. It can be shown that they satifay a linear recurrence, 
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 for all 0, ji . We refer 

the reader to [5] for a thorough discussion of these numbers and their properties. The most 
important for us is the fact that the Stirling numbers of the second kind are used to convert 
between powers and falling factorials, 
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where kx  is the falling factorial defined as 1)(1)(=  kxxxxk  . The opposite 
relationship,  
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involves the Stirling numbers of the first kind 







k
n

 that count the ways to arrange n  objects 

into cycles. In the rest of the paper we will make use of both conversion formulas. 
 

Table 1. Stirling numbers of the second kind 







k
n
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1.3. GENERALIZED ZAGREB INDICES 

Recall that the first and the second Zagreb indices are defined as  
 

  )(2)(
2

1 ,=)(a=)(
GEuv vuGVu u ddGMnddGM  

respectively, where ud  denotes the degree of vertex u . The k -th general first Zagreb index

)(1 GM k  is defined [8] as the sum of k -th powers of degrees of vertices of G , 
k
uGVu

k dGM   )(1 =)( . Hence, |)(|2=)(1
1 GEGM  and )(=)( 1

2
1 GMGM . For 3=k  one 

obtains the forgotten index )(GF  [4]. Our main result shows that all information about 

)(1 GM k  for all k  is encoded in the degree sequence polynomial of G . 
 
2. MAIN RESULTS 

Theorem 1. Let G  be a simple connected graph and )(xSG  its degree sequence 
polynomial. Then the k –th general Zagreb index of G  can be computed as  
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Proof. 
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Corollary 2. 
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As an example, we look at the case of tetrameric 1,3–adamantane, considered by Fath–
Tabar et al. in reference [3]. It is clear by inspection that a chain ][nTA  of n  such units has 

n6  vertices of degree 2, 22 n  vertices of degree 3 and 22 n  vertices of degree 4. 
Hence, its degree sequence polynomial is given by 432

][ 1)2(1)2(6= xnxnnxS nTA  . 

From there, by using Theorem 1, we immediately obtain =])[(=])[( 1
2

1 nTAMnTAM  

1474 n  (as obtained in [3]), 74230=])[(3
1 nnTAM  and 350770=])[(4

1 nnTAM . 
 
3. CONCLUDING REMARKS 

The same approach we used here could be applied to other topological indices and 
polynomials. For example, there are variants of eccentricity polynomials that encode the 
information about sums of powers of vertex eccentricities [2]. 

A comparable approach to degree–based topological indices was employed by 
Deutsch and Klavžar [1]. Their M –polynomial is a bivariate generating polynomial 
encoding the information about the number of edges whose end–vertices have certain 
degrees. It allows quick finding of any degree–based graph invariant, but it takes more 
work to compute the polynomial than in the case of degree sequence polynomial. 

We conclude by mentioning that our results were anticipated in some earlier papers, 
but the relationship was never made explicit. For example, in Theorem 3.1 of reference 
[10] concerned with general Zagreb indices, )(1 GM k  are given as sums of the numbers of 
(not necessarily induced) star subgraphs of G  multiplied by certain coefficients. The 

coefficients form a triangular array knt ,  and it can be easily guessed that 








k
n

kt kn !=, . Our 

results provide an elegant proof. Similar observation can be made about the triangle of 
coefficients in Corollary 3.1 of the same reference. 
 
ACKNOWLEDGMENT. Partial support of the Croatian Science Foundation under the 
project 8481 (BioAmpMode) is gratefully acknowledged by the first author. We are 
thankful to the anonymous referee for careful reading and useful suggestions. 



Stirling Numbers and Generalized Zagreb Indices                                                              5 

 

 
REFERENCES 

1. E. Deutsch, S. Klavžar, M–polynomial and degree–based topological indices, 
Iranian J. Math. Chem. 6 (2015) 93–102. 

2. T. Došlić, M. Ghorbani, M. A. Hosseinzadeh, Eccentric connectivity polynomial of 
some graph operations, Util. Math. 84 (2011) 297–309. 

3. G. H. Fath–Tabar, A. Azad, N. Elahinezhad, Some topological indices of tetrameric 
1,3–adamantane, Iranian J. Math. Chem. 1 (2010) 111–118. 

4. B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 
1184–1190. 

5. R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison–Wesley, 
Reading, 1988. 

6. I. Gutman, K. Ch. Das, The first Zagreb index 30 years after, MATCH Commun. 
Math. Comput. Chem. 50 (2004) 83–92. 

7. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total -electron 
energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538. 

8. X. Li, J. Zheng, A unified approach to the extremal trees for different indices, 
MATCH Commun. Math. Comput. Chem. 54 (2005) 195–208. 

9. S. Sedghi, N. Shobe, M. A. Salahshoor, The polynomials of a graph, Iranian J. 
Math. Sci. Inf. 3 (2008) 55–68. 

10. G. B. A. Xavier, E. Suresh, I. Gutman, Counting relations for general Zagreb 
indices, Kragujevac J. Math. 38 (2014) 95–103. 



 



Iranian J. Math. Chem. 8(1) March  (2017) 7−23 
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Suppose G is a graph, A(G) its adjacency matrix and (G,) = n 
+ a1n−1 + … +an is the characteristic polynomial of G. The 
matching polynomial of G is defined as M(G,x) = m(G,0)xn – 
m(G,1)xn−2 – m(G,2)xn−4 + …, where m(G,k) is the number of 
k−matchings in G. In this paper, the relationship between 2k-th 
coefficient of the characteristic polynomial, a2k, and k-th 
coefficient of the matching polynomial, (−1)km(G, k), k=0,1,2,…, 
in a regular graph is determined. In addition, these relations for 
finding 5,6-matchings of fullerene graphs are applied. 
 

© 2017 University of Kashan Press. All rights reserved 

Keywords: 
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1. INTRODUCTION 
Suppose G is a simple graph with n vertices and m edges, and A(G) is the adjacency matrix 
of G. The characteristic polynomial of G, denoted by ),(  G , is defined as: 

nn
nn

n aaaGAIG  
  1
1

1 ...))(det(),( . 
The roots of the characteristic polynomial are the eigenvalues of G. A k–matching in G is a 
set of k edges without common vertices. Denote the number of k–matchings in G by 
m(G,k). It is clear that m(G, 1)=m and m(G, k)=0 for  n/2>k  or 0<k . The matching 
polynomial of the graph G is defined as: 

knk

k
xkGmxGM 2

0
),()1(),( 

  . 

Go to [9] for details. The girth of G is the length of the shortest cycle contained in G. An 
edge incident to a vertex of degree one is called a pendant edge. 
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Fullerenes are polyhedral cage molecules composed entirely of carbon atoms. The 
molecular graph of such a molecule is 3–connected and planar with faces all pentagons and 
hexagons. Suppose p and h are the number of pentagons and hexagons in an n–vertex 
fullerene F, respectively. Therefore the Euler’s theorem implies that p = 12 and h = n/2 – 
10. After the outstanding work of Kroto et al. [14] in discovering the buckminsterfullerene 
C60, a lot of researchers devoted their time to find mathematical properties of these new 
materials. The most important book on this topic is the well known book of Fowler and 
Manolopoulos [12]. There are several different computer programs for working with 
fullerenes, one of them is developed by Myrvold and her colleagues [16]. Another program 
is developed by Schwerdtfeger et al. [17].  

Fullerenes are also called (5, 6)–fullerenes. An IPR (5, 6)–fullerene is one for 
which no two pentagons share an edge. The minimum distance of two vertices of any two 
nearest pentagons is called the pentadistance of fullerene. In this paper, all (5,6)–
fullerenes considered are at distance of at least 2. For more information on the fullerenes 
and additional results you can see [1, 4, 10, 11]. 

In this section, some operational definitions used in this paper are presented. The 
symbols Pn and Cn, stand for the path with n vertices and the cycle of size n, respectively, 
and φG(H) or φ(H) for the number of H–subgraphs of G. Any undefined terminology and 
notation can be found in [7].  

Behmaram in his thesis [2] and in a recent paper [3] extended the notion of 
fullerene to m–generalized fullerene. By his definition, a 3–connected cubic planar graph G 
is called m–generalized fullerene if its faces are two m–gons and all other pentagons and 
hexagons. The concepts of m–generalized (3, 6)–fullerene and m–generalized (4, 6)–
fullerene can be defined in a similar way [15]. We refer to Deza and his co–authors for 
some other generalization of fullerenes [8, 18, 19].  

It is easy to see that a (3, 5, 6)–fullerene molecule with n atoms and exactly 2 
triangles has 6 pentagons and n/26 hexagons. A (4, 5, 6)–fullerene molecule with n atoms 
and exactly 2 squares has 8 pentagons and n/2–8 hexagons, see Figure 1. Also a (5, 6, 7)–
fullerene molecule with n atoms has exactly 14 pentagons, 2 heptagons and n/214 
hexagons, and a (4, 6, 8)–fullerene molecule with n atoms has exactly 12 squares, 6 
octagons and n/2–16 hexagons, see Figure 2. The aim of this paper is determination the 
relationship between 2kth coefficient of characteristic polynomial and k–th coefficient of 
matching polynomial of a regular graph with girth 5. Also in this paper we determine some 
coefficients of characteristic polynomial of some fullerene graphs. These coefficients are 
studied in [6]. 
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Figure 1. A (4, 5, 6)– (left) and (3, 5, 6)Fullerene (right). 
 

 
 

Figure 2. A (5, 6, 7)– (left) and (4, 6, 8)–Fullerene (right). 
 

2. PRELIMINARIES  

In this section, we present the definitions and the theorems that are used in the study. 
Suppose G is a graph with n vertices, m edges and with adjacency matrix A(G). It is easy to 
see that if G is a regular graph of degree r, then m=nr/2. The characteristic polynomial of 
G, ),(  G , is defined as: 

nn
nn aaaG  
  1

1
1 ...),( . 

An elementary subgraph of G is a subgraph whose connected component is regular 
and of degree 1 or 2. In other words, the connected components are single edges and/or 
cycles.  
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Theorem 1. ([6]) Let G be a graph and ),(  G be the characteristic polynomial of G, then 
the coefficients of ),(  G  are: 

  )()( 2)1()1( HsHr
i

i a , 

where the summation is over all elementary subgraphs H of G which have i vertices and 
r(H)=n-c and s(H)=mn+c, where c is the number of connected components of H, and m, n 
are the number of edges and vertices of H, respectively. 
 

Corollary 2. The relation between m(G,k) and a2k is as the following: 

  ,2)1(),()1( )()(
2

HsHrk
k kGma  

where the summation is over all elementary subgraphs H of G which have 2k vertices and 
at least one cycle. 
 

Proposition 3. ([6]) By the notation given above we have: 
(i) a1 = 0, 
(ii) a2 = the number of edges of G, 
(iii) a3 = twice the number of triangles in G. 
 

In the following we consider a walk and the spectral moments in graph G, see [7] 
for details. 

 

Definition 4. Let G be a graph. A walk of length k in G is an alternating sequence v1, e1, v2, 
e2,  , vk, ek, vk+1 of vertices and edges such that for any i = 1, 2,  , k the vertices vi and 
vi+1 are distinct end-vertices of the edge ei. A closed walk is a walk in which the first and 
the last vertex are the same. 

Let )(),...,(),( 21 GGG n be eigenvalues of A(G). The numbers   n
i

kiGkS 1)(  are 

said to be the kth spectral moment of G. It is well–known that S0 (G)= n, S1 (G)= 0, S2(G) 
= 2m and S3(G) = 6t, where n, m and t denote the number of vertices, edges and triangles of 
the graph, respectively [7].  

 

Lemma 5. ([7]) The k–th spectral moment of G is equal to the number of closed walks of 
length k. 
 

In [20, 21] the authors calculated the spectral moments of some graphs and they 
have ordered them with respect to their spectral moments. Also, in [23] the authors studied 
the signless Laplacian spectral moments of some graphs and then they ordered the graphs 
with respect to signless Laplacian spectral moments. In [5, 24] the authors computed the 
number of 4 and 5–matchings in a graph, and in this paper, we consider the relation 
between the coefficients of characteristic polynomial and the spectral moments are 
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computed, and then by using this relation the relationship between the coefficients of 
characteristic polynomial and the coefficients of matching polynomial is determined. 
 

Theorem 6.(Newton’s identity) Let )(),...,(),( 21 GGG n be the roots of the polynomial 

nn
nn aaaG  
  1
1

1 ...),( with spectral moment Sk. Then 
)...(/1 112211   kkkkk aSaSaSSka . 

Let F1, F2, F3 and F4 be a (3, 5, 6)–fullerene, (4, 5, 6)–fullerene, (5, 6, 7)–fullerene 
and (4, 6, 8)–fullerene, respectively. In [22] the authors computed the spectral moments of 
this fullerene graphs as in the following: 

  
Theorem 7. The spectral moments of F1, Si(F1), 2 ≤ i ≤ 8, can be computed by the 
following formulas: S2(F1)=3n, S3(F1) = 12, S4(F1) = 15n, S5(F1) = 180, S6(F1) = 93n  60, 
S7(F1) = 1932 and S8(F1) = 639n  960. 
 

Theorem 8. The spectral moments of F2, Si(F2), 2 ≤ i ≤ 8, can be computed by the 
following formulas: S2(F2)=3n, S3(F2) = 0, S4(F2) = 15n + 16, S5(F2) = 80, S6(F2) = 93n + 
96, S7(F2) = 1120, S8(F2) = 639n + 400. 
 

Theorem 9. The spectral moments of F3, Si(F3), 2 ≤ i ≤ 8, can be computed by the 
following formulas: S2(F3)=3n, S3(F3) = 0, S4(F3) = 15n, S5(F3) = 140, S6(F3) = 93n  168, 
S7(F3) = 1988, S8(F3) = 639n  2464. 
 

Theorem 10. The spectral moments of F4, Si(F4), 2 ≤ i ≤ 8, can be computed by the 
following formulas: S2(F4)=3n, S3(F4) = 0, S4(F4) = 15n+96, S5(F4) = 0, S6(F4) = 93n + 
960, S7(F4) = 0, S8(F4) = 639n + 8256. 
 

3. MAIN RESULTS 

In this section, we discuss the relationship between the coefficients of characteristic 
polynomial and the number of 5 and 6 matchings in regular graphs with girth 5 so that 
every 6cycle has at most one edge in common with 5cycles and with other 6cycles and 
also any two 5cycles are at distance at least 2. Then we determine these relations for IPR 
(5, 6)fullerenes, and also we compute the coefficients of the characteristic polynomial of 
some generalized fullerene graphs.  
  
Theorem 11. Suppose G is an rregular graph satisfying the above conditions. Then the 
relation between the tenth coefficient of characteristic polynomial of G and m(G, 5) is the 
following: 

).(2)(2)(7)(108)(54)(2/13

)(54)(4/1)(16)(16)()(2)5,(

5
2

5
2

6666

2
6

22
68881010

CCnrCrCCnrC
rCrnCCrCnrCCGma








 



12                                                                                                                     TAGHVAEE AND FATHTABAR 

 

Proof. By using of Theorem 1, we have: 
 

,4)1(2)1(2)1(2)1()5,( 8789
10  

DCBA
Gma

  

where A is a 10cycle, B is a subgraph isomorphic with a 8cycle and one single edge, C is 
a subgraph isomorphic with a 6cycle with two separate edges and D is a subgraph 
isomorphic with two separate 5cycles. Now, the values of A, B, C and D are calculated. It 
is clear that |A|=φ(C10) and |B|=φ(C8)(m88(r2))= φ(C8)(nr/28r+8). To compute |C| 
we consider all undesirable cases to have a subgraph isomorphic with C and then subtract 
these values of all the possible situations. Since all subgraphs isomorphic with C is equal to 
φ(C6) (nr/26)(nr/27)/2, so if we put φ(C6)=h, φ(C10)=t and φ(C8)=k, then |C|= 
1/8hn2r2+13/4hnr+27h +27hr254hr7/2hnr2. Also, as it can be observed |D|= p( p1)/2. 
Therefore 

.227108542/1354

4/116162)5,(
222

22
10

pphnrhrhhnrhr
rhnkkrknrtGma




 

 

In the following section, we consider relationship between the twelfth coefficients 
of characteristic polynomial of a regular graph with consideration of the above conditions. 
Before the proof of the main result, we need some technical Lemmas. 
 

 
Figure 3. All subgraphs isomorphic with N, M and K. 

 

Lemma 12. Let G be an r–regular graph that above conditions exist for it. Then the number 
of subgraphs isomorphic with a 6cycle together with a pendant edge and with two 
separate edges is equal to: 

.2/34/3906654160476152/332/81 22322332 rhnrhnhrhrhrhhnrhnrhnr   
 

Proof. Let N be a subgraph isomorphic with a 6cycle with a pendant edge and two 
separate edges, where is depicted in Figure 3. To calculate the number of subgraphs 
isomorphic with N, first we consider all subgraphs isomorphic with N, that is equal to 
6h(r2)(m7)(m8)/2. Next we consider all of the undesirable cases to have a subgraph 
isomorphic with N where is shown in Table 1. Therefore, by consideration these values and 
subtracting all undesirable cases from possible conditions for having a subgraph 
isomorphic with N we have: 
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.2/34/3906654160476152/332/81|| 22322332 rhnrhnhrhrhrhhnrhnrhnrN   
 

Lemma 13. Let G be an r-regular graph satisfying the above conditions. Then the number 
of subgraphs isomorphic with a 6cycles together with a single edge and a path P3 (where 
the edge and P3 are distinct) is equal to: 

.25894/11910
24201115554/1

3222

232332

hhnrrhnhnrhnr
hbrhbrhbrhrhrhrrhn



  

Proof. Let M be a subgraph isomorphic with a 6cycle together with a single edge and a 
path P3, where is depicted in Figure 3. To calculate |M|, the same as previous Lemma, we 
consider all of the possible cases to have a subgraph isomorphic with M and all adverse 
conditions that are shown in Table 2. All possible cases is equal to 
h(3(r2)(r3)+(n6)r(r1)/2)(nr/28), and to obtain adverse conditions, these cases are 
easily computable and we just compute the cases 8 and 9 in Table 2. 

In case 8 (a 6cycle together with a path P3 with an edge at the end of this path), 
first we choose a 6cycle. Then we consider all the adjacent vertices to 6-cycle, where the 
number of these vertices is 6(r2). So by a simple check there are 6(r2)(r1)(r2)(2r2)/2 
ways for selecting the path P3 with an edge at the end of this path, for the adjacent vertices 
to 6cycle. Now we consider all of vertices that are at distance 2 from 6cycle and we 
consider the following cases: 

Case 1. If this vertex that is at distance 2 from 6cycle is on a 5cycle, then we 
have the following subcases: 

Subcase 1.1. If both selected edges to form path P3 are on 5–cycle, then there are 
2(r-2) ways for selecting the path P3 with an edge at the end of this path. 
 Subcase 1.2. If only an edge of P3 is on 5–cycle, where the number of these edges 
are equal to 2(r-2), then there are 2(r-2)(2r-3) ways for selecting the path P3 with an edge at 
the end of this path. 

Subcase 1.3. If none of the two edges of path is on 5cycle, where the number of 
these edges are equal to (r2)(r3)/2, then there are (r2)(r3)(2r2)/2 ways for selecting 
the path P3 with an edge at the end of this path. Finally for the case that the vertex in 
distance 2 from 6cycle is on a 5cycle we have 

b[2r4+(2r4)(2r3)+(r2)(r3)(2r2)/2], 
where b is the number of edges that are in common with a 6cycle and a 5cycle. 
 

Case 2. If the vertex that is at distance 2 from 6cycle is not on a 5cycle, where 
the number of these vertices are equal to 6(r1)(r2)2b, then there are (r1)(2r3) + 
(r1)(r2)(2r2)/2 ways for selecting the path P3 with an edge at the end of this path. 
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Table 1. All of the undesirable situations to have a 6cycle with a pendant edge and with 
two separate edges and their numbers. 
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Finally, for the case that the vertex in distance 2 from 6cycle is not on a 5cycle, 

there are  

)2/)22)(2)(1()32)(1)((2)2)(1(6(
)2/)22)(3)(2()32)(42(42(



rrrrrbrr
rrrrrrb

 
ways for selecting the path P3 with an edge at the end of this path. Therefore, to calculate 
case 8 in Table 2 we have: 
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).3696248422(
]2/)22)(1())2)(1(6)2(66()2/)22)(2)(1(

)32)(1)((2)2)(1(6()2/)22)(3)(2(
)32)(42(42(2/)22)(2)(1)(2(6[

322323 






rrrbrbrbrnrnrnrh
rrrrrrnrrr

rrbrrrrr
rrrbrrrrh

 

In case 9 Table 2, (a 6–cycle together with a path P3 and an edge on middle vertex 
of P3), we first select a 6–cycle and then a path P3 of all the vertices except vertices of 6-
cycle. For the vertices that are at distance 1 from 6–cycle, where the number of these 
vertices are 6(r2), there are 6((r2)(r1)(r2)/2)(r3) ways to choose a path P3 such that 
there is an edge on the middle vertex. For other vertices, where the number of these vertices 
are n66(r2), there are (n66(r2))r(r1)(r2)/2) ways to choose a path P3 such that 
there is an edge on middle vertex. Therefore, there are h(6(r2)(r1)(r2)/2)(r3) + 
(n66(r2))r(r1)(r2)/2) ways to choose case 9 of Table 2. Finally, after calculating all 
adverse conditions in this Table, we have: 

 .25839224/121910

22324203111555324/1||

hhnrrhnhnrhnr

hbrhbrhbrhrhrhrrhnM



  

 

Lemma 14. Let G be an r–regular graph with the above conditions. Then the number of 
subgraphs isomorphic with a 6cycle together with three separate edges is equal to: 

.8/748/112657136
23/442/56/59147

223332233

223

rhnrhnrhnhrhrhbrh
hbrhbrhnrhnrhnrhr


  

 

Proof. Let K be a subgraph isomorphic with a 6–cycle and three separate edges, where is 
depicted in Figure 3. To calculate |K|, we must consider all the undesirable cases for having 
a subgraph isomorphic with K, that is shown in Table 3 and then we subtract these values 
of all the possible situations to have a subgraph isomorphic with K. Notice that all 
subgraphs isomorphic with K is equal to h(m-6)(m-7)(m-8)/6, so we must find a formula for 
all adverse conditions . In this Table all of values in front of figures are easily calculated, 
and with putting up values of Lemmas 12 and 13 we obtain: 

.228/73348/13221263573136

223/4422/536/59147||

rhnrhnrhnhrhrhbrh

hbrhbrhnrhnrhnrhrK





 
 

Theorem 15. Suppose G is an rregular graph satisfying the above conditions. Then the 
relationship between the twelfth coefficients of characteristic polynomial of G and m(G, 6) 
is stated in the following: 
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,22020144114252

270202942/174/1920
422024/1206824

724/753/5923/8824)6,(

2232

2222

332233232

2223
12

nrphptnrprkrhrhr
hrppnrhrknrrknknrtr

krrhnprhntkrhbrhbr
krhnhnrhnrhbrhnreaGma









 

where k= φ(C8), e= φ(C12), t= φ(C10), p= φ(C5), h= φ(C6), a is the number of edges 
common to two 6-cycles and b is the number of edges that are in common with a 6–cycle 
and a 5–cycle. 
 
Proof. By Theorem 1 we have: 

,4)1(4)1(2)1(2)1(2)1(2)1()6,( 109891110
12  

FEDCBA
Gma

 
where A is a subgraph isomorphic with a 10–cycle and a single edge, B is a subgraph 
isomorphic with a 12–cycle, C is a subgraph isomorphic with a 8–cycle and two separate 
edges, D is a subgraph isomorphic to 6–cycle together with three separate edges, E is a 
subgraph isomorphic to two separate 5–cycles with one single edge and F is a subgraph 
isomorphic with two separate 6–cycles. It is easy to see that |A|= t(nr/210r+10) and 
|B|=e. To calculate |C|, we consider all of the possible cases to have a subgraph isomorphic 
with a 8–cycle with two separate edges and all of the undesirable situations, and so we 
obtain: 

.2/972342364/178/1
)992/)(2(8)2(28)1)(2(8)3)(2(4

)2/)1()88()1()2(2()9)(8(2/||

22322

2

2

knrkrkrkrkknrrkn
rnrrkrkrrkrrk

rrrnrrkmmkC







 

 
Table 2. All of the undesirable situations to have a 6cycle with a single edge and a path P3 

and their numbers. 
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On the other hand, by Lemma 14,  

.8/748/112657136
23/442/56/59147||

223332233

223

rhnrhnrhnhrhrhbrh
hbrhbrhnrhnrhnrhrD





 
Let p be the number of 5–cycles that are satisfied in above conditions, i.e. every 6–

cycle has at most one edge in common with a 5–cycle and  the other 6–cycles and also any 
two 5–cycles has distance of at least 2. Then, it is clear that |E|=p(p1)/2(nr/210r+10). 
Now let a be the number of edges common to two 6–cycles, then |F|=h(h1)/2a. 
Therefore,  
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.222202014431142252

2702202942/17224/12920

343222203324/1202683224

72224/72533/5923/8824

)2/)1((4))10102/(2/)1((4
)228/73348/13221263573136

223/4422/536/59147(2)2/2972

23432364/17228/1(22)10102/(2)6,(12
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Table 3. All of the undesirable situations to have a 6-cycle with three separate edges and 
their numbers. 
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In following, suppose G is an IPR (5, 6)–fullerene such that any two pentagons are 
at distance at least 2. In [13] the authors calculated some of the coefficients of characteristic 
polynomial of G. Now, in this paper by using these coefficients and by using of Theorems 
11 and 15 we calculate the 5, 6-matchings in G. 
 

Theorem 16. Let G be an IPR (5, 6)fullerene such that satisfying the above conditions. 
Then we have: 

.1280/8164/13516/249964/17191210/3543)5,( 5423 nnnnnGm   
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Proof. By using of Theorem 11 we have: 

.22227108542/13254

224/116162)5,(10

pphnrhrhhnrhr

rhnkkrknrtGma




 

On the other hand by [13] we have:  
.255610/900316/320764/179164/1351280/81 2345

10  nnnnna  
Also we have, r=3, φ(C10)=a=3n/2-60, φ(C8)=0, φ(C5)=12 and φ(C6)=n/2-10. Therefore, 

.1280/8164/13516/249964/17191210/3543)5,( 5423 nnnnnGm   
 
Theorem 17. Let G be an IPR (5, 6)–fullerene such that satisfies the above conditions. 
Then we have:

 

 

.5120/81512/405256/4113
128/21339160/146177107704/7607)6,(

654

32

nnn
nnnGm




 

 

Proof. By using of Theorem 15 we have:  

).22020144114252

270202942/174/1920
422024/1206824

724/753/5923/8824()6,(

2232

2222

332233232

2223
12

nrphptnrprkrhrhr
hrppnrhrknrrknknrtr

krrhnprhntkrhbrhbr
krhnhnrhnrhbrhnreaaGm









 
On the other hand, by [13] and by Newton’s identity we have: 
 

.5120/81512/405256/4257
128/25227160/240017259704/31899

654

32
12

nnn
nnna





 
Also, in an IPR (5,6)–fullerene we have, e = φ(C12)=0, t = φ(C10)=a=3n/260, k= 

φ(C8)=0, p= φ(C5)=12, h = φ(C6) = n/210 and b = the number of edges are common to 
6cycles and 5cycles = 60. Therefore,  

.5120/81512/405256/4113
128/21339160/146177107704/7607)6,(

654

32

nnn
nnnGm




 

 

In the following we consider all of the generalized fullerene graphs that were 
defined in this paper and the coefficients of characteristic polynomial of these graphs are 
calculated.  
 

Theorem 18.The coefficients of characteristic polynomial of F1, ai(F1), for i =1, 2, 3,  , 8 
are: a1 = 0, a2 = 3n/2, a3 = 4, a4 = 9/8n2  15n/4, a5 = 6n – 36, a6 = –9n3/16 + 45n2/8 – 
31/2n + 18, a7 = 9n2/2 + 69n  276, a8 = 27n4/128  135n3/32 + 969n2/32  855n/8 + 
264. 
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Proof. Apply Theorems 7−10 and Newton’s identity. 
 

Theorem 19. The coefficients of characteristic polynomial of F2 , ai(F2), for i =1, 2, 3,  , 
8 are: a1 = 0, a2=3n/2, a3 =0, a4 = 9n2/8  15n/4  4, a5 = 16, a6=9n3/16 + 45n2/8  
19n/2  16, a7 = 24n  160, a8 = 27n4/128  135n3/32 + 825n2/32  327n/8  42. 
 

Theorem  20. The coefficients of characteristic polynomial of F3, ai (F3), for i =1, 2, 3,  , 
8 are: a1 = 0, a2=3n/2, a3 = 0, a4 = 9n2/8  15n/4, a5= 28, a6=9n3/16 + 45n2/8  31n/2 + 
28, a7 = 42n  284, a8=27n4/128  135n3/32 + 969n2/32  975n/8 + 308. 
 

Theorem 21. The coefficients of characteristic polynomial of F4, ai(F4), for i =1, 2, 3,  , 
8 are: a1= 0, a2=3n/2, a3 =0, a4=9n2/8  15n/4  24, a5 = 0, a6=9n3/16 + 45n2/8 + 41n/2 
 160, a7 = 0 and a8 = 27n4/128  135n3/32 + 105n2/32 + 2001n/8  744. 
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1. INTRODUCTION  

Let G = (V,E) be a simple connected graph with vertex set V and edge set E. A topological 
index of a simple connected graph G is a graph invariant which is related to the structure of 
the graph. The Wiener index is one of the best known topological index of a simple 
connected graph which is studied in both mathematical and chemical literature and it's 
definition is in terms of distances between arbitrary pairs of vertices, see for example [1, 2, 
3, 4]. The Wiener index of G is denoted by )(GW and it is defined by: 

 


VuGVvu
udvudGW )(

2
1),()(

)(},{
, 

where ),( vud is the distance between vertices u and v and  


Vv
vudud ),()( . 
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The Szeged index [5, 6] is another invariant of a graph which is based on the 
distribution of the vertices and introduced by Ivan Gutman and it is the same with the 
Wiener index in the case that G  is a tree. The set of vertices of graph G  which are closer 
to u  (resp. v ) than v  (resp. u ) is denoted by )|( GeNu (resp. )|( GeNv ). This index is 

defined as the summation of ( )|( Genu )|( Genv ) where )|( Genu  (resp. )|( Genv ), is the 
number of vertices of graph G closer to u  (resp. v ) than v  (resp. u ), over all edges uve 
of graph. Now, the Szeged index of G  which is denoted by )(GSz  is defined as: 

 

)).|(.)|(()( GenGenGSz vEuve u 
  

The Padmaker-Ivan (PI) index [7, 8] is another topological index of a simple 
connected graph that takes into account the distribution of edges so is closely related to 
Szeged index. The PI index of G  is defined by 

 

 


Euve eveu GenGenGPI )),|()|(()(  
 

where )|(( Geneu (resp. )|(( Genev ) is the number of edges of the subgraph of G  which has 

the vertex set )|( GeNu  (resp. )|( GeNv ). 
The molecular topological index (Schultz index) was introduced by Schultz and 

Schultz [9, 10]. In addition to the chemical applications, the Schultz index attracted some 
attention that in the case of a tree it is related to the Wiener index [11]. It is denoted by 

)(GS and defined as follows: 

,))()(()(
},{ 


Vvu

vuGS   

 where )(u  (resp. )(v ) is the degree of vertex u  (resp. v ). 
The Gutman index which attracts more attention recently is defined by Klavžar and 

Gutman in [11, 12]. This index is also known as the Schultz index of the second kind but in 
this paper the first name is used. Gutman [11] has proved that if G  is a tree then there is a 
relation between Wiener and Gutman indices of G  that we will mention this in Section 2. 
The Gutman index of G  is denoted by )(GGut and is defined as follows: 

   Vvu vuGGut },{ ))()(()(  
The hyper–Wiener index is one of the graph invariants, used as a structure 

descriptor related to physicochemical properties of compounds. This index was introduced 
by Randić in 1993 as extension of Wiener index [13] and it has come to be known as the 
hyper–Wiener index by Klein [14]. The hyper–Wiener index of G is denoted by )(GWW
and is defined as follows: 

.)),()((
2
1)(

},{
2 


Vvu

vudGWGWW  



The Topological Indices of some Dendrimer Graphs                                                                  27 

 

Here we mainly try to determine the Wiener, hyper Wiener and PI  indices of two 
kinds of dendrimer graphs (explained in Section 2), then the Schultz, Szeged and Gutman 
indices are obtained as results of the relation between the Wiener index with both the 
Schultz and Gutman indices. 

u0

u1

u2

ui

un

ui+1

un-1

 

Figure 1. The first dendrimer graph nG . 
  
 
 

 
2. CALCULATING THE WIENER, HYPER-WIENER AND PI INDICES OF THE 
FIRST DENDRIMER GRAPH nG  
 
Let G = (V,E) be  the graph with vertex set V and edge set E as in Figure 1. This graph 
begins with one vertex u0  which connects to two other vertices such that each one of these 
two vertices connects to two other vertices and so on. The vertices which have the same 
distance from u0 are located on a branch. Let G have )1( n  branches so there are 2i 
vertices in the i'-th branch ( n i0 ). We denote this graph by nG .  

 
Proposition 2.1. Let ),(G EVn   be the dendrimer graph in Figure 1, then:  

 4).+(n 2+2)-(n 4)( 1)+(n1)+(nnGW  
 

Proof. From definitions we have: 

.)(
2
1),()(

)(},{  


VuGVvun udvudGW  
 

This graph has 1n  branches and there are i2  vertices in the i'–th branch, so we 
denote the vertex set of this branch by iV , hence we have: 

n

i iVV
0

 . Because of the 
symmetric structure of the graph nG  (Figure l), for every vertex u in the n'th branch, )(ud
is constant and doesn't depend on u . So we choose iu  as representative of the i'–th branch (

n i0 ). 
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)1().,(),()(  


nn VVv nVv nn vudvudud   
12 n
 vertices which are in lower branch of Figure l, are of the same distance from 

nu  and this value equals to: 
2d( nu , 0u )=2n.   

Also 22 n vertices are of the same distance from nu and this value equals to: 

        ).1(2),(2 1  nuud n  
Finally continuing in this way the distance between nu  to the last vertex in the n'–th 

branch is equals to: 

                                                          2),(2 1 nn uud . 
So we have: 

).2)1(1(22
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                           (2) 

 
For computing the second part of the summation in (1), note that because the graph 

nG is a tree, for every vertex i

n

i
Vv

0
   we have: 
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Considering (2) and (3): 
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Because, .0)( oud  Hence : 
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By multiplying n2  in )( nud the distance between vertices in the n'–th branch is 

considered twice, so if the Wiener index of nG with n  (resp. 1n ) branch is denoted by 
)1( nW  (resp. )(nW ) we have: 

 
.2)5(2)53(

)2)1(1(2)6(22)32(2
),())6(2)32((2)1()(

2

)1(
},{

1

nn

nnnnn
Vvu

nn

nn
nnn

vudnnnWnW
n








 

 



The Topological Indices of some Dendrimer Graphs                                                                  29 

 

So, 
                    4).+(n 2+2)-(n 42)5(2)53()( 1)+(n1)+(n2

1
 

kkn

i
kknW                       ■ 

Corollary 2.2. 4).+(n 2+2)-(n 4)( 1)+(n1)+(nnGSz   

Proof. The graph nG is a tree, so by [11] the result is obtained.                                             ■ 

 
Corollary 2.3. 2.-19)+(4n 2+9)-(4n 4)( 1)+(n1)+(nnGS  
 
Proof. Because nG  is a tree by [11] we have: 1)-n(n - )( 4)( nn GWGS  , where n is the 
number of vertices of nG . Now by replacing the closed form of )( nGW which was obtained 
from proposition 2.1, the proof is completed.                                                                         ■ 

Corollary 2.4. 10.19)+(4n 2+10)-(4n 4)( 1)+(n1)+(n nGGut  
Proof. Because nG  is a tree, by [11] we have, 1)-1)(n-(2n - )( 4)( nn GWGGut   where n
is the number of vertices of nG  and by proposition 2.1 it is done.                                     ■ 
 
Corollary 2.5. 2).-3)(2-2()( 1)+(n1)+(nnGPI   
Proof. Because nG is a tree so for every edge uve  of nG  we have: 
  

.12||)|()|( 1  n
nvnu VGenGen  

                 
Subgraphs of nG  with vertex sets )G|( neNu and )|( nv GeN both are trees and 

whose number of edges are 1)|( nu Gen  and 1)|( nv Gen  respectively. Then we have:  
 

3)-2)(2-2(3)-2(||)(
3)-2)(2-2(3)-2(||

322)|()|()|()|(

1)+(n1)+(n1)+(n

1)+(n1)+(n1)+(n

1




 

EGPI
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n

n
nvnunevneu

 

 
Proposition 2.6. The hyper–Wiener index of nG  in Figure 1 is:  

1.- 31)-3n-(n224)14n-(4n4)( 2n2n nGWW  
 
Proof. By definition we have: 

 


Vvu
vudGWGWW
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2
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Because of the symmetric structure of the graph nG in Figure l, d(u) for every 
vertex u in the n'–th branch is constant and doesn't depend on u, so we choose iu as 
representative of the i'–th branch ( 1i0  ).  

 
 


Vnv nVv nVv nn vudvudvudud n
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 The graph nG  is a tree, so, for every vertex, i
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 Now by (6) we have: 
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n2 vertices are in the n'–th branch and by symmetric structure of the graph nG we have : 
 

.12)32(22

)2(2...)22(2)2(2),(
22

1
21

2022212















nni

nnvud
nn

i
i

nn
Vv n

n

                                                  
(8) 

 
 
By (4) in the proof of the proposition 2.1, and considering (7), (8): 
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Now considering (9) and the formula of )( nGW which was computed in proposition 
2.1, and replacing those in (5), the proof is done.                                                                  ■ 

 
 
 
 
 
 
 

 

 

 

Figure 2. The second dendrimer graph nH . 
 
3. CALCULATING THE WIENER, HYPERWIENER AND PI INDICES OF THE 

SECOND DENDRIMER GRAPH nH  
 
Let G = (V,E) be the graph with vertex set V  and edge set E , that begins with one vertex 

0u  in Figure 2 that connects to three vertices which form the first branch and each one of 
these three vertices connects to two other vertices in second branch and so on. It means that 
any vertex but 0u  in the i'–th branch joins to the two vertices in the (i+1)'–th branch, so the 
vertices which have the same distance from 0u  are located on one branch. Let G have 1n

branches therefore, there are 123  i vertices in the i'–th branch ( n i0 ). The graphG is 
another kind of dendrimer graph which have 1n  branches, which is denoted by nH . 

 
Proposition 3.1. Let ),( EVH n   be the dendrimer graph in Figure 2, then:  

3-2185)4-3(3n  )( nn nHW . 
 

Proof.  The graph nH  consists of a starting vertex u0 and n+1 branches such that the vertex 
set of the i'–th branch ( 0i ), has 123  i  vertices and is denoted by iV and 1|| 0 V . So we 
have: 
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Because of the symmetric structure of the graph G in Figure 2, )(ud for every vertex u  in 
the n'–th branch is constant and doesn't depend on u , so we choose iu  as representative of 
the i'–th branch ( n i0 ). 

.),(),()(  


nn VVv nVv nn vudvudud                                 (10) 

2/3 vertices in n'–th branch have the same distance from ui which is:  
nuud n 2),(2 0  . 

And the distance of 1/2 of the rest vertices in this branch from un is: 
)1(2),(2 1  nuud n . 

By continuing in this way we have:  
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Now because nH is a tree, the path between any two vertices is unique and for 

every vertex i

n

i
Vv

0
   we have: 

),(1),( 1 vudvud nn  . 
So: 
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By (10), (11) and (12) we have: 
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If the Wiener index of nH  with 1n branches is denoted by ),(nW we have: 
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And the proof is completed.                                                                                                     ■ 
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Corollary 3.2. 3-2185)4-3(3n )( nn nHSz . 
 
Proof. The graph nH  is a tree so, by [11] the result is obtained.                                           ■ 
 
Corollary 3.3. 18-)87(2+69)-(36n 4   )( nnnHS . 
 
Proof. Because nH  is a tree by [11] we have, 1)-n(n - )( 4)( nn GWGS  , where n is the 
number of vertices of nH . Now by replacing the closed form of )( nHW which was 
obtained from proposition 3.1, the proof is completed.                                                          ■ 
 
Corollary 3.4. 97.-)105(2+78)-(36n 4)( nnnGGut   
 
Proof. Because nH  is a tree by [11] we have, 1)-1)(n-(2n - )( 4)( nn GWGGut   which n  
is the number of vertices of nH  and by proposition 3.1 it is done.                                        ■  
 
Corollary 3.5. 4)-23( 3)-23()( nn nHPI . 

 
Proof. Because nH  is a tree so for every edge uve  of nH we have:  

.223||)H|()H|( n
nn  Venen vu   
 

Subgraphs of nH  with vertex sets )H|( neNu and )|( nv HeN  both are trees, so the 
number of edges of them are 1)H|( n enu  and 1)H|( n env respectively. Then we have:  
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Proposition 3.6. The hyper–Wiener index of nH  is: 

 .  6)87(2-81)451n-(18n
2
1)( nn2 nHWW  

 
 Proof. By the definition we have: 
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2
1)(                                (14) 

Because of the symmetric structure of the graph nH Figure 2, d(u) for every vertex u in the 
n'–th branch is constant and doesn't depend on u, so we choose ui as representative of the i'–
th branch ( 1i0  ). 
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The graph nH  is a tree so, for any vertex i
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 Now by (15) we have: 
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 2/3 vertices of the n'–th branch have the same distance from un which is:  
,2),(2 0 nuud n   

 and the distance of 1/2 of the rest vertices in this branch from un is: 
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By (13) in the proof of the proposition 3.1, and considering (16), (17): 
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Now considering (18) and the formula of )( nHW  which was computed in 
Proposition 3.1, and replacing those in (14), the proof is done.                                             ■  
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Bucket recursive trees are an interesting and natural generalization 
of ordinary recursive trees and have a connection to mathematical 
chemistry. In this paper, we give the lower and upper bounds for 
the moment generating function and moments of the multiplicative 
Zagreb indices in a randomly chosen bucket recursive tree of size 
n  with maximal bucket size 1b . Also, we consider the ratio of 
the multiplicative Zagreb indices for different values of n  and b . 
All our results reduce to the ordinary recursive trees for 1=b . 
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1.  INTRODUCTION  

Trees are defined as connected graphs without cycles. Recursive trees are rooted labelled 
trees, where the root is labelled by 1 and the labels of all successors of any node v  are 
larger than the label of v  [8]. It is of particular interest in applications to assume the 
random recursive tree model and to speak about a random recursive tree with n  nodes, 
which means that one of the 1)!( n  possible recursive trees with n  nodes is chosen with 
equal probability, i.e., the probability that a particular tree with n  nodes is chosen is always 

1)!1/( n . An interesting and natural generalization of random recursive trees has been 
introduced in [7], and these are called bucket recursive trees. In this model the nodes of a 
bucket recursive tree are buckets, which can contain up to a fixed integer amount of 1b  
labels. A probabilistic description of random bucket recursive trees is given by a 
generalization of the stochastic growth rule for ordinary random recursive trees (which  is 
the special instance 1=b ). In fact, a tree grows by progressive attraction of increasing 
integer labels: when inserting label 1n  into an existing bucket recursive tree containing n  
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labels (i.e., containing the labels }{1,2,..., n ) all n  existing labels in the tree compete to 
attract the label 1n , where all existing labels have equal chance to recruit the new label. 
If the label winning this competition is contained in a node with less than b  labels (an 
unsaturated bucket), label 1n  is added to this node, otherwise if the winning label is 
contained in a node with b  labels already (a saturated bucket), label 1n  is attached to this 
node as a new bucket containing only the label 1n . Starting with a single bucket as the 
root node containing only the label 1, after 1n  insertion steps, where the labels n,2,3,  
are successively inserted according to this growth rule, results in a so called random bucket 
recursive tree with n  labels and maximal bucket size b . For an existing bucket recursive 
tree T  with n  labels, the probability that a certain node Tv  with capacity bvc  )(1  
attracts the new label 1n  is equal to the number of labels contained in v , i.e., c(v)/n (see 
[7]). Figure 1 illustrates a bucket recursive tree of size 11=n  with maximal bucket size 

2=b . For a connection to chemistry, suppose n  atoms in a dendrimer (a repetitively 
branched molecule) are stochastically labelled with integers n,1,2, , then labelled atoms 
in a functional group can be considered as the labels of a bucket in a bucket recursive tree. 
It is obvious that the number of nodes (here buckets) in a bucket recursive tree T  is less 
than n  for 1>b . Thus we can show the size of the tree as a function of n  and b . Let )(bh  
be a real valued function of b , where 0=(1)h  and 1)( bh  for all 2b . Now, we can 
write the size of the tree as )(bhn  , i.e., )(|=)(| bhnTV  . We choose the function )(bh  
in this form for relation between the bucket recursive trees and ordinary recursive trees. 
 

 
Figure 1: A bucket recursive tree of size 11 with maximal bucket size 2  [6]. 

 
Two vertices of graph G , connected by an edge, are said to be adjacent. The 

number of vertices of G , adjacent to a given vertex v , is the degree of this vertex, and 
will be denoted by )(vd . Todeschini et al. [9, 10] have suggested to consider 
multiplicative variants of additive graph invariants, which applied to the Zagreb indices 
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would lead to the multiplicative Zagreb indices of a graph G , denoted by )(1 G  and 
)(2 G , under the name first and second multiplicative Zagreb index, respectively. These 

are defined as  
 

                     2

)(
1 ))((=)( vdG

GVv



                                                                              (1) 

and  
              ),()(=)(

)(
2 vdudG

GEuv



                                                                         (2) 

 

 where )(GV  and )(GE  are the vertex set and edge set of G , respectively [3]. 
In probability theory and statistics, the moment generating function of a random 

variable is an alternative specification of its probability distribution. Thus, it provides the 
basis of an alternative route to analytical results compared with working directly with 
probability density functions or cumulative distribution functions. There are particularly 
simple results for the moment generating functions of distributions defined by the weighted 
sums of random variables. Note, however, that not all random variables have moment 
generating functions.  
 
Definition 1.1 The moment generating function of a random variable X  is defined as  
 

,     )),(exp(=)( RttXtM X E  
wherever this expectation exists.  
 

The reason for defining this function is that it can be used to find all the moments of 
the distribution. In fact,  

,
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=)(
0=

kk

k
X t

k
tM 



 

where 1)( kk  is the k th moment of X , i.e., )(= k
k XE  [1]. 

 

2. RESULTS 

Let )(vdn  denote the degree of bucket v  in our model of size n  with maximal bucket size 

b, and bnZ ,1,  be the first multiplicative Zagreb index. We also define nM  to be the sigma–

field generated by the first n  stages [1]. If label n  is attached to an unsaturated bucket, 
then bnbn ZZ 1,1,,1, =  . But if label n  is attached to a saturated bucket, then by the stochastic 

growth rule of the tree and by definition of the first multiplicative Zagreb index,  
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where U  is uniformly distributed on buckets set.  
 
Theorem 2.1  Let ))(exp(=)( ,1, bntZtM E  be the moment generating function of bnZ ,1,  of a 

bucket recursive tree of size n  with maximal bucket size b . Then  
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where 1)( ,, kbnk  is the k th moment of bnZ ,1, . For 1k ,  
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since k

bnZ 1,1,   is 1nM -measurable and the label n  is attached to any saturated bucket v  of 

the already grown tree 1nT  with probability 
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Taking expectation of the inequality (4):  
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and proof is completed.  



On the Multiplicative Zagreb Indices of Bucket Recursive Trees                                             41 

 

  
If we replace t  by tln , then we obtain the upper bound for the probability 

generating function [1]. 
 
 Let bnZ ,2,  be the second multiplicative Zagreb index of a bucket recursive tree of 

size n  with maximal bucket size b . Then by definition of the second multiplicative Zagreb 
index,  
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Theorem 2.2  Let ))(exp(=)( ,2, bntZtN E  be the moment generating function of bnZ ,2,  of a 

bucket recursive tree of size n  with maximal bucket size b . Then  
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Proof. Let 1)( ,, kbnk  be the k th moment of bnZ ,2,  of a bucket recursive tree of size n  

with maximal bucket size b . For 1k , similar to the first multiplicative Zagreb index,  
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Taking expectation of the inequality (8):  
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Now, proof is completed just similar to the proof of Theorem 2.1.  
  
 In passing, we consider the ratio of the multiplicative Zagreb indices for different 
values of n  and b .  
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Theorem 2.3  Suppose  

                     
21

,,2

,,1*
;,,2,1

 {1,2},     ,= ttt
Z

Z
Z ik

bnt

k
bnt

kbntt   

and  
).(= *

;,,2,1;,,2,1 kbnttkbntt ZEP  

Then  

                                              
)(

4 1

1=
1;,2,1, bhj

j
b

n

bj
bn

k

kbn 
 




P  

and  

                                              .)(
4

1

1=

1

;,1,2, j
bhjb n

bj
k

bn

kbn


 






P  

Proof. We have k
bn

k
bn ZZ 1,2,,2,  . Let 1=)( xxg  for 0>x . Then g  is convex because 

02=)( 3  xxg  and by Jensen’s inequality 
)(

1)1(
XX E

E  . Thus  

 

.
)(

4

14

14

|14

|1

|

|=

1

1=
1

,,

)(

,1,

)(

1
,1,

2,2,

1
,1,

1,2,

1
,1,

1,2,

1
,1,

,2,
;,2,1,

bhj
j

b

Z

Z
Z

Z
Z

Z
Z

Z
Z

n

bj
bn

k
kbn

bnk

k
bn

bnk

nk
bn

k
bn

k

nk
bn

k
bn

nk
bn

k
bn

nk
bn

k
bn

kbn






























































































































E

EE

EE

EE

EE



M

M

M

MP

 

With the same manner, we can obtain the upper bound for kbn ;,1,2,P .  

 
Theorem 2.4  Suppose  
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With the same manner, we can obtain the lower bound for kbbn ;2,1,2,1,S .  
 
Corollary 2.5 The presented results in Theorem 4 reduce to the previous results in 
Theorem 2 for bbb == 21 .  
 
Theorem 2.6 Suppose  
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With the same manner, we can obtain the lower bound of kbji ,,,2,E .  

 We can study the ratio of the multiplicative Zagreb indices for different values of k  
as n  and d  are different with the above presented approach.  
 
Corollary 2.7  For ordinary recursive trees,  
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Also, let ][1,, kr  with 1=1/1/ kr  . By Holder’s inequality,  
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Then the bounds does not depend on i  and j  in ordinary recursive trees.  
 

3. DISCUSSION AND CONCLUSION 

So far, the multiplicative Zagreb indices have been studied vastly in literature from 
mathematical point of view. In this paper, we introduced the first probabilistic analysis of 
the multiplicative Zagreb indices in the random bucket recursive trees. Through the 
recurrence equations, an upper bound related to the first multiplicative Zagreb index and a 
lower bound related to the second multiplicative Zagreb index are obtained. As an 
interesting result it is shown that these bounds are the same in this model. It is difficult to 
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find a lower bound in Theorem 2.1 and an upper bound in Theorem 2.2, since the 
maximum degree of buckets of our model might not change for different values of n . 
However, we can study some probabilistic characteristics of these indices such as 
martingales, asymptotic normality and so on (see [4, 5, 6] for details). The lower and upper 
bounds for the moment generating function and moments are very important. For example, 
by Markov’s inequality,  

.
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Eliasi et al. [2] considered a multiplicative version of the first Zagreb index defined as  
)).()((=)(

)(

*
1 vdudG
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With the same approach, we can obtain the lower and upper bounds related to this index. 
Generally, one can extend this approach to another indices and tree structures. 
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Le Chatelier's principle is used as a very simple way to predict the 
effect of a change in conditions on a chemical equilibrium. 
However, several studies have been reported the violation of this 
principle, still there is no reported simple mathematical equation to 
express the exact condition of violation in the gas phase reactions. 
In this article, we derived a simple equation for the violation of Le 
Chatelier's principle for the ideal gas reactions at the constant 
temperature and pressure. 
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1. INTRODUCTION AND PRELIMINARIES 

Le Chatelier principle (LCP) is a very simple way of predicting the direction of a disturbed 
chemical equilibrium [1]. LCP is often expressed as follows: In a system at equilibrium, a 
change in one of the variables that determines the equilibrium will shift the equilibrium in 
the direction counteracting the change of that variable. However, the LCP has led to some 
wrong predictions and thus caused to some controversial discussions among many students 
and teachers [2−7]. 

The industrial synthesis of ammonia is shown below: 
푁 (푔) + 3퐻 (푔)  ⇌ 2푁퐻 (푔) 

This is a traditional example used by teachers when the LCP is discussed. In this reaction, 
at constant pressure and temperature, when the mole fraction of nitrogen in the equilibrium 
mixture exceeds 0.5, the LCP predicts that this change should shift the equilibrium to the 
right in order to moderate the excess of nitrogen. However, in contrast to LCP prediction 
this disturbance shifts the reaction to the left, producing more N2. 
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Although many discussions and examples of the failure of LCP have been reported, 
a simple inquiry to predict the conditions of the failure of LCP in gas phase reaction (at 
constant T and P) is still missing. The inquiries discussed by Jeffrey E. Lacy [10] are not 
general and only limited to special cases, where Δ휐 < 0. 

In this work, we mathematically derive the criteria in which LCP fails to predict the 
correct direction of a reaction at equilibrium upon changing the mole number of a species 
at constant T and P.  
  
2. THEOREM AND DERIVATION  

Theorem 1. In the ideal gas reaction ∑ 휈 퐴 (푔) = 0 where ∆  = ∑ ν  and 휈  is the 
stoichiometric factor of species 퐴 (푔) in the reaction (where it is positive for products and 
negative for reactants). At constant temperature (T) and pressure (P), by changing nj of the 
j-th species, the reaction proceeds towards the direction that offsets this perturbation unless: 

푥 ≥
∆

푚표푙 and ∆n≠0, where, xj is the mole fraction of j-th species at the reaction 
equilibrium before perturbation. In equal st ate, the reaction equilibrium does not change. 
However, in non-equal state, the perturbation factor is elevated.  
 

Derivation 2. The expression for the chemical potential (µi) at equilibrium is given as 
∑휐 휇 = 0. This term leads to Δ퐺 = 푅푇푙푛퐾 , where Δ퐺 = ∑휐 휇  and the standard 
equilibrium constant 퐾 = ∏ (푃 /푃 )  is a function of T only.  
 

For a closed system in equilibrium (at constant P and T), if we perturb the system 
by adding (or removing) ni mole of Aj, the equilibrium will shift to the direction to 
counteract this perturbation. Because in this condition Keq is constant, we use Qp as a 
parameter to find the direction of shift. We know from thermodynamic if Qp<Keq, the 
reaction proceeds forward (producing more product) and if Qp > Keq, the reaction proceeds 
backward (producing more reactant). At constants T and P, Q depend only on nj푄 =
푄 푛 ,푛 , … , 푛 … . Let us add small mole of Aj (푑푛 ) to this system. The term  

represents the change in Qp upon addition of Aj. As 푑푛  is positive, the sign of 푑푄  
illustrates the direction of reaction. The term  푑푄 > 0 denotes the elevation of Qp upon 
addition of species. This is the case where reaction proceeds backward to reach the new 
equilibrium (because Keq is constant). In the same way, the reaction proceeds forward if 
푑푄 < 0. However, there is no change in the reaction equilibrium upon addition of nj if 
푑푄 = 0. Before going step forward to the final statement, let us discuss the following 
required expressions:   

∆  = ∑ 휈                                                                        (1) 
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        푄 = ∏ (푃 )                                                                (2) 

푃 = 푥 푃                                                                        (3) 

푥  =                                                                            (4) 

푛 = ∑ 푛                                                                       (5) 

where in these equations, Pi , xi, and ni are partial pressure, mole faction, and mole numbers 
of Ai, respectively. The nt is the total mole numbers of all gases in the reaction. By 
substituting the equations 1, 3, 4 into Eq. 2, we get: 
 

푄 = ∏ (푃 ) = ∏ (푥 푃)
= (∏ (푥 ) )(∏ (푃) )

= ∏ (푃)∑

= ∏ ( )
∏ ( )

(푃)
∆

= ∏ ( )
( )∑

(푃)
∆

=  ∏ ( )

( )
∆ 푃

∆

=  푃
∆
푛  ∆ ∏ (푛 )

                                                 (6) 

 

The final statement is used to obtain 
, ,

 

 

, ,
=  

, ,
푃

∆
푛  ∆ (∏ (푛 ) )  =  푃

∆

, ,
푛  ∆ (∏ (푛 ) )

= 푃
∆

− ∆ (푛 )  ∆  (∏ (푛 ) ) + (푛 )  ∆ 휈 푛 ∏ (푛 )

=  푃
∆

− ∆ ( )
∆

(∏ (푛 ) ) + (푛 )
∆

휈 ∏ (푛 )

×
∆

− ∆ ∏ (푛 )  + 휈 ∏ (푛 )

=
∆

∏ (푛 ) − ∆  + 휈                (7) 

By Eq. 4 into the final term of Eq. 7, we have: 

푥 =  
푛
푛   →  푛  =  

푛
푥  
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, ,
=

∆

∏ (푛 ) − ∆ +  

=
∆

∏ (푛 ) − ∆ +  =
∆

∏ ( ) 휈 − 푥 ∆

        (8) 

The statement before bracket is denoted as ω for simplicity. It is clear that this 
statement is positive. 

푃
푛

∆
∏ (푛 )

푛 ≡ 휔 > 0 

Now Eq. 8 will be written as: 

, ,
= 휔 휈 − 푥 ∆                                             (9) 

                                    (휕푄 ) , , = 휔 휈 − 푥 ∆ 휕푛
, ,

                     (10) 

We now assume 휕푛
, ,

is positive, which means that nj is added to the system. 

Therefore, the only parameter which effects the sign of (휕푄 ) , ,  is the statement inside 

the bracket,i.e. 휈 − 푥 ∆ . We now try to determine the sign of this statement. To do it, let 
us refer to the absolute property as follows: 

|휃| = +휃, 휃 > 0
−휃, 휃 < 0     (11) 

We now distribute Eq. 10 vs. sign of ν  and ∆푛 to find in which condition 
(휕푄 ) , ,  is positive, negative or zero. For simplicity, we omit subscript T, P and 푛 . 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

휈 > 0 → 휕푄 = 휔 + 휈 − 푥 ∆ 휕푛

⎩
⎪
⎪
⎨

⎪
⎪
⎧
∆푛 > 0 → 휕푄 = 휔 + 휈 − 푥 ∆ 휕푛 →

⎩
⎪
⎨

⎪
⎧ 휈 > 푥 ∆ → 휕푄 > 0     

휈 < 푥 ∆ → 휕푄 < 0    

휈 = 푥 ∆ → 휕푄 = 0     

∆푛 = 0 → 휕푄 = 휔 + 휈 휕푛 > 0                                                                               

∆푛 < 0 → 휕푄 = 휔 + 휈 + 푥 ∆ 휕푛 > 0                                                          

휈 < 0 → 휕푄 = 휔 − 휈 − 푥 ∆ 휕푛     

⎩
⎪
⎪
⎨

⎪
⎪
⎧ ∆푛 > 0 → 휕푄 = 휔 − 휈 − 푥 ∆ 휕푛 < 0                                                        

∆푛 = 0 → 휕푄 = 휔 − 휈 휕푛 < 0                                                                                

∆푛 < 0 → 휕푄 = 휔 − 휈 + 푥 ∆ 휕푛 →

⎩
⎪
⎨

⎪
⎧ 휈 > 푥 ∆ → 휕푄 < 0     

휈 < 푥 ∆ → 휕푄 > 0     

휈 = 푥 ∆ → 휕푄 = 0     

         (12) 

 
For conditions 1, 4 and 5 of Eq. 12, where 휈 > 0 and 푄 > 0, by adding more 

species from products (휈 > 0) Qp increases. Therefore, the reaction shifts backward to 
reach the equilibrium, which is in agreement with the LCP. The conditions 6, 7 and 8 are 
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also in agreement with LCP; where by adding more reactants reaction proceeds forward. 
For conditions 3 and 10, no effect will be appeared by adding nj while 휕푄 = 0. The 
condition 2 (where 휈 > 0 and 휕푄 < 0) reveals that by adding more product to the 
reaction at equilibrium, the reaction shifts to the right to produce more product, which is in 
contradiction to the LCP. The situation 9 is also contradictory to the LCP; where by adding 
more reactant, the reaction shifts to the left. For these conditions we can write: 

휈 < 푥 ∆  ⇒ 푥 >
∆

푚표푙                                                (13) 

By combining conditions 2, 3, 9 and 10, we obtain: 

푥 ≥
∆

푚표푙                                                                           (14) 

This is the equation we were searching for. From this equation we conclude that the 

term 푥  =  
∆

푚표푙  represents the critical mole fraction; where if xj increases (푥 >

∆
푚표푙), LCP would be broken. For NH3 production from N2 and H2, Posthumus [8] found 

that when the system is initially in chemical equilibrium and has more than 50% N2, the 
addition of N2 as reactant would result in an internal reaction forming more reactant at 
constant T and P. Using Eq. 14 we also found the critical mole fraction as: 

푥 =  
∆

푚표푙 =  = . 
Now, let’s obtain a general perquisite for reactions where the LCP is broken. To do 

so, we use the fundamental property of the mole fraction which cannot be exceeded unity. 
Hence the first perquisite is as follows: 

∆
< 1                                                                        (15) 

Using this statement, we will find plenty of reactions where the LCP could be 
broken.  

 

3. CONCLUSIONS 

We achieved a simple term for the situations that LCP fails to predict the correct direction 
of the reaction change after suffering a perturbation caused by adding species in gas phase 
reactions at constant T and P. If the term of Eq. 15 is met, the reaction can go toward the 
direction of added substrate (reactant or product) only if the mole fraction is larger than the 

critical mole fraction of 
∆

푚표푙  (Eq. 14). As an example in the following reaction: 
퐶퐻 (푔) + 2퐻 푆(푔)  ⇌ 퐶푆 (푔) + 4퐻 (푔)  

For both 퐶퐻 (푔) and 퐶푆 (푔), 푡ℎ푒 푡푒푟푚 
∆

=  represents that the first prerequisite is 

fulfilled, that is 
∆

< 1. In the reaction at equilibrium, if the mole fraction of 퐶퐻 (푔) or 
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퐶푆 (푔) is 0.5 or higher, then by adding one of these species to the reaction at constant T 
and P, the reaction shifts in the direction to produce more of that species, in contradictory 
to LCP. 

Finally, from Eqs. 14 and 15, we also conclude that for the reactions in which Δn is 
0 or 1, the LCP will never be broken while 휐  is an integer number. 
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A connected graph G is said to be neighbourly irregular graph if no 
two adjacent vertices of G have same degree. In this paper, we 
obtain neighbourly irregular derived graphs such as semitotal-point 
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graph, quasi-total graph and quasivertex-total graph and also 
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1. INTRODUCTION AND PRELIMINARIES 

In this paper, we are concerned with finite, simple, connected graph G  with vertex set 
V(G)={v1, v2, …, vn} and edge set E(G)={e1, e2, …, em}. If vi and vj are vertices of G, then 
the edge connecting them will be denoted by vivj. The degree of a vertex v in G is denoted 
by dG(v). The complement of G, denoted by G , is a graph which has the same vertex set as 
G, in which two vertices are adjacent if and only if they are not adjacent in G and Gd (v) = 

n – 1– dG(v) holds for all vV(G). Definitions not given here may be found in [4]. 
 A graph G is said to be regular if all its vertices have the same degree. A connected 
graph G is said to be highly irregular if each neighbor of any vertex has different degree 
[1]. The graph  G is said to be neighbourly irregular graph, abbreviated as NI graph, if no 
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two adjacent vertices of G have the same degree. This concept was introduced by 
Bhragsam and Ayyaswamy [2]. In [2, 12], authors constructed NI graphs of order n for a 
given n and a partition of n with distinct parts and proved some properties of NI graphs 
related to graphoidal covering number, gracefulness, ply number, lace number, clique 
graph, minimal edge covering and studied the neighbourly irregularity of some graph 
products. 

The line graph L(G) of a graph G is the graph with vertex set as the edge set of G 
and two vertices of L(G) are adjacent whenever the corresponding edges in G have a vertex 
in common. The subdivision graph S(G) of a graph G whose vertex set is V(G)  E(G) 
where two vertices are adjacent if and only if one is a vertex of G and other is an edge of G 
incident with it. 
  
2.  DERIVED GRAPHS 

In this paper we considered the following graphs derived from the parent graph G:   
1. The semitotal-point graph T2(G) as the graph [8] whose vertex set is V(G)  E(G) 

where two vertices are adjacent if and only if (i) they are adjacent vertices of G or (ii) 
one is a vertex of G and other is an edge of G incident with it. If u is a vertex of G, 
then     u2dud GG2T  . If e is an edge of G, then    2ed G2T  . 

2. The k-th semitotal-point graph  GT k
2  of G [6] is the graph obtained by adding k 

vertices to each edge of G and joining them to the endvertices of the respective edge. 
Obviously, this is equivalent to adding k triangles to each edge of G. 

3. The semitotal-line graph T1(G) as the graph [8] whose vertex set is V(G)  E(G) 
where two vertices are adjacent if and only if (i) they are adjacent edges of G or (ii) 
one is a vertex of G and other is an edge of G incident with it. If u is a vertex of G, 
then     udud GG1T  . If e=uv is an edge of G, then      (v)duded GGG1T  . 

4. The paraline graph PL(G) is a line graph of subdivision graph of G. 
5. The quasi-total graph P(G) as the graph [9] whose vertex set is V(G)  E(G) where 

two vertices are adjacent if and only if (i) they are nonadjacent vertices of G or (ii) 
they are adjacent edges of G or (iii) one is a vertex of G and other is an edge of G 
incident with it. If u is a vertex of G, then dP(G)(u) = n – 1. If e = uv is an edge of G, 
then dP(G)(u)=dG(u)+dG(v). 

6. The quasivertex-total graph Q(G) as the graph [7] whose vertex set is V(G)  E(G) 
where two vertices are adjacent if and only if (i) they are adjacent vertices of G or (ii) 
they are nonadjacent vertices of G (iii) they are adjacent edges of G or (iv) one is a 
vertex of G and other is an edge of G incident with it. If u is a vertex of G, then 
dQ(G)(u) = n – 1 + dG(u). If e = uv is an edge of G, then dQ(G)(e) = dG(u) + dG(v). 
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 In Figure 1 self-explanatory examples of these derived graphs are depicted. 
 

 
 
 

 
 

 
 

  
 

 
 

 
 

G T2(G) )(3
2 GT  T1(G) 

 
              PL(G) 

 

 
P(G) 

 
Q(G) 

 

Figure 1. Various graphs derived from the graph G and  GT 3
2  is k-th semitotal-point graph 

of G for k = 3.  
 
 The vertices of derived graphs depicted in Figure 1 except from the paraline graph 
PL, corresponding to the vertices of the parent graph G, are indicated by circles. The 
vertices of these graphs corresponding to the edges of the parent graph G are indicated by 
squares. In this paper we obtain neighbourly irregular derived graphs. 
 
Theorem 2.1 [12]  Let G be a graph. The subdivision graph S(G) is NI if and only if G 
does not have any vertex of degree two.  
 
Theorem 2.2 [12]  For any graph G, its line graph L(G) is NI graph if and only if N(u) 
contains all vertices of different degree for all u  V(G).  
 
Theorem 2.3 [2]  If G is NI graph, then G  is not NI graph.  
 
Theorem 2.4 [12]  If G is NI graph, then L(G) is not NI graph.  
 
Theorem 2.5 [12]  For each integer k ≥ 1, there exist a graph G with maximum degree 
∆(G) = k such that L(G) is NI graph.  
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3.  RESULTS 

Theorem 3.1  For any graph G, the semitotal-point graph T2(G) is NI if and only if G is NI 
graph and no vertex of degree one is in G.  
 
Proof. Suppose G is NI graph and no vertex of degree one is in G. In T2(G), let e = xy be 
an edge. Then x, y  V(G) or x  V(G)  and y  E(G). 
(a) x, y  V(G). Since dG(x)  dG(y),          ydy2dx2dxd G2TGGG2T  . 

(b) x  V(G) and y  E(G). Since no vertex of degree is one in G and    2yd G2T , 

       yd2x2dxd G2TGG2T  . Thus from all the cases T2(G) is NI graph. 

Conversely, suppose G is not NI graph. Then dG(x) = dG(y) for some vertices x and y 
are adjacent in G. So,      ydxd G2TG2T  . A contradiction to T2(G) is NI graph. Suppose 

dG(v) = 1 for some v  V(G). Let e = vy be an edge in T2(G). Then 
       yd2v2dvd G2TGG2T  . Again a contradiction to T2(G) is NI graph.                      □ 

 
Theorem 3.2 For any graph G, the kth semitotal-point graph is NI if and only if  G is NI 
graph and k ≥ 2.  
 
Proof. The proof of this theorem is similar to the proof of the Theorem 3.1, so is omitted. □ 
 
Theorem 3.3  For any graph G, its T1(G) is NI if and only if L(G) is NI graph.  
 
Proof. Suppose L(G) is NI graph. In T1(G), let e = xy be an edge. Then x, y  E(G) or x  
V(G) and y  E(G). 
(a) x, y  E(G). Let x = vivj and y = vivk, so that x and y are adjacent in T1(G). Since L(G) 

is NI graph, we have      ydxd GLGL  , dG(vi) + dG(vj) – 2  dG(vi) + dG(vk) – 2 or 

dG(vi) + dG(vj)  dG(vi) + dG(vk). Therefore      y2dxd G1TG1T  . 

(b) x  V(G) and y  E(G). Let e = xy = viej for some vi  V(G) and ej E(G). Therefore 

       iGiG1TG1T vdvdxd   and          kGiGjG1TG1T vdvdedyd   where ej = vivk  

dG(vi) as       xdxd0vd G1TGkG  . Therefore for every pair of adjacent vertices in 

T1(G) have different degree. Thus T1(G) is NI graph. 
Conversely, suppose L(G) is not NI graph. Then dL(G)(ei) = dL(G)(ej) for some ei = vrvs 

and ej = vrvk are adjacent vertices in L(G). Hence, dG(vr) + dG(vs) – 2 = dG(vr) + dG(vk) – 2, 
dG(vr) + dG(vs) = dG(vr) + dG(vk). Therefore      jG1TiG1T eded  . A contradiction to T1(G) is 

NI graph.                                                                                                                                □ 
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 From Theorems 2.4, 2.5 and 3.3, we have the following corollaries.  
 
Corollary 3.4 If G is NI graph, then T1(G) is not NI graph.  
 
Corollary 3.5 For each integer k ≥ 1, there exists a graph G with maximum degree ∆(G) = 
k such that T1(G) is NI graph.  

 
Theorem 3.6 For any graph G  K2, the paraline graph PL(G) is not NI graph. 
 
Proof. Let v be a vertex of degree at least two in G. Then neighbourhood of v in S(G) has 
at least two vertices of degree two. By Theorem 2.2, L(S(G))=PL(G) is not NI graph.        □ 

 
Theorem 3.7. For any graph G  K2, the quasi-total graph P(G) is not NI graph. 
 
Proof. Let G  K2 be a graph. We have the following cases: 
 Case 1. If G is not a complete graph, then there exist at least two vertices u, v  
V(G) such that dP(G)(u) = dP(G)(v) = n – 1. Therefore P(G) is not NI graph. 

Case 2. If G is a complete graph, then there exist at least two edges ei, ej  E(G) 
such that dP(G)(ei) = dP(G)(ej). Therefore P(G) is not NI graph.                                               □ 

 
Theorem 3.8  For any graph G with n vertices, the quasivertex-total graph Q(G) is NI if 
and only if G, G and L(G) all are NI graphs and ∆(G)  n –1.  
 
Proof. Suppose G, G and L(G) all are NI graphs. In Q(G), let e = xy be an edge, then x, y 
 V(G) or x, y  V( G ) or x, y  E(G) or x  V(G) and y  E(G). 
(a) x, y  V(G). Since dG(x)  dG(y), dQ(G)(x) = n – 1 + dG(x)  n – 1 + dG(y) = dQ(G)(y). 
(b) x, y  V( G ). Since Gd (x)  Gd (y), dQ(G)(x) = n – 1 + dG(x)  n – 1 + dG(y) = dQ(G)(y). 

(c) x, y  E(G). Let x = vivj and y = vivk. So that x and y are adjacent in Q(G). Therefore 
dQ(G)(x) = dG(vi) + dG(vj) and dQ(G)(x) = dG(vi) + dG(vk). But dL(G)(x)  dL(G)(y) as L(G) 
is NI graph, dL(G)(x) = dG(vi) + dG(vj) – 2 and dL(G)(y) = dG(vi) + dG(vk) – 2. Therefore 
dQ(G)(x)   dQ(G)(y).  

(d) x  V(G) and y  E(G). Let e = xy =  viej for some vi  V(G) and ej  E(G). Then 
dQ(G)(y) = dQ(G)(ej) = dL(G)(ej) + 2 where ej = vivj = dG(vi) + dG(vj)  n – 1 + dG(vi) as 
∆(G)  n –1   dQ(G)(x). Thus in all the cases Q(G) is NI graph. 
Conversely, suppose Q(G) is NI graph. We have to prove that G, G and L(G) are all NI 

graphs. If G is not NI graph, then there exists an edge ek = vivj in G  such that dG(vi) = 
dG(vj). Therefore n – 1 + dG (vi) = n – 1 + dG(vj). So, dQ(G)(vi)  = dQ(G)(vj). A contradiction 
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to Q(G) is NI graph. Suppose G  is not NI graph, then there exists an edge ek = vivj in G  
such that Gd (vi) = Gd (vj). Therefore n – 1 + dG(vi) = n – 1 + dG(vj) and so dQ(G)(vi) = 

dQ(G)(vj). A contradiction to Q(G) is NI graph. 
Suppose L(G) is not NI graph, then there exists two adjacent vertices ei = vrvs  and 

ej = vrvk in L(G) with dL(G)(ei)  = dL(G)(ej). Thus dG(vr) + dG(vs) – 2 = dG(vr) + dG(vk) – 2. 
Hence dG(vr) + dG(vs) = dG(vr) + dG(vk) and so dQ(G)(ei)  = dQ(G)(ej). Again a contradiction to 
Q(G) is NI graph. Suppose ∆(G) = n –1 = dG(v) and let e =uv be an edge. Then dQ(G)(e) = 
dQ(G)(u). Again a contradiction to Q(G) is NI graph.                                                              □ 

 
 From Theorems 2.3, 2.4 and 3.8 we have following result. 
 
Theorem 3.9 There is no nontrivial graph G whose quasivertex-total graph Q(G) is NI 
graph. 
 
4. NEIGHBOURLY IRREGULAR GRAPH PRODUCTS 

The corona [10] of two graphs G and H is the graph obtained by taking one copy of G, 
|V(G)| copies of H and joining each i-th vertex of G to every vertex in the i-th copy of H. 
The edge corona [5] of two graphs G and H denoted by G  H is obtained by taking one 
copy of G and |E(G)| copies of H and joining each end vertices of i-th edge of G to every 
vertex in the i-th copy of H. 

 
Theorem 4.1 Let G and H be nontrivial graphs. Then G  H is NI graph if and only if both 
G and H are NI graphs and, G does not have pendent vertex or ∆(H) < |V(H)| – 1, where 
∆(H) is the maximum degree of the vertices of H.  
 
Proof. To prove the result, we have to present some notations. Let G be the copy of G and 
Hi be the i-th copy of H in G  H, 1  i  |E(G)|. A vertex of G  H corresponding to the 
vertex u in H is denoted by u. Also, we denote a vertex of G  H corresponding to the 
vertex v in G by v. 

Let G and H be NI graphs and, G does not have pendent vertex or ∆(H) < |V(H)| – 1. 
Then it is clear that G  H is NI graph. 

Conversely, let G and H be two nontrivial graphs and G  H is NI graph. Suppose 
uv  E(G  H ) such that u, v  V(Hi), then dG H(u) – dG H (v) = dH (u) – dH(v)  0 and 
so H is NI graph. Also, if uv  E(G  H ) such that u, v  V(G), then dG  H(u) – dG 

H(v) = (|V(H)| + 1)(dG(u) – dG(v))  0. Thus, G is NI graph. On the other hand, if uv  
E(G  H ) such that u V (G),  and v  V(Hi), then dG H (u) – dG H (v) = (|V(H)| + 1) 
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dG(u) – (dH(v) + 2)  0 and it shows that, G does not have pendent vertex or ∆(H) < |V(H)| 
– 1.                                                                                                                                        □ 

 
To present the next results, we need two definitions as follows: The cluster G{H} is 

obtained by taking one copy of G and |V(G)| copies of a rooted graph H, and by identifying 
the root of the i-th copy of H with the i-th vertex of G, i = 1, 2, …, |V(G)| [11]. 

Suppose G and H are graphs with disjoint vertex sets. Following Došlić [3], for given 
vertices y  V(G) and z  V(H) a splice of G and H by vertices y and z, (G  H) (y, z), is 
defined by identifying the vertices y and z in the union of G and H. 
 
Theorem 4.2 Let G and H be graphs. Then G{H} is NI graph if and only if both G and (H  

 iuGdS )(r, x) are NI graphs, for each i = 1, 2, …, |V(G)|, where x is the vertex with 

maximum degree of the star  iuGdS  and r the root vertex of H.  

 
Proof. Let G and (H   iuGdS ) (r, x) be NI graphs, for each i = 1, 2, …, |V(G)|, where x is 

the vertex with maximum degree of the star  iuGdS  and r the root vertex of H. Then, it is 

clear that G{H} is NI graph. 
Conversely, let G{H} be NI graph. Also, suppose uv  E(G{H}) and u, v  are the 

vertices of G{H}  corresponding to the vertices u, v in G, respectively. If u and v  are 
vertices of a copy of G, then dG{H}(u' ) – dG{H}(v ) = dG(u) – dG(v)  0. So G is NI graph. 
On the other hand, suppose uv  E(G{H})  and u, v are the vertices of G{H}  Hi 
corresponding to the vertices u, v in H, respectively. Then, it is not difficult to see that 
dG{H}(u) – dG{H}(v)  0 if and only if 

            0vdud xr,iuGdSHxr,iuGdSH   . 

So, (H   iuGdS )(r, x)  is NI graph.                                                                                       □ 

 
ACKNOWLEDGMENT. The research of second author is supported by UGC-UPE (Non-
NET)-Fellowship, K. U. Dharwad, No. KU/Sch/UGC-UPE/2014-15/897, dated: 24 Nov 
2014. The research of third author is supported by UGC- National Fellowship (NF) New 
Delhi. No. F./2014-15/NFO-2014-15-OBC-KAR-25873/(SA-III/Website) Dated: March-
2015. The research of fifth author is supported by the University of Kashan under grant 
number 464092/69. 
 
REFERENCES 

1. Y. Alavi, G. Chartrand, F. R. K. Chung, P. Erdos, H. L. Graham, O. R. 



60                                                      BASAVANAGOUD, PATIL, DESAI, TAVAKOLI AND ASHRAFI 

 

Oellermann, Highly irregular graphs, J. Graph Theory 11 (1987) 235–249. 
2. S. G. Bhragsam, S. K. Ayyaswamy, Neighbourly irregular graphs, Indian J. Pure 

Appl. Math. 35(3) (2004) 389–399. 
3. T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. 

Contemp. 1 (2008) 66–80. 
4. F. Harary, Graph Theory, Addison-Wesley Publishing Co. Inc., Reading, Mass., 

1969. 
5. Y. Hou, W-C. Shiu, The spectrum of the edge corona of two graphs, Electron. J. 

Linear Algebra 20 (2010) 586–594. 
6. S. R. Jog, S. P. Hande, I. Gutman, S. B. Bozkurt, Derived graphs of some graphs, 

Kragujevac J. Math. 36(2) (2012) 309–314. 
7. V. R. Kulli, B. Basavanagoud, On the quasivertex-total graph of a graph, J. 

Karnatak Uni. Sci. 42 (1998) 1–7. 
8. E. Sampathkumar, S. B. Chikkodimath, Semitotal graphs of a graph-I, J. 

Karnatak Uni. Sci. 18 (1973) 274–280. 
9. D. V. S. Sastry, B. Syam Prasad Raju, Graph equations for line graphs, total 

graphs, middle graphs and quasi-total graphs, Discrete Math. 48 (1984) 113–119. 
10. M. Tavakoli, F. Rahbarnia, A. R. Ashrafi, Studying the corona product of graphs 

under some graph invariants, Trans. Comb. 3(3) (2014) 43–49. 
11. Y. N. Yeh, I. Gutman, On the sum of all distances in composite graphs, Discrete 

Math. 135 (1994) 359–365. 
12. H. B. Walikar, S. B. Halkarni, H. S. Ramane, M. Tavakoli, A. R. Ashrafi, On 

neighbourly irregular graphs, Kragujevac J. Math. 39(1) (2015) 31–39.  



Iranian J. Math. Chem. 8 (1) (2017) 61−70  

 

 
Splice Graphs and Their Vertex−Degree–Based 
Invariants 

MAHDIEH AZARI1, AND FARZANEH FALAHATI-NEZHAD2 

1Department of Mathematics, Kazerun Branch, Islamic Azad University, P. O. Box: 73135−168, 
Kazerun, Iran 
2Department of Mathematics, Safadasht Branch, Islamic Azad University, Tehran, Iran 

 
ARTICLE INFO  ABSTRACT 
Article History: 
Received  20 July 2015 
Accepted  21 September 2015 
Published online : 1 February 2017 
Academic Editor: Tomislav Došlić 

Let 1G  and 2G  be simple connected graphs with disjoint vertex sets 
)( 1GV  and )( 2GV , respectively. For given vertices )( 11 GVa   

and )( 22 GVa  , a splice of 1G  and 2G  by vertices 1a  and 2a  is 
defined by identifying the vertices

 
1a  and 2a  in the union of 1G  

and 2G . In this paper, we present exact formulas for computing 
some vertex-degree-based graph invariants of splice of graphs.  
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1. INTRODUCTION  

Let G  be a simple connected graph with vertex set )(GV  and edge set )(GE . For a vertex 
)(GVu , we denote by )(uNG  the set of all first neighbors of u  in G . The cardinality of 

)(uNG  is called the degree of u  in G  and denoted by dG(u). A graph invariant (also known 
as topological index or structural descriptor) is any function on a graph that does not 
depend on a labeling of its vertices. Several hundreds of different invariants have been 
employed to date with various degrees of success in QSAR/QSPR studies. We refer the 
reader to [1−3] for review.  

In 1975, Milan Randić [4] proposed a structural descriptor, based on the end-vertex 
degrees of edges in a graph, called the branching index that later became the well-known 
Randić connectivity index. The Randić index of a graph G  is denoted by )(GR  and defined 
as  
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)( )()(
1)(

GEuv
GG vdud

GR . 

The Randić index is one of the most successful molecular descriptors in QSPR and QSAR 

studies, suitable for measuring the extent of branching of the carbon-atom skeleton of 

saturated hydrocarbons. 

A closely related variant of the Randić connectivity index called the sum-connectivity 

index was proposed by Zhou and Trinajstić [5] in 2009. The sum-connectivity index )(G  

of a graph G  is defined as   

.
)()(

1)(
)(  


GEuv

GG vdud
G  

The sum-connectivity index has been found to correlate well with π-electronic energy of 

benzenoid hydrocarbons.  

Another variant of the Randić connectivity index named the harmonic index was 

introduced by Fajtlowicz [6] in 1987. The harmonic index of a graph G  is denoted by 

)(GH  and defined as 

.
)()(

2)(
)(  


GEuv GG vdud

GH  

In 1998, Estrada et al. [7] introduced another vertex-degree-based descriptor called the 

atom-bond connectivity index. The atom-bond connectivity index of a graph G  is denoted 

by )(GABC  and defined as 

.
)()(

2)()(
)( )( 


 GEuv

GG
GG

vdud
vdud

GABC  

This index has been proved to be a valuable predictive index in the study of the formation 

heat in alkanes and it provides a good model for the stability of linear and branched alkanes 

as well as the strain energy of cycloalkanes [7, 8]. 

 Motivated by the success of the atom-bond connectivity index, Furtula et al. [9] put 

forward its modified version, that they somewhat inadequately named it augmented Zagreb 

index. The augmented Zagreb index of a graph G  is denoted by )(GAZI  and defined as 

.
2)()(

)()()( )(

3
  










 GEuv
GG
GG

vdud
vdudGAZI  
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Preliminary studies [9] indicate that AZI index has an even better correlation potential than 

ABC index. 

Motivated by definition of the Randić connectivity index, Vukičević and Furtula [10] 

proposed another vertex-degree-based topological index, named the geometric-arithmetic 

index. The geometric-arithmetic index of a graph G  is denoted by )(GGA  and defined as 

.
)()(
)()(2

2))()((
)()(

)( )()(    



 GEuv

GG
GG

GEuv
GG
GG

vdud
vdud

vdud
vdud

GGA  

It has been proved that [10], for physico-chemical properties such as boiling point, entropy, 

enthalpy of vaporization, standard enthalpy of vaporization, enthalpy of formation and 

acentric factor, the predictive power of GA index is somewhat better than the predictive 

power of the Randić connectivity index.   

Recently, Deng et al. [11] proposed a general mathematical formulation for vertex-

degree-based invariants which is defined for a graph G  as 

,))(),(()( )(  GEuv GG vdudFGTI  

where ),( yxF  is an appropriately chosen function. 

For an arbitrary vertex u of G , we define 

.))(),(()( )(  uGNv GGG vdudFuTI  

In particular, 

    xy
yxF 1),(  for the Randić index, 

 

 yx
yxF




1),(  for the sum-connectivity index,  

yx
yxF




2),(  for the harmonic index,  

xy
yxyxF 2),( 

  for the atom-bond connectivity index,  

3

2
),( 











yx

xyyxF  for the augmented Zagreb index, and  
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yx
xy

yxF



2

),(  for the geometric-arithmetic index. 

In this paper, we present an exact formula for computing the general vertex-degree-

based invariant of splice of graphs. Using this result, the Randić connectivity index, sum–

connectivity index, harmonic index, atom-bond connectivity index, augmented Zagreb 

index, and geometric–arithmetic index of splice of graphs are computed. Readers interested 

in more information on computing topological indices of splice of graphs can be referred to 

[12−22]. 

 
  
2. RESULTS AND DISCUSSION 

Let G1 and G2 be simple connected graphs with disjoint vertex sets )( 1GV  and )( 2GV , and 
edge sets )( 1GE  and )( 2GE , respectively, and let )( 11 GVa   and )( 22 GVa  . Following 
Došlić [21], a splice or coalescence of 1G  and 2G  by vertices 1a  and 2a  is denoted by 

),)(( 2121 aaGG   and defined by identifying the vertices a1

 
 and a2 in the union of 1G  and 

2G  as shown in Fig. 1. For notational convenience, we denote by in , ie , and i  the order of 

iG , the size of iG , and the degree of the vertex ai in iG , respectively, where }2,1{i . It is 
easy to see that, 1)),)((( 212121  nnaaGGV  and 212121 )),)((( eeaaGGE  .  

 
Figure 1. A splice of G1 and G2 by vertices a1 and a2. 

In the following lemma, the degree of an arbitrary vertex of the splice of two graphs 

is computed. The result follows easily from the definition of the splice of graphs, so the 

proof is omitted.  

Lemma 2.1 Let ),)(( 2121 aaGGG  . For every vertex )(GVu , 
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2121

222

111

auorau

aGVuud

aGVuud

ud G

G
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In the following theorem, the general vertex-degree-based invariant of the splice of 

two graphs is computed. 

 

Theorem 2.2 The general vertex-degree-based invariant of ),)(( 2121 aaGGG   is given by 

 

 





)2(2 221

)1(1 121
221121

)).(,(
))(,(

)()()()()(

aGNv G

aGNv G
GG

vdF
vdF

aTIaTIGTIGTIGTI



                                          (1)
 

Proof. By definition of the general vertex-degree-based invariant and Lemma 2.1, 

                               
 

 

 

 

 








)2(2 221

)1(1 121
2,);2( 22

1,);1( 11

)(

)).(,(
))(,(

))(),((
))(),((

))(),(()(

aGNv G

aGNv G
avuGEuv GG
avuGEuv GG

GEuv GG

vdF
vdF

vdudF
vdudF

vdudFGTI




 

Now, using the fact that 

  

,}2,1{),()())(),((
,);(

 
iaTIGTIvdudF iGiavuGEuv GG iii ii

           

we can get Eq. (1).  

Using Eq. (1), one can easily compute the Randić connectivity index, sum–

connectivity index, harmonic index, atom–bond connectivity index, augmented Zagreb 

index, geometric–arithmetic index, and some other vertex-degree-based invariants of splice 

of two graphs. 

By setting 
xy

yxF 1),(   in Eq. (1), we easily arrive at: 

Corollary 2.3 The Randić connectivity index of ),)(( 2121 aaGGG   is given by 
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 )2(2 2)1(1 121

221121
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1

)(
11

)()()()()(

aGNv GaGNv G

GG

vdvd

aRaRGRGRGR


. 

As a direct consequence of Corollary 2.3, we obtain the following Corollary. 

Corollary 2.4 Let 1G  be 1r –regular and 2G  be 2r –regular. The Randić connectivity index 

of ),)(( 2121 aaGGG   is given by 

.2)(
21

21

2
2

1
1 






rr
rr

r
e

r
eGR                  

By setting 
yx

yxF



1),(  in Eq. (1), we easily arrive at: 

Corollary 2.5 The sum–connectivity index of ),)(( 2121 aaGGG   is given by 

 

 









)2(2
221

)1(1
121

221121

.
)(

1
)(

1
)()()()()(

aGNv
G

aGNv
G

GG

vd

vd

aaGGG







        
       

As a direct consequence of Corollary 2.5, we obtain the following Corollary. 

Corollary 2.6 Let 1G  be 1r –regular and 2G  be 2r –regular. The sum–connectivity index of

),)(( 2121 aaGGG   is given by 

.
2222

)(
12

2

21

1

2

22

1

11
rr

r
rr

r
r
re

r
reG











                     

By setting 
yx

yxF



2),(  in Eq. (1), we easily arrive at: 

Corollary 2.7 The harmonic index of ),)(( 2121 aaGGG   is given by 



Splice Graphs and Their Vertex−Degree–Based Invariants                                                     67 

 

    

 

 









)2(2 221

)1(1 121

221121

.
)(

2
)(

2
)()()()()(

aGNv
G

aGNv
G

GG

vd

vd

aHaHGHGHGH




        

 

 

As a direct consequence of Corollary 2.7, we obtain the following Corollary. 

Corollary 2.8 Let 1G  be 1r –regular and 2G  be 2r –regular. The harmonic index of

),)(( 2121 aaGGG   is given by 

.
22

)(
21

2
12

1
2
2

1
1

rr
r

rr
r

r
e

r
eGH





               

By setting 
xy
yxyxF 2),( 

  in Eq. (1), we easily arrive at: 

Corollary 2.9 The atom bond connectivity index of ),)(( 2121 aaGGG   is given by 

.
)(

2)(

)(

2)(1

)()()()()(

)2(2 2

221
)1(1 1

121

21

221121













 









   aGNv
G

G
aGNv

G

G

GG

vd
vd

vd
vd

aABCaABCGABCGABCGABC





 

As a direct consequence of Corollary 2.9, we obtain the following Corollary. 

Corollary 2.10 Let 1G  be 1r –regular and 2G  be 2r –regular. The atom bond connectivity 

index of ),)(( 2121 aaGGG   is given by 

.
)22()22(

)1()1(2)1()1(2)(
21

122211

2
2

2
1
1

1 rr
rrrrrr

r
er

r
erGABC




  

By setting 
3

2
),( 











yx

xyyxF in Eq. (1), we easily arrive at: 

Corollary 2.11 The augmented Zagreb index of ),)(( 2121 aaGGG   is given by 
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  As a direct consequence of Corollary 2.11, we obtain the following Corollary. 

Corollary 2.12 Let 1G  be 1r –regular and 2G  be 2r –regular. The augmented Zagreb index 

of ),)(( 2121 aaGGG   is given by 

.
)22()22(

)(
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)(
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)()( 3
12

4
2

3
21

4
13

213
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rr
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rr
rrr

r
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rerGAZI  

By setting 
yx

xy
yxF




2
),(  in Eq. (1), we easily arrive at: 

Corollary 2.13 The geometric–arithmetic index of ),)(( 2121 aaGGG   is given by 

.
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)(

)(
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As a direct consequence of Corollary 2.13, we obtain the following corollary. 

Corollary 2.14 Let 1G  be 1r –regular and 2G  be 2r –regular. The geometric-arithmetic 

index of ),)(( 2121 aaGGG   is given by 

.
22

2)(
12

22

21

11
212121 

















rr
rr

rr
rr

rrrreeGGA  
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The first Zagreb index M1(G) is equal to the sum of squares of the 
degrees of the vertices and the first Zagreb coindex ܯଵതതതത(ܩ) is equal to 
the sum of sums of vertex degrees of the pairs of non-adjacent 
vertices. Kovijanić Vukićević and G. Popivoda (Iran. J. Math. Chem. 
5 (2014) 19–29) proved that for any chemical tree of order n, n  5, 
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IIn this paper, we generalize the aforementioned bound for all trees in 
terms of their order and maximum degree. Moreover, we give a lower 
bound on the first Zagreb coindex of trees. 

 
                    © 2017 University of Kashan Press. All rights reserved 
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1. INTRODUCTION  

In this paper, G  is a simple connected graph with vertex set V = V(G) and edge set E = 
E(G). The order |V| of G is denoted by n = n(G). For every vertex Vv , the open 
neighborhood )(vN  is the set )}()({ GEuvGVu  |  and the closed neighborhood of v  is 

the set }{)(=][ vvNvN  . The  degree of a vertex Vv  is |)(|= vNdv . The minimum and 
maximum degree of a graph G  are denoted by )(= G  and )(= G , respectively. Trees 
with the property 4  are called chemical trees. 

The Zagreb indices have been introduced more than thirty years ago by Gutman and 
Trinajestić in [6]. They are important molecular descriptors and have been closely 
correlated with many chemical properties [6, 7]. Thus, it attracted more and more attention 
from chemists and mathematicians [2, 3, 4, 8, 10, 11].  

The first Zagreb index )(1 GM  is defined as follows:  
                                                
 Corresponding Author: (Email address: (m.sheikholeslami@azaruniv.edu) 
DOI: 10.22052/ijmc.2017.42995 
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.=)( 2
1 v

Vv
dGM 

  
The first Zagreb index can be also expressed as the sum of vertex degree over edges of G, 
that is, ).(=)( )(1 vuGEuv ddGM    Došlić in [5] introduced a new graph invariant called 

the first Zagreb coindex, as )(=)( )(1 vuGEuv ddGM   . Next we introduce a family of 

trees. For pkn  1)(=  ( 2k ), let nT  be the family of trees of order n  with maximum 
degree   such that:  

 If 0=p , 1k  vertices have degree  , 1 vertex has degree 2  and remaining  
vertices are pendant. 

 If 1=p , 1k  vertices have degree  , 1 vertex has degree 1  and remaining  
vertices are pendant. 

 If 2=p , k  vertices have degree   and remaining vertices are pendant.  
 If 3p , k  vertices have degree  , 1 vertex has degree 1p , and 1 kn

remaining vertices are pendant.  
 

Kovijanić Vukićević and Popivoda [9] proved the following upper bound on the first 
Zagreb index of chemical trees and characterized all extreme chemical trees.  
 
Theorem 1. Let T  be a chemical tree with 5n  vertices. Then  









,o106

3)m(0,1126
)(1 therwisen

odnn
TM  

with equality if and only if nG T .  
 

In this paper, we establish an upper bound on the first Zagreb index of trees in terms of 
the order and maximum degree, as a generalization of aforementioned bound. As a 
consequence, we obtain a lower bound on the first Zagreb coindex for trees. 

 
2. MAIN RESULTS 

In this section, we prove the following result:  
 
Theorem 2. Let T  be a tree of order n  and maximum degree  . If pn   (mod 1 ), 
then  
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3,2)(322)(
2=222)(
1=32)(
0=442)(

)(1

pppn
pn
pn
pn

TM

 
with equality if and only if nG T  .  
 

To prove Theorem 2, we proceed with some definitions and lemmas. If n  is a 
positive integer, then an integer partition of n  is a non-increasing sequence of positive 
integers ),,,( 21 taaa   whose sum is n . If aaaa t  211 , then ),,,( 21 taaa   is 

called an integer partition of n  on },{1,2,= aNa  . An integer partition ),,,( 21 taaa   of 

n  on aN  is called an integer a -partition if the number of a  in this partition is as large as 
possible. In other words, if kan = , then ),,( aa  is the integer a –partition and if bkan =  
where ab <<0  then ),,,( aab   is the integer a –partition. The proof of the next result is 
straightforward and therefore omitted.  

 
Lemma 3. For positive integers tn,  and ia  ( ti 1 ), we have  

a) If taaan  21=  and 1t , then 22
2

2
1

2
taaan   . 

b) If ji aa  , then 21)(1)( 2222  jiji aaaa .  

 
Lemma 4. If ),,,( 21 taaa   is an integer partition of )(0= abbkan   on aN , then  

.222

1=
bkaai

t

i


 
Proof. Let ),,,( 21 taaa   be an partition of n  on aN . If aaa ji   for some tji 1 , 

then by switching ),( ji aa  to 1)1,(  ji aa , we get a new integer partition of n  on Na. Note 

that if 0=1ia , then we will remove 1ia  from the new partition. Applying Lemma 3 
(a), we obtain  

.1)(1)( 2222
1

2

1=
tjii

t

i
aaaaa  

 
By repeating this process, we arrive at an integer a –partition of n  on aN . It follows from 

Lemma 2 that 222
1=

bkaai
t

i
  and the proof is complete.  
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Lemma 5. Let bkan =  where ab 0  and let ),,,( 21 taaa   be an integer partition of 

n  on aN  which is not a –partition. Then the following statements holds:  

a. If 0b , then 222
1=

1)(1)(1)(  bakai
t

i
.  

b. If 0=b , then 22
1=

1)(1)(  akai
t

i
.  

 
Proof. (a) Since bkaaabaan t  ===

k
1     , we have 1 kt . First let

1= kt . Then we have  
 

,1)(1)(=
1)(1)(1)(=

Lemma3)(by)2()(
)2()(=1)(1)(

22

22

22

22
1

22
1







bak
ktbak

bkatbka
bkataaaa tt 

 
as desired. Now let 1 kt . Repeating the switching process described in the proof of 
Lemma 4, i.e. for any pair ),( ji aa  where aaa ji 1  and using the fact that 

21)(1)( 2222  jiji aaaa , we get 0=ia  or aa j = . To achieving an integer a –

partition, we need to apply the switching process at least 1)(  kt  times. This implies that  

1)).(2(2222
1  ktbkaaa t                              (1) 

Thus  

.1)(1)(
1))((1)(1)(=

(1))b()2(1))(2(
)2()(=1)(1)(

22

22

22

22
1

22
1







bak
ktbak

inequalityybkatktbka
bkataaaa tt 

 
(b) If 0=b  ,then .===

k
1 kaaaaan t       Since ),,( 1 taa   is not a –partition, we 

have kt  . Applying (1), we obtain  

.1)(
1)(=

2)2(
2)(=1)(1)(

2

2

2

22
1

22
1







ak
tkak

katktka
kataaaa tt 

 
This completes the proof.  
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Remark 6. Let T  be a tree of order n  and maximum degree  . For each },{1,2,  i , 

let in  denote the number of vertices of degree i . Then  

 nnnn =21                                           (2) 
and  

 2.2=2 21   nnnn                                (3) 
Subtracting (2) from (3), yields  

 2.=1)(2 32   nnnn                        (4) 
By (4), we obtain the following integer partition  

 ),1,1,,,,22,,,11,(
32

  





nnn

                           (5) 

of 2n  on 1},{1,2,=1  N . It follows from Lemma 4 that  nnn 2
3

2
2

2 32   
is maximum if and only if the partition (5) obtained from (4), is an 1)(  −partition of 

2n  on 1N . In that case, 1n  (the number of leaves) will be maximum.  
 

Next result is an immediate consequence of above discussion.  
 
Corollary 7. For any tree T  of order n  with maximum degree  , the first Zagreb index 

 nnnTM 2
2

2
11 2=)(   is maximum if and only if the integer partition (5) is an 

1)(  –partition of 2n  on 1N . In that case, the integer partition ),,,( 21 nnn   is 
called an optimal solution of (4).  
 
Theorem 8. Let T  be a tree of order n  and maximum degree   with 0n  (mod 1 ). 
Then 4,42)()(1  nTM  with equality if and only if .nT T  
 
Proof. Assume that kn 1)(=  . By (4),  

,=)
1

22)(2(= 132 rknnnkn 



 




 

where 
1

212)(322=


 nnn
r


. Then 11  kr  and 11   kn . We 

consider three cases as follows: 
Case 1. 1=r . Then clearly 1=  kn . It follows that  

21)(=1)1)((2)(2 132   kknnn   
and so  
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3.=2).(2 132  nnn   

Thus 0=1n  and so  
3.=3).(2 232  nnn                                       (6) 

According to Corollary 6, the optimal solution of (6) is 0==== 332 nnn   and 

1=2n . Since nnnn =21   , we conclude that kn 2)(=1  . By Corollary 7,  

1),0,1,0,,0,2)((=),,,,,,( 12321  kknnnnnn   

is the optimal solution and so )(1 TM  is maximum. Therefore,  

4.42)(=
441)2)((=

1)(222)(2)(=
.2

1.21)(2.22)(2
221)(1







n
k

kk
nnnnnTM 

 

 

Case 2.  r2 . Then 2)(2)(=2)(2 132   rrnnn  . Since 
22 r , it follows from Corollary 7 that  

 ),,0,,0,1,0,1,0,2)((=),,,,,,,,,( 121221 rkrknnnnnnnn rrr    
is an optimal solution in this case. Since  <2 r  and 4 , we have 

44<1)2( rr  and so  

4.42)(
1)2(1)2)((=

)(221)(21)(12)()(1






n
rrk

rkrrkTM
 

 

Case 3. 1 kr . Then 2).(2)(=2).(2 132   rrnnn   There 
are non-negative integers st,  such that str  2)(=2)(  and 20  s . Hence 

.)2)((=2).(2 132 strnnn    If 20  s , then 

),,0,,0,1,0,1),0,(2)((=),,,,,,,,,( 122121 rktrtknnnnnnnn sss    
is the optimal solution and since 0<)( s  and r4 , we obtain  

.442)(
2))((2)(
2))((2)(=

2)()2(12)(1)2)((=
)(2)(21)(21)(1)(2)()(1








n
rrssn
rrssn

trssk
rktrstkTM

 

If 0=s , then the optimal solution is  
).,,0,,0,2)((=),,,,,( 1221 rktrtknnnnn    
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Since srt  2=2)( , 02)( s  and r4 , we conclude that  

 

.442)(
2)(

2)(2)(=

2222222=
)(2)(21)()2)((=

.2
39241)(1










n
rrn

rrsn
rktttrrrtkk

rktrtk
nnnnTM 

 

 

Therefore, in all cases 442)()(1  nTM . If nT T , then clearly 

442)(=)(1  nTM . Conversely, let T  be a tree of order n  with 0n  (mod 1 ) 

and 442)(=)(1  nTM . This occurs only in Case 1, that is, T  has 
1

1=1




nk  

vertices of degree  , one vertex of degree 2  and k2)(   leaves. Hence nT T  and 
the proof is complete.  
 
Theorem 9. Let T  be a tree of order n  with maximum degree   and 1)m(1  odn . 

Then ,32)()(1  nTM  with equality if and only if nT T .  
 

Proof. Let 11)(=  kn . Set 
1

12)(2= 132


 nnnr 
. By (4),  

.=)
1

12)(2(= 132 rknnnkn 



 




 

Then clearly 11  kr  and 11   kn . We consider three cases. 
 

Case 1. 1=r . Since 1=  kn , it follows from (4) that 
2)(=2).( 12  nn   and by Corollary 7  

1),0,1,1,0,2)((=),,,,,( 1221  kknnnnn   
is the optimal solution. Thus  

 
.32)(=

1)(2(1)21)(1)2)((=
.2

1.21)(2.22)(2
221)(1






n
kk

nnnnnTM 

 

 
Case 2. 12  r . As above, 1)(2)(=2).( 12   rrnn  . Since 

21 r , it follows from Corollary 7 that  
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 ),,0,,0,1,0,,0,2)((=),,,,,,,,,( 121121 rkrknnnnnnnn rrr    
is the optimal soloution. Since 12  r , it is easy to see that 

02)()(12 2  rrr  and we have  

.32)(
2)2()(1232)(=

221)2)((=
)(221)((1)22)(=

.2
1.21)(2.22)(241=)(1









n
rrrn

rrrk
rkrrk

nnnnnTM 

 

 
Case 3. 11  kr . There are non-negative integers st,  such that 

str  2)(=1 , 1t  and 1s . By substituting in (4), we have 
strnnn   )2)((=2)(2 132  . First let s0 . Since 2s , it follows 

from Corollary 7 that  
),,0,0,,0,1,0,,0,2)((=),,,,,,,,,( 122121 rktrtknnnnnnnn sss    

is the optimal solution. Thus  

.32)(
1)1)((2)(32)(=

2)()2(121)(1)2)((=
)(2)(21)(21)(2)()(1








n
rssn

trsk
rktrstkTM

 

 Now let 0=s . Then the optimal solution is  
 ),,0,1,0,2)((=),,,,,( 1221 rktrtknnnnn    
and we have  

.32)(
1)1)((32)(=

2)(11)(21)2)((=
)(2)(21)(12)()(1







n
rn

trk
rktrtkTM

 

  
As in the proof of Theorem 8 we can see that  32)(=)(1 nTM  if and only if 

nT T .  
 
Theorem 10. Let T  be a tree of order n  with maximum degree   and 1)m(  odpn  
where 22  p . Then  
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3,2)(322)(
2=222)(

)(1 pppn
pn

TM  

with equality if and only if .nT T  
 

Proof. Let pkn  1)(= . Suppose that 
1

)(22)(2= 132


  pnnnr  . By (4), 

we have  

.=)
1

)(22)(2(= 132 rkpnnnkn 



 




 

Then clearly 10  kr  and kn  1 . We consider four cases. 
Case 1. 0=r . Then kn =  and by (4) we have 

2.=1)(2)1)((=)1).((2)(=2).(2 132   pkpknnnnn   

If 2=p , then 0=2).(2 132  nnn  . This implies that 0==== 132 nnn   

and knn =1  by (2). Thus  

2.22)(=
2)1)((=
1)1)((=

2)(=
.2

1.21)(2
221)(1








n
nn

kn
kkn

nnnnTM 

 

  
Now let 22  p . Since 421  p  and 

2=2).(2 132   pnnn  , it follows from Corollary 7 that  

 ),0,,0,1,0,1,0,(=),,,,,,,( 11221 kknnnnnnnn ppp    

is the optimal solution and so  

.322)(=
22)1)((=
221)1)((=

)(2(1)21)(1)(=

.2
1.21)(241)(1

pppn
ppnpn
ppnk

kpkn

nnnnTmaxM









 

 

 Case 2. 1=r . Then 1=  kn  and  

1),0,1,,0,1,0,1,0,2)((=),,,,,,,,,( 121121  kpknnnnnnnn ppp   

is the optimal solution and since 2p  we have  
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.322)(
22)2)((=
221)2)((=

22122212=
1)(221)(212)(=

.2
1.21)(241=)(1

pppn
pppn
ppk

kppkk
kppk

nnnnTM








 

 

  

Case 3. pr 2 . By (4), we have 12)(322  nnn   
2)(2)(=  rpr . Since 22 r , it follows from Corollary 7 that  

),,0,,0,1,0,1,0,2)((=),,,,,,,,,( 121221 rkrpknnnnnnnn rprprp  

is the optimal solution. On the other hand, we deduce from 2p  and pr <  that 
01=)2(1)2(1  ppppr  and so 0))2(1(  prr . Thus  

.)(1=322)(
))2(1(322)(=
1)2(22)2)((=
1)2(221)2)((=

222222212212=
)(2)(21)((1)21)(1)2)((=

.2
1.21)(241)(1

TmaxMpppn
prrpppn

prrrpppn
prrrppk

rkrrrrprprppkk
rkrrppk

nnnnTM












 

 

  
Case 4. 1. krp  Let .2)(=2 strp   By substituting in (4), we have 

strnnn   )2)((=2)(2 132  . If 0=s  then by Corollary 7,  

 ),,0,,0,2)((=),,,,,( 1221 rktrtpknnnnn    
is the optimal solution. Since rp   and 2p , we have  

0.2)1)((=
2)(2))((

2))((=
22)(

22)(=)22(2









rp
rrp

rrp
rrrp

rrpprrppp

 

 Thus  
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.322)(
)22(2322)(=

2222)(=
22)()2)((=

22)()22(=
)(2)(21)()2)((=

.2
1.21)(241=)(1

pppn
rrppppppn

rrprpppn
rrptpn

rrptkkk
rktrtpk

nnnnTM










 

 

 
Now let s0 . Since 2s , it follows from Corollary 7 that  

),,0,0,,0,1,0,1),0,(2)((=),,,,,,,,,( 122121 rktrtpknnnnnnnn sss  

is the optimal solution. Since 22  p  and 30  s , it is straightforward to verify 

that 0222 22  srrssppp . Thus  

 

.322)(
)22222(322)(=

2222)(=
)2(222)2)((=

2)(2221)2)((=
22222)22(=

)(2)(21)(21)(1)(2)(=
.2

1.21)(241=)(1

pppn
srrssppppppn

srrsspn
srprrssppn

trrsspk
ttrrsspkkk

rktrstpk
nnnnTM











 

 

 

Therefore, in all cases pppnTM 32))( 2
1  . As in the proof of 

Theorem 8, we can see that  








3,2)(322)(
2=222)(

=)(1 pppn
pn

TM  

if and only if nT T . This completes the proof.  
 

We now present a lower bound on the first Zagreb coindex among all trees. Ashrafi 
et al. [1] proved that for any conneted graph G  of order n  and size m  

).(1)(2=)( 11 GMnmGM   
Next result is an immediate consequence of this equality and Theorem 1.  
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Corollary 11. Let T  be a tree of order n  with maximum degree  . If pn   (mod 1 ), 
then  




















3.3)(226)(
2.=4226)(
1=2326)(
0=2426)(

)(

2

2

2

2

1

ppppnn
pnn
pnn
pnn

TM  
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1. INTRODUCTION 

Topological indices of molecules can be carried out through their molecular graphs. A 
molecular graph is a collection of points representing the atoms in the molecule and a set of 
lines representing the covalent bonds. In graph theory, these points and lines are called 
vertices and edges, respectively. The chemical graph theory is a branch of mathematical 
chemistry in which topological indices of chemical graphs relates the certain physical, 
biological or chemical properties of the corresponding molecules. 
 Many different topological indices have been investigated so far. Most of the useful 
topological indices are distance based or degree based. The Wiener index, the Harary index 
and the total eccentricity index are examples of distance based topological indices and the 
Zagreb indices and Randić [8] index are examples of degree based topological indices. 

The Wiener index of a molecular graph is defined as the sum of all distances 
between different vertices. This topological index was introduced by Wiener [13]. It also 
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gave rise to some modifications such as, the hyper-Wiener index and the Tratch-
Stankevich-Zefirov index. 

Plav s ić [7] et. al. and Ivanciuc et. al. [4] independently introduced the Harary index 
in honor of Frank Harary. The Harary index is obtained from the reciprocal distance matrix 
and has a number of interesting physical and chemical properties. The Harary index and its 
related molecular descriptors have shown some success in structure-property correlations 
[2, 3]. Its modification has also been proposed and their use in combination with other 
molecular descriptors improves the correlations [10, 11]. 

In order to improve the interest of the Harary-type indices, many modification were 
proposed recently. In [1] authors introduced a correction that gives more weight to the 
contributions of pairs of vertices of high degrees, named as the additively weighted Harary 
index. 
 The eccentric connectivity index belongs to the family of distance based topological 
indices. This quantity has been recently used in several papers on structure-property and 
structure-activity relationship and its mathematical properties have been investigated [9]. 
Munarini et. al. [6] define the double graph of a simple graph denoted as D[G]. The double 
graph of a simple graph G can be build up taking two distinct copies of the graph G and 
joining every vertex v  in one copy to every vertex w  in the other copy corresponding to a 
vertex w  adjacent to v in the first copy. In this paper we study some distance based 
topological indices for general double graphs. 

 
2. DEFINITIONS AND PRELIMINARY RESULTS 

All the graphs G considered in this paper are finite and simple. For basic definitions and 
notation see [12]. Let G(V,E) be a simple connected graph where V(G) and E(G) are the set 
of vertices and set of edges, respectively. By dG(v) we denote the degree of vertex v in G. 
The distance between two vertices u and v, in a graph G, is the length of any shortest path 
connecting u  and v  and denoted as dG(u,v). The eccentricity of a vertex v  in G  is the 
maximum distance between v and any other vertex in G, it is denoted eccG(v). By Pn  and Sn  
we denote the path with n  vertices and the star graph k1,n-1 respectively. 
 The Wiener index of a given graph G  having V(G)=v1,…,vn is defined as the sum 
of distances between all unordered pairs of vertices of a graph G, i. e.,  

.1 ),()(   nji jvivGdGW  

The Harary index of  G  is defined as the sum of reciprocals of distances between 
all unordered pairs of vertices of a connected graph:  

.
),(

1)(
1





nji jiG vvd

GH  

The additively weighted Harary index for  G  is defined by 
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,
),(

)()(
)(

1







nji jiG

jGiG
A vvd

vdvd
GH  

and multiplicative weighted Harary index for  G is defined by 

.
),(

)()(
)(

1





nji jiG

jiG
M vvd

vdvd
GH  

 
The eccentric connectivity index of G  is  





)(

),()()(
GVv

GG
c veccvdG  

and the total eccentricity of G  is defined by 





)(

).()(
GVv

G veccG  

  
 The direct product of two graphs G  and H  is a graph GH  with  V(GH) = V(G) 
 V(H) such that (u1,v1) is adjacent to (u2,v2) in GH  if and only if u1u2E(G) and 

1 2 ( ).v v E H By adding a loop to every vertex of K2 we obtained the graph sK 2 . The double 

graph of a simple graph G  can be expressed as D[G] = G sK 2 . Since the direct product of 
a simple graph with any graph is always a simple graph, it follows that the double of a 
simple graph is still a simple graph. Some of its elementary properties are discussed in [6]. 
If G  has n  vertices and m edges then D[G] has 2n vertices and 4m  edges. For illustration 
see figure1.  

 

 
Figure  1 .A graph G  and its double graph D[G] . 
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 Let G(V,E) be a simple graph and G′(V′, E′)  be its distinct copy. Let D[G] be the 
double graph of G and  V(D[G]) =V(G)V(G′) , where V(G) = {x1,x2,…,xn}  and   

},,,{)( 21 nyyyGV  and yi  is the corresponding vertex of xi  in  V(G′). 
 
Lemma 1.  For the above defined double graph D[G]  

  .,,1,;),(),( njixxdxxd jiGjiGD   

 
Proof. Clearly, GD[G]. Let ])[()(},{,{ GDVGVxxx jii   then 

),(),(][ jiGjiGD xxdxxd  . Suppose     mxxdxxdl jiGjiGD  ,,][   and a shortest path in 

[ ]D G  from xi to xj  is  xiv1v2…vl-1xj. If l =1  then the property is obvious. Suppose 21 . 
Since  l < m, there exists some vkV(G′). As vk-1  and vk+1 are adjacent to vk, by definition of 
the double graph, vk−1  and vk+1  are adjacent to xk (corresponding vertex of vk  in V(G)). 
Now we have obtained a path xiv1v2...xk....vl−1xj. In this way we can find a path  in G  of 
length l , which is a contradiction. It follows that      , = ,i j G i jD Gd x x d x x . Similarly,

  ).,(,][ jiGjiGD yydyyd   

 
Lemma 2.  For the double graph D[G] 

  .,,1,;),(),( njixxdxxd jiGjiGD   

 
Proof. Let  xi V(G) and yj  V(G′). Suppose   mxxdyxdl jiGjiGD  ),(,][   and a 

shortest path in D[G] is xiv1v2…vl-1yj. If  l=1 the property is true. Let .2l  It follows that 
there exists some vk  V(G′). Since  vk-1  and vk+1  are adjacent to vk, by construction vk-1    
and 1kv   are adjacent to kx (corresponding vertex of kv  in ( ))V G . We have obtained a path 

1 2 1i k l jx v v x v y   in [ ]D G , which implies the existence of a path 1 2 1i k l jx x x x x x   in 

G  of length l , a contradiction. If   mxxdyxdl jiGjiGD  ),(,][   we get a similar 

contradiction. Consequently,     .,,][ jiGjiGD xxdyxd   

The following results are obvious from the construction of the double graph.  
 
Lemma 3.  We have 

.,,1;2),(][ niyxd iiGD   

  
Lemma 4 . For the double graph D[G]   

.,,1;)(2)()( ][][ nixdydxd iGiGDiGD   

  



Distance−Based Topological Indices and Double Graph                                                          87 

 

Lemma 5 . The eccentricities of the vertices of the double graph D[G]  are  

.,,1;1)(2)()(
,,1;2)()()()(

][][

][][

nixeccifyeccxecc
nixeccifxeccyeccxecc

iGiGDiGD

iGiGiGDiGD








 

 

3. MAIN RESULTS 

Theorem 1.  Let G  be a simple graph with n  vertices. Then the Wiener index of D[G]  is 
given by  

  .2)(4)( nGWGDW   
 

Proof. The Wiener index of D[G]  is  




















ni
iiGD

ji
nji

jiGDji
nji

GDji
nji

GD

nji
jiGD

yxd

yxdyydxxd

vvdGDW

,,1
][

,,1,
][

1
][

1
][

1
][

).,(

),(),(),(

),(])[(





 

  

By Lemmas 1   3 we deduce  

.2)(4
2)(2)()(

2),(),(),(])[(
1 ,,1,1

nGW
nGWGWGW

nxxdxxdxxdGDW
nji

ji
nji

jiGjiGji
nji

G




  



 

 

  A well known property of the Wiener index of trees implies the following corollary.  
 

Corollary 1. Suppose Tn  is a tree with n  vertices. Then  
     ).()()( nnn PDWTDWSDW   

Theorem 2. Let G  be a simple graph with n vertices. Then the Harary index of D[G]   is 
given by  

.
2

)(4)][( nGHGDH   

Proof. The Harary index of D[G]  is  

                



nji jiGD vvd

GDH
1 ][ ),(

1)][(  

   

 













ni iiGD
ji

nji jiGD

nji jiGDnji jiGD

yxdyxd

yydxxd

,,1 ][,,1, ][

1 ][1 ][

,
1

),(
1

,
1

,
1
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By Lemmas 1   3 we have  

   

.
2

)(4

2
)(2)()(

2),(
1

,
1

,
1])[(

,,1,11

nGH

nGHGHGH

n
xxdxxdxxd

GDH
ji

nji jiGnji jiGnji jiG





 

 

 

 
Corollary 2. Let Tn be a tree with n  vertices. Then 
 

    .])[()( nnn SDHTDHPDH   
 

Theorem 3. Let G be a simple graph with m  edges. Then the additively weighted Harary 
index of [ ]D G  is given by 

.4)(8])[( mGHGDH AA   
  

Proof. The additively Harary index of D[G]  is 
  

.
),(

)()(
),(

)()(
),(

)()(
),(

)()(
),(

)()(
)][(

,,1 ][

][][

,,1, ][
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1 ][

][][

1 ][
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xxd
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vvd
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by  Lemmas 1   4 the last expression is equal to  
 

.4)(8

)(2)(4)(2)(2

2
)(2)(2

),(
)(2)(2

),(
)(2)(2

),(
)(2)(2

)(

)(,,1,
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Corollary 3. Suppose Tn  and Un  be tree and unicyclic graphs, respectively, with n  
vertices. Then  

.4)(8)][(
.)1(4)(8])[(

nUHUDH
nTHTDH

nAnA

nAnA




 

 
Corollary 4 . Suppose Tn  is a tree with n  vertices. Then  

 ).(])[(])[( nAnAnA SDHTDHPDH   
  

Theorem 4. Let G  be a simple graph. The multiplicative weighted Harary index of D[G]   
is given by  

.)(2)(16])[(
)(

2



GVx

iGMM
i

xdGHGDH  

  
Proof. The multiplicative Harary index of D[G]  is  
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 By Lemmas 1   4 this expression equals 
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Corollary 5 . Suppose Pn , Sn ,Cn  and Kn  be the path, star cyclic and complete graphs with  
n vertices. Then  

.)1(2)(16])[(
8)(16)][(

)1(2)(16)][(
128)(16])[(

2






nnKHKDH
nCHCDH

nnSHSDH
nPHPDH
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Theorem 5. Suppose G  is a graph of order n, having k  vertices v  such that ecc(v)=1 ( or 
equivalently, dG(v)=n-1). The eccentric connectivity index of D[G]   is given by  

).1(4)(4)][(  nkGGD cc   
Proof. 

).()()()(])[( ][
1 1

][][][ iGDi

n

i

n

i
GDiGDiGD

c yeccydxeccxdGD  
 

  

By Lemmas 4 and 5 we have  

 

 
Theorem 6. Let G be a simple graph having k  vertices with eccG(v) = 1. The total 
eccentricity index of D[G] is given by 

.2)(2])[( kGGD    
Proof. 
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1 1
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By Lemma 5, we have  

.2)(22)(2])[(
2)( 1)(
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Corollary 6. For the star and the complete graph we have:  
 

.2)(2)][(
;2)(2)][(
nKKD

SSD

nn
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یافته تعمیم زاگرب هاي شاخص و استرلینگ اعداد   

 
 کلاوزار سندي : رابط ادیتور

 
 چکیده

 
 

M1 یافته تعمیم هاي زاگرب شاخصتوان  میدهیم که چگونه  نشان میدر این مقاله 
k(G)  با استفاده از را

یک مثلث از به این ترتیب، معنی . محاسبه کرداي ساده و اعداد استرلینگ نوع دوم،  یک گراف چندجمله
  .دهیم شرح میشود را  ، استفاده میک مرجع قبلیاي مشابه با ی  را که براي حصول نتیجه اعداد

  گراف ساده، شاخص زاگرب، عدد استرلینگ :لغات کلیدي
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 جورسازي اي چندجمله و مشخصه اي چندجمله ضرایب میان رابطه

  آن هايکاربرد و منظم هاي گراف
  

اشرفی علیرضا : رابط ادیتور  
 

 چکیده

 ه گرافصاي مشخ فرض کنید چندجمله. ماتریس مجاورت آن است A(G)یک گراف و     Gفرض کنید 

G صورت بهin
n

i
i

n aG 


 

1

صورت زیر تعریف  به  Gاي جورسازي گراف  چندجمله.  است ),(

  :شود می
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امین ضریب -2kدر این مقاله رابطه میان . است Gهاي گراف  جورسازي-kتعداد   m(G,k)که در آن  

)1(),(، اي جورسازي امین ضریب چندجمله-k، و ka2اي مشخصه،  چندجمله kGmk  در یک گراف  ،
هاي  ها را در گراف جورسازي- 6و  5تعداد  ،نماییم و سپس با استفاده از این روابط را مشخص میمنظم 

  .آوریم دست می فولرن به
  .اي جورسازي، گراف فولرن اي مشخصه، چندجمله چندجمله :لغات کلیدي
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آذري یوسفی حسن : رابط ادیتور   
 

 چکیده

کارگیري  با به. دو نوع گراف دندریمر محاسبه شده است بالایی وینرهاي وینر و    ن مقاله، اندیسدر ای 
براي این نیز  ایوان و گوتمن -ز، پادماکارهاي سگد، شول ، اندیسفرمول به دست آمده براي اندیس وینر

  .شود ها تعیین می گراف
  بالایی وینر اندیس ،وینر اندیس ،دندریمر ،توپولوژیکی اندیس :لغات کلیدي
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اشرفی علیرضا : رابط ادیتور  
 

 چکیده

هاي بازگشتی معمولی هستند و یک هاي بازگشتی سطلی یک تعمیم جالب و طبیعی از درختدرخت
هاي پایین و بالایی براي تابع مولد گشتاور و گشتاورهاي در این مقاله، کران. شیمی دارند-ارتباط با ریاضی

با   nي طور تصادفی انتخاب شده از اندازهبه ب ضربی در یک درخت بازگشتی سطلیِهاي زاگرشاخص
푏ي سطل ماکسیمال اندازه ≥ هاي زاگرب ضربی براي مقادیر همپنین، به نسبت شاخص.  شودارائه می 1

푏براي ارائه شده ي نتایج همه. شودتوجه می bو  nمختلف  = معمولی تقلیل هاي بازگشتی به درخت 1
  . یابدمی

  .گشتاورها ،تابع مولد گشتاور، شاخص زاگرب ضربی، هاي بازگشتی سطلیدرخت :لغات کلیدي
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تمنگو ایوان : رابط ادیتور  

 
 چکیده

بینی اثر یک تغییر در شرایط تعادل شیمیایی  اصل لوشاتلیه به عنوان یک راه بسیار ساده براي پیش
اند و هنوز هیچ معادله  شدن این اصل را گزارش کرده هرحال، چندین مطالعه، نقض به. شود استفاده می

ه، ما یک در این مقال. گازي گزارش نشده است هاي فاز اي براي بیان دقیق شرایط نقض در واکنش ریاضی
  . کنیم آل در دما و فشار ثابت اثبات می هاي گاز ایده براي واکنشاصل لوشاتلیه  معادله ساده را براي نقض

  ، واکنش گازي، مخلوط،  تعادل شیمیایی، تعدیل پتانسیل شیمیایینقض اصل لوشاتلیه :لغات کلیدي
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  نامنظم وار همسایه شده مشتق هاي گراف 

 
کداسلی تومیسلاو : رابط ادیتور  

 
 چکیده

 .درجه نباشند ، همGهیچ دو رأس مجاور  هرگاهشود  می نامیدهنامنظم وار  همسایه، G همبندیک گراف 
  نقطه-کامل نیم ، گراف نقطه-کامل نیم گراف مانندنامنظم همسایه وار شده  هاي مشتق در این مقاله، گراف

k-رخیو همچنین ب رأس کامل شبه ، گرافکامل شبه ، گرافخطی خط ، گرافخط-کامل نیم ، گرافام 
  .آوریم دست می را به هاي حاصلضربی گراف

  یحاصلضربهاي  شده، گراف هاي مشتق گراف ،وار نامنظم همسایه :لغات کلیدي
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 ها آن رأس درجه بر مبتنی پایاهاي و تهپیوس هم هب  يها گراف

 
داسلیک تومیسلاو : رابط ادیتور  

 
 چکیده

 V(G2)و  V(G1)دو گراف همبند ساده به ترتیب با مجموعه رئوس مجزاي  G2و  G1فرض کنید 
 a1هاي  توسط رأس G2و  G1هم پیوستگی  ، بهa2∊V(G2)و   a1∊V(G1) هاي معین براي رأس. باشند

هاي دقیقی  در این مقاله، فرمول. شود تعریف می G2و  G1در اجتماع  a2و a1هاي  کردن رأس با یکی  a2 و
  .کنیم ها ارائه می هم پیوستگی گراف به رأس درجهي برخی پایاهاي گرافی مبتنی بر  براي محاسبه
  .هم پیوستگی درجه رأس، پایاي گراف، به :لغات کلیدي
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  ها درخت در اول زاگرب شاخص بالاي کران
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 چکیده

نمایش داده   M 1 (G)باشد و با   هاي گراف می ول برابر مجموع مربعات درجات راسزاگرب ا شاخص
ووکیسویچ و پاپیوودا در . هاي غیرمجاور است مجموع درجات زوج راساندیس اول گراف برابر  هم و شود می

از شیمیایی  درختثابت کردند که براي هر  [Iran. J. Math. Chem. 5 (2014) 19-29]مرجع 
  ،n ،5nمرتبه 
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 ،و ماکزیمم درجه ها ها  بر حسب تعداد راس درختهمه در این مقاله کران بالاي اندیس زاگرب اول در 

  .است شدهها محاسبه  درخت اول اندیس زاگرب کران پایین براي هم همچنین .تاس تعمیم یافته
  ، درخت شیمیاییدرخت ،اندیس زاگرب اول هم  اندیس زاگرب اول، :لغات کلیدي
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 چکیده

بسته شکل ، ابتدا دراین مقاله. باشد Gگراف دوگانه بیانگر  D(G)و  ،همبندگراف یک  G فرض کنید
در . گیریم نتیجه می را Gبرحسب  D(G)هاي توپولوژیکی براي  ي شاخص برخی فواصل، برپایه هاي فرمول

     .شوند کار گرفته می به گراف کامل، مسیر و دور نوع خاص از گرافها مانند ها براي چند پایان، این فرمول
  دوگانهگراف شاخص وینر، شاخص هراري،  :لغات کلیدي
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