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1. INTRODUCTION AND PRELIMINARIES

The Zagreb indices belong to the oldest and the best researched topological indices.Since
their introduction in early seventies [7] they have also given rise to numerous
generalizations. (For a survey, see [6].) In this note we show how the information about one
of the generalizations, the first general Zagreb index, introduced by Li and Zheng in 2005
[8], can be extracted from a simple, yet neglected, graph polynomial. To the best of our
knowledge, the polynomial was introduced and studied in 2008 by two of the present
authors and a third one [9], and received no attention afterwards. Crucial to our approach is
a family of combinatorial numbers known as the Stirling numbers of the second kind.

* Corresponding Author: (Email address: sedghi_gh@yahoo.com)
DOI: 10.22052/ijmc.2017.15092
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1.1. DEGREE SEQUENCE POLYNOMIAL OF A GRAPH

Let G be a simple connected graph with the degree sequence ¢ =d, <---<d_ =A. Its
degree sequence polynomial S;(x) is defined as the generating polynomial of its degree
sequence, i.e., as

A
Se ()= b6 X" = Z:;ajx",
where a; denotes the number of vertices of degree j. +he evaluations of the polynomial
and its first derivative at 1 give, respectively, the number of vertices and twice the number
of edges of G. Hence, S;(1)=|V(G)| and S;(1)=2|E(G)|. Given its simplicity, and
proliferation of other graph polynomials, it is surprising that this polynomial attracted no
attention of researchers so far. In the following we show that the degree sequence

polynomial encodes far more information on G . In order to extract it, we need a family of
combinatorial numbers known as Stirling numbers of the second kind.

1.2. STIRLING NUMBERS

n
The Stirling numbers of the second kind, denoted by {k} count the number of partitions

of a set of n elements into k non-empty subsets. They form a triangular array whose few
beginning rows are shown in Table 1. It can be shown that they satifay a linear recurrence,

it

0 0 0
for n> 0 with the initial conditions {0}: 1 and { }: {

j i
the reader to [5] for a thorough discussion of these numbers and their properties. The most
important for us is the fact that the Stirling numbers of the second kind are used to convert
between powers and falling factorials,

X" = ZK{E}XK,

where x* is the falling factorial defined as x* =x(x—1)...(x—k+1). The opposite
relationship,

}: 0 forall i, j=0. We refer

X2 = Zk {E}(_l)nk XX 7
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n
involves the Stirling numbers of the first kind LJ that count the ways to arrange n objects

into cycles. In the rest of the paper we will make use of both conversion formulas.

n
Table 1. Stirling numbers of the second kind {k}

%0123456
0 1

1 0 1

2 01 1
301 3 1

4 017 6 1

5 0 1 15 25 10 1
6 0 1 31 90 65 15 1

1.3. GENERALIZED ZAGREB INDICES

Recall that the first and the second Zagreb indices are defined as

Ml(G):Zuev(G)duz and MZ(G):ZME(G)dudV,
respectively, where d, denotes the degree of vertex u . The k -th general first Zagreb index
M/ (G) is defined [8] as the sum of k-th powers of degrees of vertices of G,
Mlk(G):Zuev(G)duk. Hence, M;(G)=2|E(G)| and M/(G)=M,(G). For k=3 one

obtains the forgotten index F(G) [4]. Our main result shows that all information about

M, (G) for all k is encoded in the degree sequence polynomial of G .

2. MAIN RESULTS

Theorem 1. Let G be a simple connected graph and S;(X) its degree sequence
polynomial. Then the k —th general Zagreb index of G can be computed as

k k _
mie)= 3 lsi
=1
forany k eN.
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Proof.
k

- k| .
Zi{ '}ZUEV(G)dUJ = Z,—{j}sé”(l)-

J

k]l -
Mlk (G) = ZUEV(G)d: = ZUEV(G)Zj{j}dUJ

Corollary 2.
$¢(1)= ZMH)“ M}(G).

As an example, we look at the case of tetrameric 1,3—-adamantane, considered by Fath—
Tabar et al. in reference [3]. It is clear by inspection that a chain TA[n] of n such units has

6n vertices of degree 2, 2n+2 vertices of degree 3 and 2n-2 vertices of degree 4.
Hence, its degree sequence polynomial is given by S;,.; =6nx’+2(n+1)x*+2(n—1)x"*.

From there, by using Theorem 1, we immediately obtain M/ (TA[n]) = M, (TA[n]) =
74n—14 (as obtained in [3]), M2(TA[n]) = 230n—74 and M, (TA[n]) = 770n —350.

3. CONCLUDING REMARKS

The same approach we used here could be applied to other topological indices and
polynomials. For example, there are variants of eccentricity polynomials that encode the
information about sums of powers of vertex eccentricities [2].

A comparable approach to degree—based topological indices was employed by
Deutsch and Klavzar [1]. Their M —polynomial is a bivariate generating polynomial
encoding the information about the number of edges whose end-vertices have certain
degrees. It allows quick finding of any degree—based graph invariant, but it takes more
work to compute the polynomial than in the case of degree sequence polynomial.

We conclude by mentioning that our results were anticipated in some earlier papers,
but the relationship was never made explicit. For example, in Theorem 3.1 of reference

[10] concerned with general Zagreb indices, M, (G) are given as sums of the numbers of
(not necessarily induced) star subgraphs of G multiplied by certain coefficients. The

. : : : n
coefficients form a triangular array t,, and it can be easily guessed that t , = k!{k}. Our

results provide an elegant proof. Similar observation can be made about the triangle of
coefficients in Corollary 3.1 of the same reference.

ACKNOWLEDGMENT. Partial support of the Croatian Science Foundation under the
project 8481 (BioAmpMode) is gratefully acknowledged by the first author. We are
thankful to the anonymous referee for careful reading and useful suggestions.



Stirling Numbers and Generalized Zagreb Indices 5

REFERENCES

1. E. Deutsch, S. Klavzar, M-polynomial and degree-based topological indices,
Iranian J. Math. Chem. 6 (2015) 93-102.

2. T. Dosli¢, M. Ghorbani, M. A. Hosseinzadeh, Eccentric connectivity polynomial of
some graph operations, Util. Math. 84 (2011) 297-309.

3. G. H. Fath-Tabar, A. Azad, N. Elahinezhad, Some topological indices of tetrameric
1,3-adamantane, Iranian J. Math. Chem. 1 (2010) 111-118.

4. B. Furtula, 1. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015)
1184-1190.

5. R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison—Wesley,
Reading, 1988.

6. I. Gutman, K. Ch. Das, The first Zagreb index 30 years after, MATCH Commun.
Math. Comput. Chem. 50 (2004) 83-92.

7. 1. Gutman, N. Trinajsti¢, Graph theory and molecular orbitals. Total w-electron
energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.

8. X. Li, J. Zheng, A unified approach to the extremal trees for different indices,
MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.

9. S. Sedghi, N. Shobe, M. A. Salahshoor, The polynomials of a graph, lranian J.
Math. Sci. Inf. 3 (2008) 55-68.

10. G. B. A. Xavier, E. Suresh, I. Gutman, Counting relations for general Zagreb

indices, Kragujevac J. Math. 38 (2014) 95-103.






Iranian J. Math. Chem. 8(1) March (2017) 7-23

Iranian Journal of Mathematical Chemistry

Journal homepage: ijmc.kashanu.ac.ir

Relationship between Coefficients of Characteristic
Polynomial and Matching Polynomial of Regular
Graphs and its Applications

FATEMEH TAGHVAEE AND GHOLAM HOSSEIN FATH-TABAR®

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan,
Kashan 87317-53153, I. R. Iran

ARTICLE INFO

ABSTRACT

Avrticle History:

Received 2 January 2016
Accepted 14 March 2016
Published online 5 September 2016
Academic Editor: Tomislov Doslic

Suppose G is a graph, A(G) its adjacency matrix and y(G,A) = A"
+ ayAn-; + ... +a, is the characteristic polynomial of G. The
matching polynomial of G is defined as M(G,x) = m(G,0)x" —
m(G,1)x" 7 - m(G,2)x"* + ..., where m(G,k) is the number of
k—matchings in G. In this paper, the relationship between 2k-th

coefficient of the characteristic polynomial, ay, and k-th

coefficient of the matching polynomial, (—1)*m(G, k), k=0,1,2,...,
in a regular graph is determined. In addition, these relations for
finding 5,6-matchings of fullerene graphs are applied.

Keywords:

Characteristic polynomial
Matching polynomial

Fullerene graph © 2017 University of Kashan Press. All rights reserved

1. INTRODUCTION
Suppose G is a simple graph with n vertices and m edges, and A(G) is the adjacency matrix
of G. The characteristic polynomial of G, denoted by y (G, A1), is defined as:
w(G,A) =det(Al, —AG))=A"+a A" " +..+a A +a,.
The roots of the characteristic polynomial are the eigenvalues of G. A k—-matching in G is a

set of k edges without common vertices. Denote the number of k-matchings in G by
m(G,k). It is clear that m(G, 1)=m and m(G, k)=0 fork >|n/2| or k <0. The matching

polynomial of the graph G is defined as:
MG, X) =Y (1) m(G,k)x"2.

Go to [9] for details. The girth of G is the length of the shortest cycle contained in G. An
edge incident to a vertex of degree one is called a pendant edge.

° Corresponding Author: (Email address: fathtabar@kashanu.ac.ir)
DOI: 10.22052/ijmc.2017.15093
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Fullerenes are polyhedral cage molecules composed entirely of carbon atoms. The
molecular graph of such a molecule is 3—connected and planar with faces all pentagons and
hexagons. Suppose p and h are the number of pentagons and hexagons in an n-vertex
fullerene F, respectively. Therefore the Euler’s theorem implies that p = 12 and h = n/2 -
10. After the outstanding work of Kroto et al. [14] in discovering the buckminsterfullerene
Ceo, a lot of researchers devoted their time to find mathematical properties of these new
materials. The most important book on this topic is the well known book of Fowler and
Manolopoulos [12]. There are several different computer programs for working with
fullerenes, one of them is developed by Myrvold and her colleagues [16]. Another program
is developed by Schwerdtfeger et al. [17].

Fullerenes are also called (5, 6)—fullerenes. An IPR (5, 6)-fullerene is one for
which no two pentagons share an edge. The minimum distance of two vertices of any two
nearest pentagons is called the pentadistance of fullerene. In this paper, all (5,6)-
fullerenes considered are at distance of at least 2. For more information on the fullerenes
and additional results you can see [1, 4, 10, 11].

In this section, some operational definitions used in this paper are presented. The
symbols P, and C,, stand for the path with n vertices and the cycle of size n, respectively,
and ¢g(H) or ¢(H) for the number of H-subgraphs of G. Any undefined terminology and
notation can be found in [7].

Behmaram in his thesis [2] and in a recent paper [3] extended the notion of
fullerene to m—generalized fullerene. By his definition, a 3—connected cubic planar graph G
is called m—generalized fullerene if its faces are two m—gons and all other pentagons and
hexagons. The concepts of m-—generalized (3, 6)-fullerene and m-generalized (4, 6)-
fullerene can be defined in a similar way [15]. We refer to Deza and his co—authors for
some other generalization of fullerenes [8, 18, 19].

It is easy to see that a (3, 5, 6)—fullerene molecule with n atoms and exactly 2
triangles has 6 pentagons and n/2—6 hexagons. A (4, 5, 6)-fullerene molecule with n atoms
and exactly 2 squares has 8 pentagons and n/2-8 hexagons, see Figure 1. Also a (5, 6, 7)—
fullerene molecule with n atoms has exactly 14 pentagons, 2 heptagons and n/2-14
hexagons, and a (4, 6, 8)—fullerene molecule with n atoms has exactly 12 squares, 6
octagons and n/2-16 hexagons, see Figure 2. The aim of this paper is determination the
relationship between 2k—th coefficient of characteristic polynomial and k—th coefficient of
matching polynomial of a regular graph with girth 5. Also in this paper we determine some
coefficients of characteristic polynomial of some fullerene graphs. These coefficients are
studied in [6].
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Figure 1. A (4, 5, 6)— (left) and (3, 5, 6)—Fullerene (right).

Figure 2. A (5, 6, 7)— (left) and (4, 6, 8)—Fullerene (right).

2. PRELIMINARIES

In this section, we present the definitions and the theorems that are used in the study.
Suppose G is a graph with n vertices, m edges and with adjacency matrix A(G). It is easy to
see that if G is a regular graph of degree r, then m=nr/2. The characteristic polynomial of
G, v(G, 1), is defined as:

w(G,A)=2"+a A" +..+a, A+a,.

An elementary subgraph of G is a subgraph whose connected component is regular
and of degree 1 or 2. In other words, the connected components are single edges and/or
cycles.
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Theorem 1. ([6]) Let G be a graph and w (G, 1) be the characteristic polynomial of G, then
the coefficients of w (G, 1) are:

(-D)'a =3 ()2,
where the summation is over all elementary subgraphs H of G which have i vertices and

r(H)=n-c and s(H)=m-n+c, where c is the number of connected components of H, and m, n
are the number of edges and vertices of H, respectively.

Corollary 2. The relation between m(G,k) and ay is as the following:
8= (<1 M(G,k) = 3 (=12,

where the summation is over all elementary subgraphs H of G which have 2k vertices and
at least one cycle.

Proposition 3. ([6]) By the notation given above we have:
() a;=0,
(i) az = the number of edges of G,
(iif)  ag = twice the number of triangles in G.

In the following we consider a walk and the spectral moments in graph G, see [7]
for details.

Definition 4. Let G be a graph. A walk of length k in G is an alternating sequence v, €1, V2,
€2, ..., Vk, €, Vk+1 OF vertices and edges such that forany i =1, 2, ..., k the vertices v; and
vi+1 are distinct end-vertices of the edge e;. A closed walk is a walk in which the first and
the last vertex are the same.

Let 4,(G),4,(G),...,4,(G) be eigenvalues of A(G). The numbers sy (G) =Zi”:1/1ik are

said to be the k—th spectral moment of G. It is well-known that Sp (G)=n, S; (G)= 0, S2(G)
= 2m and S3(G) = 6t, where n, m and t denote the number of vertices, edges and triangles of
the graph, respectively [7].

Lemma 5. ([7]) The k—th spectral moment of G is equal to the number of closed walks of
length k.

In [20, 21] the authors calculated the spectral moments of some graphs and they
have ordered them with respect to their spectral moments. Also, in [23] the authors studied
the signless Laplacian spectral moments of some graphs and then they ordered the graphs
with respect to signless Laplacian spectral moments. In [5, 24] the authors computed the
number of 4 and 5-matchings in a graph, and in this paper, we consider the relation
between the coefficients of characteristic polynomial and the spectral moments are
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computed, and then by using this relation the relationship between the coefficients of
characteristic polynomial and the coefficients of matching polynomial is determined.

Theorem 6.(Newton’s identity) Let 4,(G), 4,(G)...., 4,(G) be the roots of the polynomial
w(G,A)=A"+a A" +...+a, A +a with spectral moment Sy. Then
a, =-1/k(S, +S,,a, +S, ,a, +..+S5,3, ;).
Let F1, Fp, F3 and F4 be a (3, 5, 6)—fullerene, (4, 5, 6)-fullerene, (5, 6, 7)-fullerene

and (4, 6, 8)—fullerene, respectively. In [22] the authors computed the spectral moments of
this fullerene graphs as in the following:

Theorem 7. The spectral moments of Fy, Si(F1), 2 < i < 8, can be computed by the
following formulas: S;(F1)=3n, S3(F1) = 12, S4(F1) = 15n, Ss(F1) = 180, Se(F1) = 93n — 60,
S7(F1) = 1932 and Sg(F1) = 639n — 960.

Theorem 8. The spectral moments of F,, Si(F2), 2 < i < 8, can be computed by the
following formulas: S,(F2)=3n, S3(F,) = 0, S4(F,) = 15n + 16, Ss(F,) = 80, Sg(F,) = 93n +
96, S7(F2) = 1120, Sg(F2) = 639n + 400.

Theorem 9. The spectral moments of F3, Si(F3), 2 < i < 8, can be computed by the
following formulas: S,(F3)=3n, S3(F3) = 0, S4(F3) = 15n, Ss(F3) = 140, Sg(F3) = 93n — 168,
S7(F3) =1988, Sg(Fg) =639n — 2464.

Theorem 10. The spectral moments of F4, Si(F4), 2 < i < 8, can be computed by the
following formulas: S;(F4)=3n, S3(F4) = 0, S4(F4) = 15n+96, Ss(Fs) = 0, S¢(F4) = 93n +
960, S7(F4) =0, Sg(F4) = 639n + 8256.

3. MAIN RESULTS

In this section, we discuss the relationship between the coefficients of characteristic
polynomial and the number of 5— and 6— matchings in regular graphs with girth 5 so that
every 6—cycle has at most one edge in common with 5—cycles and with other 6—cycles and
also any two 5—cycles are at distance at least 2. Then we determine these relations for IPR
(5, 6)—fullerenes, and also we compute the coefficients of the characteristic polynomial of
some generalized fullerene graphs.

Theorem 11. Suppose G is an r—regular graph satisfying the above conditions. Then the

relation between the tenth coefficient of characteristic polynomial of G and m(G, 5) is the

following:

a'lo + m(G,5) = _Z(P(Clo) +(P(Cs)nr _16(P(C8)r +16(P(C8) _1/4(P(Ce)n2r2 _54(P(C6)r2
—13/2¢p(C)nr —54¢p(C,) +108p(C,)r + 7(p(C6)nl’2 + 2(p(C5)2 -2¢(C.).
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Proof. By using of Theorem 1, we have:

2, =—M(G5)+) , (-1)°2+D (-D°2+) (-)'2+), (-1)°4,

where A is a 10—cycle, B is a subgraph isomorphic with a 8—cycle and one single edge, C is
a subgraph isomorphic with a 6-cycle with two separate edges and D is a subgraph
isomorphic with two separate 5—cycles. Now, the values of A, B, C and D are calculated. It
is clear that |4|=¢(Ci0) and |B|=¢(Cg)(m—8-8(r-2))= ¢(Cs)(nr/2—8r+8). To compute |C|
we consider all undesirable cases to have a subgraph isomorphic with C and then subtract
these values of all the possible situations. Since all subgraphs isomorphic with C is equal to
¢(Cs) (nr/2-6)(nr/2-7)/2, so if we put ¢(Ce)=h, ¢(Ci)=t and ¢(Cg)=k, then |C|=
1/8hn?r?+13/4hnr+27h +27hr’-54hr-7/2hnr?. Also, as it can be observed |D|= p( p-1)/2.
Therefore

a,, + M(G,5) = -2t + knr —16kr +16k —1/4hn?r?
—54hr? —13/2hnr —54h +108hr + 7hnr? + 2p* — 2p.

In the following section, we consider relationship between the twelfth coefficients
of characteristic polynomial of a regular graph with consideration of the above conditions.
Before the proof of the main result, we need some technical Lemmas.

QH SEERGR

K
M

Figure 3. All subgraphs isomorphic with N, M and K.

Lemma 12. Let G be an r—regular graph that above conditions exist for it. Then the number
of subgraphs isomorphic with a 6—cycle together with a pendant edge and with two
separate edges is equal to:

81/2hnr? —33/2hnr?® —15hnr — 476h +160hr? — 654hr? +906hr +3/4hn?r® —3/2hn?r2.

Proof. Let N be a subgraph isomorphic with a 6—cycle with a pendant edge and two
separate edges, where is depicted in Figure 3. To calculate the number of subgraphs
isomorphic with N, first we consider all subgraphs isomorphic with N, that is equal to
6h(r-2)(m-7)(m-8)/2. Next we consider all of the undesirable cases to have a subgraph
isomorphic with N where is shown in Table 1. Therefore, by consideration these values and
subtracting all undesirable cases from possible conditions for having a subgraph
isomorphic with N we have:
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| N |=81/2hnr® —33/ 2hnr® —15hnr — 476h +160hr® —654hr? +906hr +3/4hn*r® —3/2hn’r?.

Lemma 13. Let G be an r-regular graph satisfying the above conditions. Then the number
of subgraphs isomorphic with a 6—cycles together with a single edge and a path P; (where
the edge and Psare distinct) is equal to:

1/4hn?r® +555hr +111hr® — 420hr? + hbr + hor® — 2hbr?

—10hnr +19hnr? —1/4hn’r? —9hnr® — 258h.
Proof. Let M be a subgraph isomorphic with a 6—cycle together with a single edge and a
path P3, where is depicted in Figure 3. To calculate |M|, the same as previous Lemma, we
consider all of the possible cases to have a subgraph isomorphic with M and all adverse
conditions that are shown in Table 2. AIll possible cases is equal to
h(3(r—2)(r—3)+(n-6)r(r-1)/2)(nr/2-8), and to obtain adverse conditions, these cases are
easily computable and we just compute the cases 8 and 9 in Table 2.

In case 8 (a 6-cycle together with a path P3; with an edge at the end of this path),
first we choose a 6—cycle. Then we consider all the adjacent vertices to 6-cycle, where the
number of these vertices is 6(r—2). So by a simple check there are 6(r-2)(r-1)(r-2)(2r-2)/2
ways for selecting the path P3; with an edge at the end of this path, for the adjacent vertices
to 6—cycle. Now we consider all of vertices that are at distance 2 from 6—cycle and we
consider the following cases:

Case 1. If this vertex that is at distance 2 from 6—cycle is on a 5—cycle, then we
have the following subcases:

Subcase 1.1. If both selected edges to form path P3 are on 5-cycle, then there are
2(r-2) ways for selecting the path P; with an edge at the end of this path.

Subcase 1.2. If only an edge of P3 is on 5-cycle, where the number of these edges
are equal to 2(r-2), then there are 2(r-2)(2r-3) ways for selecting the path P; with an edge at
the end of this path.

Subcase 1.3. If none of the two edges of path is on 5—ycle, where the number of
these edges are equal to (r-2)(r-3)/2, then there are (r-2)(r-3)(2r-2)/2 ways for selecting
the path Ps; with an edge at the end of this path. Finally for the case that the vertex in
distance 2 from 6—cycle is on a 5—cycle we have

b[2r—4+(2r-4)(2r-3)+(r-2)(r-3)(2r-2)/2],
where b is the number of edges that are in common with a 6-cycle and a 5—cycle.

Case 2. If the vertex that is at distance 2 from 6—cycle is not on a 5—cycle, where
the number of these vertices are equal to 6(r-1)(r-2)-2b, then there are (r-1)(2r-3) +
(r-1)(r-2)(2r-2)/2 ways for selecting the path P; with an edge at the end of this path.
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Table 1. All of the undesirable situations to have a 6—cycle with a pendant edge and with
two separate edges and their numbers.

QL

3h(r=2) (=217 +49r =284 nr* = nr)

61 (r—2)° (r—23)

3h(r—2(r—1)

6h(r—2)2(r—1)

6h(r—2)(r—1)>

6h(r—22%(r—1)

6h(r—2)(r—1)(r —3)

3h(r—2)(r—3)(nr—16r+ 16)

6h(r—2)(r —1)(r—23)

[ [

3h(r=2)(r—=1)(nr—16r+ 16)

6h (r—2)>(r—1)

3h(r—2)(nr— 161+ 16)

6h(r—2%(r—1)

3h(r—2)%(nr—16r+ 16)

Y T o

6h(r—2)>(r—1)

%h(r—2)2(nr—l6r—|—l6)
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3h(r—2)(r—3)(r —4) ?E 6h (r—2)°

< 3h(r—2)% (r—3) (;F 6h (r—2)°

©> 3h (r—2)2(r—3) (\EL 6h (r—2)°

I

<j 3h (r—2)2(r—3) Q 6h (r—2)°

Q— 6h(r—2)>(r—1) )i% 6h (r—2)°

Q— 6h (r—2)%(r—23) ?( 2h (r—2)°
Q» 6h(r—2)°(r—23)

Finally, for the case that the vertex in distance 2 from 6—cycle is not on a 5—cycle,
there are
b(2r—4+(2r-4)(2r-3)+(r—2)(r-3)(2r-2)/2) +
6(r-1)(r—2)-2b)((r -1)(2r =3) +(r -1)(r —2)(2r-2)/2)
ways for selecting the path P3; with an edge at the end of this path. Therefore, to calculate
case 8 in Table 2 we have:
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h[6(r—2)(r -)(r—2)(2r—2)/2+b(2r -4+ (2r —4)(2r —3)
+(r=2)(r-3)(2r-2)/2) + (6(r —=1)(r —2) — 2b)((r -1)(2r —3)
+(r=-)(r-2)2r-2)/2)+(n-6-6(r—2)—6(r —=1)(r —2))r(r -1)(2r —2)/2]
=h(nr® —2nr® +nr—br® +2br> —br +84r* — 24r® —96r + 36).
In case 9 Table 2, (a 6-cycle together with a path P; and an edge on middle vertex
of P3), we first select a 6-cycle and then a path P3 of all the vertices except vertices of 6-
cycle. For the vertices that are at distance 1 from 6-cycle, where the number of these
vertices are 6(r—2), there are 6((r—2)(r-1)(r—2)/2)(r-3) ways to choose a path P; such that
there is an edge on the middle vertex. For other vertices, where the number of these vertices
are n—6-6(r—2), there are (n—6-6(r-2))r(r-1)(r—2)/2) ways to choose a path P3 such that
there is an edge on middle vertex. Therefore, there are h(6(r-2)(r-1)(r-2)/2)(r-3) +
(n—6-6(r-2))r(r-1)(r—2)/2) ways to choose case 9 of Table 2. Finally, after calculating all
adverse conditions in this Table, we have:
|M |=1/4hn?r3 4+ 555hr +111hr3 — 420hr2 + hbr + hbr> — 2hbr2

—10hnr +19hnr2 —1/4hn%r2 —ohnrS — 258h.

Lemma 14. Let G be an r-regular graph with the above conditions. Then the number of
subgraphs isomorphic with a 6—ycle together with three separate edges is equal to:

—147hr +59/6hnr® —=5/2hnr? — 44/ 3hnr + 2hbr? —hbr
+136h—hbr® —=57hr® +126hr? —hn?r® +1/48hn°r® + 7/8hn?%r?.

Proof. Let K be a subgraph isomorphic with a 6-cycle and three separate edges, where is
depicted in Figure 3. To calculate |K|, we must consider all the undesirable cases for having
a subgraph isomorphic with K, that is shown in Table 3 and then we subtract these values
of all the possible situations to have a subgraph isomorphic with K. Notice that all
subgraphs isomorphic with K is equal to h(m-6)(m-7)(m-8)/6, so we must find a formula for
all adverse conditions . In this Table all of values in front of figures are easily calculated,
and with putting up values of Lemmas 12 and 13 we obtain:

| K |=—147hr +59/6hnr> —5/2hnr2 — 44/3hnr + 2hbr2 — hbr
+136h —hbr3 —57hr3 +126hr2 —hn?r3 +1/48hn3r3 +7/8hn2r2,

Theorem 15. Suppose G is an r—regular graph satisfying the above conditions. Then the
relationship between the twelfth coefficients of characteristic polynomial of G and m(G, 6)
is stated in the following:
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a,, —M(G,6) = —4a—2e —88/3hnr — 2hbr +59/3hnr® —5hnr? + 7/ 4hn’r? — 72k
+4hbr® —2hbr® —68kr? + 20t +1/24hn°r® —20p° — 2hn®r® — 4kr?®
—20tr +9knr? —1/4kn®r? —17/ 2knr — 294hr + pnr + 20 p°r + 270h
+252hr? —114hr® +144kr — 20 pr +tnr + 20p + 2h* — p°nr,

where k= ¢(Csg), e= ¢(C12), 1= ¢(C1), p= ¢(Cs), h= ¢(Cs), a is the number of edges
common to two 6-cycles and b is the number of edges that are in common with a 6—cycle
and a 5-cycle.

Proof. By Theorem 1 we have:

8, =mG6)+Y  (-1)°2+) (-D"2+> (-D)'2+D (-D°2+> _(-D)°4+> _(-1)"4,

where A is a subgraph isomorphic with a 10-cycle and a single edge, B is a subgraph
isomorphic with a 12—cycle, C is a subgraph isomorphic with a 8—cycle and two separate
edges, D is a subgraph isomorphic to 6-cycle together with three separate edges, E is a
subgraph isomorphic to two separate 5—-cycles with one single edge and F is a subgraph
isomorphic with two separate 6-cycles. It is easy to see that |A|= t(nr/2-10r+10) and
|B|=e. To calculate |C|, we consider all of the possible cases to have a subgraph isomorphic
with a 8—cycle with two separate edges and all of the undesirable situations, and so we
obtain:
|Cl=k/2(m=8)(M—9)—k(2(r—2)*(r =)+ (n—8r +8)r(r —-1)/2)
—4k(r —2)(r —3)—8k(r —2)(r —1) — 28k(r —2)* —8k(r —2)(nr/2—9r +9)
=1/8kn’r? +-17/4knr + 36k + 2kr® +34kr? — 72kr —9/ 2knr>.

Table 2. All of the undesirable situations to have a 6—cycle with a single edge and a path P3
and their numbers.

QL Shir=2) (-2 +49r—284+nr—nr) Q' %h(r—2)(r—3)(rn—16r+16)
Q 3h(r=2)(r—=3)(r—4) QI 3h(r—2)(r—1) (rn— 167+ 16)

3h(r—22%(r—1) Q 6h(r—2)(r—1)(r —3)
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6h(r—2)(r—1)72 6h(r—2)%(r—1)

3h(r—2)%(r—3) 6h(r—2)%(r—1)

3h(r—2)%(r—3) 6h(r—2)%(r—1)

3h(r—2)% (r—23) 3hr=2)(r=3)(r—1)

- ==

—h(—36+96r—nr+2nr2—nr3-|-24r3—84r2+br

2
—2br2+br3) 6h(r—2)(r—1)

O
¥

6h (r—2) (r—1)>

O 1 %h(r—2) (r—1) (=247 + 36+ rn)

TOPYO ] R T

On the other hand, by Lemma 14,
| D |= —147hr +59/6hnr® —5/2hnr? —44/3hnr + 2hbr? — hbr
+136h —hbr® —=57hr® +126hr> —hn’r® +1/48hn°r® + 7/8hn’r>.

Let p be the number of 5-cycles that are satisfied in above conditions, i.e. every 6—
cycle has at most one edge in common with a 5—cycle and the other 6—cycles and also any
two 5-cycles has distance of at least 2. Then, it is clear that |E|=p(p-1)/2(nr/2-10r+10).
Now let a be the number of edges common to two 6-cycles, then |F|=h(h-1)/2-a.
Therefore,
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agp —m(G,6) = 2t(nr /2—10r +10) — 26— 2(1/8kn2r2 +17knr / 4+ 36k + 2krS + 34kr2
—72kr —9knr? /2) + 2(~147hr +59/6hnr —5/ 2hnr2 — 44/3hnr + 2hbr?

— hbr+136h—hbr3 —57hr3 +126hr2 — hn?r3 +1/48hn3r3 + 7/8hn%r?)
—4(p(p-1/2(nr/2-10r +10)) + 4(h(h-1)/2-a)

— _4a—2e-88/3hnr — 2hbr +59/3hnr> —5hnr? + 7/ 4hn%r2 — 72k
+ 4hbr? —2hbr3 — 68kr 2 + 20t +1/24hn3r3 — 20p2 — 2hn?r3 — 4kr3
—20tr + 9knr2 —1/4kn%r2 —17/ 2knr — 294hr + pnr + 20 pr + 270h
+252hr2 —114hr3 +144kr — 20pr +tnr + 20p + 2h2 — p2nr.

Table 3. All of the undesirable situations to have a 6-cycle with three separate edges and
their numbers.

OH —12hr3+42hr2—48hr+18h+%hn1‘3—hnr2+%hnr 6h (r—2)2(r—1)

—4hr3-|—18hr2—26hr-|—12h+%hnr3—%hnr2

DL,

3

6h (r—2)%(r—1)

%hnzr3+555hr+111hr3—420hr2-|—hbr+hbr3

< | Qo[

2
OE —2hbr2—10/111;’%-19/1n;’2—%hnzrz—%nr3 6h(r—2)"(r—1)
—258h
QL 3h(r—2)(-217” 449 —28+nr” —nr) 6h (r—2)°
_ R1 7 33 3 3 2
Q Thnr—Thnr—15hnr—476h+160hr—654hr 61 (r— 2)3
+906hr+%hn2r3—%hn2r2
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3h(r—1) (r—2)? [] 2h (r—2)°

©< 38 (r—3) (/”—2)2 Q ‘ 3hr=1)(r=2) (nr—16r+ 16)
QL 30 (r—3) (r—2) q 3h(r=2"(nr—16r+16)

5 |
3h(r—3)(r—2) Q 3 (r=2)" (nr = 167+ 16

h(r=3) (r=2) (r—4) | =2 = 1616

h(r=2)(r=3) (nr—16r+16)

o | we

6h (r— 12 (r—2) Q |
EE 6h(r—3)(r—2)(r—1)

In following, suppose G is an IPR (5, 6)—fullerene such that any two pentagons are
at distance at least 2. In [13] the authors calculated some of the coefficients of characteristic
polynomial of G. Now, in this paper by using these coefficients and by using of Theorems
11 and 15 we calculate the 5, 6-matchings in G.

Theorem 16. Let G be an IPR (5, 6)—fullerene such that satisfying the above conditions.
Then we have:

m(G,5) =3543/10n-12+1719/64n° —2499/16n* —135/64n" +81/1280n°.
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Proof. By using of Theorem 11 we have:
a10 +M(G,5) = —2t + knr —16kr +16k —1/ 4hn2r2
—54hr2 —13/ 2hnr —54h +108hr + 7hnr2 + 2p2 —2p.
On the other hand by [13] we have:
a,, = —81/1280n° +135/64n* —1791/64n° + 3207 /16n* —9003/10n + 2556.
Also we have, r=3, ¢(Ci9)=a=3n/2-60, ¢p(Cg)=0, ¢(Cs)=12 and ¢(Cs)=n/2-10. Therefore,
m(G,5) =3543/10n-12+1719/64n° —2499/16n° —135/64n" +81/1280n°.

Theorem 17. Let G be an IPR (5, 6)—fullerene such that satisfies the above conditions.
Then we have:

m(G,6) = —7607/4n-10770+146177/160n* — 21339/128n°
+4113/256n"* —405/512n° +81/5120n°.

Proof. By using of Theorem 15 we have:
m(G,6) = a,, — (—4a —2e —88/3hnr — 2hbr +59/3hnr® —5hnr? +7/4hn’r? — 72k
+4hbr? —2hbr® —68kr? + 20t +1/ 24hn°r® —20p® — 2hn®r® — 4kr?®
— 20tr +9knr® —1/4kn®r* —17/ 2knr — 294hr + pnr + 20 p°r + 270h
+252hr® —114hr® +144kr — 20 pr +tnr + 20 p + 2h* — p®nr).
On the other hand, by [13] and by Newton’s identity we have:

a,, = —31899/4n + 25970+ 240017 /160n° — 25227/128n°
+4257/256n* —405/512n° +81/5120n°.

Also, in an IPR (5,6)-fullerene we have, e = ¢(Ci12)=0, t = ¢(C10)=a=3n/2-60, k=
¢(Cg)=0, p= ¢(Cs)=12, h = ¢(Cs) = n/2-10 and b = the number of edges are common to
6—cycles and 5—cycles = 60. Therefore,

m(G,6) = —7607/4n-10770+146177/160n* — 21339/128n°

+4113/256n"* —405/512n° +81/5120n°.

In the following we consider all of the generalized fullerene graphs that were
defined in this paper and the coefficients of characteristic polynomial of these graphs are
calculated.

Theorem 18.The coefficients of characteristic polynomial of Fy, ai(F1), fori=1,2,3, ..., 8
are: a; = 0, a, = —3n/2, ag = -4, a, = 9/8n? — 15n/4, a, = 6n — 36, ag = —9n°/16 + 45n%/8 —
31/2n + 18, a; = —9n?/2 + 69n — 276, ag = 27n*/128 — 135n°/32 + 969n?/32 — 855n/8 +
264.
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Proof. Apply Theorems 7—10 and Newton’s identity.

Theorem 19. The coefficients of characteristic polynomial of F, , a;(F,), fori =1, 2, 3, ...,
8 are: a; = 0, a,=-3n/2, a3 =0, a; = 9n%/8 — 15n/4 — 4 a, = —16, ag=—-9n°/16 + 45n?/8 —
19n/2 — 16, a7 = 24n — 160, ag = 27n*/128 — 135n°/32 + 825n?/32 — 327n/8 —42.

Theorem 20. The coefficients of characteristic polynomial of F3, a; (F3), fori=1,2, 3, ...,
8 are: a; =0, a,=-3n/2, a; = 0, a4 = 9n*/8 — 15n/4, a.= —28, as=—9n*/16 + 45n%/8 — 31n/2 +
28, a; = 42n — 284, ag=27n"/128 — 135n%/32 + 969n°/32 — 975n/8 + 308.

Theorem 21. The coefficients of characteristic polynomial of F4, ai(Fs), fori =1, 2, 3, ...,
8 are: a;= 0, a,=-3n/2, a; =0, a,=9n?/8 — 15n/4 — 24, a; = 0, as=—-9n>/16 + 45n%/8 + 41n/2
— 160, a; = 0 and ag = 27n"/128 — 135n%/32 + 105n°/32 + 2001n/8 — 744.
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1. INTRODUCTION

Let G = (V,E) be a simple connected graph with vertex set V and edge set E. A topological
index of a simple connected graph G is a graph invariant which is related to the structure of
the graph. The Wiener index is one of the best known topological index of a simple
connected graph which is studied in both mathematical and chemical literature and it's
definition is in terms of distances between arbitrary pairs of vertices, see for example [1, 2,
3, 4]. The Wiener index of G is denoted by W (G) and it is defined by:

W)= Ty 000 =5 T, 60,

where d(u,v)is the distance between vertices u and v andd(u) = Zvev d(u,v).
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The Szeged index [5, 6] is another invariant of a graph which is based on the
distribution of the vertices and introduced by Ivan Gutman and it is the same with the
Wiener index in the case that G is a tree. The set of vertices of graph G which are closer

to u (resp.v) than v (resp. u) is denoted by N,(e|G) (resp. N,(e|G)). This index is
defined as the summation of (n,(e|G) n,(e|G)) where n,(e|G) (resp.n,(e|G)), is the

number of vertices of graph G closer to u (resp.v) than v (resp.u ), over all edges e =uv
of graph. Now, the Szeged index of G which is denoted by Sz(G) is defined as:

$z2(G) =) ,..(n,(e|G)n,(e]G)).
The Padmaker-Ivan (PI) index [7, 8] is another topological index of a simple

connected graph that takes into account the distribution of edges so is closely related to
Szeged index. The Pl index of G is defined by

PIG)=D (N, (€]G)+n,(e|G)),

where (n,, (e |G) (resp. (n,, (e|G)) is the number of edges of the subgraph of G which has

the vertex set N, (e|G) (resp. N,(e|G)).

The molecular topological index (Schultz index) was introduced by Schultz and
Schultz [9, 10]. In addition to the chemical applications, the Schultz index attracted some
attention that in the case of a tree it is related to the Wiener index [11]. It is denoted by
S(G) and defined as follows:

$(G) =2 v (PW+p(V)),
where p(u) (resp. p(v)) is the degree of vertex u (resp. v).

The Gutman index which attracts more attention recently is defined by Klavzar and
Gutman in [11, 12]. This index is also known as the Schultz index of the second kind but in
this paper the first name is used. Gutman [11] has proved that if G is a tree then there is a
relation between Wiener and Gutman indices of G that we will mention this in Section 2.
The Gutman index of G is denoted by Gut(G)and is defined as follows:

Gut(G) = Zqu,v3cv (P(U)p(V))

The hyper—Wiener index is one of the graph invariants, used as a structure
descriptor related to physicochemical properties of compounds. This index was introduced
by Randi¢ in 1993 as extension of Wiener index [13] and it has come to be known as the
hyper—Wiener index by Klein [14]. The hyper—Wiener index of G is denoted by WW (G)

and is defined as follows:

WW(G) =2 W(G)+ T, d*(u.v).
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Here we mainly try to determine the Wiener, hyper Wiener and PI indices of two
kinds of dendrimer graphs (explained in Section 2), then the Schultz, Szeged and Gutman
indices are obtained as results of the relation between the Wiener index with both the
Schultz and Gutman indices.

U,

Un_1<
ui+1-"

U

Uy .-
Uy
Ug

<
<

Figure 1. The first dendrimer graph G, .

2. CALCULATING THE WIENER, HYPER-WIENER AND Pl INDICES OF THE
FIRST DENDRIMER GRAPH G,

Let G = (V,E) be the graph with vertex set V and edge set E as in Figure 1. This graph
begins with one vertex up which connects to two other vertices such that each one of these
two vertices connects to two other vertices and so on. The vertices which have the same
distance from uo are located on a branch. Let G have (n+1) branches so there are 2'

vertices in the i'-th branch (0 <i < n’). We denote this graph by G, .

Proposition 2.1. Let G, = (V, E) be the dendrimer graph in Figure 1, then:
W(G,)=4" (n-2)+ 2" (n +4).

Proof. From definitions we have:
1
w (Gn) - Z(u,v}gV(G) d(u,v) = EZUEV d(u).

This graph has n+1 branches and there are 2' vertices in the i'—th branch, so we
denote the vertex set of this branch by V,, hence we have: V =Uin=ovi' Because of the

symmetric structure of the graph G, (Figure 1), for every vertex u in the n'th branch, d(u)
is constant and doesn't depend on u . So we choose u; as representative of the i'—th branch (
0<i<n).
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d(u,) = Zvevnd(un,v) + Zvevan d(u,,v). Q)

2" vertices which are in lower branch of Figure I, are of the same distance from
u, and this value equals to:
2d(u,,uy)=2n.
Also 2" vertices are of the same distance from u_and this value equals to:
2d(u,,u) =2(n-1).
Finally continuing in this way the distance between u, to the last vertex in the n'-th

branch is equals to:
2d(u,,u,,)=2.
So we have:
Zd(unaV) =2"'x2n+2"?x2(n-1) +...+ 2412

VeV,
=>d(u,,v) =n2"x(n-)2" +..+1.2
VEZV‘: (2)

=>"i2 =2(1+(n-1)2").

For computing the second part of the summation in (1), note that because the graph

n
G, is a tree, for every vertex ve UV, we have:
i=0

d(u,,v)=1+d(u,,,Vv)

ZVEU:;;vi d(u,,v) - ZVEUi“:’;vi d(Ugy V)= 202" ©)
Considering (2) and (3):
d(u,)-d(u,,) =Y 2" +2(1+(n-1)2") = 2n2" 2" +1.

Because, d(u,) = 0. Hence :
d(u,) = Zn:(d (U)—-d(u))=y, 2i2'-2'+1=(2n-3)2"" +n+6. 4)

By multiplying 2" in d(u,)the distance between vertices in the n'—th branch is
considered twice, so if the Wiener index of G, with n (resp.n+1) branch is denoted by
W (n+1) (resp.W(n)) we have:

W(n)-W(n-1) =2"((2n-3)2"" +(n+6)) - Zu‘v}gvn d (u,v)
= 2"(2n—3)2™ 4 2"(n + 6) — 2" (L+ (N —1)2")
=(3n-5)2*" + (n+5)2".
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So,
W(n)=3"" (Bk—5)2% +(k +5)2 =4 (n-2) + 2 (n +4). .

Corollary 2.2. Sz(G,) = 4" (n-2)+2"" (n + 4).

Proof. The graph G, is a tree, so by [11] the result is obtained. |

Corollary 2.3. S(G,) = 4™ (4n-9) + 2™ (4n +19) - 2.

Proof. Because G, is a tree by [11] we have: S(G,)=4W (G,)-n(n-1), where n is the
number of vertices of G, . Now by replacing the closed form of W (G,,) which was obtained
from proposition 2.1, the proof is completed. ]

Corollary 2.4. Gut(G,) = 4" (4n-10) + 2"V (4n +19) +10.
Proof. Because G, is a tree, by [11] we have, Gut(G,)=4W (G,)-(2n-1)(n -1) where n
is the number of vertices of G, and by proposition 2.1 it is done. [

Corollary 2.5. PI(G,) = (2™ -3)(2"* -2).
Proof. Because G, is a tree so for every edge e =uvof G, we have:

n,(eG,)+n,(e|G,) =V [=2"" -1.

Subgraphs of G, with vertex sets N,(e|G,)and N,(e|G,)both are trees and
whose number of edges are n,(e|G,)—1 and n,(e|G,)—1 respectively. Then we have:

n,(€|G,)+n,(|G,) =n,(e|G,)+n,(e|G,)-2=2""-3
| E | (2(n+1) - 3) - (2(”+1) _ 2)(2(n+1) - 3)
Pl (Gn) :l E | (2(”+1) - 3) — (2(n+1) _ 2)(2(n+1) _ 3)

Proposition 2.6. The hyper-Wiener index of G, in Figure 1 is:
WW (G,) =4"(4n? -14n + 24) + 2" (n* -3n -31) - 1.

Proof. By definition we have:

WW(G) =2 W(B)+ X, d*(UV), ©)
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Because of the symmetric structure of the graph G, in Figure I, d(u) for every

vertex u in the n'-th branch is constant and doesn't depend on u, so we choose u; as
representative of the i'—th branch (0 <i<1).

d?(u,) =Y., d*(u,.v)= ZveUi"jvi d?(u,,v)+Y, . d*(u,,v). (6)

n-1
The graph G, is a tree, so, for every vertex, ve UV,:
i=0

d(u,,v)=1+d(u, ,,v).
Now by (6) we have:

d?(u,) = ZVEU"jvi d U v)+)2+>  d*(u,,V)
= ZVEU@Vi d?(u,,,Vv)+ szeu_nflvi d (u,_,,v)+ ZVEVH d’(u,,v)+2" -1 (7)

=d?(U,,)+2d (U, )+, ., d°(u,,v)+2"-1.

2" vertices are in the n'—th branch and by symmetric structure of the graph G, we have :

D, 42U, v) =2"2n)7 +2"7(2n - 2)% +..+ 2°(2)° @
=3 22 =2"*(n’ - 2n+3)-12.

By (4) in the proof of the proposition 2.1, and considering (7), (8):
d*(u,) =Y d*(u)-d*(u)
=>" (47 -4i+3)2' +2i-3=2""(4n" -12n+19) +n’ —2n 38
Therefore:

Suapey 47 UY) - Suveund 42 v) =2" d%(un) - S gev, 42U Y)
=2" d?(up) - 2" txyey, d % (up,v)
=22"1(3n2 ~10n +16) + 2n(n? — 2n - 32).

Now let,

HOED TN CROL
So,

Doy 47UV = _Zn‘,(F(i) ~F(i-1)= _anzz”l(si2 ~10i +16) + 2'(i? - 2i —32)

=4"2(n* —4n+7)+2"(n* = 4n-27) - 2. (©)
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Now considering (9) and the formula of W (G, ) which was computed in proposition
2.1, and replacing those in (5), the proof is done. |

Uo

Figure 2. The second dendrimer graph H, .

3. CALCULATING THE WIENER, HYPER—WIENER AND Pl INDICES OF THE
SECOND DENDRIMER GRAPH H,

Let G = (V,E) be the graph with vertex set V and edge set E, that begins with one vertex
u, in Figure 2 that connects to three vertices which form the first branch and each one of

these three vertices connects to two other vertices in second branch and so on. It means that
any vertex but u, in the i'-th branch joins to the two vertices in the (i+1)-th branch, so the

vertices which have the same distance from u, are located on one branch. Let G have n+1

branches therefore, there are 3x 2 *vertices in the i'-th branch (0<i<n). The graphG is
another kind of dendrimer graph which have n+1 branches, which is denoted by H .

Proposition 3.1. Let H, = (V,E) be the dendrimer graph in Figure 2, then:
W(H,)=3(3n-5)4" +18x2" - 3.

Proof. The graph H, consists of a starting vertex ug and n+1 branches such that the vertex

set of the i'-th branch (i >0), has 3x2'™" vertices and is denoted by V,and |V, |=1. So we
have:

VIS Vi 1433 20 =3x2" - 2.
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Because of the symmetric structure of the graph G in Figure 2, d(u) for every vertex y in
the n'-th branch is constant and doesn't depend on u, so we choose u; as representative of
the i—th branch (0<i<n).

d(u,) = Zvevn d(u,,v)+ Zvevan d(u_,v). (10)
2/3 vertices in n'-th branch have the same distance from u; which is:

2d(u,,u,)=2n.
And the distance of 1/2 of the rest vertices in this branch from uj is:
2d(u,,u;)=2(n-1).
By continuing in this way we have:

z\/ev d(u,,v)= %(3>< 2"y x2d(u,,u,) +%x%(3x 2" 2d(u,,u,)

+%x%(3x2”1)><2d(un,u2)+...+ L x%(3x2”1)2d(un,unl)

2n—1
2nx2" +2(N=1)x2"?+2(n-2)x2" 3 +...+2x2°
nx2"+>" i2'=2+(@3n-2)x2". (11)

Now because H, is a tree, the path between any two vertices is unique and for

n
every vertex ve UV, we have:
i=0

d(u,,v)=1+d(u,,,v).
So:

ZVEU!HVi d (u” ! V) N ZVEUTlVi d (u(nfl) ' V) =| U:jvl |= 3 x 2n71 -2 (12)

By (10), (11) and (12) we have:

d(Up) —d(Ups) = ZVEVH d(Up,v) - ZVEvan d(Ugp,V)
2+(Bn-2)2"+(3x2"My_2 =(6n-12"t-2"+1
d(uy) =" d(u)-d(uiy) =7 +(6n-7)2"

If the Wiener index of H, with n+21branches is denoted by W (n), we have:

W()-W(n-1) =3x209(74(6n-7)2") —%(3>< 2"1Y(2.4 (30— 2)2")

18x 2" ((Bn—4).2"2 +1)
Therefore,

W(n)=Y"18x2'?((3i—4).2% +1) =3(3n - 5)4" +18x 2" - 3.
i=0
And the proof is completed. ]
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Corollary 3.2.Sz(H,) =3(3n-5)4" +18x 2" - 3.
Proof. The graph H, is a tree so, by [11] the result is obtained. |
Corollary 3.3.S(H,)= 4" (36n-69) +87(2")-18.

Proof. Because H, is a tree by [11] we have, S(G,)=4W(G,)-n(n-1), where n is the
number of vertices of H,. Now by replacing the closed form of W(H,)which was
obtained from proposition 3.1, the proof is completed. ]

Corollary 3.4. Gut(G,)=4" (36n-78) +105(2")-97.

Proof. Because H, is a tree by [11] we have, Gut(G,) =4W (G,) - (2n -1)(n -1) which n
is the number of vertices of H_ and by proposition 3.1 it is done. [

Corollary 3.5. PI(H,)=(3x2"-3) (3x2"-4).

Proof. Because H, is atree so for every edge e =uvof H, we have:
nu(el Hn)+ nv(e | Hn) :|V |:3X2n -2

Subgraphs of H, with vertex sets N,(e|H,)and N,(e|H,) both are trees, so the
number of edges of them are n,(e|H,)—1 and n,(e|H,)—1respectively. Then we have:

Ny ([H,)+ne(€H,)  =ny(e|H,)+n,(e]H,)—2=3x2" -2
PI(H,)=|E|(3x2" -4) =(3x2" —3)(3><2”+1_4)

Proposition 3.6. The hyper-Wiener index of H, is:
WW(H,)= %((18n2 -51n+81)4" -87(2") + 6 )

Proof. By the definition we have:
— 1 2
WW(H,) =2 W(H)+ Y, 0, 87w V), (14)

Because of the symmetric structure of the graph H, Figure 2, d(u) for every vertex u in the

n'-th branch is constant and doesn't depend on u, so we choose u; as representative of the i'—
th branch (0<i<1).

d?(u,) =Y., d*u,v) = ZVEU:\/idZ(un,VH Do AU, V). (15)
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n-1
The graph H, is a tree so, for any vertexve UV, :
i=0

d(u,,v)=1+d(u,,,V)
Now by (15) we have:
P =2 gy @ G+ D% Dt EY)
- ZVEU?;;\« d2(u, 4, v) + szeui";;vi d (U, 4,V)+ Zvevn d2(u,,v)+3x2"*-2 (16)
=d2(u,)+2d(u, )+ Zvew d2(u,,v)+3x2" -2,
2/3 vertices of the n'—th branch have the same distance from u, which is:
2d(u,,uy) =2n,
and the distance of 1/2 of the rest vertices in this branch from u, is:

2 2 n-1 2, 11 n-1 2
EVevnd (up,,v) —§(B><2 )(2n) +§.§(3><2 )(2n—2)
11
+=.=(3x2" ) @2n-4)% +..+2°(2)?
2 3( x27)( ) (2 (17)
2202 12" (n-1)2 + 2D (n-2)2 +...+2°(2)2
N+l .2 Noi+li2 _ ontlyn.2 _
=2"p +§i=§ i2=2"3n% —4n+6)-12.

By (13) in the proof of the proposition 3.1, and considering (16), (17):
d>@,) =y d2(u)-d?(uy)
= Z:=12‘*1(12i2 —4i+1) = (12n% —28n+41)2" - 41

Therefore:

Dppn SN 2y p O =@x2" =AW= F )
= (@x2" ~2)d2 ()~ @x2" )Y | 42U 0)

Now let,
F(i) = Z{uvv}gui_i v d?(u,v).
So, we have:
z{w}gv d?(u,v) = Zl: F(i)- F(i—1) =6(3n* —10n +16)4" —105(2") +9. (18)

Now considering (18) and the formula of W(H,) which was computed in
Proposition 3.1, and replacing those in (14), the proof is done. ]
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1. INTRODUCTION

Trees are defined as connected graphs without cycles. Recursive trees are rooted labelled
trees, where the root is labelled by 1 and the labels of all successors of any node v are
larger than the label of v [8]. It is of particular interest in applications to assume the
random recursive tree model and to speak about a random recursive tree with n nodes,
which means that one of the (n-1)! possible recursive trees with n nodes is chosen with
equal probability, i.e., the probability that a particular tree with n nodes is chosen is always
1/(n-1)!. An interesting and natural generalization of random recursive trees has been
introduced in [7], and these are called bucket recursive trees. In this model the nodes of a
bucket recursive tree are buckets, which can contain up to a fixed integer amount of b>1
labels. A probabilistic description of random bucket recursive trees is given by a
generalization of the stochastic growth rule for ordinary random recursive trees (which is
the special instance b =1). In fact, a tree grows by progressive attraction of increasing
integer labels: when inserting label n+1 into an existing bucket recursive tree containing n
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labels (i.e., containing the labels {1,2,..., n}) all n existing labels in the tree compete to

attract the label n+1, where all existing labels have equal chance to recruit the new label.
If the label winning this competition is contained in a node with less than b labels (an
unsaturated bucket), label n+1 is added to this node, otherwise if the winning label is
contained in a node with b labels already (a saturated bucket), label n+1 is attached to this
node as a new bucket containing only the label n+1. Starting with a single bucket as the
root node containing only the label 1, after n—1 insertion steps, where the labels 2,3,...,n
are successively inserted according to this growth rule, results in a so called random bucket
recursive tree with n labels and maximal bucket size b. For an existing bucket recursive
tree T with n labels, the probability that a certain node veT with capacity 1<c(v)<b

attracts the new label n+1 is equal to the number of labels contained in v, i.e., c(v)/n (see
[7]). Figure 1 illustrates a bucket recursive tree of size n=11 with maximal bucket size
b=2. For a connection to chemistry, suppose n atoms in a dendrimer (a repetitively
branched molecule) are stochastically labelled with integers 1,2,...,n, then labelled atoms
in a functional group can be considered as the labels of a bucket in a bucket recursive tree.
It is obvious that the number of nodes (here buckets) in a bucket recursive tree T is less
than n for b >1. Thus we can show the size of the tree as a function of n and b. Let h(b)
be a real valued function of b, where h(1) =0 and h(b)>1 for all b>2. Now, we can
write the size of the tree as n—h(b), i.e., |V (T)|= n—h(b). We choose the function h(b)
in this form for relation between the bucket recursive trees and ordinary recursive trees.

9 (10|11

Figure 1: A bucket recursive tree of size 11 with maximal bucket size 2 [6].

Two vertices of graph G, connected by an edge, are said to be adjacent. The
number of vertices of G, adjacent to a given vertex Vv, is the degree of this vertex, and
will be denoted by d(v). Todeschini et al. [9, 10] have suggested to consider

multiplicative variants of additive graph invariants, which applied to the Zagreb indices
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would lead to the multiplicative Zagreb indices of a graph G, denoted by IT,(G) and
I1,(G), under the name first and second multiplicative Zagreb index, respectively. These
are defined as

IL,G)= [] (dw)® 1)
veV (G)
and
IL,(G)= ] du)d(v), 2

uveE(G)

where V (G) and E(G) are the vertex set and edge set of G, respectively [3].

In probability theory and statistics, the moment generating function of a random
variable is an alternative specification of its probability distribution. Thus, it provides the
basis of an alternative route to analytical results compared with working directly with
probability density functions or cumulative distribution functions. There are particularly
simple results for the moment generating functions of distributions defined by the weighted
sums of random variables. Note, however, that not all random variables have moment
generating functions.

Definition 1.1 The moment generating function of a random variable X is defined as

M, (t) = E(exp(tX)), teR,
wherever this expectation exists.

The reason for defining this function is that it can be used to find all the moments of
the distribution. In fact,

M X (t) = Z%tki
k=0 M=

where p, (k >1) isthe kth moment of X ,i.e., g =E(X*) [1].

2. RESULTS

Let d, (v) denote the degree of bucket v in our model of size n with maximal bucket size
b, and Z, , be the first multiplicative Zagreb index. We also define M, to be the sigma-

field generated by the first n stages [1]. If label n is attached to an unsaturated bucket,
then Z, ., =Z,,,,. Butif label n is attached to a saturated bucket, then by the stochastic

growth rule of the tree and by definition of the first multiplicative Zagreb index,
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Zyoy _(d,,0)+1) -
Zl, n-1,b d n-1 (U ) ’

where U is uniformly distributed on buckets set.

Theorem 2.1 Let M(t) = E(exp(tZ,,,)) be the moment generating function of Z, , of a

bucket recursive tree of size n with maximal bucket size b. Then

M (t) < exp (4biJ (H j_h(b)J

j=b+1 J

Proof. We have

['e]

M(t)ZZ'uk b 4k

k=0

where p, ., (k>1) is the kth moment of Z, . For k>1,
E(Zy,, M) = E(Zy, [d,5(v)), j <n—1-h(b))

2k

Zlkn—l b ¥ Q! d n-1 (Vj ) +1
= == c(v.),
n-1 Z do(v;) v))

=

since Zf,,, is M, ,-measurable and the label n is attached to any saturated bucket v of

the already grown tree T, , with probability cv )1 Thus
n-

n—1—h(b)

E(Zlk,n,b | Mn—l) < 4k bZlk,n—l,b' (4)

Taking expectation of the inequality (4):
Hin1ps K21 )

Also Z,,.,, =1. Thus (5) leads to

0 < @0y 14700 (6)

j=b+1

and proof is completed.
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If we replace t by Int, then we obtain the upper bound for the probability
generating function [1].

Let Z,,, be the second multiplicative Zagreb index of a bucket recursive tree of

size n with maximal bucket size b. Then by definition of the second multiplicative Zagreb
index,

Z, 0 :(dnl(U)+l

41 (V)
d..U) J x(d,,(U)+1). (")

Zz,n—l,b

Theorem 2.2 Let N(t) = E(exp(tZ,,,)) be the moment generating function of Z, , of a

bucket recursive tree of size n with maximal bucket size b. Then

N() > exp M (H J_WJ .

j=b1 J

Proof. Let y, ., (k>1) be the kth moment of Z, , of a bucket recursive tree of size n
with maximal bucket size b. For k >1, similar to the first multiplicative Zagreb index,

E(Z;0s IMyy) = E(Z50, [d,4(v)), J<n—1-h(b))

_ Z;n,b nig“(b) dn—l(Vj)+1 dnil(vj)
n-1 43 | d,,(v))

x(d,,(v;)+1)c(v)).

Thus
n—1-h(b)

E(ZX M _)>
( 2,n,b| n—l) n—l

4bZ;, 1. (8)

Taking expectation of the inequality (8):

n—1—h(b)
n-1
Now, proof is completed just similar to the proof of Theorem 2.1.

VKmb24kb Vi,n-1p k>1.

In passing, we consider the ratio of the multiplicative Zagreb indices for different
valuesof n and b.
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Theorem 2.3 Suppose

zt: b
Zy bk = Zr t e{1,2}t, #t,
2n
and
Ptl,tz,n,b;k = E(Zt;,tz,n,b;k)-
Then
4k n-1 j
P
b”“,llj h(b)
and

bn—b—l n-1 J—h(b)
Pl,z,n,b;k < 4k '

j=o+1 ]

Proof. We have Z;, ,>Z5 ... Let g(x)=x" for x>0. Then g is convex because

Thus

g”(x) = 2x* > 0 and by Jensen’s inequality E(%) >

Z;,
Poinpk =E (sz ° M, jj
1nb
Zk
>E E( 220 | M, J
Zlnb
K 1
>E ZZ,nl,bE(Tanlj
Zl,n,b
k =k 1
>E 4 Zz,nz,bE(k—anlj
Zl,n,b

> 4k(n—b) E(LJ
- k
Zl,n,b

> gk(n-b) 1

Haopx
4k n-1 J
> .
oo Ll Toh)

j=b+1

1
E(X)

With the same manner, we can obtain the upper bound for P, .., .

Theorem 2.4 Suppose

Z zk

* _ ,n,bl * _ Z,H,bl

Zl,Z,n,bl,bZ;k Zk—’ ZZ,l,n,bl,bZ;k - Zk—’ b1 # bzi
2,n,b2 l,n,b2

and
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Kl,z,n,bl,bz;k = E(Zzz,n,bl,bz;k)! Sz,l,n,bl,bz;k = E(Z;,l,n,bl,bz;k)'

Then
N1
K(by—by 1), n—by -1 j—h(b)
Kl,z,n,bl,bz;kS4 2 b, * H bl '
j=by+1 J
and

4k(b2 -b+1)

S,
R € h(b)

2

Proof. By definition of the conditional expectation,

Zlkn bl
K1,2,n,bl,b2;k = E E Zk |Mn—1

2,n b2

an
<E E "% |M,,

ZZn lb2
<< L
AT Hap k
< 4k(b2*b1*1) bI”*H*1 ﬁ - r-](bl) .

j=by1 J

With the same manner, we can obtain the lower bound for S21ny bk

Corollary 2.5 The presented results in Theorem 4 reduce to the previous results in
Theorem 2 for b, =b, =b.

Theorem 2.6 Suppose

* Ztkib
Ztib = kH ’ t:1’2’ Zt,i,b ;ézt,i—l,b
B Zt,i—l,b
and
Et,i,j,b = E(Z:i,bZ:j,b)a <]
Then
Ey, oy < (i-1-h()(j-1- h(b))( b)?
(i-1)(j-1)
and
E, o 2  (i-1-h())(j-1- h(b))( 4b)?.
g (i-1)(j-1)

Proof. From (4),
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El,i,j,b,k = E(E(Z:i,bZ:j,b |Mj—1))
= E(Zl*l E(Zl*jb |M] 1))
< 4kbLh(b)E(leb)
J —
b%"@aazm IM,.)
L(=1-h()(j -1~ h(b))( b)?.
(i-1)(j-1)

With the same manner, we can obtain the lower bound of E,; ;-

We can study the ratio of the multiplicative Zagreb indices for different values of k
as n and d are different with the above presented approach.

Corollary 2.7 For ordinary recursive trees,

Py SA4T2 0 M(t) <exp(4™?t),
Vs 242, N(t) > exp(4"t)

Also, let r,k [1,00] with 1/r+1/k =1. By Holder’s inequality,

1 1
E(Zl,n,bzl,m,b) < (,uk,n,l)k (,Ur,n,l)F
< 4m+n—4.
Also
I:)12n1k £4 k PZ,l,n,l;k 24k
and
Eiijox S16% Ejp oy 216"

Then the bounds does not depend on i and j in ordinary recursive trees.

3. DISCUSSION AND CONCLUSION

So far, the multiplicative Zagreb indices have been studied vastly in literature from
mathematical point of view. In this paper, we introduced the first probabilistic analysis of
the multiplicative Zagreb indices in the random bucket recursive trees. Through the
recurrence equations, an upper bound related to the first multiplicative Zagreb index and a
lower bound related to the second multiplicative Zagreb index are obtained. As an
interesting result it is shown that these bounds are the same in this model. It is difficult to
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find a lower bound in Theorem 2.1 and an upper bound in Theorem 2.2, since the
maximum degree of buckets of our model might not change for different values of n.
However, we can study some probabilistic characteristics of these indices such as
martingales, asymptotic normality and so on (see [4, 5, 6] for details). The lower and upper
bounds for the moment generating function and moments are very important. For example,
by Markov’s inequality,

P(Z,4, 24°%) < %.
Eliasi et al. [2] considered a multiplicative version of the first Zagreb index defined as

LG)= [] (d+dv).

uveE(G)

With the same approach, we can obtain the lower and upper bounds related to this index.
Generally, one can extend this approach to another indices and tree structures.
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1. INTRODUCTION AND PRELIMINARIES

Le Chatelier principle (LCP) is a very simple way of predicting the direction of a disturbed
chemical equilibrium [1]. LCP is often expressed as follows: In a system at equilibrium, a
change in one of the variables that determines the equilibrium will shift the equilibrium in
the direction counteracting the change of that variable. However, the LCP has led to some
wrong predictions and thus caused to some controversial discussions among many students
and teachers [2—7].

The industrial synthesis of ammonia is shown below:

N,(g) +3H,(9) = 2NH;(g)

This is a traditional example used by teachers when the LCP is discussed. In this reaction,
at constant pressure and temperature, when the mole fraction of nitrogen in the equilibrium
mixture exceeds 0.5, the LCP predicts that this change should shift the equilibrium to the
right in order to moderate the excess of nitrogen. However, in contrast to LCP prediction
this disturbance shifts the reaction to the left, producing more Na.
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Although many discussions and examples of the failure of LCP have been reported,
a simple inquiry to predict the conditions of the failure of LCP in gas phase reaction (at
constant T and P) is still missing. The inquiries discussed by Jeffrey E. Lacy [10] are not
general and only limited to special cases, where Av < 0.

In this work, we mathematically derive the criteria in which LCP fails to predict the
correct direction of a reaction at equilibrium upon changing the mole number of a species
at constant T and P.

2. THEOREM AND DERIVATION

Theorem 1. In the ideal gas reaction Y;v;A4;(g) = 0 where % =;Vv; and v; is the

stoichiometric factor of species A4;(g) in the reaction (where it is positive for products and
negative for reactants). At constant temperature (T) and pressure (P), by changing n; of the
J-th species, the reaction proceeds towards the direction that offsets this perturbation unless:

Xj = |Z—;l| mol and An#0, where, Xx; is the mole fraction of j-th species at the reaction

equilibrium before perturbation. In equal st ate, the reaction equilibrium does not change.
However, in non-equal state, the perturbation factor is elevated.

Derivation 2. The expression for the chemical potential (u;) at equilibrium is given as
Yviu; = 0. This term leads to AG® = RTInK,)), where AG® = Y v;u) and the standard

equilibrium constant K7 = [[; (P;/P,)"i is a function of T only.

For a closed system in equilibrium (at constant P and T), if we perturb the system
by adding (or removing) n; mole of A;, the equilibrium will shift to the direction to
counteract this perturbation. Because in this condition Keq is constant, we use Q, as a
parameter to find the direction of shift. We know from thermodynamic if Qy<Keq, the
reaction proceeds forward (producing more product) and if Q, > Keg, the reaction proceeds
backward (producing more reactant). At constants T and P, Q depend only on n;Qp, =
Qp(ny,ny, ..., ;... ). Let us add small mole of A; (dn;) to this system. The term %‘;
represents the change in Qp upon addition of A;. As dn; is positive, the sign of dQp
illustrates the direction of reaction. The term dQp > O denotes the elevation of Q, upon
addition of species. This is the case where reaction proceeds backward to reach the new
equilibrium (because Keq is constant). In the same way, the reaction proceeds forward if
dQp < 0. However, there is no change in the reaction equilibrium upon addition of n; if
dQ = 0. Before going step forward to the final statement, let us discuss the following

required expressions:
A
== = 2iVi (1)
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Qp = [1:(P)"i 2)

i = x;P (3)
Xi = :_; 4)
ne=Xin (%)

where in these equations, P;, x;, and n; are partial pressure, mole faction, and mole numbers
of A, respectively. The n; is the total mole numbers of all gases in the reaction. By
substituting the equations 1, 3, 4 into Eq. 2, we get:

Qr =ILP) = [1;(x;P)"i

= ([T ) AT:(P)Y)
= (R " Xivi
= (L)) (=)
— (i(ny)"i An_
B (l_[i(nr)vi) ((P)mm) (6)
— (Mi(ny)"i An
= (—(nt)zivi) (P)mol
_ (mmgy) .
(ng)mol
An An
= Protn,” mot [[(n,)"
The final statement is used to obtain (Zﬁ)
TP
(), = (&), o] = () oo
= Pt [ (=2 ()57 1) + ()7 557) () ()" (T (0]
= o (- 22 (2% 10+ (0 () () (Tl )|
<O [-2) 20+ ) 2]
= (,%)’"_7‘:1 MiCn | (—22) = + (v,.)nij] )

By Eq. 4 into the final term of Eq. 7, we have:

n; n;
— Y Y
Xj=— - n ==
j

ng
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(2),,,,, = ner |-

TPz . (8)
= ()™ M- i n—j] = (n_t)mm (R [y - 2]

The statement before bracket is denoted as @ for simplicity. It is clear that this

statement is positive.
mol Vi
< ) (l'[ i(n;) ) — >0
n; n;

]
Now Eq. 8 will be written as:
aQP) _ An
— =wl|vi—x;— 9
<6nj TP [ J J mol] ©)

(aQP)T,P,ni¢j =w [Vj — Xj %] (anj) (10)

T,P,ni¢j

We now assume (anj)TP Is positive, which means that n; is added to the system.

, vniij

Therefore, the only parameter which effects the sign of (aQP)T'P'n#j is the statement inside

the bracket,i.e. v; — x; %. We now try to determine the sign of this statement. To do it, let

us refer to the absolute property as follows:
_(+6, 6>0
161 = {—9, <0
We now distribute Eq. 10 vs. sign of v; and An to find in which condition

(aQP)T'P'n#j Is positive, negative or zero. For simplicity, we omit subscript T, P and n;..;.

(11)

( |v|>x|Anl|—>60P>O
lAn>O—>60P=w[+|vj| Xj mal]an —>J|v|<x :|—>60P<0

v; >0 —>60P—w[+|v|— ]ml]anl |Uv]|—x]m—:l—>60p—0
IAn=O—>60P=w[+|vj|]6nj>O
kAn<O—>60P=w[+|vj|+x|An”6n >0 (12)
l{An>O—>60P=w[—|vj| | ”671 <0

An=0—>60,,=w[—|vj|]6n <0

v <0 —»aQ,,_w[ v;| - ]mal]an l (|V|>X|An|—>60P<O
IAn<O—>60P=w[—|vj|+x mal]an —>J||v|<x m—:[—»aQP>O
{ UV1| |mal| = 0Q=0

For conditions 1, 4 and 5 of Eq. 12, where v; > 0 and Qp > 0, by adding more
species from products (v; > 0) Qp increases. Therefore, the reaction shifts backward to
reach the equilibrium, which is in agreement with the LCP. The conditions 6, 7 and 8 are
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also in agreement with LCP; where by adding more reactants reaction proceeds forward.
For conditions 3 and 10, no effect will be appeared by adding n; while 9@, = 0. The
condition 2 (where v; >0 and dQp < 0) reveals that by adding more product to the
reaction at equilibrium, the reaction shifts to the right to produce more product, which is in
contradiction to the LCP. The situation 9 is also contradictory to the LCP; where by adding
more reactant, the reaction shifts to the left. For these conditions we can write:

mol

v
|vj| < x; = x; > |ﬁ| mol (13)

By combining conditions 2, 3, 9 and 10, we obtain:
X > |Z—;l| mol (14)
This is the equation we were searching for. From this equation we conclude that the

Vi - . . .
term x; = |ﬁ| mol represents the critical mole fraction; where if X; increases (x; >

|Z—;l| mol), LCP would be broken. For NH3 production from N, and H,, Posthumus [8] found

that when the system is initially in chemical equilibrium and has more than 50% N, the
addition of N as reactant would result in an internal reaction forming more reactant at
constant T and P. Using Eq. 14 we also found the critical mole fraction as:

1

E.

Now, let’s obtain a general perquisite for reactions where the LCP is broken. To do
so, we use the fundamental property of the mole fraction which cannot be exceeded unity.
Hence the first perquisite is as follows:
vj
An

Using this statement, we will find plenty of reactions where the LCP could be
broken.

— |vi — |=1] =
Xj = | |mol= || =
An -2

<1 (15)

3. CONCLUSIONS

We achieved a simple term for the situations that LCP fails to predict the correct direction
of the reaction change after suffering a perturbation caused by adding species in gas phase
reactions at constant T and P. If the term of Eq. 15 is met, the reaction can go toward the
direction of added substrate (reactant or product) only if the mole fraction is larger than the

critical mole fraction of |Z—;l| mol (Eq. 14). As an example in the following reaction:
CH,(g) + 2H;S(g) = CS;(g) + 4H,(g)
For both CH,(g) and CS,(g), the term |Z—L| :% represents that the first prerequisite is

fulfilled, that is [~| < 1. In the reaction at equilibrium, if the mole fraction of CH,(g) or
An
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CS,(g) is 0.5 or higher, then by adding one of these species to the reaction at constant T
and P, the reaction shifts in the direction to produce more of that species, in contradictory
to LCP.

Finally, from Eqgs. 14 and 15, we also conclude that for the reactions in which An is
0 or 1, the LCP will never be broken while v; is an integer number.

ACKNOWLEDGMENT. We express our gratitude to Dr. Fattahi for valuable discussions.

REFERENCES

1. H. Le Chatelier, Sur un énoncé général des lois des équilibres chimiques, Compt.
Rend. 99 (1884) 786-789.

2. D. Cheung, Using think-aloud protocols to investigate secondary school chemistry
teachers’ misconceptions about chemical equilibrium, Chem. Educ. Res. Pract. 10
(2009) 97-108.

3. D. Cheung, The Adverse Effects of Le Chatelier’s Principle on Teacher
Understanding of Chemical Equilibrium, J. Chem. Educ. 86 (2009) 514-518.

4. J. J.De Heer, The principle of Le Chatelier and Braun, Chem. Educ. 34 (1957)
375-380.

5. J. J. De Heer, Le Chatelier, scientific principle, or "sacred cow"?, Chem. Educ. 35
(1958) 133-136.

6. R. S. Treptow, Le Chatelier's principle: A reexamination and method of graphic
illustration, J. Chem. Educ. 57 (1980) 417-420.

7. J. Gold, V. Gold, Neither Le Chateliers nor a principle, Chem. Brit. 20 (1984)
802-806.

8. K. Posthumus, The application of the van't Hoff—le Chatelier—Braun principle to
chemical equilibria, Rec. Tray. Chim. 52 (1933) 25-35.

9. K. Posthumus, The application of the van't Hoff—le Chatelier—Braun principle to
chemical equilibria. I1, Rec. Tray. Claim. 53 (1933) 308-311.

10. J. E. Lacy, Equilibria that shift left upon addition of more reactant, J. Chem. Educ.
82 (2005) 1192-1193.



Iranian J. Math. Chem. 8(1) March (2017) 53-60

Iranian Journal of Mathematical Chemistry

Journal homepage: ijmc.kashanu.ac.ir

Neighbourly Irregular Derived Graphs

B. BASAVANAGOUDY®, S. PATILY, V. R. DESAI', M. TAVAKOLI? AND A. R. ASHRAFI®

'Department of Mathematics, Karnatak University, Dharwad —580 003, Karnataka, India
Department of Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad
91775, I. R. Iran

*Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan,
Kashan 87317-53153, I. R. Iran

ARTICLE INFO ABSTRACT

Avrticle History: A connected graph G is said to be neighbourly irregular graph if no
Received 9 Merch 2016 Gbtin peighbourly regular derived graphe Such % semitotl-oin
Accepted 3 April 2016 g y Irreg grap P

graph, k-th semitotal-point graph, semitotal-line graph, paraline
graph, quasi-total graph and quasivertex-total graph and also
neighbourly irregular of

Keywords: some graph products.

Published online 15 December 2016
Academic Editor: TomiSLov DoSLIC

Neighbourly irregular
derived graphs
product graphs © 2017 University of Kashan Press. All rights reserved

1. INTRODUCTION AND PRELIMINARIES

In this paper, we are concerned with finite, simple, connected graph G with vertex set
V(G)={v1, Vo, ..., Vn} and edge set E(G)={e1, €z, ..., em}. If v; and v; are vertices of G, then
the edge connecting them will be denoted by viv;. The degree of a vertex v in G is denoted
by dg(v). The complement of G, denoted by G, is a graph which has the same vertex set as
G, in which two vertices are adjacent if and only if they are not adjacent in G and d (v) =

n — 1-dg(v) holds for all veV(G). Definitions not given here may be found in [4].

A graph G is said to be regular if all its vertices have the same degree. A connected
graph G is said to be highly irregular if each neighbor of any vertex has different degree
[1]. The graph G is said to be neighbourly irregular graph, abbreviated as NI graph, if no
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two adjacent vertices of G have the same degree. This concept was introduced by
Bhragsam and Ayyaswamy [2]. In [2, 12], authors constructed NI graphs of order n for a
given n and a partition of n with distinct parts and proved some properties of NI graphs
related to graphoidal covering number, gracefulness, ply number, lace number, clique
graph, minimal edge covering and studied the neighbourly irregularity of some graph
products.

The line graph L(G) of a graph G is the graph with vertex set as the edge set of G
and two vertices of L(G) are adjacent whenever the corresponding edges in G have a vertex
in common. The subdivision graph S(G) of a graph G whose vertex set is V(G) v E(G)
where two vertices are adjacent if and only if one is a vertex of G and other is an edge of G
incident with it.

2. DERIVED GRAPHS

In this paper we considered the following graphs derived from the parent graph G:

1. The semitotal-point graph T,(G) as the graph [8] whose vertex set is V(G) U E(G)
where two vertices are adjacent if and only if (i) they are adjacent vertices of G or (ii)
one is a vertex of G and other is an edge of G incident with it. If u is a vertex of G,
then d,)(u)=2ds(u). If e is an edge of G, then dy,(e)=2.

2. The k-th semitotal-point graph TX(G) of G [6] is the graph obtained by adding k
vertices to each edge of G and joining them to the endvertices of the respective edge.
Obviously, this is equivalent to adding k triangles to each edge of G.

3. The semitotal-line graph T1(G) as the graph [8] whose vertex set is V(G) u E(G)
where two vertices are adjacent if and only if (i) they are adjacent edges of G or (ii)
one is a vertex of G and other is an edge of G incident with it. If u is a vertex of G,
then dr )(u)=dg(u). If e=uv is an edge of G, then d; (¢ )(e)=dg (u)+ds (V).

4. The paraline graph PL(G) is a line graph of subdivision graph of G.

5. The quasi-total graph P(G) as the graph [9] whose vertex set is V(G) u E(G) where
two vertices are adjacent if and only if (i) they are nonadjacent vertices of G or (ii)
they are adjacent edges of G or (iii) one is a vertex of G and other is an edge of G
incident with it. If u is a vertex of G, then dp)(u) = n - 1. If e = uv is an edge of G,
then dp(g)(u)=ds(u)+ds(V).

6. The quasivertex-total graph Q(G) as the graph [7] whose vertex set is V(G) u E(G)
where two vertices are adjacent if and only if (i) they are adjacent vertices of G or (ii)
they are nonadjacent vertices of G (iii) they are adjacent edges of G or (iv) one is a
vertex of G and other is an edge of G incident with it. If u is a vertex of G, then
doe)(u) =n -1+ dg(u). Ife = uv is an edge of G, then dg)(e) = de(u) + dg(v).
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In Figure 1 self-explanatory examples of these derived graphs are depicted.

G To(G) T2(G) T1(G)
PL(G) P(G) Q(G)

Figure 1. Various graphs derived from the graph G and T}(G) is k-th semitotal-point graph
of G fork =3.

The vertices of derived graphs depicted in Figure 1 except from the paraline graph
PL, corresponding to the vertices of the parent graph G, are indicated by circles. The
vertices of these graphs corresponding to the edges of the parent graph G are indicated by
squares. In this paper we obtain neighbourly irregular derived graphs.

Theorem 2.1 [12] Let G be a graph. The subdivision graph S(G) is NI if and only if G
does not have any vertex of degree two.

Theorem 2.2 [12] For any graph G, its line graph L(G) is NI graph if and only if N(u)
contains all vertices of different degree for all u € V(G).

Theorem 2.3 [2] If G is NI graph, then G is not NI graph.
Theorem 2.4 [12] If G is NI graph, then L(G) is not NI graph.

Theorem 2.5 [12] For each integer k > 1, there exist a graph G with maximum degree
A(G) = k such that L(G) is NI graph.
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3. RESULTS

Theorem 3.1 For any graph G, the semitotal-point graph T»(G) is NI if and only if G is NI
graph and no vertex of degree one is in G.

Proof. Suppose G is NI graph and no vertex of degree one is in G. In T,(G), let e = xy be
an edge. Thenx, y € V(G) orx € V(G) andy € E(G).

() X,y € V(G). Since de(x) # do(y), dr,e)(x)=2dg (x) # 2d (y) = dry ) (¥)-
(b) x € V(G) and y e E(G). Since no vertex of degree is one in G and dq,)(y)=2,
dr,(e)(X)=2dg (X)= 2 = dr,)(y) . Thus from all the cases T2(G) is NI graph.

Conversely, suppose G is not NI graph. Then dg(x) = ds(y) for some vertices x and y
are adjacent in G. So, d,()(x)=dq,q)(y). A contradiction to To(G) is NI graph. Suppose

de(v) = 1 for some v e V(G). Let e = vy be an edge in T,(G). Then
dr,(e)(V)=2ds(v)=2=dq,)(y). Again a contradiction to T2(G) is NI graph. 0

Theorem 3.2 For any graph G, the k™ semitotal-point graph is NI if and only if G is NI
graph and k > 2.

Proof. The proof of this theorem is similar to the proof of the Theorem 3.1, so is omitted. o
Theorem 3.3 For any graph G, its T1(G) is NI if and only if L(G) is NI graph.

Proof. Suppose L(G) is NI graph. In T1(G), let e = xy be an edge. Then x, y € E(G) or X €

V(G) and y € E(G).

(@) x, y € E(G). Let x = vijvj and y = ViV, so that x and y are adjacent in T1(G). Since L(G)
is NI graph, we have d)(x)=d )(y), de(vi) + da(vj) — 2 # dg(vi) + ds(vi) — 2 or
de(Vi) + da(V) # da(vi) + da(vk). Therefore d; (¢)(x)# 2dy ) (y)-

(b) x € V(G) and y € E(G). Let e = xy = viej for some v; € V(G) and eje E(G). Therefore
dry(6)(%)=dpy6)(vi)=d (v;) and dTl(G)(y)szl(G)(ej):dG(Vi)+dG(Vk) where ej = vivk #
de(Vi) as dg (v, )#0=dg(x)=dqe)(x). Therefore for every pair of adjacent vertices in
T1(G) have different degree. Thus T1(G) is NI graph.

Conversely, suppose L(G) is not NI graph. Then d(g)(ei) = di)(e;) for some e; = vvs

and ej = v,V are adjacent vertices in L(G). Hence, dg(vr) + dg(vs) — 2 = dg(wr) + da(Vi) — 2,

do(v) + do(Vs) = do(vi) + da(Vi). Therefore d.. q)(e;)=dq,q)(e;). A contradiction to Ty(G) is

NI graph. O
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From Theorems 2.4, 2.5 and 3.3, we have the following corollaries.
Corollary 3.4 If G is NI graph, then T1(G) is not NI graph.

Corollary 3.5 For each integer k > 1, there exists a graph G with maximum degree A(G) =
k such that T1(G) is NI graph.

Theorem 3.6 For any graph G # K, the paraline graph PL(G) is not NI graph.

Proof. Let v be a vertex of degree at least two in G. Then neighbourhood of v in S(G) has
at least two vertices of degree two. By Theorem 2.2, L(S(G))=PL(G) is not NI graph. m

Theorem 3.7. For any graph G = K, the quasi-total graph P(G) is not NI graph.

Proof. Let G # K; be a graph. We have the following cases:

Case 1. If G is not a complete graph, then there exist at least two vertices u, v €
V(G) such that dp(g)(u) = dp)(v) = n— 1. Therefore P(G) is not NI graph.

Case 2. If G is a complete graph, then there exist at least two edges e;, e; € E(G)
such that dpc)(ei) = dp(c)(€j). Therefore P(G) is not NI graph. m

Theorem 3.8 For any graph G with n vertices, the quasivertex-total graph Q(G) is NI if
and only if G, G and L(G) all are NI graphs and A(G) = n —1.

Proof. Suppose G, G and L(G) all are NI graphs. In Q(G), let e = xy be an edge, then x, y

eV(G) orx,yeV(G)orx,yeEG)orx e V(G andy e E(G).

(@) x,y e V(G). Since dg(x) = da(y), do)(X) =n—-1+dg(X) #n -1+ dg(y) = do)(y).

(b) x,y € V(G). Since ds (X) # d5 (¥), do)(X) =n—1+dg(X) #n =1+ ds(y) = do@)(y)-

(c) x,y e E(G). Let x =vjvjand y = vivi. So that x and y are adjacent in Q(G). Therefore
doce)(X) = ds(vi) + ds(vj) and do)(X) = da(Vi) + de(Vi)- But di)(X) # di)(y) as L(G)
is NI graph, di@)(X) = de(vi) + de(Vv;) — 2 and di(c)(y) = dg(Vi) + dg(vk) — 2. Therefore
doe)(X) # doe)(y)-

(d) x € V(G) and y € E(G). Let e = xy = vie;j for some v; € V(G) and e € E(G). Then
doe)(y) = dow)(e)) = dic)(e)) + 2 where g = vivj = dg(vi) + do(vj) # n — 1 + dg(vi) as
A(G) #n -1 # dge)(X). Thus in all the cases Q(G) is NI graph.

Conversely, suppose Q(G) is NI graph. We have to prove that G, G and L(G) are all NI

graphs. If G is not NI graph, then there exists an edge ex = vivj in G such that dg(vi) =
dg(vj). Therefore n — 1 + dg (vi) = n—1 + dg(Vvj). So, do)(Vi) = dow)(V;). A contradiction
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to Q(G) is NI graph. Suppose G is not NI graph, then there exists an edge e, = Vivj in G
such that d; (vi) = dg (). Therefore n — 1 + dg(vi) = n — 1 + dg(vj) and so doe)(Vi) =
doe)(Vvj). A contradiction to Q(G) is NI graph.

Suppose L(G) is not NI graph, then there exists two adjacent vertices e; = v,vs and
e = ViVi in L(G) with di)(ei) = die)(e)). Thus de(vr) + da(Vs) — 2 = da(vr) + do(Vi) — 2.
Hence dg(vr) + dg(Vs) = de(vr) + ds(Vi) and so do)(ei) = docs)(ej). Again a contradiction to
Q(G) is NI graph. Suppose A(G) =n -1 = dg(v) and let e =uv be an edge. Then dge)(€e) =
doe)(u). Again a contradiction to Q(G) is NI graph. m

From Theorems 2.3, 2.4 and 3.8 we have following result.

Theorem 3.9 There is no nontrivial graph G whose quasivertex-total graph Q(G) is NI
graph.

4. NEIGHBOURLY IRREGULAR GRAPH PRODUCTS

The corona [10] of two graphs G and H is the graph obtained by taking one copy of G,
|[V(G)| copies of H and joining each i-th vertex of G to every vertex in the i-th copy of H.
The edge corona [5] of two graphs G and H denoted by G ¢ H is obtained by taking one
copy of G and |E(G)| copies of H and joining each end vertices of i-th edge of G to every
vertex in the i-th copy of H.

Theorem 4.1 Let G and H be nontrivial graphs. Then G ¢ H is NI graph if and only if both
G and H are NI graphs and, G does not have pendent vertex or A(H) < |[V(H)| — 1, where
A(H) is the maximum degree of the vertices of H.

Proof. To prove the result, we have to present some notations. Let G’ be the copy of G and
Hi be the i-th copy of Hin G 0 H, 1 <i < |[E(G)|. A vertex of G ¢ H corresponding to the
vertex u in H is denoted by u’. Also, we denote a vertex of G ¢ H corresponding to the
vertex vin G by v'.

Let G and H be NI graphs and, G does not have pendent vertex or A(H) < |[V(H)| — 1.
Then it is clear that G ¢ H is NI graph.

Conversely, let G and H be two nontrivial graphs and G ¢ H is NI graph. Suppose
u'v' € E(G 0 H) suchthat u’, v' € V(H;), then dgo n(u") — deon (V') = dy (u) — dn(v) = 0 and
so H is NI graph. Also, if u'v' € E(G ¢ H ) such that u’, v' € V(G’), then dg ¢ n(u") — dgo
(V') = (JV(H)| + 1)(dg(u) — dg(v)) # 0. Thus, G is NI graph. On the other hand, if u'v’' e
E(G O H) such that u'e V (G'), and V' € V(Hi), then dgon (U) — dgon (V') = ([V(H)| + 1)
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de(u) — (du(v) + 2) = 0 and it shows that, G does not have pendent vertex or A(H) < |[V(H)|
- 1. O

To present the next results, we need two definitions as follows: The cluster G{H} is
obtained by taking one copy of G and |V(G)| copies of a rooted graph H, and by identifying
the root of the i-th copy of H with the i-th vertex of G, i1 =1, 2, ..., [V(G)| [11].

Suppose G and H are graphs with disjoint vertex sets. Following Dosli¢ [3], for given
vertices y € V(G) and z € V(H) a splice of G and H by vertices y and z, (G - H) (y, 2), is
defined by identifying the vertices y and z in the union of G and H.

Theorem 4.2 Let G and H be graphs. Then G{H} is NI graph if and only if both G and (H -
Suc())(r» X) are NI graphs, for each i = 1, 2, ..., [V(G)|, where x is the vertex with

maximum degree of the star S,_(, and r the root vertex of H.

Proof. Let G and (H - S,_(,)) (r, X) be NI graphs, for each i =1, 2, ..., [V(G)|, where x is
the vertex with maximum degree of the star S, () and r the root vertex of H. Then, it is

clear that G{H} is NI graph.

Conversely, let G{H} be NI graph. Also, suppose u'v' € E(G{H}) and u’, v’ are the
vertices of G{H} corresponding to the vertices u, v in G, respectively. If u” and v’ are
vertices of a copy of G, then dggHp(u' ) — dogHy(V' ) = ds(u) — dg(v) = 0. So G is NI graph.
On the other hand, suppose u'v' € E(G{H}) and u’, v’ are the vertices of G{H} N H;
corresponding to the vertices u, v in H, respectively. Then, it is not difficult to see that
dG{H}(") — dG{H}(V') = 0 if and only if

d(H Sdg (ui )) (rx)U)— d(H Sdg (ui ))(r,x)(V) #0.
So, (H - SdG(Ui))(r, X) is NI graph. O
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1. INTRODUCTION

Let G be a simple connected graph with vertex set V(G) and edge set E(G). For a vertex
ueV(G), we denote by N (u) the set of all first neighbors of u in G. The cardinality of
Ng(u) is called the degree of u in G and denoted by dg(u). A graph invariant (also known

as topological index or structural descriptor) is any function on a graph that does not
depend on a labeling of its vertices. Several hundreds of different invariants have been
employed to date with various degrees of success in QSAR/QSPR studies. We refer the

reader to [1-3] for review.

In 1975, Milan Randi¢ [4] proposed a structural descriptor, based on the end-vertex
degrees of edges in a graph, called the branching index that later became the well-known
Randi¢ connectivity index. The Randi¢ index of a graph G is denoted by R(G) and defined

as

“Corresponding Author: (Email address: azari@Kkau.ac.ir)

DOI: 10.22052/ijmc.2017.42671.
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1
R(G) = Z““E@m -
The Randi¢ index is one of the most successful molecular descriptors in QSPR and QSAR
studies, suitable for measuring the extent of branching of the carbon-atom skeleton of
saturated hydrocarbons.
A closely related variant of the Randi¢ connectivity index called the sum-connectivity

index was proposed by Zhou and Trinajsti¢ [5] in 2009. The sum-connectivity index y(G)

of a graph G is defined as

@)= (G)m.
G G
The sum-connectivity index has been found to correlate well with w-electronic energy of
benzenoid hydrocarbons.
Another variant of the Randi¢ connectivity index named the harmonic index was
introduced by Fajtlowicz [6] in 1987. The harmonic index of a graph G is denoted by
H(G) and defined as

2
H (G) = ZuveE(G)W.

In 1998, Estrada et al. [7] introduced another vertex-degree-based descriptor called the

atom-bond connectivity index. The atom-bond connectivity index of a graph G is denoted
by ABC (G) and defined as

dg (u)+dg (V) -2
deWd(v)

This index has been proved to be a valuable predictive index in the study of the formation

ABC(G) = ZUVEE(G)\/

heat in alkanes and it provides a good model for the stability of linear and branched alkanes
as well as the strain energy of cycloalkanes [7, 8].

Motivated by the success of the atom-bond connectivity index, Furtula et al. [9] put
forward its modified version, that they somewhat inadequately named it augmented Zagreb

index. The augmented Zagreb index of a graph G is denoted by Azl (G) and defined as

d (1)dg () T.

AZI(G) =X yve E(G)(dG (u)+dg (v)-2
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Preliminary studies [9] indicate that AZI index has an even better correlation potential than
ABC index.

Motivated by definition of the Randi¢ connectivity index, Vukicevi¢ and Furtula [10]
proposed another vertex-degree-based topological index, named the geometric-arithmetic
index. The geometric-arithmetic index of a graph G is denoted by GA(G) and defined as
JieWdg(v) 2,/dg ()dg (V)
cW+dsw)2 " Fagu)+ds W)

It has been proved that [10], for physico-chemical properties such as boiling point, entropy,

GA(G) = ZUVGE(G) (d

enthalpy of vaporization, standard enthalpy of vaporization, enthalpy of formation and
acentric factor, the predictive power of GA index is somewhat better than the predictive
power of the Randi¢ connectivity index.
Recently, Deng et al. [11] proposed a general mathematical formulation for vertex-
degree-based invariants which is defined for a graph G as
TI(G) = Zuvek(G) F(dg (U).dg (V).
where F(x,y) is an appropriately chosen function.
For an arbitrary vertex u of G, we define
Tlg () = ZveNg (u) F (dg (u). dg (V).

In particular,

F(x,Y) =if0r the Randi¢ index,

N,

for the sum-connectivity index,

F(va)=ﬁ

F(X,Y) __2 for the harmonic index,
X+Yy

X+y-2

F(x,y) = for the atom-bond connectivity index,

3
F(X,y)= ( " f;’_ ZJ for the augmented Zagreb index, and
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F(x,y)=@

X+

for the geometric-arithmetic index.

In this paper, we present an exact formula for computing the general vertex-degree-
based invariant of splice of graphs. Using this result, the Randi¢ connectivity index, sum—
connectivity index, harmonic index, atom-bond connectivity index, augmented Zagreb
index, and geometric—arithmetic index of splice of graphs are computed. Readers interested
in more information on computing topological indices of splice of graphs can be referred to
[12-22].

2. RESULTS AND DISCUSSION

Let G; and G, be simple connected graphs with disjoint vertex sets V(G;) and v(G,), and
edge sets E(G)) and E(G,), respectively, and let & €V(G)) and a, eV (G,). Following
Dosli¢ [21], a splice or coalescence of G, and G, by vertices & and a, is denoted by
(G, *Gy)(&y,ay) and defined by identifying the vertices a; and a, in the union of G; and
G, as shown in Fig. 1. For notational convenience, we denote by n;, e, and §; the order of
G;j, the size of G;, and the degree of the vertex a; in G;, respectively, where ie{1,2}. It is
V ((G1*G2)(ag,a2)) =ny +nz —1 and |[E((Gy »Gy)(ag,az))| =€ +e; -

Gl GJ G1 G;

Figure 1. A splice of G; and G, by vertices a; and a..

easy to see that,

In the following lemma, the degree of an arbitrary vertex of the splice of two graphs
is computed. The result follows easily from the definition of the splice of graphs, so the
proof is omitted.

Lemma 2.1 Let G=(G; ¢Gy)(a,ay). For every vertex ueV (G),
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dg, (u) ueV(Gy)—{a},
dg (u) =1dg, (u) ueV(Gy)—{ax},
51+52 U=4aq Or u=ap.

In the following theorem, the general vertex-degree-based invariant of the splice of

two graphs is computed.

Theorem 2.2 The general vertex-degree-based invariant of G = (G; #G,)(a;,ay) is given by
TI(G) =TI(Gl)+TI(GZ)—TI61(a1)—TIGZ(a2)
+ ZVENGl(al) F(61+62,dG, (V) (1)
+2ve NG, (a2) F(o1+62, dG2 (V).

Proof. By definition of the general vertex-degree-based invariant and Lemma 2.1,

TI(G) =XueE(G)F(dg(u).dg(vV)
= YuveE(Gy)u,v=a F (dgy (U),dg, (V)
+ XuveE (Gy)u,vay F (dg, (U).dg, (V)
* ZveNg, (a) F (01 +62.dg; (V)
+ ZVeNG2 (a2) F(o+ 52'd62 (V).

Now, using the fact that
ZuveE(Go;umi F(dg, (u).dg (V)) =TI(G;) -Tig (&), ie{l.2},

we can get Eq. (1). H

Using Eqg. (1), one can easily compute the Randi¢ connectivity index, sum—
connectivity index, harmonic index, atom-bond connectivity index, augmented Zagreb
index, geometric—arithmetic index, and some other vertex-degree-based invariants of splice

of two graphs.

By setting F(x,y) 1 in Eq. (1), we easily arrive at:

N,

Corollary 2.3 The Randi¢ connectivity index of G = (G, G,)(a,,a,) IS given by
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R(G) =R(Gp+R(G2)-Rg (a1) -Rg, (a2)
1 1 1

—_ > = > .
NOL+62 VeNGl(al) N dGl (V) veNG, (a2) dG2 v)
As a direct consequence of Corollary 2.3, we obtain the following Corollary.
Corollary 2.4 Let G; be n—regular and G, be rp—regular. The Randi¢ connectivity index
of G=(G; *Gy)(a,ap) IS given by

R(G) ze_1+e_2+M_2.
n n NI

in Eq. (1), we easily arrive at:

. 1
By setting F(x,y) =
Corollary 2.5 The sum—connectivity index of G = (G, ¢G,)(a;,a,) is given by

xG) =x(G)+x(G2) - x5, (a) - 26, (a2)
1

+ZveNGl(al) \/5_|_+52+d61(V)
1
(aZ)\/51+52 +dg, (V)

+ ZVeNG2

As a direct consequence of Corollary 2.5, we obtain the following Corollary.

Corollary 2.6 Let G, be r,—regular and G, be r,—regular. The sum—connectivity index of

G =(G, *G,)(ay,a,) IS given by

- €-Nn n n”
G)= + + + _
Z( ) 1}2(1 1/2(2 \/2r1+r2 \/2r2+r1

By setting F(x,y) __Z in Eq. (1), we easily arrive at:
X+Yy

Corollary 2.7 The harmonic index of G =(G; ¢G»)(aj,ap) is given by
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H(G) =H(Gp)+H(Gp)- Hg, (@)~ Hg, (a2)
2

@) 's1 +67 +dg (v)
2

#2) 51 455 +dg, )’

+ ZVeNG1

+2ve NG2

As a direct consequence of Corollary 2.7, we obtain the following Corollary.

Corollary 2.8 Let G; be r-regular and G, be r,—regular. The harmonic index of
G =(G1*Gy)(ag,a0) is given by

HG)=24%2_ 1 T2
n r 2I‘2—H‘1 2I‘1—H‘2

By setting F(x,y)= /X”LX);_ 2 in Eq. (1), we easily arrive at:

Corollary 2.9 The atom bond connectivity index of G = (G, ¢G,)(a;,a,) IS given by

ABC(G) = ABC(Gy)+ ABC(Gy)— ABCG]_ (a1)— ABCG2 (a2)
0 +07 +dGl(V)—2

1
+m[2v€ NG, (al)\/ dGl V) +2ve NG, (32)\/

81+ +dg, (V) -2 |.
d62 (v)

As a direct consequence of Corollary 2.9, we obtain the following Corollary.

Corollary 2.10 Let G, be r-regular and G, be rp—regular. The atom bond connectivity
index of G = (G; ¢ Gy)(aq,a9) IS given by

~ —~ & — €& Y2 +1p=2) +4/rp(2rp +1 - 2)
ABC (G) = /(1] D! ) +.2(t D2y = .

By setting F(x,y) = ( Xy

3
J in Eq. (1), we easily arrive at:
X+y—2

Corollary 2.11 The augmented Zagreb index of G = (G, ¢G,)(a;,a,) IS given by
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AZI(G) = AZI(Gy)+AZI(Gy) - AZlg, (&) — AZIG, (ap)

de, ) A6, ) }3

3
+(51+52) ZVENGl(al){Q+52 +dGl(V)—2} +ZV€NGZ (32){51—1—52 +dGZ (V)—2

As a direct consequence of Corollary 2.11, we obtain the following Corollary.

Corollary 2.12 Let G; be r—regular and G, be r,—regular. The augmented Zagreb index
of G=(G,*Gy)(aq,ap) is given by

4 4
3 n + 2

AZI (G) = n°(er-n) N ez 1) .
2 +ry — 2)3 (2rp +n - 2)3

o1 | 8

By setting F(x,y) =@ in Eq. (1), we easily arrive at:
X+y

Corollary 2.13 The geometric—arithmetic index of G =(G; #G,)(a,ay) is given by
GA(G) =GA(Gy)+GA(G,)—GAg, (a) —GAg, (ay)

Jdg, ) Jds, ) }

3
VNG (2) 5 4 5, +dg, (V)

As a direct consequence of Corollary 2.13, we obtain the following corollary.

Corollary 2.14 Let G, be r—regular and G, be r,—regular. The geometric-arithmetic

index of G = (G, ¢ Gy)(aq,ay) is given by

(VAL OPVAL
GA(G)=el+ez—rl—r2+21/r1+r2{ V1 + 2\/_2j

2r1+r2 2r2+r1
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1. INTRODUCTION

In this paper, G is a simple connected graph with vertex set V = V(G) and edge set E =
E(G). The order |V| of G is denoted by n = n(G). For every vertex veV , the open
neighborhood N(v) is the set {u eV (G)|uv € E(G)} and the closed neighborhood of v is

the set N[v] = N(v) U{v}. The degree of a vertex veV is d, =| N(v)|. The minimum and

maximum degree of a graph G are denoted by 6 =6(G) and A=A(G), respectively. Trees
with the property A <4 are called chemical trees.

The Zagreb indices have been introduced more than thirty years ago by Gutman and
Trinajesti¢ in [6]. They are important molecular descriptors and have been closely
correlated with many chemical properties [6, 7]. Thus, it attracted more and more attention
from chemists and mathematicians [2, 3, 4, 8, 10, 11].

The first Zagreb index M1(G) is defined as follows:

° Corresponding Author: (Email address: (m.sheikholeslami@azaruniv.edu)
DOI: 10.22052/ijmc.2017.42995
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M,(G) = > d?.

veV

The first Zagreb index can be also expressed as the sum of vertex degree over edges of G,
that is, M1(G) = Zuveg(G) (dy +dy). Dosli¢ in [5] introduced a new graph invariant called

the first Zagreb coindex, as Ml(G) = YuveE(G)(dy +dy). Next we introduce a family of

trees. For n=(A-1)k + p (k>2), let T, be the family of trees of order n with maximum
degree A such that:
e If p=0, k-1 vertices have degree A, 1 vertex has degree A—2 and remaining
vertices are pendant.
e If p=1, k-1 vertices have degree A, 1 vertex has degree A—1 and remaining
vertices are pendant.
e If p=2, k vertices have degree A and remaining vertices are pendant.
e If p>3, k vertices have degree A, 1 vertex has degree p-1, and n—-k-1
remaining vertices are pendant.

Kovijani¢ Vukicevi¢ and Popivoda [9] proved the following upper bound on the first
Zagreb index of chemical trees and characterized all extreme chemical trees.

Theorem 1. Let T be a chemical tree with n>5 vertices. Then

6n-12 n=0,1(mod 3)
M(T)< .
6n—-10 otherwise,

with equality if and only if GeT,.
In this paper, we establish an upper bound on the first Zagreb index of trees in terms of

the order and maximum degree, as a generalization of aforementioned bound. As a
consequence, we obtain a lower bound on the first Zagreb coindex for trees.

2. MAIN RESULTS
In this section, we prove the following result:

Theorem 2. Let T be a tree of order n and maximum degree A.If n=p (mod A-1),
then
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(A+2)n-4A+4
A+2)n—-3A
M ()< A+
(A+2)n-2A-2
(A+2)n—-2A-3+ p(p-2)
with equality if and only if GeT, .

p=0
p=1
p=2
p>3

2

To prove Theorem 2, we proceed with some definitions and lemmas. If n is a
positive integer, then an integer partition of n is a non-increasing sequence of positive

integers (&q,ay,...,8&) whose sum is n. If 1<g <ap <...<a <a, then (a,a,...,a,) is
called an integer partition of n on Ny ={1,2,...,a}. An integer partition (a,,a,,...,a,) of
n on N, is called an integer a-partition if the number of a in this partition is as large as

possible. In other words, if n=ka, then (a,...,a) is the integer a—partition and if n=ka+b
where 0<b<a then (ba... a) is the integer a—partition. The proof of the next result is
straightforward and therefore omitted.

Lemma 3. For positive integers n,t and a (1<i<t), we have
a) Ifn=a+a,+...+a and t >1, then n® >a2+a?+---+a’.

b) If a;<a;,then (a -1)*+(a; +1)* >a’ +aj +2.

Lemma 4. If (a,4a,,...,8,) is an integer partition of n=ka+b (0<b<a) on N,, then

Zt:af <ka®+b’.
i=1
Proof. Let (a,a,,...,8,) be an partition of n on N,.If a <a; <a for some 1<i= j<t,
then by switching (a;,a;) to (a, —1,a; +1), we get a new integer partition of n on N,. Note
that if &, —1=0, then we will remove a, —1 from the new partition. Applying Lemma 3
(a), we obtain
Zt:af <al+-+(a -1 +-+(a; +1)* +---+2a .
i=1

By repeating this process, we arrive at an integer a—partition of n on N, . It follows from

Lemma 2 that Z:zlaf < ka’ +b” and the proof is complete.
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Lemma5. Let n=ka+b where 0<b<a and let (a,,a,,...,a,) be an integer partition of

n on N, which is not a—partition. Then the following statements holds:
a. 1fb>0,then Y. (a +1)* <k(a+1)* +(b+1).
b. 1fb=0,then > (a +1)* <k(a+1)’.

Proof. (a) Since n=a, +---+a =b+a+---+a=ka+b, we have t>k+1. First let
k

t =k +1. Then we have

(3, +1)° +--+(a, +1)*> = (@ +---+a’)+t+2(ka+b)

(ka® +b*) +t+2(ka+b)  (by Lemma3)
k(a+1)*+(0O+1)° +t—(k +1)

k(a+1)* + (b +1)?,

I A

as desired. Now let t >k +1. Repeating the switching process described in the proof of
Lemma 4, ie. for any pair (a,a;) where 1<a <a;<a and using the fact that

a’+a; <(a —1)*+(a; +1)°~2, we get a; =0 or aj=a. To achieving an integer a-
partition, we need to apply the switching process at least t — (k +1) times. This implies that
al +--+af <ka®+b%—2(t—(k +1)). 1)

Thus
(a, +1)* +...+(a +1)?

(@2 +...+a?)+t+2(ka+b)

< ka®+b”=2(t—(k+1))+t+2(ka+b) (byinequality (1))
= Kk(a+1)?+(b+1)% —(t—(k+1))
< k(a+1)*+(b+1)>%.

() 1f b=0 thenn=a +---+a =a+---+a=ka. Since (a,...,8,) is not a—partition, we
k

have t >k . Applying (1), we obtain
( +1)° +---+(a +1)°

(@l +---+a’)+t+2ka
ka® —2(t —k) +t + 2ka
k(a+1)*+k—t
k(a+1)%

IA

A

This completes the proof.
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Remark 6. Let T be a tree of order n and maximum degree A. For each i €{1,2,...,A},
let n, denote the number of vertices of degree i. Then

M+Ny+...+Ny =N (2)
and

M +2Nny +...+Any =2n-2. (3)
Subtracting (2) from (3), yields

No+2n3+...+(A-1)ny, =n-2. 4)
By (4), we obtain the following integer partition

(1,...,12,...,2,...,A-1,...,A-1), (5)

e m nVA

of n—2 on Np_; ={1,2,...,A-1}. It follows from Lemma 4 that 22n2 +32n3 +...+A2nA
is maximum if and only if the partition (5) obtained from (4), is an (A —1)—partition of
n—2 on Nu_j. Inthat case, ny (the number of leaves) will be maximum.

Next result is an immediate consequence of above discussion.

Corollary 7. For any tree T of order n with maximum degree A, the first Zagreb index
Mq.(T)= n1+22n2 +-~-+A2nA is maximum if and only if the integer partition (5) is an
(A—1)—partition of n—2 on N,_;. In that case, the integer partition (ng,n,,...,ny) is
called an optimal solution of (4).

Theorem 8. Let T be a tree of order n and maximum degree A with n=0 (mod A-1).
Then M4 (T) < (A+2)n—4A+4, with equality if and only if T € Tp.

Proof. Assume that n = (A-1)k. By (4),
No+2N3+---+(A—2)Npy_q +2

Ny =k-— =k-r,
A ( A1 )
No+2n3+---+(A-2)n 2
where r=127°M" ;(1 S . Then 1<r<k-1 and 1<n,<k-1. We

consider three cases as follows:
Case 1.r =1. Then clearly n, =k —1. It follows that

No+2n3+--+(A-2)ny 1 +(A-1)(k-1)=(A-1)k -2
and so
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Ny +2M3+...+(A-2)Ny1 =A-3.
Thus ny_4 =0 and so
Ny +2ng+---+(A-3)Np_» =A-3. (6)
According to Corollary 6, the optimal solution of (6) is np=ng=---=n,_3=0 and
Na_» =1.Since m +ny +---+ny =n, we conclude that iy = (A—-2)k . By Corollary 7,
(M, Ng,...,NA_3,NA_2,Nx_1,Np) = ((A—-2)k,0,...,0,1,0k —1)
is the optimal solution and so M (T) is maximum. Therefore,
M{(T) <mq+22np+...+(A—-2)2np_ o +(A-1)2ny 1 +A% 0\

=(A-2)k +(A-2)2 + A2(k 1)

=(A+2)(A-1)k-4A+4

=(A+2)n—-4A+4.

Case 2. 2<r<A. Then ny+2n3+...+(A-2)np1=(A-2)r+(r—2). Since
r—-2<A-2, it follows from Corollary 7 that
(Mg,No,.esNe_2,Np_1,Npy..o N2, NA_1,NA) = ((A-2)k-1,0,...,0,1,0,...,0,r,k =)
is an optimal solution in this case. Since 2<r<A and 4<A, we have
r(r—2A-1)<—-4A+4 and so
M{(T) <(A-2)k-1+(r-1)%+(A-1)%r+A%(k-r)
=(A+2)(A-DKk+r(r—-2A-1)
<(A+2)n-4A+4.

Case 3. A<r<k-1. Then n,+2n,+...+(A-2)n, , =(A-2)r+(r—2). There
are non-negative integers t,s such that (r—-2)=t(A-2)+s and 0<s<A-2. Hence
No+2n3+...+(A-2)np 4 = (A-2)(r +t) +s. If 0<s<A-2, then
(M,No,...,Ng,Ns11,Ng 124, NA_2,NA_1,NA) = (A-2)k —(t +1),0....,0,1,0,...,0,r +t,k —r)
is the optimal solution and since (s—A) <0 and 4<A<r, we obtain

M{(T) <(A—2)k—(t+1)+(s+1)% +(A-1)2(r+t)+A%(k-r)
=(A+2)(A-1)k+s(s+2)+r(1-2A) +tA(A-2)
=(A+2)n+(S—A)(S+2)—FrA+Tr
<(A+2)n+(s—=A)(S+2)—rA+r
<(A+2)n—4A+4.

If s =0, then the optimal solution is
(Ng,N9,...,NpA_2,NA_1,NA) = ((A-2)k-t,0,...,0,r +t,k—T).
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Since t(A-2)=r—-2-s, (s+2)>0 and 4<A<r, we conclude that

M1(T) <m+4ny +9n3+...+A2.nA

= ((A=2)k-t)+ (A-D)2(r +t)+ A2 (k 1)

= AK— 2K —t + A%r — 2AT 41+ A2t — 2At +t + A%k — A%y
=(A+2)n—(S+2)—rA+r

<(A+2)n—rA+r

<(A+2)n—4A+4.

Therefore, in all cases M,(T)<(A+2)n—-4A+4. If TeT,, then clearly
M1(T)=(A+2)n—4A+4. Conversely, let T be a tree of order n with n=0 (mod A-1)
n-A+1

A-1
vertices of degree A, one vertex of degree A—2 and (A—2)k leaves. Hence T €T, and

and M1(T) =(A+2)n—4A+4. This occurs only in Case 1, that is, T has k—-1=

the proof is complete.

Theorem 9. Let T be a tree of order n with maximum degree A and n=1(mod A-1).
Then M1(T) <(A+2)n—-3A, withequality ifandonly if T €T, .

Ny +2n3+...+(A-2)np4 +1

Proof. Let n=(A-1)k+1. Set r = 1 . By (4),
nA:k—(nZ +2ng +...A+(?—2)nA_1+1):k_

Thenclearly 1<r <k -1 and 1<n, <k -1. We consider three cases.

Case 1. r=1. Since np=k-1, it follows from (4) that
Ny +...+(A-2).ny4 = (A—2) and by Corollary 7
(Mg, N9, ..,NA_2,NA_1,NA) = ((A-2)k +1,0,...,0,1,k —1)
is the optimal solution. Thus
Mi(T) <mg+2%np+...+(A-2)%np o +(A-1)2np_q +A%Np
= (A= 2)k +1) + (A—1)2 (1) + A (k 1)
=(A+2)n-3A.

Case 2. 2<r<A-1. As above, ny +...+(A—-2).np4 =(A-2)r+(r-1). Since
r-1<A-2, it follows from Corollary 7 that
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(Mg, N9y, Ne_1, N Nptgy--- NA_2, NA_1, N7 ) = ((A-2)K,0,...,0,1,0,...,0,r,k —T)
is the optimal soloution. Since 2<r<A-1, it is easy to see that

2A(1- r)+(r2 +r—2)<0 and we have

Mi(T) =ng+4ny+..+(A-2)2np_o+(A-1)%np_1+A%0p
= (A=2k+r2@)+(A-1)2r + A% (k1)
= (A+2)(A-Dk+r2 +r1-2rA
= (A+2)N-3A+2A(L-1)+(r2 +1-2)
<(A+2)n-3A.

Case 3. A-1<r<k-1. There are non-negative integers ts such that
r-1=t(A-2)+s, t>1 and s<A-1. By substituting in (4), we have
No+2n3+...+(A—2)Np1 =(A-2)(r+t)+s. First let 0<s. Since s<A-2, it follows
from Corollary 7 that

(M, Ng,...,Ng,Ng11,Ng12,...,NA_2,NA_1,Np) = ((A-2)k -1,0,...,0,1,0,...,0,0,r +t,k —r)
is the optimal solution. Thus
Mi(T) <(A-2)k-t+(s+1)2+(A-1)2(r+t)+A2(k —r)
= (A+2)(A—1)k + (5+1)2 + r(1—2A) +tA(A - 2)
=(A+2)n-3A-s(A-s—-2)—(r-1)(A-1)
<(A+2)n-3A.

Now let s = 0. Then the optimal solution is

(M,No,...;NA_2,NAq,NA) = ((A-2)k -t +1,0,...,0,r +t,k—r)
and we have

M{(T) <(A—2)k—-t+1+(A-1)2(r+t)+A%k-r)
=(A+2)(A-1Dk -r(A-1)+1+tA(A-2)
=(A+2)n-3A—-(A-1)(r-1)
<(A+2)n-3A.

As in the proof of Theorem 8 we can see that M4(T) = (A+2)n—3A if and only if
TeT,.
Theorem 10. Let T be a tree of order n with maximum degree A and n= p (mod A -1)
where 2< p<A-2.Then
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(A+2)n—2A-2 p=2
(A+2)n-2A-3+p(p-2) p=3,
with equality if and only if T € Tp,.

Ml(T)S{

Ny +2n3+...+(A=2)np_1+(2-p)
A-1

Proof. Let n=(A-1)k + p. Suppose that r = . By (4),

we have
Ny +2n3+...+(A-2)Np_1 +(2-p)
A-1
Thenclearly 0<r<k-1and 1<n, <k.We consider four cases.
Case 1. r=0. Then n, =k and by (4) we have
No+2Mn3+--+(A-2)np1 =("n-2)—-((A-1)ny) =((A-1k+p-2)-(A-1)k=p-2.
If p=2, then np+2n3+...(A-2)hp_4=0. This implies that n, =nz=...=ny4 =0
and ny =n—Kk by (2). Thus

Ny =k —(

)=k -—r.

M1(T) < n1+22n2 +--~+(A—1)2.HA_1+A2.HA
= (n—k) + A%k
=n+(A+1)(A-1)k
=n+(A+1)(n-2)
= (A+2)n-2A-2.

Now let 2<p<A-2. Since 1<p-2<A-4 and
No+2n3+...(A—2)np_1 = p—2, it follows from Corollary 7 that
(M,N2,...,Np_2,Np_1Np,...,NA1,Nx) = (N -k -1,0,...,0,1,0,...,0,k)
is the optimal solution and so
(T) £n1+4n2+...+(A—1)2.nA_1+A2.nA
= (n-k-1)+(p-1)%(1) + A (k)
=(A+1)(A-Dk +n+p2 -2p
=(A+1)(n—p)+n+ p2—2p
=(A+2)n—-pA+ p2—3p.
Case 2. r =1. Then np =k -1 and
(M,N2,...,Np_1,Np,Npa,..,NA—2,NA1,MA) = ((A-2)k + p-1,0,...,0,1,0,...,0,1,k -1)
is the optimal solution and since p <A -2 we have

M1max
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Ml(T) = n1+4n2 +...+(A—1)2.HA_1+A2.HA
=(A=2)k+ p-1+ p2 +(A-1)2 + A2 (k 1)
=Ak-2k+p-1+ p2 + A% Z2A +1+ A%k — A2
=(A+2)(A-1)k+ p+ p2—2A
= (A+2)(n-p)+ p+p? -24
<(A+2)n—pA+ p2 -3p.

Case 3. 2<r<A-p. By (4), we have mnm+2n3+...+(A-2)na—1
=(A-2)r+(p+r—2).Since r—2<A-2, it follows from Corollary 7 that
(N, N2 Mpyr—2,Npir—1, Npsrs- NA—2,NA-1,NA) = ((A-2)k + p-1,0,...,0,1,0,...,0,r, k =)
is the optimal solution. On the other hand, we deduce from p<A-2 and r<A-p that
r-1+2(p-A)<A-p-1+2(p-A)=p-A-1<0andso r(r-1+2(p-A)) <0. Thus

M1(T) <m+4ny +...+(A—1)2.nA_1+A2.nA
=(A-2)k+p-1)+(p+r-1)2@Q) +(A-1)2(r) + A2 (k )
=Ak-2k+p-1+ p2+r2+1+2rp—2p—2r+rA2—2Ar+r+A2k—rA2
= (A+2)(A-1)k + p2 - p—2Ar +r(r+2p-1)
=(A+2)(n-p)+ p2— p—2Ar+r(r+2p-1)
=(A+2)n—pA+ p2—3p+r(r—1+2(p—A))
<(A+2)n—pA+ p2 =3p =M1y (7).

Cased. A—p<r<k-1. Letp+r-2=t(A-2)+s. By substituting in (4), we have
No+2ng+...+(A-2)np_1 =(A=2)(r +t)+s. If s =0 then by Corollary 7,
(M,No,..sNA_2,NA1,NA) = ((A=2)k+ p—1,0,...,0,r +t,k —r)
is the optimal solution. Since A—p<r and p<A-2, we have

2p- p2+ PA—Ar—2A+r) =p(A—p+2)—Ar—2A+r
<p(r+2)—Ar—2A+r
=(p-A)(r+2)+r
<(p=A)(r+2)+(r+2)
=(p-A+1)(r+2)<0.
Thus
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M1(T) =np+4ny +...+(A—1)2.HA_1+A2.HA
=(A-2)k+p-t)+(A-1)2(r+t)+ A2 (k 1)
= (A%K + Ak — 2K) + AU (A= 2) + p—2AT +1
=(A+2)(N—p)+At(A—2)+ p—2Ar +r
=(A+2)Nn—pA-2p+ pPA+Ar+p—-2A—-2Ar+r
=(A+2)n— pA+ p2—3p+(2p— p2+ PA—Ar —2A+r)
<(A+2)n—-pA+ p2—3p.

Now let 0<s. Since s<A-2, it follows from Corollary 7 that
(M, Ng,...,Ng,Ng11,Ng12,...,NA_2,Na1,Np) = ((A-2)k + p—(t +1),0....,0,1,0....,0,0,r +t,k — 1)
is the optimal solution. Since 2< p<A-2 and 0<s<A-3, it is straightforward to verify

that pA— p2+2p+32+23—Ar+r—2A—A3<0. Thus

M1(T) =m+4ny +-~-+(A—1)2.nA_1+A2.nA
=(A—2k+p—(t+1)+(s+D2 - (A-D)2(r +1t)+ A2 (k —r)
:(A2k+Ak—2k)+ p+32+23—2Ar+r+A2t—2At
=(A+2)(A-1)k + p+852 + 25— 2Ar + 1+ At(A—2)
=(A+2)(n—p) + p+32+23—2Ar+r+A(p+r—2—s)
=(A+2)n- p+32+23—Ar+r—2A—As
=(A+2)n—pA+ p2—3p+(pA— p2+2p+32+23—Ar+r—2A—As)
<(A+2)n—pA+ p2—3p.

Therefore, in all cases Mq(T)<A+2)n—pA+ p2—3p. As in the proof of
Theorem 8, we can see that
(A+2)n—2A-2 p=2
M(T) =
(A+2)n-2A-3+p(p-2) p=3,

ifand only if T € T,. This completes the proof.

We now present a lower bound on the first Zagreb coindex among all trees. Ashrafi
et al. [1] proved that for any conneted graph G of order n and size m

M1(G) = 2m(n—1)— M{(G).
Next result is an immediate consequence of this equality and Theorem 1.
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Corollary 11. Let T be a tree of order n with maximum degree A. If n=p (mod A-1),
then

—(A+6)n+2n2+4A—2 p=0
Ml(T)S —(A+6)n+2nz+3A+2 p=1
—(A+6)N+2n° +2A+4 p=2.
—(A+6)n+2n2+pA+2—p(p—3) p=>3.
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1. INTRODUCTION

Topological indices of molecules can be carried out through their molecular graphs. A
molecular graph is a collection of points representing the atoms in the molecule and a set of
lines representing the covalent bonds. In graph theory, these points and lines are called
vertices and edges, respectively. The chemical graph theory is a branch of mathematical
chemistry in which topological indices of chemical graphs relates the certain physical,
biological or chemical properties of the corresponding molecules.

Many different topological indices have been investigated so far. Most of the useful
topological indices are distance based or degree based. The Wiener index, the Harary index
and the total eccentricity index are examples of distance based topological indices and the
Zagreb indices and Randi¢ [8] index are examples of degree based topological indices.

The Wiener index of a molecular graph is defined as the sum of all distances
between different vertices. This topological index was introduced by Wiener [13]. It also
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gave rise to some modifications such as, the hyper-Wiener index and the Tratch-
Stankevich-Zefirov index.

Plavsi¢ [7] et. al. and lvanciuc et. al. [4] independently introduced the Harary index
in honor of Frank Harary. The Harary index is obtained from the reciprocal distance matrix
and has a number of interesting physical and chemical properties. The Harary index and its
related molecular descriptors have shown some success in structure-property correlations
[2, 3]. Its modification has also been proposed and their use in combination with other
molecular descriptors improves the correlations [10, 11].

In order to improve the interest of the Harary-type indices, many modification were
proposed recently. In [1] authors introduced a correction that gives more weight to the
contributions of pairs of vertices of high degrees, named as the additively weighted Harary
index.

The eccentric connectivity index belongs to the family of distance based topological
indices. This quantity has been recently used in several papers on structure-property and
structure-activity relationship and its mathematical properties have been investigated [9].
Munarini et. al. [6] define the double graph of a simple graph denoted as D[G]. The double
graph of a simple graph G can be build up taking two distinct copies of the graph G and
joining every vertex v in one copy to every vertex w’ in the other copy corresponding to a
vertex w adjacent to v in the first copy. In this paper we study some distance based
topological indices for general double graphs.

2. DEFINITIONS AND PRELIMINARY RESULTS

All the graphs G considered in this paper are finite and simple. For basic definitions and
notation see [12]. Let G(V,E) be a simple connected graph where V(G) and E(G) are the set
of vertices and set of edges, respectively. By dg(v) we denote the degree of vertex v in G.
The distance between two vertices u and v, in a graph G, is the length of any shortest path
connecting u and v and denoted as dg(u,v). The eccentricity of a vertex v in G is the
maximum distance between v and any other vertex in G, it is denoted eccg(v). By P, and S,
we denote the path with n vertices and the star graph ki .1 respectively.

The Wiener index of a given graph G having V(G)={vs,...,Va} is defined as the sum
of distances between all unordered pairs of vertices of a graph G, i. e.,

W(G) =Z1<i< j<ndG (Vi,Vj)-
The Harary index of G is defined as the sum of reciprocals of distances between
all unordered pairs of vertices of a connected graph:

1
H(G):1<;nde(v-,v-)'

The additively weighted Harary index for G is defined by
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@)= 3 Gt del)

1<i<j<n dG (Vi ’Vj)
and multiplicative weighted Harary index for G is defined by

H, (G) = Z dG(Vi)d(Vj).

1<i<j<n dG (Vi ’Vj)

The eccentric connectivity index of G is

£°(G)= D dg(v)eccs (v),

veV (G)

and the total eccentricity of G is defined by
£(G)= D eccs(v).

veV (G)

The direct product of two graphs G and H isagraph G xH with V(G xH) = V(G)
x V(H) such that (us,vy) is adjacent to (up,Vvz) in G xH if and only if u;u,€eE(G) and
vV, € E(H).By adding a loop to every vertex of K, we obtained the graph K . The double

graph of a simple graph G can be expressed as D[G] = Gx K . Since the direct product of
a simple graph with any graph is always a simple graph, it follows that the double of a
simple graph is still a simple graph. Some of its elementary properties are discussed in [6].
If G has n vertices and m edges then D[G] has 2n vertices and 4m edges. For illustration
see figurel.

G
Figure 1 .Agraph G and its double graph D[G] .
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Let G(V,E) be a simple graph and G'(V’, E") "be its distinct copy. Let D[G] be the
double graph of G and V(D[G]) =V(G) UV(G') , where V(G) = {X1,X2,...,.Xa} and
V(G)={y,,¥,,..., ¥, yand y; is the corresponding vertex of x; in V(G).

Lemma 1. For the above defined double graph D[G]
D[G (XI’ j) d (XI’ j)’I’J_

Proof. Clearly, G cD[G]. Let {x .{x,x;}=V(G) =V (D[G]) then
Aoy (%, X)) <dg (%, X;) . Supposel—dD[G]( X; J)<d (,, J) m and a shortest path in
DI[G] from xi to X; is XiviVo...viaX;. If | =1 then the property is obvious. Supposel> 2.

Since | <m, there exists some vxeV(G’). As vka and vis1 are adjacent to vy, by definition of
the double graph, vk-1 and vi+1 are adjacent to xx (corresponding vertex of vi in V(G)).
Now we have obtained a path XjviVo...Xk....vi-1Xj. In this way we can find a path in G of

length 1, which is a contradiction. It follows that d (%, %;)=dg (%, %;). Similarly,
dD[G](yI’ ) d (yl’y)

Lemma 2. For the double graph D[G]
D[G (XI’ j) d (XI’ j)’I’J_

Proof. Let x; €V(G) and y; € V(G’). Suppose I=dD[G](xi,yj)<dG(xi,xj)= m and a
shortest path in D[G] is XiviVz...vi.1yj. If 1=1 the property is true. Let |1 > 2. It follows that
there exists some vy € V(G’). Since vk1 and v+, are adjacent to vi, by construction vy
and v, , are adjacent to x, (corresponding vertex of v, in V(G)). We have obtained a path

XVV,... X% ...V ,Y; in D[G], which implies the existence of a path XXX, ... %, ... XX, in

G of length I, a contradiction. If Ide[G](xi,y )>d (X;,X;)=m we get a similar

i
contradiction. Consequently, dye,(x,y;)=ds (X, x;)

The following results are obvious from the construction of the double graph.

Lemma 3. We have
Ao (X, Yi)=2 ;i=1...,n

Lemma 4 . For the double graph D[G]
dD[G](Xi):dD[G](yi):2dG(Xi) d=1...,n.
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Lemma 5 . The eccentricities of the vertices of the double graph D[G] are
eCChe1 (Xi) =eCCpig; (Vi) =eccq (X;) if ecco(x)=2 ;i=1...,n
eCChiey (Xi) =€CCpig (Yi) =2 if eccs (X)) =1 ;i=1...,n.

3. MAIN RESULTS

Theorem 1. Let G be a simple graph with n vertices. Then the Wiener index of D[G] is
given by
W (D[G]) = 4W (G) + 2n.

Proof. The Wiener index of D[G] is
W (D[G]) = ZdD[G](Vi’Vj)

I<i<j<n
= ZdD[G](Xiixj)+ ZdD[G](yi’yj)+ ZdD[G](Xi’yj)+
I<i<j<n I<i<j<n i,j=1,...,n

i=j

+ ZdD[G](Xi! Yi)-
i=1,..,n

By Lemmas 1 — 3 we deduce

W(D[G]) = D dg(X. X))+ D, dG(xi,xj)+__ZdG(xi,xj)+ 2n

1<i<j<n I<i<j<n
=W (G)+W(G)+2W(G) +2n
=4W (G) + 2n.

A well known property of the Wiener index of trees implies the following corollary.

Corollary 1. Suppose T, is a tree with n vertices. Then
w(D[s,]) <w(D[r,))<w(D[P,)).
Theorem 2. Let G be a simple graph with n vertices. Then the Harary index of D[G] is
given by
H(D[G]) = 4H (G)+g.
Proof. The Harary index of D[G] is

HEOG) = Y ——

I<i<j<n dD[G] (v, ’Vj)

1 1
= +
1<§<n dD[G](Xi 1 X ) 1<gj:<n dD[G](yi Y )
1 1
Py Loy

+ -
i,j=L..n dD[G](Xi1 Yj) i=L,..n dD[G](Xiv Yi)

i=]



88

By Lemmas 1 — 3 we have
1 1 n

HOIED = 2. i ) L doben) e de o) 2

:H(G)+H(G)+2H(G)+g

n
=4H(G)+—.
©) 2

Corollary 2. Let T, be a tree with n vertices. Then

H (D[P, ]) < H(DIT,]) < H(DJ[S, )

JAMIL

Theorem 3. Let G be a simple graph with m edges. Then the additively weighted Harary

index of D[G] is given by
H ,(D[G]) =8H ,(G) + 4m.

Proof. The additively Harary index of D[G] is

Aoy (V) + Ao (V]
R

_ Z dD[G](Xi)+dD[G](Xj)+ Z dD[G](yi)+dD[G](yj)

1<i<j<n ey (% X;) 1<i<j<n Aoy (Yir ;)

+ Z dD[G](Xi)+dD[G](yj)+ Z dD[G](Xi)+dD[G](yi).

i, j=L...n Aoy (X Y5) i=1..n dper (%5 ¥i)

i#]
by Lemmas 1 — 4 the last expression is equal to

2d, (%) +2d (x,) 24 (x)+2ds (x,)
T ) AT o)
Z 2dg (%) +2dg (x;) Y 2d; (%) +2dg (%)

+
i,j=1,.. dG(Xi!Xj) 2

i*]

XieV (G)

=2H,(G)+2HA(G)+4H,(G)+2 D ds(x)

=8H,(G)+ 4m.
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Corollary 3. Suppose T, and U, be tree and unicyclic graphs, respectively, with n
vertices. Then

H,(D[T,])=8H,(T,)+4(n-1).
HA.(D[U,])=8H,(U,)+4n.

Corollary 4 . Suppose T, is a tree with n vertices. Then
H ,(D[P,]) < H,(D[T,]) < H (DS, ).

Theorem 4. Let G be a simple graph. The multiplicative weighted Harary index of D[G]
IS given by
Hy (D[G]) =16H,,(G)+2 > ds(x)%.

Xj eV (G)

Proof. The multiplicative Harary index of D[G] is

d )d )
HM(D[G])=1<;<n D[‘;]D([VG'])(V_D,[VG_])(V')

_ Z dD[G](Xi)dD[G](Xj)+ Z dD[G](yi)dD[G](yj)

1cigen Ao (X)) wciqen Aoy (YinY;)

+ Z dD[G](Xi)dD[G](yj)+ Z dD[G](Xi)dD[G](yi).
i,j=L...,n dD[G](Xi’yj) i=1...n dD[G](xi,yi)

i#]
By Lemmas 1 — 4 this expression equals

24, (x) 2dg (x,) 24, (x)2dg (x,)
2 + 2

1<i<j<n dG(XpX,—) 1<i<j<n dG(Xi’Xj)
Y 2ds (%) 2ds (%)) > 2d, (x)2dg (%)
nie.n Ao (X, X;) Xiev (&) 2

i#]

= 4H,, (G)+4H,, (G)+8H,, (G)+2 Y. ds (%)’

Xjev ()

=16H,,(G)+2 Y da(x)>

x; €V (G)

Corollary 5. Suppose P, , S, ,C, and K, be the path, star cyclic and complete graphs with
n vertices. Then

H, (D[P,])=16H,, (P.)+8n-12

H, (D[S,])=16H,, (S,)+2n(n-1)
H, (D[C,])=16H, (C,)+8n

H,, (D[K,])=16H,, (K,)+2n(n-1)2.
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Theorem 5. Suppose G is a graph of order n, having k vertices v such that ecc(v)=1 (or
equivalently, dg(v)=n-1). The eccentric connectivity index of D[G] is given by

¢°(DIG]) = 4¢°(G)+4k(n-1).
Proof.

gc (D[G]) :Z d D[G] (Xi ) €CCpg; (Xi )+ Zn: d D[G] (yi ) €CChg) (yi )-

By Lemmas 4 and 5 we have

Theorem 6. Let G be a simple graph having k vertices with eccs(v) = 1. The total
eccentricity index of D[G] is given by

S(D[G])=2<(G) + 2k.
Proof.

¢(D[G])= Zn:eCCD[G] (x) + Zn:eCCD[G] (¥:)-

By Lemma 5, we have

é(D[G])zZ{ > oecco(x) + Y. 2J=2g(e)+2k.

ieccg (Xj)=2 ieccg (Xj)=1
Corollary 6. For the star and the complete graph we have:

£(DIS,1)=2£(S,)+2;
£(DIK,1)= 24 (K,)+2n.
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