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ACADEMIC EDITOR: BIJAN TAERI

ABSTRACT Let G be a finite connected simple graph. The degree distance index DD(G)
of G is defined as Z{u V}CV(G)dG(u,v)(degG(u)+degG(v)), where degg(u)is the

degree of vertex u in G and dg(u,v) is the distance between two vertices u and v in G.

In this paper, we determine the degree distance of the complement of arbitrary Mycielskian
graphs. It is well known that almost all graphs have diameter two. We determine this graphical
invariant for the Mycielskian of graphs with diameter two.

KEYWORDS Degree distance « Zagreb indices « Mycielskian.

1. INTRODUCTION

Throughout this paper we consider (non trivial) simple graphs, that are finite and undirected
graphs without loops or multiple edges. Let G=(V (G),E(G)) be a connected graph of
order n = |V(G)| and of size m = |E(G)|. The distance between two vertices u and v is
denoted by dg(u,v) and is the length of a shortest path between u and v in G. The
diameter of G is max{d; (u,v): u,veV(G)}. It is well known that almost all graphs have
diameter two. The degree of vertex u is the number of edges adjacent to u and is denoted
by degg (u) .

A chemical graph is a graph whose vertices denote atoms and edges denote bonds
between those atoms of the underlying chemical structure. A topological index for a

(chemical) graph G is a numerical quantity invariant under automorphisms of G and it
does not depend on the labeling or pictorial representation of the graph. Topological indices
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and graph invariants based on the distances between vertices of a graph or vertex degrees
are widely used for characterizing molecular graphs, establishing relationships between
structure and properties of molecules, predicting biological activity of chemical
compounds, and making their chemical applications.

The concept of topological index came from work done by Harold Wiener in 1947
while he was working on boiling point of paraffin. The Wiener index of G is defined as

W(G):Z{U,V}QV(G)dG(U’V)- Two important topological indices introduced about forty

years ago by Ivan Gutman and Trinajsti¢ [5] are the first Zagreb index M,(G) and the

second Zagreb index M,(G) which are defined as
M,(G)= ) (degq(u)+degs(v)) = D (degs(u)?, M,(G)= > degg(u) dege (V).
uveE(G) uev (G) uveE (G)
The degree distance was introduced by Dobrynin and Kochetova [1] and Gutman
[4] as a weighted version of the Wiener index. The degree distance of G, denoted by
DD(G), is defined as follows and it is computed for important families of graphs ( see[8]

and [12] for instance):
DD(G)= Y dg(u,v) (degs (u)+degg (v)).

{uvieV (G)

For a graph G = (V,E), the Mycielskian of G is the graph u(G) (or simply, u)
with the disjoint union V u X u{x} as its  vertex  set and
Eu{vx; vy, e BE}u{xx :1<i<n} as its edge set, where V ={v,v,,.,v,} and
X ={X;,X,,...,X, }, see [9]. The Mycielskian and generalized Mycielskians have fascinated

graph theorists a great deal. This has resulted in studying several graph parameters of these
graphs. Fisher et al. [3] determine the domination number of the Mycielskian in 1998, Taeri
et al. [2] determine the Wiener index of the Mycielskian in 2012, and Ashrafi et al. [6]
determine Zagreb coindices of the Mycielskian in 2012.

In this paper we determine the degree distance index of the Mycielskian of each
graph with diameter two. Also, we determine the degree distance of the complement of
Mycielskian of arbitrary graphs.

2. DEGREE DISTANCE OF THE MYCIELSKIAN

In order to determine the degree distance index of Mycielskian graphs, we need the
following observations. From now on we will always assume that G is a connected graph,

V(G) ={v;,Vy,... vV, }, X ={X, %,,.... X, h V(G)n X = ¢, x gV (G) U X,
and u is the Mycielskian of G, where
V() =V (G)u X u{x}, E(u) = E(G)u{vx; :v,v; € E(G)}u{xx :1<i<n}.
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Observation 1. Let u be the Mycielskian of G . Then for each v eV (u) we have
n V=X
deg,(v) =41+degs (V) v=Xx
2degs (V) v=yv,

Observation 2. In the Mycielskian ¢ of G, the distance between two vertices u,v eV (u)
are given as follows.

1 U=XV=X,

2 u=xv=y,

2 u=Xx;, V=X

de(vi,v;)  u=v,v=v,,dg(v,v;)<3
d,(uv) = 4 u=v;, v=v;,dg(v,v;) 24

2 u=vi,v=xj,i=j

dg(vi,v;) u=v,v=x,i=j,ds(v,v;)<2

3 U=v,v=x,i# jdg(v,v;)=3.

Specially, the diameter of the Mycielskian graph is at most four.

There are | E(G) | unordered pairs of vertices in V =V (G) whose distance is one, and
D (degg (u) +degg (v)) =2 D (deg (u) +degg (v) = 2M, (G).

(u,v)eVxVv uveE(G)
dg (u,v)=1

Lemma 1. Let G be a graph of size m whose vertex setis V ={v,,v,,...,v,}. Then,
> (degg (u) +deg (v)) = (n—1)2m.

{vivjleVv

Proof. For each i e[n]={L2,...,n}, |{{i, j} <[n]:j #i}|=n-1. Therefore,

3 (deg (v;) + degy (v,)) = 3. (1) dege (v) =(n —1)2m.
@i, jxein] i

Lemma 2. For each graph G of size m we have
Z(dege (Vi) + dege (Vj ))=2m(n-1)— MI(G)'

{vi.vj}2E(G)
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Proof. Since each vertex v, eV(G) has deg.(v;) neighbors in G, the number of non-
adjacent vertices to v, in G equals n—1—deg(v;). This implies that

3" (dege () + dege (v,)) =Y (n—1- deg, (v,)) dege (v;)

{vi.vj}2E(G) i=
= (n-1)Y deg, (v~ (deg, ()
=2m(n-1)-M,(G).
0

It is a well known fact that almost all graphs have diameter two. This means that
graphs of diameter two play an important role in the theory of graphs and their applications.

Theorem 1. Let G be an n-vertex graph of size mwhose diameter is 2. If g is the
Mycielskian of G, then the degree distance index of u is given by
DD(u) =4DD(G)-M,(G)+ (7Tn-1)n+(8n+12)m.

Proof. By the definition of degree distance index, we have
DD(u(G))= > d,(u,v) (deg,(u)+deg, ().
{u ViV (n)
Regarding to the different possible cases which u and v can be chosen from the set V (u),
the following cases are considered. In what follows, the notations are as before and two
observations 1 and 2 are applied for computing degrees and distances in u .

Casel. u=xandve X:
Zdy(x, X;) (deg,, (x) +deg,, (X)) =z (n+1+degg(v,))=n(n+1)+2m.
i=1 i=1

Case2. u=x and veV(G):

Zn:dy(x,vi) (deg,, (x) +deg,(v)) =Zn: 2(n+2deg, (v;)) = 2(n* + 4m).
Case 3. {u,v}c X:
Using Lemma 1 we see that
>-d, (%, x;)(deg, (x)+deg, (x;)) = > 2(2+degq (v;) +degq (v)))

{xi.xj3eX {x.xj}=X

_ 4(2}2 3" (dego (v)+ dego (v,)

i j3ln]
=2n*-2n+4(n-1m.
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Case 4. {u,v} <V (G). Since the diameter of G is two, Observation 2 implies that
d,(v;,v;) =dg(v;,v;) . Hence,

zdy(Viij) (deg,,(v;) +deg,(v;)) = sz(Viij) (2degg (v;) +2degg (v)))

{vi.vj}cV (G) {vi.vj3eV(G)
_2DD(G).

Case5. U=V, and v=x,1<i<n.

3 d, (%) (deg, (v) + deg, (x)) =3 2 (3deg () +1)

=2n+12m.

Case6. U=V, and V=X, i # ].

Zdﬂ(viixj) (dEQH(Vi)"'degﬂ(Xj)) = Zdu(viixj) (Zdege(vi)+dege(vj)+1)

{Vivxj_}g_v(.u) {Vivxj_}g_v(.u)
i#] 1#)
= >.d,(v,x;) (dege (v;) +degs (v)))
{Vivxj_}g_v(.u)
i#]j
+ >.d,(v,,x;) (dege (v)+2).
{vi X3V (w)

i#]

Since dM(Vi,XJ‘) = dM(VJ‘,Xi) : dM(vi,vi) =0, and using Observation 2, we have

zd‘u(vi’xj) (degG(Vi)+degG (Vj)) =2 zdy(vi’xj) (degG(Vi)+degG(Vj))

{VivXj_}Q_V(H) {Viij_}QY(G)
1#] i#]
=2 zde (vi,Vv;) (degg(v;) +degs(v;))
{vi.vjleVv (G)
— 2DD(G).

Each edge Vivj=Vijvj € E(G) corresponds to two pairs {vi,xj-} and {Vj,Xi} of
distance 1 in the Mycielskian graph p. Since the diameter of G is two and using Lemma 2
we get

>d,(vx,) (dege (v)+D = Y1(+dega(v)) + 32 (1+dege(v,))

i X3V (u) {vix;}eV(u) {vixj3eVv ()
i#] viv;eE(G) Vviv; ¢E(G)
=2m+ z (dEQG (Vi) + degc—; (Vj ).
ViV €E(G)
n
+4([ J—m) +2 ) (degg(v;) +degg (v,))
2 vivsz(G)

=2n(n-1)+2m(2n-3) - M,(G).
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Now the result follows through these six cases.

3. DEGREE DISTANCE OF THE COMPLEMENT OF MYCIELSKIAN

In order to determine the degree distance index of the complement of Mycielskian graphs,
we need two following observations.

Observation 3. Let i be the complement of Mycielskian x of G . Then for each veV (i)
we have
n V=X
deg, (v) =12n—(1+degs(v)) V=X
2n—2deg.(v;) V=YV,
Observation 4. In the complement of Mycielskian p of G, the distance between two
vertices u,v eV (i) are given as follows.

U=XxV=Xx
u=X,V=Vy
u=x, V=X
] u=v,v=v;,ds(v,v;)>1
2 Uv) =
U=v,Vv=Xx;,i=j

2

1

1

1

2 u=v,v=v;,dg(v,v;)=1
1

1 u=v,v=x,i=j,ds(v,v;)>1
2

u=v,v=x,i=# jdg(v,v;) =1

Specially, the diameter of p is exactly 2.

Theorem 2. Let G be an n-vertex graph of size m and let p be the complement of the
Mycielskian p of G .Then, the degree distance index of p is given by

DD(i) = n(6n® +10n —5) —4m —5M, (G).
Proof. By the definition of degree distance, we have

DD()= Y., (u.v) (deg, (u) + deg,, (v)).

{uvieVv (@)
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We consider the following cases. For computing degrees and distances in @ we use two
observations 3 and 4.

Casel.u=x and ve X..
D d.(x,%) (deg, (x) + deg . (X)) =
i=1

Case2. u=x and veV(G).

2(3n—deg, (v,) —1) = 6n* —2n —4m.

n
i=1

Zn:dﬁ(x,vi) (deg, (x) +deg (v;)) =Zn: (3n—2deg (v;)) = 3n* —4m.

i=1 i=1
Case 3. {u,v} < X . Using Lemma 1 we see that
D d, (%, %;) (deg, (x) +deg, (x;)) = D (4n—2—(degs (v;) +degg (v;)))
4%} X {i. j3<ln]
=4n* -2n-2m(n-1).
Case 4. {u,v}cV(G). Using Lemma 2 we have
> d (v, V) (deg (v)+deg, (v))) = Y (4n—2(degq (v,) +degq (V)

{vivjIev (G) Vivj2E(G)

+2 )" (4n—2(degq (v;) +degs (v;)))

viv;eE(G)

_ 4n((;J—m)—2(2m(n—l)— M, (G))

+8mn—4M,(G)

=2n’(n—-1)+4m—-2M,(G).
Case 5. u=vj and v=xj, 1<i<n.

Zn:dﬁ(vi,xi) (deg, (v,) +deg (x)) =Zn: (4n—-3deg, (v,)—1) = 4n* —n—6m.

i=1
Case 6. u=Vv; and v=xj, i = j. By Observation 4, dip(vi, xj) =dp(vj,x) is 1 when
Vivj ¢ E(G), otherwise is 2. Thus,

> d,(v;, x;) (deg, (v;) +deg, (x;)) = D (4n—1-2degq(v,) —degq(v)))
{vi,Xj}gV(fl) (Viij)
i] vivi2E(G)

+ >.2(4n-1-2degq (v;) —degs (v;))
(vi.v;)
Viv;eE(G)
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Each vertex v; can be paired with n—1-degg(vj) vertices v; as (vj,vj) with the

condition v,v; ¢ E(G). Also, note that Z(Vi,Vj)(dEQG(Vi)+d89G(Vj)) is equal to

ZZ{Vi ’Vj}(degG (vj)+degg (vj)). Hence, using Lemma 2 we obtain

n
) (4n—1—2degG(Vi)—dege(Vj))=2((Zj—m)(4n—1)— Y (degg(vi) +degg (vj))
(vi,vj) (vVi.vj)
vivj2E(G) vivj2E(G)
- Xdegg(vj)
(Vi.vj)
viVjeE(G)

= (n2 —n-2m)(4n-1)-2(2m(n-1) - M1(G))- (2m(n -1) - M1(G)).
Note that |{(vi,vJ-): Vivj € E(G)}|=2m and

2(vj V)iV cE(G)dedg (vi) = Zinzl(degc; (Vi))2 ’

because each vertex v;j has degg(vj) neighbors and appears degg(vj) times in the desired
summation. Thus, using similar arguments we see that
> 2(4n—-1-2degg (vj) —degg (Vj )) =4m (4n—-1) -6M1(G).
(Vi.vj)
vivjeE(G)

Now the result follows through these cases.

By considering Observation 3, it's not hard to check that

M1 (f) = 5M1(G) +8n° —3n2 — 24mn + 4m+n.
Thus, Theorems 1 and 2 imply the following result.

Corollary 4. Let G be an n-vertex graph of size m and let H be the complement of the

Mycielskian of G .Then, DD(u(H)) =16n° + 73n2 +5n + 20m +56mn — 25M1(G).
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ABSTRACT The vertex-edge Wiener index of a simple connected graph G is defined as
the sum of distances between vertices and edges of G. Two possible distances D1(u,e|G)

and Dy (u,e|G) between a vertex u and an edge e of G were considered in the literature
and according to them, the corresponding vertex-edge Wiener indices erl (G) and
WV@Z (G) were introduced. In this paper, we present exact formulas for computing the

vertex-edge Wiener indices of two composite graphs named splice and link.

KEYWORDS Distance in graph ¢ vertex—edge Wiener index * Splice ¢ Link.

1. INTRODUCTION

The graphs considered in this paper are undirected, finite and simple. A topological index
(also known as graph invariant) is any function on a graph that does not depend on a
labeling of its vertices. The oldest topological index is the one put forward in 1947 by
Harold Wiener [1,2] nowadays referred to as the Wiener index. Wiener used his index for
the calculation of the boiling points of alkanes. The Wiener index W(G) of a connected

graph G is defined as the sum of distances between all pairs of vertices of G:
W(G) =2y wcr(G)dw.vG),

where d(u,v|G) denotes the distance between the vertices # and v of G which is defined

as the length of any shortest path in G connecting them. Details on the mathematical
properties of the Wiener index and its applications in chemistry can be found in [1-8].

In analogy with definition of the Wiener index, the vertex-edge Wiener indices
are defined based on distance between vertices and edges of a graph [9,10]. Two possible
distances between a vertex u and an edge e=ab of a connected graph G can be considered.

The first distance is denoted by D, (u,e|G) and defined as [9]:
G) =min{d(u,a|G),d(u,b|G)},

G) and defined as [10]:

G) = max {d(u,d|G),d(u,b|G)" .

D,(u,e

and the second one is denoted by D, (u,¢

Dy (u,e
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Based on these two distances, two vertex-edge versions of the Wiener index can
be introduced. The first and second vertex—edge Wiener indices of G are denoted by
erl (G) and WV€2 (G), respectively, and defined as Wye; (G):zueV(G)zee E(G)Di(“ve G),

where ie{1,2}. It should be explained that, the vertex-edge Wiener index introduced in

[9] is half of the first vertex-edge Wiener index W), . However, in the above summation,

for every vertex u and edge e of G, the distance D;(u,e

G) is taken exactly one time into

account, so the summation does not need to be multiplied by a half. The first and second
vertex-edge Wiener indices are also known as minimum and maximum indices, and
denoted by Min(G) and Max(G), respectively. Since these indices are considered as the

vertex-edge versions of the Wiener index, their present names and notations seem to be
more appropriate.

In [10,11], the vertex—edge Wiener indices of some chemical graphs were
computed and in [12,13], the behavior of these indices under some graph operations were
investigated. In this paper, we present exact formulas for the first and second vertex-edge
Wiener indices of two composite graphs named splice and link. Readers interested in
more information on computing topological indices of splice and link of graphs, can be
referred to [12,14-20].

2. RESULTS AND DISCUSSION

In this section, we compute the first and second vertex—edge Wiener indices of splice and
link of graphs. We start by introducing some notations.
Let G be a connected graph. For u € V(G), we define:

du|G)= Y du,|G),
velV (G)

D.(u|G)= Y.D,(u,dG), ie{l2}.
ecE(G)

With the above definitions,

WG =5 Tda).

uel(G)

W, (G)= Y D,uG), ie{l2}.

ve;
uelV (G)

2.1 SPLICE

Let G, and G, be two connected graphs with disjoint vertex sets V' (G,) and V(G,) and
edge sets E(G,) and E(G,), respectively. For given vertices a, € V(G,) and a, €V (G,),
a splice [17] of G, and G, by vertices a, and a, is denoted by (G,.G,)(a,,a,) and
defined by identifying the vertices a, and a, in the union of G, and G,. We denote by

n, and m, the order and size of the graph G,, respectively. It is easy to see that,

|V((G1 G,)a,,a, ))| =n; +n, -1 and |E((G1 G, )a,,a, ))| =m+m,.
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In the following lemma, the distance between two arbitrary vertices of
(G,.G,)(a,,a,) is computed. The result follows easily from the definition of the splice of

graphs, so its proof is omitted.

Lemma 2.1 Let u,v €V ((G,.G,)(a,,a,)). Then
du,vG)) u,v e V(G,)
(G,.G,)a,,a,)) =1du,vG,) u,veV(G,)
d(u,a,|G,)+d(a,,V|G,) ueV(G,), veV(G,)

d(u,v

In the following lemma, the distances D, and D, between vertices and edges of

(G,.G,)(a,,a,) are computed.

Lemma 2.2 Let u €V ((G,.G,)(q,,a,)) and e € E((G,.G,)(a,,a,)). Then

D, (u,e|lG)) uelV(G,), ec E(G))
D, (u,elG,) uelV(G,), ec E(G,)
d(u,a,|G,)+D,(a,,dG,)  ueV(G,), ec EG,)
d(u,a,|G,)+ D,(a,,€|G,) ueV(G,), ecE(G,)

D.(u,e

(G,.G,)a,,a,)) =

where i € {1,2}.
Proof. Using Lemma 2.1, the proof is obvious. u

In the following theorem, the first and second vertex-edge Wiener indices of
(G,.G,)(a,,a,) are computed.

Theorem 2.3 The first and second vertex-edge Wiener indices of G =(G,.G,)(q,,a,) are
given by:
W, (G) =W, (G)+W, (G,)+md(a|G,)+md(a,|G,)

+(n, —1)D;(a,|G)) + (n, _I)Di(a2|G2)’

where i € {1,2}.

Proof. By definition of the vertex-edge Wiener indices,

W, (G)=Y YDudG), iecil2}.

uel (G) eeE(G)

Now, we partition the above sum into four sums as follows:
The first sum S, consists of contributions to ¥, (G) of vertices from V(G;) and

edges from E(G,). Using Lemma 2.2, we obtain:
S= Y 2DwdG)= 3 >D(udG)=W,(G).

uel (Gy) eeE(Gy) uelV (Gy) eeE(Gy)

The second sum S, consists of contributions to W,, (G) of vertices from V(G,)

and edges from E(G,). Similar to the previous case, we obtain:
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S, = Z ZDi(u,e|G2)=eri(G2).

uel (G, ) eeE(Gy)

The third sum §; consists of contributions to W, (G) of vertices from
V(G,)\{a,} and edges from E(G,). Using Lemma 2.2, we obtain:
S, = Z ZDi(u,eG)= Z Z[d(u,a1|Gl)+Di(a2,e

uelV (G)\{a; } eeE(Gy) uelV(Gy)\{a;} eeE(Gy)

=m,d(q, |G1 )+ (n, — l)Di(a2|G2) .

)

The last sum S, consists of contributions to W, (G) of vertices from

V(G,)\{a,} and edges from E(G,). Similar to the previous case, we obtain:
Si= X Xld(w.a|G)+Di(@.dG))]

ueV (Gy)\az} ecE(G))
=md(a,|G,) +(n, ~1)D,(4,|G)).

Now the formula of W, (G), i€{l,2}, is obtained by adding the quantities S,

S,, S; and S, . u

2.2 LINK

Let G, and G, be two connected graphs with disjoint vertex sets V' (G,) and V(G,) and
edge sets E(G,) and E(G,), respectively. For vertices a, e V(G,) and a, €V (G,), a link
[17] of G, and G, by vertices a, and a, is denoted by (G, ~ G,)(a,,a,) and obtained by
Joining a, and a, by an edge in the union of these graphs. We denote by n, and m, the
order and size of the graph G,, respectively. It 1s easy to see that,
|V((Gl ~G,)a,,a, ))| =n, +n, and |E((Gl ~G,)a,,a, ))| =m, +m, +1.

In the following lemma, the distance between two arbitrary vertices of
(G, ~G,)(a,,a,) is computed. The result follows easily from the definition of the link of

graphs, so its proof is omitted.
Lemma 2.4 Let u,veV((G, ~G,)(a,,a,)). Then
d(u,v|G)) u,v e V(G),)

(G, ~ Gy)a,,a,)) = 1d(u,vG,) u,veV(G,)
d(u,a,|G)+d(a, VG,)+1 ueV(G), veV(G,)

d(u,v

In the following lemma, the distances D, and D, between vertices and edges of

(G, ~G,)(a,,a,) are computed.

Lemma 2.5 Let u € V((G, ~ G,)(a,,a,)) and e <€ E((G, ~ G,)(a,,a,)). Then
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D, (u,e|lG)) uelV(G,), e E(G))
D, (u,elG,) uelV(G,), ec E(G,)
d(u,a,|G)+D,(a,,dG,)+1  ueV(G), eeE(G,)

D.(u,e|(G, ~ G,)a,,a,)) = )
L d(u,a)|Gy) + Dy(ay, G+ ueV(G,), ec E(G)
d(u,a,|G,)+i—1 uel(G,), e=aa,
d(u,a2|G2)+i—1 uelV(G,), e=aa,
where i € {1,2}.
Proof. Using Lemma 2.4, the proof is obvious. u

In the following theorem, the first and second vertex-edge Wiener indices of
(G, ~G,)(a,,a,) are computed.

Theorem 2.6 The first and second vertex-edge Wiener indices of G =(G, ~G,)(a,,a,)
are given by:
W, (G) =W, (G)+W,, (G,)+(m, +1)d(a,|G) +(m, +1)d(a,|G,)
+n,D, (a1|G1 )+nD, (a2|G2) +nm, +n,m, +(n, +n,)(i-1),
where i € {1,2}.

Proof. By definition of the vertex-edge Wiener indices,

W, (G)=Y YDudG), icil2}.

uel (G) ecE(G)

Now, we partition the above sum into six sums as follows:
The first sum S, consists of contributions to W, (G) of vertices from V(G;) and

edges from E(G,). Using Lemma 2.5, we obtain:
S= 3 YDwwdG)= Y YD udG)=W,(G).

uel (Gy) eeE(Gy) uelV (Gy) eeE(Gy)

The second sum S, consists of contributions to W,, (G) of vertices from V(G,)

and edges from E(G,). Similar to the previous case, we obtain:

S, = Z ZDi(u,e|G2)=eri(G2).

uel (G, ) eeE(Gy)
The third sum S; consists of contributions to W,, (G) of vertices from V(G,) and
edges from E(G,). Using Lemma 2.5, we obtain:

S, = Z ZDi(u,eG)= Z Z[d(u,a1|G1)+Di(a2,e|G2)+1]

ueV(Gy) eeE(Gy) ueV(Gy) eeE(Gy)

=myd(a, |G1) +nD,(a,

G,)+nm,.
The fourth sum S, consists of contributions to W,, (G) of vertices from V(G,)

and edges from E(G,). Similar to the previous case, we obtain:
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S, = Z Z[d(u,a2|G2)+Di(a1,e|G1)+1]

uel (Gy) ecE(Gy)
= m,d(a2|G2) +n,D,(q, |G]) +n,m, .
The fifth sum S consists of contributions to W, (G) of vertices from V(G,) and
the edge a,a, of G. By Lemma 2.5, we obtain:
Zd(u,a1|G1) i=1

uel(Gy)

S, = Z ZDi(u,eG)=

Sl Y (dwa|G)+1) =2
uel(Gy)
d(a|G,) i=1
d(a,|G,)+n, i=2

The last sum Sy consists of contributions to W,, (G) of vertices from V(G,) and

the edge a,a, of G. Similar to the previous case, we obtain:

d(a,|G,) i=1
Sg= > >.D(ueG)= .
ueV (Gy) e=ajay d(a2|G2) +f’l2 i=2
Now the formula of W, (G), i€ {l,2}, is obtained by adding the quantities S,
S,, S5, S,, S5 and S;. [ ]
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ABSTRACT In this paper operational matrix of Bernstein Polynomials (BPs) is used to
solve Bratu equation. This nonlinear equation appears in the particular elecotrospun
nanofibers fabrication process framework. Elecotrospun organic nanofibers have been
used for a large variety of filtration applications such as in non-wovens and filtration
industries. By using operational matrix of integration and multiplication the investigated
equations are turned into set of algebraic equations. Numerical solutions show both
accuracy and simplicity of the suggested approach.

KEYWORDS Bratu equation * Elecotrospun nanofibers ¢ Bernstein polynomials ¢
Operational matrix.

1. INTRODUCTION

Electrospinning has been recognized as one of the most convenient, direct and
economical methods for the fabrication of polymer nanofibers. Various polymers have
been successfully electrospun into ultrafine fibers in recent years mostly in solvent
solution and some in melt form. Electrospinning is a process for elaborating nanofibers
with diameters about 20nm by forcing a fluidified polymer through a spinneret by an
electric field. The elements required for electrospinning include a polymer source, a high-
voltage supply (HV), and a collector (as shown in Fig. 1) [4]. Through several different
collection methods, this process yields nonwoven, nanoporous materials. The basis of
electrospinning is derived from a large change in electric potential. Many electrospinning
device were designed in vibration-electrospinning [14, 9], magneto-electrospinning [18],
bubble-electrospinning [12, 10].

In this paper, a mathematical model of the electrospinning process has been
associated to Bratu equation through thermo-electro-hydrodynamics balance equations.
This model is considered in terms of fluid velocity at the level of the outer edge of the
syringue. It has been showed that the problem can be expressed through second-order
nonlinear ordinary differential Bratue quation:
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u'(x) +2e*™® =0, 0<x <1, Aisconstant (1)
with initial conditions u(0) = by, = 0 and u'(0) = b; = 0 will be investigated.

Metering
Pump Polymer

Figure 1. Electrospinning process setup.

Colantoni and Boubaker established a model which is the monodimensional Bratu
equation as following [4]:

Ifazu

T puU —

46x2 Ae ,

| 18 E2(I — r2kE)?
with: A = 7 )
\ per

where p is material density, ris is the radius of the jet atxial coordinate x (Fig. 1), Iis the
electrical current intensity, kis a constant which depend only on temperature in the case
of an in compressible and £ is electric field in the axial direction.

The approximation and numerical techniques are utilized to solve this equation.
Some of these methods were B—spline method [3], Chebyshev wavelets method [16],
Adomian decomposition method [15], Variational iteration method [1, 8] and other
method [6,7,13].

In this study, we will generalize the operational matrix for fractional integration
and multiplication within Bernstein Polynomials. Bernstein polynomials (B-polynomials)
have many useful properties. They play a prominent role in various areas of mathematics
and have frequently been used in the solution of integral equations, differential equations
and approximation theory; see e.g., [5, 17]. The core of this approach is to convert the
given problem into a system of algebraic equations. This transformation is possible by
expanding the unspecified function within Bernstein Polynomials. The speed of the
computation increases. To evaluate the unknown coefficients which appear in this
approach, we utilized the operational matrix of integral and multiple.

Now we are ready to present the organization of our wok: In Section 2, some
properties of Bernstein polynomials is presented. The operational matrix is computed for
integration and produc in section 3. The suggested approach is used to approximate the
Bratu equation in the next section. After that we apply the proposed technique to Bratu
equation in section 5. A conclusion part in Section 6 closed the manuscript.
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2. BERNSTEIN POLYNOMIALS AND THEIR PROPERTIES
2.1 DEFINITION OF BERNSTEIN POLYNOMIALS
The Bernstein polynomials of the mth degree on the interval [0, 1] are defined as [2]:
Bim() = (Mx'(1—x)™" 0<x<m. )
The following Bernstein polynomials satisfy recursive definition:
Bim(x) = (1 —x)B;p-q1(x) + xB;_1 11 (x), i=01,-,m. 3)
It can easily be shown that each of the Bernstein polynomials is positive and also

the sum of all the Bernstein polynomials is unity for all real x € [0,1], i.e.,

moBim(x) =1. By using the binomial expansion of (1 —x)™"¢, Bernstein

polynomials can be show in terms of linear combination of the basis functions
Bim() = (7)x'(1 = 2)™t = ()t (TR (- D* (7))
= I i=DR) (DX, i=0,1,,m, (4)

We can show the Bernstein polynomials by B, (x) = A;11Tp(x), for i =
0,1,:--,m, where

i times

A = (0,0,-50, (=D°(™), DM, -+, (D™ (M) (DY),

nd
1
Tm(x) = I X ]
x™

Now if we define (m + 1) X (m + 1) matrix A such that

a

A1
then we have ¢(x) = AT,,(x), where ¢(x) = [Bo,m(x),Bl,m(x), - Bm,m(x)]Tand A is
an upper triangular matrix given by:

[(°G) WG - O™ GIG5)
a=| ° @) @G |
[ o 0o () |
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and |A| = [T, m(’?), so A is an invertible matrix.

2.2 APPROXIMATION OF FUNCTION

The set of Bernstein polynomials{BO'm, Bim, ---,Bm'm} in Hilbert space L?[0,1] is a
complete basis [11]. Therefore, any polynomial of degree mcan be expanded in terms of
linear combination of B;,, :

fx) =X ciBim =C" 9, (5

where @7 = [Bom) Bim, "> Bmm] and CT = [co, ¢y, *+*, € ]. Then CTcan be obtained by

C™{¢p, p) =(f, ¢), (6)
where
(f,8) = Jy FISC dx = [{f, Bom), {f, Bumds = {f, Brum)] (M)
and (¢, ¢) is called dual matrix of ¢ which is showed by Q, and the Q is obtained as:
Q={(p,¢) = f01¢(X)¢(X)de, (8)
and then
c" = (J, FEOP()"dx) Q™. 9)

The elements of the dual matrix, Q, are easily computed by

1

(@is1,j+1 =j B; m(x) Bjm(x)dx

0
_ (rlz) (;z) fol(l _ x)2n=GHD) it gy

- enn ()

---’m.

3. OPERATIONAL MATRIX OF BERNSTEIN POLYNOMIALS

3.1 THE OPERATIONAL MATRIX OF INTEGRAL

In this section, we describe breifley operational matrix for the Riemann-Liouville integral
on the basis of BPs from order m as[17]:

Jy p®dt = Pg(x), (10)

by substituting ¢(x) = AT,,(x) in Eq. (10) we get:

Jy p@®)dt = A [ T, dt = A[f, 1dt, [ tdt, -, [ t™ dt]'

xm+1

"m+1

Y P (T (11)
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where D is an (m + 1) X (m + 1) matrix given by

S =
"'N|HO

0 0 — |

X
— 2
Tm=|% |
x1+m

Now we approximate x'*1 by m + 1 terms of the Bernstein basis:

r
|
P
|

and

x>~ ET (). (12)
Therefore we have
E;=Q71 (folxi+1¢m(x)dx) (13)
: . . T
= Q_l [fol xl“BO,m(x)dx, fol XH-IBl'm(x)dx’ - fol Xl“Bm,m(x)dx,]

= Q_lgi.

where E; = [E; o, Ei1,, E;m| and

- 1 mIT(i+j+2) ..
Eij=Jy x"'Byj()dx =SS, Lj =01,,m, (14)

where E is an (m+ 1) X (m + 1) matrix that has vector Q~1E; for ith columns.
Therefore, we can write

Pp(x) = AD[ES p(x), ET p(x), -+, ELp(x)]T = ADET (). (15)

Finally, we obtain
[) ¢(t) dt = P (x), (16)

where
P = ADE, (17)

is called the Bernstein polynomials operational matrix of fractional integration.

3.2 B—POLYNOMIALS OPERATIONAL MATRIX OF PRODUCT

It is always necessary to evaluate the product of ¢(x) and ¢(x)7, which is called the
product matrix for the Bernstein polynomials basis. The operational matrices for the

product C is given by

CTPp)P)" = p(0)7C, (18)
where € is an (m + 1) x (m + 1) matrix. So we have
CTPp)P()T = CTPX) (T ()TAT) = [CTp(x), x(CTPp(x)), -, x™(CT Pp(x))]AT

= [X™ 0 ¢i Bim 2o Cix Bim, ) Lo € X™ By m| (19)
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Now, we approximate all functions x*B;,,(x) in terms of {Bi'm(x)}:io for
i,k=0,,--,m. By(5), we have
X" Bim = ejgipm (%) (20)
that e, ; = [e,?'i, e,%'i, -, e,ﬁ'fi]T, then we obtain the components of the vector of ey ;

ei =Q7" <f0 kai,m(x)¢(X)dx)

=Q! [fol x¥B; 1 () By 1 (x)dx, fol x¥B; 1 () By m (x)dx, -+, fol X¥Bj 10 (X) By (x)dx]T

ot (L) (D () o
T omtk+l [(2m+k)'(2m+k)""'(2m+k)] ) Lk=01,-,m (21)

i+k

i+k+1 i+k+m

Thus we obtain finally

m m m
Zcikai,m(x) = Zci Zekl ]m(x) Z m(x) (Z Clekl>
i=0 i=0 j=0
T
= ¢(X)T[ i= oczeku i=o Ciell,i""' =0 Ciei’,‘i]
= ¢(X)T[ek,0r €k 1 "'rek,m]c = ¢(X)TVk+1C > (22)

where Vii1(k =0,1,---,m)is an(m+ 1) X (m + 1) matrix that has vectors ey ;(i =
0,1,---,m) given, for each columns. If we choose an (m + 1) X (m + 1) matrix C =
[Vic,Voc, -, Vipeqc ], from (19) and (22) we can write:

CTPp(x)p(x)" = p(x)TCAT (23)

and therefore we obtain the operational matrix of product, ¢ = AT.

4. SOLUTION OF BRATU EQUATION

Consider Bratu equation given in (1). We first approximate derivative by the Bernstein
basis ¢ as follows:

u'(x) = CTp(x) (24)
where
CT = [co,c1, s Cml, (25)
¢T = [BO,m' Bl,m' Tt Bm,m]a (26)
are unknowns. Using initial conditions u(x) can be represented as
u(x) = CTP%¢p = GT ¢, (27)

where CTP? = GTand P is the operational matrix of integration. Here we use the Taylor

expansion of the strongly nonlinear term as:
U=1+ +u2 +u3 +u4
et = Uu+—+—-—-+—
2 31 4!
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Also using (5) and (23) we approximate constant functions 1 and nonlinear terms
by the Bernstein basis as:

1=drg, (28)
u?(x) = GTpdp"G = 9T GG, (29)
u?(x) = ¢T GG, (30)
u*(x) = ¢7G3G, (31)

Now, by substituting (27) and (28)—(31), into (1) we have
¢TC =2(pTd +¢7G +3¢TGG + = ¢TG?G + - ¢7G36) (32)

or

o7 — (c —A(¢Td+¢TC +3¢TGG + - ¢TG?G + %¢TGA3G)) = 0. (33)

Finally, we obtain the following linear system of algebraic equations:
(C—A(¢Td+¢TG +2¢7GG +%¢TGAZG+%¢TGA3G)) =0, (34)

that by solving this system we can obtain the vector C. Consequently determine the
approximate value of u(x) can be calculated from (27).

5. ILLUSTRATIVE EXAMPLE

Below we use the presented approach in order to solve a Bratu equation.

Example. Consider the second-order initial value problem [1,3,15]
u" (x) — 1e¥® =, 0<x<1, (35)

subject to the initial conditionu(0) = u'(0) = 0. The exact solution is u(x) =
2In (cos(x)). By applying the technique described in Section 4, in Figure 2 the exact
solution together with the approximate solutions u(x) show for different values of
m = 6,8,12 and A = 2. The approximate values of u(x) converge to the exact solutions
with increase in the number of the Bernstein basis. In Table 1, the obtained results of BPs
with m = 12 and methods in [4] are showed.

ulx)

0.21

- . L L L L 1 w
0.2 0.4 0.6 0.8 1

Figure 2. The exact solution: (blue line) and when A =2 approximation
solutions for m = 12 (red line), m = &8 (dotted) and m = 6 (Long—dashed).



26 JAFARI AND TAJADODI

Table 1. Solution of Bratu equation.

X Exact BPEs EVIM BPs
0.03448 0.00118911 | 0.00118 0.00117 0.00118912
0.10345 0.010721 0.01061 0.0105 0.0107219
0.17241 0.0298737 0.02958 0.02929 0.0298804
0.24138 0.058839 0.05825 0.05766 0.0588668
0.31034 0.097897 0.09692 0.09592 0.0979798
0.37931 0.147465 0.14689 0.14632 0.147662
0.44828 0.20807 0.20599 0.20391 0.208484
0.51724 0.280393 0.27761 0.27483 0.281178
0.58621 0.365339 0.36178 0.35822 0.366712
0.65517 0.464004 0.45943 0.45485 0.466255
0.72414 0.577847 0.57211 0.56638 0.581339
0.79313 0.708731 0.70165 0.69462 0.713882
0.86207 0.858899 0.85038 0.84186 0.866119
0.93103 1.03165 1.02144 1.01122 1.04121
1 1.23125 1.21906 1.20687 1.24298

6. CONCLUSION

In this work we have performed an accurate and efficient approachbased using the
Bernstein polynomials for solving the second-order initial value problems of Bratu—type.
The Bernstein polynomials operational matrixes of integration and multiplication are
used to reduce the problem to the solution of nonlinear algebraic equations. Illustrative
example are presented to demonstrate the applicability and validity of the approach. We
used Mathematica for computations.
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ABSTRACT Let G be a molecular graph with vertex set V(G) and dg(u,v) be the topological
distance between vertices u and v in G. The Hosoya polynomial H(G,x) of G is a polynomial

Z{u’v}gV(G)xdG @) in variable x. In this paper, we obtain an explicit analytical expression

for the expected value of the Hosoya polynomial of a random benzenoid chain with »
hexagons. Furthermore, as corollaries, the expected values of the well-known topological
indices: Wiener index, hyper-Wiener index and Tratch—Stankevitch—Zefirov index of a
random benzenoid chain with » hexagons can be obtained by simple mathematical
calculations, which generates the results given by I. Gutman et al. [Wiener numbers of random
benzenoid chains, Chem. Phys. Lett. 173 (1990) 403—408].

KEYWORDS Wiener index * random benzenoid chain * Hosoya polynomial * expected value
* generating function.

1. INTRODUCTION

A molecular graph ( or chemical graph) is a representation of the structural formula of a
chemical compound in terms of graph theory. Specifically, a molecular graph is a simple
graph whose vertices correspond to the atoms of the compound and edges correspond to
chemical bonds. Note that hydrogen atoms are often omitted. For example, benzenoid
chains are molecular graphs of unbranched catacondensed benzenoid hydrocarbons.
Molecular structure descriptors (or topological indices) of molecular graphs are graph
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invariants and are used for Quantitative Structure-Activity Relationship (QSAR) and
Quantitative Structure-Property Relationship (QSPR) studies, which mainly focus on
structure-dependent chemical behaviours of molecules [4, 18].

Let G be a molecular graph with vertex set V(G), dg(u,v) be the topological distance
(or distance for short) between vertices u and v inG, i.e., the length of a shortest path
connecting u and v in G. The subscript is omitted when there is no risk of confusion. The
Hosoya polynomial} in variable x of G , introduced by Hosoya [12], is defined as

H(G,x)= Z{u’v}gy(G)xdG(”’V),where the sum is taken over all unordered pairs of (not

necessarily distinct) vertices in G . Hence the polynomial contains the number of vertices
as the constant term.

The Hosoya polynomial not only contains more information concerning distance in
the molecular graph than any of the hither to proposed distance-based molecular structure
descriptors, which were extensively studied in chemical graph theory, see for instance the
surveys [16, 17], but also deduces some of them. For example, Wiener index W (G) of a

molecular graph G [20], the oldest and most well-studied molecular structure descriptor so
far, is equal to the first derivative of the Hosoya polynomial in x =1, i.e.,

W(G) = diH(G,x) (1)

X

The chemical applications and mathematical properties of W(G) are well
documented [5, 6, 9, 10]. Moreover, hyper-Wiener index WW(G) [14],
Tratch—Stankevitch—Zefirov index 7SZ(G) [19] can be deduced from H(G,x) as follows:

1d*

WW(G)=—-—=xH(G,x)| ., (2)
2 dx
TSZ(G)—ld—3 2H(G 3
BRI )

Two classes of general molecular structure descriptors
k k
%;’i—k . and %;;—kH(G,x)
for positive integers & were also studied in Refs. [2, 15]. On the other hand, recently
Briickler etc. [2] proposed a new class of distance-based molecular structure descriptors: Q-
indices, which can reflect the fact that any kind of interaction between physical objects (in
particular, between atoms in a molecule) decrease with increasing distance, and showed

that Q-indices are equal to the Hosoya polynomial. So the Hosoya polynomial and the

x*"H(G,x)

x=1
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quantities derived from it will play a significant role in QSAR and QSPR researches, and
abundant literature appeared on this topic [3, 8,21, 22, 23].

Let B,:1 denote a benzenoid chain with n+1 hexagons (n >0). There are obviously
unique benzenoid chains B,+; for n=0,1. More generally, a benzenoid chain B, can be

regarded as a benzenoid chain B, to which a new terminal hexagon u,, y; ¥2 ¥3 ¥4 va has

been adjoined. However, when n > 2, the terminal hexagon can be attached in three ways,
B..,, B

n+l 2 n+l 2

resulting in the local arrangements we describe as B, according to the related

+1?

position of the terminal hexagon shown in Figure 1.

Bn B{‘
Vs ‘ N
V4 ‘ Vs
a . Vi o %
Ja V3

Vs
2 3
Bn'?l B'l'”

Bl

n?l

Figure 1. The three types of local arrangements in benzenoid chains B, ,,

A random benzenoid chain, R, with n+1 hexagons, is a benzenoid chain obtained

n+l
by stepwise additions of terminal hexagons. As the initial steps, R, = B,, R, = B,, and for
each step £k (2<k<n) a random selection is made from one of the three possible
constructions:

B, — B,,,, with probability pi,
B, — B}, with probability p, or
B, — B;.,, with probability q=1-pi- p».

We assume the probabilities p; and p, are constants, invariant to the step parameter
k. That is, the process described is a Markov chain of order zero with a state space
consisting of three states [7].

In the present paper, we calculate the expected value of the Hosoya polynomial of a
random benzenoid chain R and give an explicit analytical expression by using the
mathematical method: generating function. As corollaries, formulae for the expected values

of some topological indices deduced from the expression can be obtained by using simple
mathematical operators.
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2. RECURSION RELATIONS OF HOSOYA POLYNOMIALS OF RANDOM
BENZENOID CHAINS

Let G be a connected graph with vertex set '(G). For the simplicity, we define one

notation as follows: for a vertex u € V(G),

H(ux) =) xi,

Vel (G)
i.e., the contribution of the vertexu to the Hosoya polynomial H(G,x) of G . As described
above in the previous section, a benzenoid chain B,:; is obtained by attaching to a
benzenoid chain B, a terminal hexagon consisting of vertices u,, yi, y2 ¥3 V4 Va (see

Figure 1). For this construction the following relations are easily obtained [10]:

H3n+1(y1;x)=xHBn(un;x)+x3+x2+x+1 (4a)
Hp  (v2:X)=x"Hp (u,:x)+x" +2x+1, (4b)
Hp  (y3:0)=x>Hp (v;:x)+x> +2x+], (4¢)
Hp, (v4;x)=xHp (vn;x)+x3+x2+x+1, (4d)
and
H(Byo1,x) = H(Byx) + _ilHBM (i) = + 26 +3). 5)
=

Note that the last term on the right-hand side of Eq. (5) appears because the
contribution of pairs of vertices y, and y, (1<i< j<4) to H(B,:,x) are calculated twice

in the second term on the right-hand side of Eq. (5). Substituting Eq. (4) for Eq.(5), we get

H(B,..,x)=H(B,,x)+x(x+1)(H, (u,;x)+H, (v,;x))+ x> +2x> +3x+4.  (6)

n+l?

In fact, the equations discussed above associated with a concrete benzenoid chain
are valid for a random benzenoid chain, i.e., Egs. (4)-(6) still hold when we simultaneously
replace B, for R,.1and B, for R,.

In the following we consider contributions of u,,, and v ,, to H(B,+1,x) according to

n+1
the positions of u,+; and v,+;. There are three cases to consider:

Case 1. B,u— B., . In this case, u,y = y; and v, =y>=. Consequently,
Hy (u,,;x)=H, (y;x)and Hy (v,.;0)=H, (y,;%), which are given by Egs. (4a)
and (4b), respectively.
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Case 2. B,u— B., . In this case, u,, =y, and v, , =y, . Consequently,
Hy (u,,;x)=H, (yy;x)and H, (v, ;x)=H, (y,;x),, which are given by Egs. (4¢)
and (4d), respectively.

Case 3. B,u— B, . In this case, u,1=y» and v, =y, . Consequently,
Hy (u,,;x)=H, (yy;x), and H, (v,,;;x)=H, (y;;x),, which are given by Eqgs. (4b)
and (4c), respectively.

For a random benzenoid chain Ry, H(Ry+1x), Hy (u,,;x) and H, (v,,;x) are

n+l? n+l?

random variables and we denote their expected values by H,,,(x),U,, (x) and V  (x),

n+l n+l

respectively, i.e.,

Hn+l (.X') = E(H(Rn+1 > X)) B Un+l (.X') = E(HRH (un+| ;X)),
Vn+l (.X') = E(HRH (vn+| ,X))

Since the above three cases occur in random benzenoid chains with probabilities pi, p»
and 1-p;—p», respectively, by the definition of the expected value we immediately obtain

Un@)=pHy (y;x)+p,Hy (y33x)+qH (y,5%), (72a)
Va(x)= leRM (yz ) x)"‘ pZHRM (Vg5 x)+ qHRM (33%), (7b)

Substituting the corresponding analogues associated with random benzenoid chains R,
and R, to Eq. (4) for Eq. (7), we get

U,a(0)=(pyx+qx*)Hy (u,;X)+ py X Hy (v,50)+ (3 —x)p, +(x+1)?,  (8a)
V(0= (pyx+gx*)H, (v,:x)+ p X’ Hy (u,:%)+(x* =x)p, +(x+1)*,  (8b)

By applying the expectation operator to Eq. (8), and noting that E(U,,(x))=U ,,,(x)

and E(V,,,(x))=V,, (x), we obtain
U, ()= (px+gx U, (x)+ ppx’V, () + (x" =x)p, +(x +1)* , (9a)
Vi ()= (pyx+ x>V, (x)+ p°U, () +(x" =x) P, + (x +1)° (9b)

A recursion relation for the expected value of the Hosoya polynomial of a random
benzenoid chain can be obtained from Eq. (6) by using Ry in place of By (k=n, n+1) and by
using the expectation operator:

Hn+1(x)=Hn(x)+(x+x2)(Un(x)+Vn(x))+x3+2x2+3x+4. (10)
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The system of recursion equations (9) and (10) holds for » > 0, and has boundary
conditions:
H,(x)=x+2,U,(x)=x+1, V(x)=x+1. (11)

3. SOLUTION FOR THE SYSTEM OF RECURSION EQUATIONS

To solve the recursion equations (9) and (10), we use the method of the generating function
[1]. First define the following generating functions in variable 7. Let

U= U,mt" , V@)=Y V", HH=Y H,(x)t", 0<t<l.

n>0 n>0 n>0

From Egs. (9)—(11), we get relations of their generating functions as follows:

3 2
U =t(px+ @ U+ s tx° V(1) + & x)fl j’(“l) +x+l (122)
3 2
V() = t(pox + @ W () + pt U0+ x)fit(x“) b xt, (12b)

t(x* +2x* +3x+4)
11—t

H@)=tH@)+(x+x)tU@)+V () + +2 (12¢)

As Egs. (12a) and (12b) comprise a system of two linear equations in two variables
U(t) and F(¢), a straight forward calculation results in

U= plx(x+1>2+(1—p1>x(x+1>+(p1x2+1>(x+1>+p2(p1—p2>t2x3(x+1>2( L1 J (13a)
(x=D(A-xt)  (x-1)1-x%)  (@=x)(1-1) (1-0)(1-qt) 1-x% 1-xt

p(oy = 22D +(1—p2)x<x+1)+(pzx2+1)(x+1)+p1<p2—p1>t2x3(x+1>2( Ll ) (13b)
(r=DA-30)  (x-1-x>)  (A-x)1-1) (1-0(1-g1) 1-x% 1-xt

Substituting Eq. (13) for Eq. (12) and then rearranging, we can easily get:

x+2 (x3+2x2+3x+4)t+ (I-q)x*(x+1)°¢ . (I+q)x*(x+1)°¢

H()= + > >

1-¢ (1-1) (x=D(A-t)(1-xt) (x=1)(1-)(1-xt) (14)
+(x+1)2((1—q)x3+2x)t_(p1—p2)2x4(x+1)3t3( [

(1-x)1-1)? (1-at)(1-1) 1-x% 1-xt~

Applying two special cases of Newton's generalized binomial theorem
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+00

1 1 —+00
——=>y" and = > (n+1)y”"
1-y Z(): (1-y)’ Z():

to Eq. (14) and then rearranging it, we get

H()=x+2+3(x" +2x7 +2x+2)t +(2x° +6x* +12x° +14x* +11x+10)¢* +

+Zw[>€+2+n(x3 +2x7 +3x+4)+ nx+)*(=g)x +2x) + (1_q)x2(x+1)23(x” - (2
L l1-x (x=1)
ALDCOOTD gty S (S -k-206% =2

4. RESULTS AND DISCUSSION

From Eq. (15), we have the following main theorem.

Theorem 4.1. Let H,(x) be the expected value of the Hosoya polynomial of a random
benzenoid chain with 7 hexagons. Then
H,(x)=3x" +6x" +6x+6;
H,(x)=2x" +6x* +12x° +14x* +11x+10;
and when and »n >3,
n(x+1)*((1-gq)x’ +2x) N

H, (x)=x+2+n(x +2x> +3x+4)+

1—x
(1_q)x(ix_+1;3(x =D _p, —pz)2x4(x+1)32q1(2(n—Z—k—2)(x2k —x*)).

We can obtain some corollaries by taking parameters as special values or Egs. (1)—(3).
When ¢ =1 (in this case p; = p» = 0), a random benezoid chain is definitely a linear
benzenoid chain, i.e., a benzoid chain without no turns. So from Theorem 4.1 we have

Corollary 4.2. [21] Let G be a benzenoid chain with » hexagons. If G has no turns, then
the Hosoya polynomial of G is
n(x* —x—4)(x>+1) . 2x (x+ D) (x> =1)
x—1 (x—1)° '
If pi=1 or p,-2, a random benzenoid chain with n hexagons is definitely a helicene with »

H(G,x)=x+2+

hexagons, then we get
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Corollary 4.3. [21] Let G be a helicene with n hexagons. Then the Hosoya polynomial of
Gis
X E+HD(x+1)x" = (n-)x —x* +(n-3)x’ —x* =2x-2)

H(G,x)=x+2+ P

Jrn(x5 +xt 27 +3x° +x+4)

1-x

In addition, from Egs. (1)—(3), we can obtain the expected values of some molecular
structure descriptors from Theorem 4.1.

Corollary 4.4. [13] The expected value W, of the Wiener index of a random benzenoid
chain with n hexagons is

n—3
W, =4n’ +16n° +6n+1+%q(n3 —3n° +2n) —%(p1 —pz)ZZZ(Z +1)([+2)g""
1=0
Corollary 4.5. The expected value WW, of the hyper-Wiener index of a random benzenoid

chain with » hexagons is

ww, =§[3+(11+26c1)n+(79—33q)n2 +(28+4q)n’ +(5+3q)n*]1-
n-3
(P =p,)* D 1A+ +2)(I+9)g"
1=0

Corollary 4.6. The expected value T75Z, of the Tratch-Stankevitch-Zefirov index of a
random benzenoid chain with n hexagons is

7SZ, :31—0[30+(—58+566q)n+(1185—635q)n2 +(490-10¢)n> + (135+65¢)n*

+(18+14g)n° —(p, —p2)2§z(z +1)(I+2)(14(1 +3)* +139(1 +3) +510)g" >

=0
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ABSTRACT The idea of “forcing” has long been used in many research fields, such as
colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin
squares, block designs and Steiner systems in combinatorics [D. Donovan, E. S.
Mahmoodian, C. Ramsay, A. P. Street, Defining sets in combinatorics: A survey, in: C.
D. Wensley (Ed.), Surveys in Combinatorics, Cambridge Univ. Press, 2003, pp.
115-174]. Recently, the forcing on perfect matchings has been attracting more
researchers’ attention. A forcing set of a perfect matching M of a graph G is a subset of
M contained in no other perfect matchings of G. A global forcing set of G, introduced by
Vukicevi¢ et al., is a subset of E(G) on which there are distinct restrictions of any two
different perfect matchings of G. Combining the above “forcing” and “global” ideas. Xu
et al. in [Complete forcing numbers of catacondensed benzenoid, J. Combin. Optim. 29
(2015) 803—814.] introduced a complete forcing set of G defined as a subset of E(G) on
which the restriction of any perfect matching M of G is a forcing set of M. The minimum
cardinality of complete forcing sets is the complete forcing number of G. In this paper,
we give the explicit expressions for the complete forcing number of several classes of

polyphenyl systems.

KEYWORDS Complete forcing number ¢ polyphenyl system ¢ global

forcing number.

1. INTRODUCTION

The molecular graphs (or more precisely, the graphs representing the carbon-atoms) of
polyphenyls are called the polyphenyl systems. This kind of macrocyclic aromatic
hydrocarbons called polyphenyls and their derivatives attracted the attention of chemists
for many years [3, 4, 5]. The derivatives of polyphenyls are very important organic
chemicals, which can be used in organic synthesis, drug synthesis, heat exchanger, etc.

Biphenyl compounds also have extensive industrial applications. For example, 4,4-bis
(chloromethyl) biphenyl can be used for the synthesis of brightening agents. Especially,
polychlorinated biphenyls (PCBs) can be applied in print and dyeing extensively [6, 7].
On the other side, PCBs are dangerous organic pollutants, which lead to global pollution.

Many years ago, a series of physical properties were discussed [8—13].
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A perfect matching M (or Kekulé structure, 1-factor) of a graph G is a set of
independent edges such that every vertex of G is incident with exactly one edge in M.

Let G be a graph with edge set E(G) that admits a perfect matching M. A forcing set
of M is a subset S of M contained in no other perfect matchings of G. The minimum
possible cardinality of forcing set § is called the forcing number of M.

The notions of a forcing edge and the forcing number of a perfect matching first
appeared in 1991 in a paper of Harary, Klein and Zivkovi¢ [14]. The root of these
concepts can be traced to the works [15, 16] by Randi¢ and Klein in 1985-1987, where
the forcing number was introduced under the name of “innate degree of freedom” of a
Kekulé¢ structure, which plays an important role in the resonance theory in chemistry.

Over the past two decades, more and more mathematicians were attracted to the
study on forcing sets (including forcing edges and forcing faces, etc) and the forcing
numbers of perfect matchings of a graph. The scope of graphs in consideration has been
extended from polyhexes to various bipartite graphs and non-bipartite graphs.

Some varied topics such as global (or total) forcing matchings and anti-forcing
matching also emerged.

Klein and Randi¢ [15] proposed the degree of freedom of a graph from the global
point of view, defined as the sum of forcing numbers over all perfect matchings of a
graph, and showed by evidence that the degree of freedom of a chemical graph actually
measures graphical characteristics distinct from those measured by a couple of common
resonance energy estimators. Because of extensive industrial and medical applications,
one class of chemical graph-macrocyclic aromatic hydrocarbons called polyphenyls and
their derivatives attracted the attention of chemists for many years [3, 4, 5]. A series of
linear and branched polyphenyls and their derivatives were synthesized and some
physical properties were discussed [8—13].

Gutman [17] showed that the values which the Wiener indices of isometric
polyphenyls may assume are all congruent modulo 36. Bian and Zhang [18, 19]
determined the polyphenyl chain with minimum and maximum Wiener (or edge-Wiener)
indices among all the polyphenyl chains with » hexagons. Li and Bian [20] gave the
extremal polyphenyl chains concerning k-matchings and k-independent sets. In 2013, Ma
and Bian [21] also gave the extremal polyphenyl spiders concerning k-matchings and &-
independent sets. A complete forcing set of G, introduced by Xu et al. [2] recently, is a
subset of E(G) on which the restriction of any perfect matching is a forcing set of the
perfect matching. The minimum possible cardinality of complete forcing sets of G is the
complete forcing number of G, denote it by cf(G). Xu et al. gave an expression for the
complete forcing number of a hexagonal chain and a recurrence relation for complete
forcing number of cata-condensed hexagonal system. In 2014, Xu et al. [22] by the
constructive proof, gave an explicit analytical expression for the complete forcing
number of a primitive coronoid, a circular single chain consisting of congruent regular
hexagons.

Based on these works, in this paper, we give the explicit expressions for the
complete forcing number of several classes of polyphenyl systems.
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2. PRELIMINARIES

All graphs in this paper are simple connected and have perfect matchings. For all terms
and notations used but not defined here, we refer the reader to the textbooks [23, 24].

N

Figure 1. A tree-like polyphenyl system and corresponding tree.

A polyphenyl system H is said to be tree-like (see Figure 1), if each vertex of H
lies in a hexagon and the graph obtained by contracting every hexagon into a vertex in
original molecular graph is a tree.

A hexagon r of a tree-like polyphenyl system may have one, two, three, four, five
or six neighboring hexagons. If » has one neighboring hexagon, then it is said to be
terminal, and internal otherwise. Also it is branched if it has three or more neighboring
hexagons.

Definition 1. If every hexagon in a polyphenyl system has exactly two neighboring

hexagons, then it is called primitive coronoid polyphenyl system. The set of primitive
coronoid polyphenyl systems with » hexagons is denoted by CHx (see Figure 2).

Figure 2. A primitive coronoid polyphenyl system with 8 hexagons.
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Definition 2. A tree-like polyphenyl system without branched hexagons is called a
polyphenyl chain. A polyphenyl chain with n hexagons is denoted by Hx (see Figure 3).

Figure 3. A polyphenyl chain with 7 hexagons.

For a hexagon C, two vertices u and v of C are said to be in ortho—position if they
are adjacent in C. If two vertices are at distance 2, they are in meta—position. Finally, if u
and v are at distance 3, we say that they are in para—position. Examples of pairs of
vertices in ortho—, meta—, and para—position are shown in Figure 4.

u 1." l._l
v
S
Figure 4. Orhto—, meta—, and para—positions of vertices u and v in C.

An internal hexagon C in a polyphenyl chain is called ortho—hexagon,
meta—hexagon, or para—hexagon, if the two vertices of C incident with two edges which
connect other two hexagons are in ortho—, meta—, or para—position, respectively.

Following Lovész and Plummer [24], an edge of G is said to be allowed if it is
contained in some perfect matching of G and forbidden otherwise.

Theorem 1. Let H be a tree-like polyphenyl system with n hexagons. Then we have cf(H)
=2n.

Proof. Suppose that H is a tree-like polyphenyl system with n hexagons.

First we claim that every edge incident with the terminal hexagons is forbidden edge.
In fact, if an edge incident with a terminal hexagon C is allowed edge, then it lies in some
perfect matching M of H, hence, the number of the rest of vertices in C besides the vertex
incident with the allowed edge is odd, which contradicts that H has the perfect matching.
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We can delete all edges incident with terminal hexagons, and obtain the resulting
graph, which consists of a small tree-like polyphenyl system and some independent
hexagons.

Now we consider the small tree-like polyphneyl system, we also can show that every
edge incident with the terminal hexagons of the small polyphenyl system is forbidden
edge, then we delete all edges incident with terminal hexagons of the small tree-like
polyphenyl system again. By iterating the same proceed, until the resulting graph is an
independent hexagon. We can conclude that all edges between the two hexagons are
forbidden edges, and the edges lie in every hexagon are allowed edges of H. Moreover,
there are two perfect matchings in each hexagon, the union of perfect matching of each
hexagon will be a perfect matching of H, and the number of perfect matching of H is 2n.

By definition of complete forcing number, we take any two adjacent edges in every
hexagon, the set of these edges will be a complete forcing set of H. Then we have cf(H) =
2n. |

Since the polyphenyl chain can be viewed as a special tree-like polyphenyl system, as
a corollary of Theorem 1, we easily have the following result.

Corollary 2. Let Hn be any polyphenyl chain with n hexagons. Then we have cf(Hn)
=2n.

For a primitive coronoid polyphenyl system CH, the meta—hexagon in CH will affect
the number of perfect matchings of CH, according to whether CH has meta—hexagons or
not, we distinguish the following two cases.

Theorem 3. Let CHn be a primitive coronoid polyphenyl system with n hexagons such
that CHn has no meta—hexagons. Then we have cf(CH»n) = 2n + 1.

Proof. By the assumption, any hexagon C of CH, is either ortho—hexagon or
para—hexagon, so the two vertices of C incident with two edges which connect other two
hexagons are in ortho—position or para—position.

First, we claim that G has a perfect matching M consisting of edges connecting two
hexagons with the remainder two independent edges of every hexagon by deleting the
two ortho— (or para—) position vertices of C. Moreover, every hexagon has two perfect
matchings, the union of a perfect matching of every hexagon will be a perfect matching
of CHx. So the number of perfect matchings of CHnis 2n+ 1.

We can obtain a complete forcing set of CH» by taking any one edge connecting two
hexagons and two adjacent edges of every hexagon in CH». Hence, the complete forcing
number of CHris 2n + 1. u

Theorem 4. Let CH» be any primitive coronoid polyphenyl system with n hexagons such
that CHn has at least one meta—hexagon. Then we have cf(CH») = 2n.
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Proof. According to assumption, CH» has at least one meta—hexagon C. We claim that
none of the two edges incident with the two meta-position vertices of C is allowed edge.
In fact, if one of the two edges is allowed edge, then it must be matched by some perfect
matching M of CHx, in this case, the remainder vertices of C besides the vertex incident
with the allowed edge cannot be completely matched by M, which contradicts that M is a
perfect matching of CHn.

So, the vertices of every hexagon in CH» must be matched by themselves in M,
namely, any edge connecting two hexagons must be forbidden edge of CHx». The resulting
graph is the set of independent hexagons by deleting all the forbidden edges of CHx. It is
clear that the number of perfect matchings of CH» is 2n, and we can obtain the complete
forcing set of CH» by taking two adjacent edges of every hexagon of CHx». Hence, the
complete forcing number of CHx s 2n. ]

4. CONCLUDING REMARKS

In this section, we discuss the global forcing number of the polyphenyl system. For a
simple connected graph G with a perfect matching, let M(G) denote the set of all perfect
matchings in G, and /: M(G) — {0, 1}*9la characteristic function of perfect matchings
of G. Any set S € E(G) such that f]§ is an injection is called a global forcing set in G, and
the cardinality of smallest such § is called the global forcing number of G. Tomislav
Dosli¢ et al. showed that the global forcing number of graph G has lower bound
[log>]M(G)|] and upper bound |E(G)| — |V (G)| + 1. We can easily show that the lower
and upper bounds of the global forcing number for a tree-like polyphenyl system with »
hexagons (in particular a polyphenyl chain with » hexagons) and a primitive coronoid
polyphenyl system with n» hexagons which has no meta- hexagons are all tight. And the
global forcing number of a tree-like polyphenyl system with » hexagons (in particular a
polyphenyl chain with n hexagons) is n, the global forcing number of a primitive
coronoid polyphenyl system with » hexagons which has no meta—hexagons is n+1. For a
primitive coronoid polyphenyl system with n hexagons which has at least one
meta—hexagon, only the lower bound of the global forcing number for this primitive
coronoid polyphenyl system is tight, and the global forcing number of it is n. These
results are similar to that of the complete forcing number of the polyphenyl system.
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ABSTRACT A quantitative structure-activity relationship (QSAR) study was conducted
for the prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one
analogues as inhibitors of 5-Lipoxygenase. The inhibitory activities of the 1-phenyl[2H]-
tetrahydro-triazine-3-one analogues modeled as a function of molecular structures using
chemometrics methods such as multiple linear regression (MLR) and least squares
support vector machines (LS-SVM). The obtained models were applied to predict the
inhibitory activity of compounds which were not in the modeling procedure. The results
of models showed high prediction ability with root mean square error of prediction of
0.167 and 0.061 for MLR and LS-SVM, respectively. The LS-SVM method was used for
prediction of inhibitory activity of the new inhibitor derivatives.

KEYWORDS QSAR - 1-phenyl[2H]tetrahydro—triazine—3—oneanalogues * MLR ¢
LS-SVM.

1. INTRODUCTION

Lipoxygenases (LOs) are a class of widely occurring, non-heme iron-containing
oxygenases that can be isolated from animals, higher plants, and fungi. Currently, three
distinct mammalian LOs have been characterized, 5-LO, 12-LO, and 15-LO, which
oxygenate arachidonic acid at specific carbon centers (C5, C12, and C15, respectively)
[1].The 5-Lipoxygenase is the first dedicated enzyme in the biosynthetic pathway leading
to the leukotrienes. Since leukotrienes have been implicated as important mediators in
such diseases as asthma, psoriasis, ulcerative colitis, and rheumatoid arthritis, inhibition
of 5-Lipoxygenase offers a potential approach for the therapy of these diseases [2].

In the present study, the inhibitory activity data of 1-phenyl[2H]-tetrahydro-
triazine-3-one analogues as inhibitors of 5-Lipoxygenase were used to construct a
mathematical model with structural information, a so-called QSAR (quantitative
structure—activity relationship). Quantitative structure-activity relationships (QSAR) are
an important tool in agrochemistry, pharmaceutical chemistry, toxicology, and eventually
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most facts of chemistry [3, 4]. QSAR models are mathematical equations which relate
chemical structure of a compound to its physical, chemical, biological and technological
properties. The main goal of QSAR studies is to establish an empirical rule or function to
relate the structural descriptors of compounds under investigation to bioactivities. This
rule or function is then utilized to predict the same bioactivities of compounds which are
not involved in the training set from their structural descriptors. Model development in
QSAR studies comprises different critical steps as (1) descriptor generation, (2) data
splitting to calibration (or training) and prediction (or validation) sets, (3) variable
selection, (4) finding appropriate model between selected variables and activity and (5)
model validation [5].

Among the investigation of QSAR, one of the most important factors affecting the
quality of the model is the method to build the model. Many multivariate data analysis
methods such as multiple linear regression (MLR) [6, 7], artificial neural network (ANN)
[8] and partial least squares (PLS) [9] have been used in QSAR studies. MLR, as most
commonly used chemometrics method, has been extensively applied to QSAR
investigations. The artificial neural network (ANN) offers satisfactory accuracy in most
cases but tends to over fit the training data. The PLS method is based on factor analysis
that is originally suggested and chemically applied by Wold et al [10]. The support vector
machine (SVM) is a popular algorithm developed from the machine learning community.
Due to its advantages and remarkable generalization performance over other methods,
SVM has attracted attention and gained extensive applications [11, 12]. As a
simplification of traditional SVM, Suykens and Vandewalle [13, 14] have proposed the
use of least-squares SVM (LS-SVM). LS-SVM encompasses similar advantages as SVM,
but its additional advantage is that it requires solving a set of linear equations (linear
programming), which is much easier computationally [15, 16]. In this study, the MLR
and LS-SVM methods were proposed to model and predict the inhibitory activity of 1-
phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-Lipoxygenase.

2. THEORY

The LS-SVM [13] is capable of dealing with linear and nonlinear multivariate
calibration. In LS-SVM a linear estimation is made in kernel-induced feature space (y =
w'g(x) + b). As in SVM, it is necessary to minimize a cost function (C) containing a
penalized regression error, as follow:

C_lWTW+l ZN:ez Q)]
2" "Talas

such that:
y, =w'(x,)+b+e, (2)

forall i =1,..., N, where ¢ denotes the feature map.

The first part of this cost function is a weight decay which is used to regularize
weight sizes and penalize large weights. Due to this regularization, the weights converge
to similar value. Large weights deteriorate the generalization ability of the LS-SVM
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because they can cause excessive variance. The second part of Eq. (1) is the regression
error for all training data. The parameter y, which has to be optimized by the user, gives
the relative weight of this part as compared to the first part. The restriction supplied by
Eq. (2) gives the definition of the regression error. Eq. (1) and its restriction given by Eq.
(2), could be concluded to be a typical problem of convex optimization [14] which might
be solved by the Lagrange multipliers method, as follow:

1 5 N N

L= 47X el =S atw dx)+b+e -y} ®

i=1 i=1
where
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Obtaining the optimum, that is, carrying out J0L(w,b,e,,ct;)/ 0w, OL(w,b,e,,c;)/ 0D,
oL(w,b,e;,ct;)/ Ce;, OL(w,b,e;,a;)/Oct,and setting all partial first derivatives to zero,
generates the weights that are the linear combinations of the training data:

AP S0 05)=0 0= ) )
4% i=1 i=l
OL(w,b,e,a) < .
— = ;ye a=0 &)
and then
W= Zai¢(xi) = Zyei¢(xi) (6)

where a positive definite kernel is used as follows:

K(x,,x,)=¢(x,)" $(x,) (7)
An important result of this approach is that the weights (w) can be written as

linear combinations of the Lagrange multipliers with corresponding data training(x;).

Substituting the result of Eq. (6) into the original regression line (y = w’¢(x)+b), the
following result is obtained:

y= Zai¢(xi)r¢(X) +b= Zai<(¢(xi)r,¢(X)> +b @)
for a point y; to be evaluated it is:
¥ = 2 ed(x) ¢x) +b =D a (B (x))) +b ©)

The a vector follows from solving a set of linear equation:

2aE
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where M is a square matrix given by:

M=" y 7 (11)

Where K denotes the kernel matrix with ijzh element K = (x;,x,) = ¢(xl.)T¢(xj) and /

denotes the identity matrix NxN, 1, =[1 1 --- 1]". Hence, the solution is given by:

BRaA

As demonstrated in Egs. (11) and (12), all Lagrange multipliers (the support vectors) are
usually nonzero, which means that all training objects contribute to the solution. In
contrast, with standard SVM the LS-SVM solution is usually not sparse. However, as
described by Suykens and J. Vandewalle [13] a sparse solution can be easily achieved via
pruning or reduction techniques. Depending on the number of training data set either
direct solvers or iterative solvers such as conjugate gradients methods (for large data sets)
can be used in both cases with numerically reliable methods.

In applications involving nonlinear regression, it is enough to change the inner

product <¢(xi),¢(xj)> of Eq. (9) by a kernel function and the ijth element of matrix K
equals K :¢(xl.)T¢(xj).If this kernel function meets Mercer’s condition, the kernel
implicitly determines both a nonlinear mapping, x — ¢(x) and the corresponding inner
product ¢(xl.)T¢(xj). This leads to the following nonlinear regression function:
N
y=Y o,K(x;,x)+b (13)
i=1

for a point x, to be evaluated it is:

N
Y, zzaiK(xi,xj)+b (14)

The attainment of the kernel function is cumbersome and it will depend on each
case. However, the kernel function is more used as the radial basis function (RBF),

. . . . . d
exp( —(”x,- - X j||2)/ 20%), a simple Gaussian function, and polynomial functions <xl.,xj> ,

where &2 is the width of the Gaussian function and d is the polynomial degree, which
should be optimized by the user, to obtain the support vector. For o of the RBF kernel
and d of the polynomial kernel it is of significant importance to do a careful model
selection of the tuning parameters, in combination with the regularization constant y, in

order to achieve a good generalization model.

3. MATERIALS AND COMPUTATIONAL METHODS

3.1. HARDWARE AND SOFTWARE
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The computations were made with the ASUS Personal Computer (1 GB RAM) that was
equipped with the Windows 7 operating system and MATLAB (Version 9.0, Mathwork
Inc.). The LS-SVM optimization and model results were obtained using the LS-SVM lab
toolbox (Matlab/C Toolbox for Least-Squares Support Vector Machines). The MLR
analysis with a stepwise forward selection method was carried out by using the SPSS 21
software. Kennard-Stones program was written in MATLAB according to the algorithm
[17, 18]. ChemOffice package (Version 2010) was used to draw the molecular structure
and optimization by the AMI. Descriptors were calculated using Dragon software
(Milano Chemometrics and QSAR research group, http://www.disat.unimib.it/chm/).
These descriptors are calculated using two-dimensional representation of the molecules
and therefore geometry optimization is not essential for calculating these types of
descriptors.

3.2. DATA SET

The inhibitory activity values of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues were
taken from literature [2]. The chemical structures of 1-phenyl[2H]-tetrahydro-triazine-3-
one analogues (Figure 1) and their corresponding inhibitory activity values have been
listed in Table 1. In order to assure that training and prediction sets cover the total space
occupied by the original data set, it was divided into parts of training and prediction set
according to the Kennard-Stones algorithm [17, 18]. The Kennard-Stones algorithm is
known as one of the best ways of building training and prediction sets and it has been

used in many QSAR studies.
0
R, )‘k Ry
N N~

|
e L
5 P | "
X
Ry

Figure 1. Chemical structure of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues.

Table 1. Structures and observed inhibitory activity of 5-Lipoxygenase of
1-phenyl[2H]-tetrahydro-triazine-3-one analogues.

No Substitution log(1/I1Cs)
X R, Rs' R, R, Rs obs®
1 CH H H H H CH,OCH,Ph 6.00
2] CH H H H H Bu 5.82
3] CH H H H H i-Pr 5.17
4] CH H H H H Me(R) 5.17
5°| CH H H H H Me, 5.17
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6| CH H H H H Et 5.16
7°1 CH H H H H Me 4.94
8| CH H H H H CH,OC,H,OMe 4.85

9| CH H H H H Me(S) 4.85
10| CH H H H H CO,Me 4.70
11°| CH H H H H H 4.68
12| CH H | OCH,Ph H H H 5.96
13| CH H Br H H H 5.31
14| CH H Cl H H H 5.20
15| CH H Et H H H 4.89
16| CH H SMe H H H 4.85
17| CH H Me H H H 4.82
18] CH H CF; H H H 4.77
19 CH H F H H H 472
20 CH H CN H H H 4.43
21 CH H OMe H H H 433
22| CH H NO, H H H 431
23| CH H NH, H H H 3.75
24| CH H Br H H Me 5.59
25| CH H Cl H H Me 5.57
26| CH H F H H Me 5.20
27° | CH H Me H H Me 4.72
28| CH H H H C(=0)-i-Pr H 5.89
29| CH H H H C(=O)Et H 5.59
30| CH H H H C(=0)Me Me 5.48
31 CH H H H C(=0)Me H 5.47
32| CH H H H OCH,Ph Me 5.37
33| CH H H H OH Me 5.22
34| CH H H H OEt Me 5.13
35| CH H H H OCH,Ph H 5.08
36| CH H H C(=O)Et C(=O)Et H 4.90
37| CH H H H OMe Me 4.65
33| CH H H C(=0)Me C(=0)Me H 4.40
39 N Br H H H Me 5.62
40 N Br H H H H 5.46
41 N Cl H H H Me 5.46
42° N Me H H H Me 5.42
43 N Me H H H H 5.26
44 N OMe H H H Me 5.26
45 N Cl H H H H 5.25
46 N F H H H Me 5.18
47 N F H H H H 5.04
48 N OMe H H H H 5.02
49 N H H H H Me 4.66
50 N H H H H H 4.59
51 CH H Cl H C(=0)Me H 5.89
52| CH H Cl H OH Me 5.41
53| CH H F H OH Me 5.16
54| CH Me Me H OH H 5.08
55| CH F F H H H 5.05
56| CH Me Me H H H 4.92
57° N Cl H H H H 5.48
58° | CH H Cl H H H 5.35
59° ] CH H H H H H 4.77
60| CH Cl Me H H H 5.48

? Observed inhibitory activity .
® The compounds selected as the test set.
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3.3. MOLECULAR DESCRIPTORS

A major step in constructing QSAR model is generation of the corresponding numerical
descriptors of the molecular structures. Molecular descriptors define the molecular
structure and physicochemical properties of molecules by a single number. To calculate
the different kinds of theoretical descriptors for each molecule, the Dragon (Milano
Chemometrics and QSAR research group, http://www.disat.unimib.it/chm/) software was
utilized. The Dragon is able to calculate different molecular descriptors such as
constitutional, topological, molecular walk counts, BCUT, Galvez topol. Charge indices,
2D autocorrelations, charge, aromaticity indices, Randic molecular profiles, geometrical,
RDF, 3D-MoRSE, WHIM, GETAWAY, functional groups, atom-centered fragments,
properties and empirical. In this study, just GETAWAY (geometry, topology, and atom-
weights assembly) and WHIM (weighted holistic invariant molecular) descriptors were
used. Here, 293 descriptors were calculated by Dragon for each molecule, therefore we
have 60%293 data matrix X. The rows and columns of this matrix are the number of
molecules and molecular descriptors respectively.

4. RESULTS AND DISCUSSION

4.1. PRINCIPAL COMPONENT ANALYSIS OF THE DATA SET

Principal components analysis (PCA) was performed on the calculated structural
descriptors to the whole data set (Tablel), for investigation the distribution in the
chemical space, which shows the spatial location of samples to assist the separation of the
data into training and prediction sets. The PCA results show that three PCs (PC1, PC2
and PC3) describe 81.35% of the overall variances (Figure 2). Since almost all variables
can be accounted for the first three PCs, their score plot is a reliable presentation of the
spatial distribution of the points for the data set. As can be seen in Figure 2, there is not a
clear clustering between compounds. The data separation is very important in the
development of reliable and robust QSAR models. The quality of the prediction depends
on the data set used to develop the model. For regression analysis, data set was separated
into two groups, a training set (51 data) and a prediction set (9 data) according to
Kennard-Stones algorithm. As shown in Figure 2, the distribution of the compounds in
each subset seems to be relatively well-balanced over the space of the principal
components.

4.2. MLR ANALYSIS

The multivariate calibration is a powerful tool for modeling, because it extracts more
information from the data and allows building more robust models. Among the
descriptors calculated, the most significant molecular descriptors were identified using
multiple linear regression analysis with a stepwise forward selection method. According
to inhibitory activity data (Table 1), the data classified to training and prediction sets
according to Kennard-Stones algorithm and the MLR model was run.
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Figure 2. Principal components analysis of the descriptors for the data set,
(a) PC2 versus PCI1, (b) PC3 versus PC1 and (c) PC3 versus PC2.
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The best equation obtained for the inhibitory activity of 1-phenyl[2H]-tetrahydro-

triazine-3-one analogues derivatives was:

10g(1/1C50)

= 3.095-1.131R7e -38.269R6U—4.942R1u+ 4.897R2u-5.247P2u +
3.787TH2v + 18.425G3e-0.008 Vu

As seen, the resulting model has eight significant descriptors. Table 2 shows the
calculated descriptors for each molecule, the descriptors coefficients, the standard error
of coefficients, the t values for null hypothesis, and their related P values.

Table 2. Results of multiple linear regression analysis.

S.E." of
Notation Descriptors Coefficient ,O t value | P value
coefficient
Intercept - 3.095 2.358 1.312 0.197
R autocorrelation of lag 7 /
R7e weighted by Sanderson -1.131 0.282 -4.018 | 0.000
electronegativity
. | R maximal autocorrelation of
R6U : -38.269 8.865 -4.317 | 0.000
lag 6 / unweighted
Rig | Rauwtocorrelationoflag I/ o)) 0.747 | -6.613 | 0.000
unweighted
Roy | Rautocorrelationoflag2/ ), 0oy 0.794 | 6.169 | 0.000
unweighted
2nd component shape
P2u directional WHIM index / -5.247 1.147 -4.575 | 0.000
unweighted
H autocorrelation of lag 2 /
H2v weighted by van der Waals 3.787 0.455 8.330 0.000
volume
3rd component symmetry
irectional WHIM i
Gye | directional WHIM index /10 (s 1 5001 | 31165 | 0.003
weighted by Sanderson
electronegativity
Vu V' total size index / -0.008 0.003 | -2.209 | 0.033

unweighted

#Standard error.

4.3. LS—SVM ANALYSIS

LS-SVM was performed with radial basis function (RBF) as a kernel functions. In the
model development using LS-SVM and RBF kernel, y and o® parameters were a

manageable task. To determine the optimal parameters, a grid search was performed
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based on leave-one-out cross-validation on the original training set for all parameter
combinations of y and 6 from 0.1 to 10 and 1 to 100, respectively. In Table 3 is shown
the optimum y and ” parameters for the LS-SVM and RBF kernel, using the training sets
for 51 inhibitory activity data.

Table 3. Observation and calculation values of log(1/1Csp) using MLR and LS-SVM

models.
No. of ) MLR LS-SVM

compounds Observation

(Table 1) log(1/1Cs0) Predicted | Error (%) [Predicted [Error (%)
5 5.170 4.980 -3.675 5.081 -1.721
7 4.940 4.792 -2.996 4.856 -1.700
11 4.680 4.836 3.333 4.716 0.769
17 4.820 4.851 0.643 4.832 0.249
27 4.720 4916 4.152 4.771 1.080
42 5.420 5.189 -4.262 5.356 -1.181
57 5.480 5.327 -2.792 5.389 -1.660
58 5.350 5.227 -2.299 5.309 -0.766
59 4.770 4.966 4.109 4.746 -0.503

Y 0.500

o’ 10.000

RMSEP 0.167 0.061

RSEP (%) 3.315 1.212

4.4. MODEL VALIDATION AND PREDICTION OF INHIBITORY ACTIVITY

The predictive ability of these methods (MLR and LS-SVM) were investigated by
prediction of inhibitory of 9 molecules (their structures are given in Table 1). Validation
of predictive ability is another key step in QSAR studies. Several statistical parameters
have been used for the evaluation of the suitability of the developed QSAR models for
prediction of the property of the studied compounds this include the root mean square
error of prediction (RMSEP) and relative standard error of prediction (RSEP), validation
through an external prediction set.

2
i Wty preg ~ Visobs)
RMSEP:\/ = opred THOW (15)
n
n . —_— . 2
RSEP(%) =100 | =i=1 Yispred ~ Vicobs) (16)

2
2 (Vi obs)
where y, ., 18 the predicted of the inhibitory activity using different model, y, , is the

observed value of the inhibitory activity, and n is the number of compounds in the
prediction set. The statistical parameters obtained by these methods are listed in Table 3.
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Table 3 shows RMSEP, RSEP and the percentage error for prediction of inhibitory
activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues. As can be seen, the good
results were achieved in LS-SVM model with percentage error ranges from -1.721 to
1.080 for inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues. The
plots of the predicted inhibitory activity versus actual values are shown in Figure 3 for
each model (line equations and R* values are also shown). The correlation coefficients
(R?) for LS-SVM model were better than the MLR model. Also, it is possible to see that
LS-SVM presents excellent prediction abilities when compared with MLR model.

55 55

b

saq " 51

53 1 + 53
2 52 3 52+
v ©
= 5l = 5l
&1 by
= <
= I = 5
5 8
219 2 49
2 2
48 218

17 ] y=0.5308x +2.3346 7| YO

R2=1(.7794 i
46 T T T T 46 T T T T
46 48 5 52 54 5.6 46 48 5 52 54 5.6
Experimental log(1/1C50) Experimental log(1/1C50)

Figure 3. Plots of predicted versus actual log(1/ICs), (a) MLR and (b) LS-SVM.

4.5. MOLECULAR DESIGN

As an application of proposed method, we investigated LS-SVM model to predict the
inhibitory activity of four new 1-phenyl[2H]-tetrahydro-triazine-3-one analogues whose
biological tests were not performed with them yet. Table 4 shows the chemical structure
of four new compounds and their inhibitory activity calculated by this proposed method.

Table 4. New structures of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues and
predicted log(1/1Csg) by LS-SVM.

Nu;nfber Substitution IOg(l/KiSO)
Design X Rs' Rs' R, R4 Rs Cale.

1 N H Me H H Me 4.617

5 N F H H H Br 6.138

3 |CH| B | H | H | H Cl 5.856

5 CH| H | OH| H Cl H 5.149

* Calculated by LS-SVM model.
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5. CONCLUSION

Using LS-SVM, a QSAR model has been successfully developed for the prediction of
inhibitory activity for 60 compounds. The results well illustrate the power of descriptors
in prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues.
The model could predict the inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one
analogues derivatives not existed in the modeling procedure accurately. The work, shows
that descriptors are capable to recognize the physicochemical information and be can
useful to predict the inhibitory activity of the new compounds.
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ABSTRACT The Harary index H can be viewed as a molecular structure descriptor
composed of increments representing interactions between pairs of atoms, such that their
magnitude decreases with the increasing distance between the respective two atoms. A
generalization of the Harary index, denoted by H;, is achieved by employing the Steiner-
type distance between k-tuples of atoms. We show that the linear combination H + AH; is
significantly better correlated with a variety of physico-chemical properties of alkanes than
H itself.

KEYWORDS Harary index * multicenter Harary index * Steiner distance * molecular
graph.

1. INTRODUCTION

Let G be a molecular graph [1] and v,,v,,...,v, Dbe its vertices. The distance [1,2]
between the vertices v, and v, denoted by d(vi,vj), is the number of edges in (= the
length of) a shortest path that connects v, and v,. The oldest distance-based molecular

structure descriptor is the Wiener index, defined as [3,4]

W:W(G):;d(vi,vj). (1)
Although this topological index found numerous chemical applications, a general
objection to it is that pairs of vertices at the greatest distance have the greatest
contributions to the numerical value of W. Bearing in mind that vertices of a molecular
graph represent atoms [1], this property of the Wiener index seemingly contradicts the
fact that the interaction between near-lying atoms are greatest. Several attempts were
made to eliminate this difficulty [5-7], but the simplest and more efficient solution was
achieved by modifying Eq. (1) as

H:H(G):Zﬁ. )
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Formula (2) was independently conceived by Ivanciuc at al. [8] and Plavsi¢ et al.
[9]. The molecular structure descriptor H was named “Harary index” (in honor of Frank
Harary [10]). Eventually, this index attracted much attention; see the surveys [11,12], the
recent book [13], and the recent papers [14—16].

Same as the Wiener index, Eq. (1), the Harary index H, Eq. (2), may also be
viewed as a sum of structural increments representing pairs of atoms, i.e., two-center
interatomic interactions. Following an idea outlined in a recent paper [17], one could
think of three-center, four-center, etc. interactions that would lead to the following
evident multicenter extension of the Harary-index concept:

H=H,(G)= Y —— 3)

i<j<k d(Van’Vk)

H=H@G)=Y —

i<j<k<l d(vj’vj’vk avl)

and in the general case,

1
H =H(G)= Y, pER—

In the above formulas, for the multiple-vertex distances we take the standard Steiner
distance (introduced in graph theory as early as in the 1980s [18]). For details on the
Steiner distance see the recent paper [17] or in appropriate monographs [19-21].

In nutshell: ~ The Steiner distance d(v,,v,,...,v,)of k distinct vertices
V>V, ...,V of a graph G, is the number of edges of a connected subgraph of G, with
smallest number of edges, containing all the vertices VisVyseensVy -

The multicenter Harary indices, based on Steiner distances of k-tuples of vertices,
will be denoted as Hy . For reasons explained in the subsequent section, in what follows
we shall be concerned only with the three-center Harary index Hs.

2. AN AUXILIARY LEMMA

In the general case, the calculation of the Steiner distance d(v,,v, ,...,v, ) of a k-tuple of
vertices of a molecular graph is a difficult and computation-extensive task. In the case

k =3, this calculation is significantly simplified by means of the following Lemma:

Lemma 1. Let G be a (connected) graph and x, y, zits three distinct vertices. Then the

Steiner distance of x, y,z is related to the ordinary distance of these vertices as:
1
d(x,y,z)ZE[d(x,y)+d(x,z)+d(y,z)]. 4)

Proof. Any connected subgraph of G with the smallest number of edges is necessarily a
tree (i.e., it is acyclic). We have to distinguish between two cases: when the three vertices
x, y,z are not collinear and when these are collinear, see Figure 1.



Three—Center Harary Index and its Applications 63

X

y4 X @—oo0-0009-00009/

1 2

Figure 1. Two different arrangements of the vertices x,y,z in a
molecular graph; for details see the proof of Lemma 1.

Case 1: x, y,zare not collinear. Then, using the notation specified in Fig. 1,
d(x,y,z)=d(x,w)+d(y,w)+d(z,w). &)

On the other hand,

d(x,y)=d(x,w)+d(y,w)

d(x,z)=d(x,w)+d(z,w)

d(y,z)=d(y,w)+d(z,w)
which yields d(x,y)+d(x,z)+d(y,z)=2 [d(x, w)+d(y,w)+d(z, w)] . Then Eq. (4)
follows by bearing in mind (5).

Case 2: x, y,zare collinear. Then, using the notation specified in Fig. 1,
d(x,y,z)=d(x,z). (6)
Then we have
d(x,z)= %[d(x, z)+d(x, z)] = %[d(x, v+d(y,z)+d(x, z)]

and Eq. (4) directly follows from (6).
This completes the proof of Lemma 1.

By means of Lemma 1, the calculation of the three-center Harary index, Eq. (3),
becomes quite easy and is of equal (low) complexity as the calculation of the respective
Wiener index. Unfortunately, results analogous to Lemma 1 could not be established for
k>4.

3. NUMERICAL WORK

We first present two results that look rather discouraging. In Figure 2 is shown the
correlation between the Harary and three-center Harary indices in the case of isomeric
octanes. In Figure 3a is shown the correlation between Harary index and standard

enthalpy of formation (AH ) of the same set of octanes [22]. In Figure 3b is displayed

the analogous plot for the three-center Harary index. In view of the very good linear
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correlation between H and H; (cf. Figure 2), there is no statistical difference between the
two correlations shown in Figure 3, and both are disappointingly weak.

[
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Figure 2. Correlation between the three-center Harary index H3 , Eq. (3), and
the ordinary Harary index H, Eq. (2) for the set of isomeric octanes (18 data
points); the correlation coefficient is R =0.9980 .
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Figure 3. (a) Correlation between the standard enthalpy of formation (AH )

of isomeric octanes [22] and the ordinary Harary index H ; R =-0.576.
(b) Analogous correlation with the three-center Harary index H; ; R =
—0.528.

A remarkable improvement is obtained by means of the linear combination of the
two Harary indices, namely H +AH,, shown in Figure 4, where the optimized value

A =-0.443 is used for the parameter A .
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Figure 4. Correlation between the standard enthalpy of formation (AH7) of

isomeric octanes [22] and the linear combination H +AH, of the two Harary

indices. The best results are obtained for A =-0.433in which case the
correlation coefficient increases to R = 0.928.

Analogous improvements have been found also in the case of a number of other
physico-chemical properties of octanes. The respective statistical data are collected in
Table 1.

Property | R(H) | R(H,) | RIH+AH) | 2
AH | 0576 | -0.542 0.928 | -0.433
s | —0.929 | -0.914 0.954 [ -0.356
AH, | —0.779 | -0.745 0.928 | -0.414
BP | -0.573 [-0.533 0.831 | -0.429
CT | —0.111 |-0.063 0.756 | —-0.451
cP 0.505 | 0.540 0.754 | -0.483
logP | —0.184 [-0.192 0223 [-0.503

Table 1. Correlation coefficients for the correlation between physico-chemical
properties of octane isomes [22] and Harary index ( R(H) ), three-center Harary

index (R(H,)), and the linear combination thereof (R(H +AH,)); AH; =
standard enthalpy of formation, S’= standard entropy, AH, = enthalpy of

evaporation, BP = boiling point at atmospheric pressure, CT = critical
temperature, CP = critical pressure, log P = logarithm of octanol/water partition
coefficient; in the last column is the optimized value of the parameter A for
which R(H +AH,) is maximal.



66 FURTULA, GUTMAN AND KATANIC

4. DISCUSSION AND CONCLUDING REMARKS

If the topological indices H and H; were exactly linearly correlated, then their linear
combination would not result in any improvement. From the data shown in Table 1 we
see that in some cases significant improvements are obtained, which may be viewed as a
kind of (convenient) surprise. This especially is the case for formation enthalpy, critical
temperature, and critical pressure. Remarkably, whereas the indices H and H; are
completely uncorrelated with critical temperature, i.e., R(H{)~ R(H,)=0, their linear

combination results in a moderately good correlation, R(H +AH;)>0.75.

In all cases, the linear combination of H and H; improves the quality of the
correlations. However, in some cases, the gain is minor and insignificant. This
(necessarily) happens for properties that are well correlated with H and Hs (e.g., entropy),
but also when the initial correlations are weak (e.g. partition coefficient).

A noteworthy fact is that the optimized value of the parameter A is nearly equal
for all physico-chemical properties examined, and is always negative-valued.

The Harary index is constructed so as to take into account (in a rather rough
manner) interactions between pairs of atoms. In the case of usually employed molecular
graphs, these are pairs of carbon atoms. At the first glance, by means of the three-center
version of the Harary index, some more subtle interatomic interactions might be also
taken into account. However, the fact that the parameter A is relatively large and always
negative, indicates that the ordinary Harary index seems to overestimate the interactions
between pairs of atoms. Thus, the principal role of H; would be to provide a
compensation for the intrinsic error of the Harary index. As we could see, this
compensation is often very efficient.

From a practitioner's point of view, neither the original Harary index, nor its
version improved by the three-center index, are sufficient to accurately reproduce a
physico-chemical (or any other) property of the considered organic compounds. This is
clearly seen by inspecting Figures 2 and 3. This apparent deficiency of graph-based
structure descriptors is nowadays well understood and individual descriptors are
nowadays hardly ever used for modeling properties of organic molecules. The successful
strategy 1s to simultaneously use several such descriptors and construct QSPR/QSAR
models [4,23-25]. The interested reader is referred to the recent survey [25] in which the
design of several commercially interesting pharmacologically active substances
(including those with anti-cancer activity) is described.

The present studies indicate that the efficiency of QSPR/QSAR models would be
much improved if instead of the Harary index, its combination with three-center Harary
index would be utilized.
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ABSTRACT Integrally skinned asymmetric membranes based on nanocomposite
polyethersulfone were prepared by the phase separation process using the supercritical CO,
as a nonsolvent for the polymer solution. In present study, the effects of temperature and
nanoparticle on selectivity performance and permeability of gases has been investigated. It
is shown that the presence of silica nanoparticles not only disrupts the original polymer
chain packing but also alters the chemical affinities of penetrants in polyethersulfone
matrices. Because, in the presence of hydrophilic silica, CO, affinity filler, hydrogen-bond
interactions between the oxygen atoms of carbon dioxide and the hydrogen atoms of
hydroxyl group on the nanosilica surface would take place at the interface and thus
solubility and consequently permeability towards CO, are higher in comparison with CH,
for the membranes. Furthermore, in present study, a novel mathematical approach has been
proposed to develop a model for permeation flux and selectivity performance of the
membrane using Support Vector Machine.

SVM is employed to develop model to estimate process output variables of a
nanocomposite membrane including permeation flux and selectivity performance. Model
development that consists of training, optimization and test was performed using randomly
selected 80%, 10%, and 10% of available data respectively. Test results from the SVM
based model showed to be in better agreement with operating experimental data compared
to other developed mathematical model. The minimum calculated squared correlation
coefficient for estimated process variables is 0.99. Based on the results of this case study
SVM proved that it can be a reliable accurate estimation method.

KEYWORDS Nanocomposite material * polyerthersulfone membrane -« silica
nanoparticles ¢ Support Vector Machine (SVM).

1. INTRODUCTION

Support Vector Machine introduced first by Vapnik, is a supervised learning method with
associated learning algorithm that analyzes data and recognizes patterns of input/output
data. In recent years, ANN has been demonstrated to be a substitute for deterministic
modeling and estimation methods with good potentials to be explored.

SVM is based on the structural risk minimization principle from computational
learning theory. It is one of the most sophisticated non-parametric supervised classifiers
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available today, with many different configurations depending on kernel function used to
generate transform function that maps input space into output space. Commonly, several
functions including linear, polynomial, Radial Basis Function (RBF) and multilayer
perceptron are used as the kernel function in SVM. By the use of kernels necessary
computations are performed directly in the input space .Although, it is mostly considered
as a linear algorithm in a high dimensional feature space, it does not necessitate the
practical input/output mapping problem to be a high dimensional space problem. A brief
discussion on mathematical basis of SVM is presented here that helps understanding the
way SVM works and the features that render it superiority over other learning algorithms.

2. MATHEMATICAL MODEL

Pattern recognition or classification can be performed by SVM in a data set consisting of
N data point {x), yx} k = 1,2, ..., N where x; is a p-dimensional vector and y, can take
one of the two values, either +1 or -1 (i.e., ye{+1, —1} indicating the class to which the
point x;, belongs. In their basic form, they learn a linear hyperplane that separates a set of
positive samples from a set of negative samples with maximum margin. Consider Figure
1 which shows two possible separating hyperplanes and their associated margins. Both
hyperplanes can correctly classify all the given data. However, we expect the hyperplane
with the larger margin to be more accurate in classifying new data than the hyperplane
with the smaller margin. This is the reason that SVM searches for the hyperplane with the
largest margin.
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Figure 1. Support Vector Machine Classifier.

A separating hyperplane can be written as w.x —b = 0 [1, 2], where wis the
normal vector to the hyperplane and b represents the offset of the hyperplane from origin
that is referred to as bias. The offset along the vector w from the origin can be determined

by b/ lw]|" As shown in Figure 2, for the cases that the training data are linearly
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separable, two hyperplanes can separate the data in a way that there are no data points
between them. Obviously these hyperplanes can be described as:

w.x—b=1 (2)
w.x—b=-1 (3)

Figure 2. Hyperplane Definition.

By using geometry, one can show that distance between these two hyperplanes is
2/ l|w]|> ° the problem of ||w|| minimization is required to maximize hyperplane margin.

It 1s also required to prevent data points from falling into the margin, and other necessary
constraints are imposed as:

w.xg—b>1 For x;, of the first class 4)

w.x—b<-1 For x;, of the second class 5)

That can be rewritten as:

yiw.x, —b) =1 Forall 1 <k <N (6)

Constraint minimization of ||w|| is thus required to develop an ideal classifier.
Such minimization problem is difficult to solve, however it is possible to substitute 0.5
|lw||? instead of ||w|| in problem. It was shown that, minimization problem can be
formulated as:

w,b az0 -

i=1

min max{%“w”z — Z a; (v;(wx —b) — 1)} (7)

where ¢, i1s Lagrangian multiplier that helps in finding the local minimum or maximum

of a function. The problem of Eq. 7 can be solved by standard quadratic
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programming techniques that results in finding normal vector to the hyperplane as

presented in Eq. 8:
n
w = Z a; YiX; (8)
k=1

Input/output support vector machine model with the general form ofy = f(x)
takes the form of Eq.9 in feature space:

N
) =) ai Ko x) +b ©
k=1
where f(x) represents output vector and K(x, x;) is the kernel function calculated from
the inner product of the two vectors x and x; in the feasible region built by the inner
product of the vectors ®(x) and D(x;) as follows:

K (x, x,)=®(x) 7. D(x) (10)
Among choices for Kernel function the Radial Basis Function (RBF) Kernel that

is used extensively has been applied in this work that is presented in Eq. 11,

K(x, x;)= exp(m) (11)
where o is kernel parameter to be determined by an external optimization algorithm
during the internal SVM calculations. Bias, b, is usually determined by using primal
constraints as:

b= _G) [max; y,=— 1 (ZTesry vias K (e, )] + ming g -1y (ZTegevy viai K (%3, %)) (12)

Lagrangian multipliers, a;, can be calculated by solving following quadratic
programming problem:

(D(a) Zl 14 — ZU 14 a]yly]K(xux]) (13)
Subject to constraints 0<a;<y, i = 1,..., N, where y is regularization parameter and
controls the tradeoff between complexity of the support vector machine model and the
number of non-separable points. This compact formulation of quadratic optimization has
been proved to have a unique solution. In conclusion, the SVM takes the form of the
constrained optimization problem of Eq. 14 in order to obtain the optimum value of'y

minw,ﬁ,gg*—||w||2+]/2 1(51'51) (14)
Subject to
yi—wlx;—b<e+§ t=1,..,N
ow'x;+b—y; <e+é& t=1..N
§>0 t=1,..,N
§>0 t=1,..,N

where g is the precision threshold and &;,&;" represent the slack variables with
nonnegative values to ensure feasible constraints. The first term in Eq. 14 represents
model complexity while the second term represents the model accuracy or error
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tolerance. The Mean Square Error (MSE) and Mean Absolute Error (MAE) as defined by
Eqgs. 15 and 16 are used to calculate prediction error of the developed SVM model.

n T2
MSE = Zl=1(+m (15)
1
MAE =~31, 0, = Ti| (16)
where O; is the simulation results of SVM model, T; represents real time plant data of the

natural gas sweetening plant and n denotes the number of the data used for model
evaluation.

3. RESULTS AND DISCUSSION

The Figurs 3, 4 show the effect of nanoparticle on the CO, permeation of an integrally
skinned asymmetric polyethersulfone membrane formed at T=45°C, P=100 bar,
DMAC/PES mass ratio of 2.5 and the depressurization rate of 1.83 bar/min. The
incorporation of silica nanoparticle in the membranes results in further increase in
permeability towards CO, compared to CHy4 and thus increases the membrane selectivity.
It is believed that the presence of silica nanoparticles not only disrupts the original
polymer chain packing but also alters the chemical affinities of penetrants in
polyethersulfone matrices. Because, in the presence of hydrophilic silica, CO, affinity
filler, hydrogen-bond interactions between the oxygen atoms of carbon dioxide and the
hydrogen atoms of hydroxyl group on the nanosilica surface would take place at the
interface and thus solubility and consequently permeability towards CO, are higher in
comparison with CH, for the membranes.
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Figure 3. Effect of silica nanoparticle on the CO, permeation of the
integrally skinned polyethersulfone membrane.
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Figure 4. Effect of silica nanoparticle on membrane selectivity of the
integrally skinned polyethersulfone membrane.

The operating plant data collected over the span of one year is used in this case
study. The data has been normalized between -1 and +1 to prevent truncation error due to
wide ranges of numerical values for input/output variables to be included in the SVM
model. Since the model development is based on normalizing data, it is necessary to map
input data to normalized space accordingly. Normalized model output should also be
mapped into the space of real values for output variable to be compared to operating plant
data. To develop input/output model the calculation procedure of section 3 that is
programmed in Matlab environment is executed on an Intel dualcore2.40 GHz processor
accompanied by 4G RAM that it took around 12 hours to get convergence. Convergence
indicates that optimum model is achieved; however, it does not guarantee accuracy of
model predictions. To ensure model reliability the input variables of test data subset are
entered to the developed model and model predictions are validated against experimental
data and are also compared with ANN model prediction where available. The ANN based
model is of feed-forward back propagation type and was developed using the same
training data that is used in this research work.

4. CONCLUSION

The effects of experimental operating conditions such as the temperature and the
presence of silica nanoparticles in the structure of dense nanocomposite layers were
investigated. It was found that, it is possible to induce a very-controlled asymmetry in a
dense film and pore sizes by changing the temperature and pressure. Also, presence of
silica nanoparticle proved to increase the permeability of CO, and thus the membrane
selectivity. Also this study demonstrates the applicability of SVM to develop accurate
input/output model of the operational variables of ananocomposite membrane. The kernel
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parameters for developed model are determined and model predictions are compared with
those obtained from another mathematical model. Beside the general advantages that are
cited for SVM over ANN as an input/output modeling tool, the predicted data in this
study showed better performance of support vector machine over artificial neural
networks in terms of accuracy. The numerical values of AAD% calculated showed a
minimum 12% improvement gained by SVM over ANN that is of great importance if the
predicted data are to be used for monitoring and/or control purposes. This study reveals
some the application potentials of SVM as a modeling tool in oil and gas industries that
requires much more attention to be fully understood.
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ABSTRACT: In this article using the inverse Laplace transform, we show analytical solutions
for the generalized mass transfers with (and without) a chemical reaction. These transfers have
been expressed as the Couette flow with the fractional derivative of the Caputo sense. Also,
using the Hankel contour for the Bromwich's integral, the solutions are given in terms of the
generalized Airy functions.

Keywords: Lévéque Problem, Laplace transform, Generalized Airy functions, Fractional
derivative.

1. INTRODUCTION

The mass transfer operations play a critical role in chemistry and other related science
especially in chemical engineering. These operations are closely connected with the
analogous problems of the convective heat transfer from non-isothermal surfaces. When a
system contains more than one component whose concentration varies from one location to
another, there is a natural propensity for mass to be transferred. There are many transfer
operations in the literature such as solid dissolving in a liquid, gas absorption in a liquid
and etc. which provides wide class of researches in chemical and energy sciences. For
example in [7], analytical solutions and asymptotic expressions are proposed for
homogenous and heterogeneous chemical reactions. Elperin et al. [11] have been solved the
problem of mass transfer with a heterogeneous chemical reaction of the first order in
boundary layer flows on non-newtonian power-low fluids.

Luchko and Punzi presented physical behavior behind the anomalous processes
described by the continuous time random walk (CTRW) model and discussed on its
feasibility for modeling of heat transform processes heterogeneous media [13]. Also, they
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deduce a macroscopic model in form of a generalized fractional diffusion equation from the
CTRW model on the microscopic level. Oldham demonstrated that that the electric current
is linearly related to the temporal semiderivative of the concentrations at the electrode of
the species involved in the electrochemical reaction [14].

The problem of mass transfer with (without) an irreversible chemical reaction in
different flows has been discussed in the literature and has been mostly presented in the
Newtonian and non-Newtonian liquids, or in the case of permeable surfaces. This problem
can be formulated in the following form [7], [9, 10], [11]

2
bra = p9™ k. D>0.a.b.k <R, (1-1)
Ox 8y2
u(oay) = O,U(X,O) = Uy, (1—2)
lim u(x,y) <oo. (1-3)

y—>®
A short treatise of the above equation with different situations may be considered as [7]:
*Incase a=0 and b #0, it is known as the uniform (plug) flow.
*Incase a#0 and =0, it is known as the Couette flow.
*Incase a#0 and b#0, it is known as the Couette flow with moving interface.

For the above three cases, if we set k=0, then this mass transfer is interpreted
without a chemical reaction and for k=0, it is considered as a homogenous chemical
reaction. For solving this problem, the Laplace integral transform method has been
proposed which leads to the analytical solutions with the closed form and corresponding

asymptotic expressions. For these solutions, the Airy function of the first kind [19]
3

Ai(y) = % j:’ cos(yr+%)dr, (1-4)

plays an important role for determining the structures and forms of them. This function is
appeared in the inverse Laplace transform of the Bromwich's integral on the Hankel
contour, see Figure 1 and references [7],[18].

As generalization of the problem (1-1), in this paper, first we consider the
following partial differential equation with the higher order derivatives

2n
(b+ay)@ =D, U, D,=(-1Y""abkeR ne-, (1-5)
U(O, y) = O,U(X,O) =Up, (1—6)
lim u(x,y) <o, (1-7)

y—®
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s—plane

e

Figure 1. The Hankel Contour.

and show that the solution of this problem is writhen in terms of the generalized Airy
function [1]

2n+l1
rn

1 =
A (9)=— [ cos(yr+ -

) dr. (1-8)
n+l

In second step, we modify the solution of problem (1-5) with respect to the
fractional derivative in the Caputo sense [17]
D20 = [ SO (s, n-1<a<n, (1-9)
Fn—a)
for the following problem
o*"u

aZn

v
To express our motivation, in Section 2 we survey the preliminaries properties of the

(b+ay)Diu=D —ku,0<a<1. (1-10)

generalized Airy functions (1-8) and in next sections we solve the problems (1-5) and
(1-10) in different cases of parameters a,b,k using the Laplace transform. The solutions
are obtained with respect to the Bromwich's integral on the Hankel contour in terms of the
generalized Airy functions.
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Table 1. Positive zeros of A, , (x) function for n=1,2,3,4.

n=1 A4,(x) -

n=2 A (x) Ay =2.754254

n=>3 A4,(x) Ay, =2.65450,4,, = 5.35923

n=4 Ay (x) Ay =2.65927,4,, =5.33275,4,; =7.97432

2. THE GENERALIZED AIRY FUNCTIONS

The generalized Airy function (1-8) is the solution of ordinary differential equation of
order 2n

(_1)n+1y(2n) -xy=0, xeP. (2-1)

This solution can be obtained using the Laplace integral method
y(x)= ~"Ce"zv(z)dz, (2-2)

as

y(x) = ~"Cexz_mdz, (2-3)

where contour C is chosen such that the function v(z) must vanish at boundaries. After
deformation and normalization of integral (2-3), we rewrite the y asthe A,  (x) function

as follows

2n+l
_ 1 0 ixz+1’z2nﬁ
A0 =~ [Ce dz,  (2-4)

—00

2n+l

1 o
= ;L cos(xz + 5 )dz, (2-5)

n+l
with value [1]

1 T
F(Zn +1)COS(2(2n +1))

2n

(2n+1)21
Figure 2 shows the behavior of the 4, ., (x) function for n=1,2,3,4 which is

A, (0)= (2-6)

similar to the Airy function. It is obvious that the A, . (x) function has infinite negative

roots on the negative semiaxes and n—1 positive roots on positive semiaxes, see Table 1
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for some positive roots of the A,  (x) function. Also, for more applications and

contributions of this function in partial fractional differential equations especially higher
order heat equation

n

gu(x,t) = u(x,t), u(x,0)=uy(x), 2-7)

Ot ox"

see [2-5], [6], [12] [15, 16].

Figure 2. The generalized Airy functions for n=1,2,3,4
3. THE GENERALIZED MASS TRANSFER IN COUETTE FLOW

In this section we start with a theorem for the inverse Laplace transform of multi-valued
function F(s). We assume that the point s =0 is a branch point and F has no poles, then

the inverse Laplace transform of F(s), can be computed by means of the integral of a real-

valued function.

Theorem 3.1 (Titchmarsh theorem [8]) Let F(s) be an analytic function which has a
branch cut on the real negative semiaxis, furthermore F(s) has the following properties
F(s)=0(), |s|> o,

F(s)= OELJ, |s|—0,
K
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for any sector |arg(s)|<m—n where 0<n <x. Then the inverse Laplace transform of
F(s), can be written as the Laplace transform of the imaginary part of the function

F(re™™)
-1 1 . 4 i0N _i0+xee'? 1 © e~ —in
f(x)=L"{F(s);x} =—lim j eF (e )e " do — — j e I(F (re™™))dr. (3-1)
2T s0 J-m 7 Y0

3.1 THE COUETTE FLOW WITHOUT CHEMICAL REACTION: THE GENERALIZED LEVEQUE PROBLEM

Problem 3.2 We consider a mass transfer without chemical reaction which is known as the
Leévéque problem in the literature [7]. In this case we generalize and reformulate it with

equation (1-5) as

2n
a—”ana—Z”, neN, (3-2)
ox oy~
u(oay) = O,U(X,O) = Uy, (3_3)
lim u(x, y) < . (3-4)
y—r0

For solving this problem, we apply the Laplace transform on both sided of equation (3—2)
with respect to x

(s,») = | e ulx, y)dx, (3-5)
and use the boundary condition to derive the relation
2nr~
D, a_;: — syii =0. (3-6)
oy

In view of the finiteness of solution and 27 linear independent solutions of the above

differential equation, we get the solution with respect to the A,  (x) function in the

2n+l

following form
1

U(s,y)=C($)A (s> y). (3-7)
Applying other boundary condition, we obtain the unknown coefficient C(s), that is
1
~ U, S
u(s,y)=——=—A,, . (s>"y). 3-8
(s,7) A, .(0) 2nn1 ( ») (3-8)
The inverse of (3—8) is obtained by considering the Bromwich's integral
1
B u, ctioo | P -
u(x,y)=—— —A,, (s*y)e"ds, 3-9
(x,7) MAM(O)L_@S (7709 (3-9)

which has a branch point at the origin. By using the suitable change of the Bromwich
contour of integration (Figure 1) and applying the Titchmarsh Theorem 3.1, we get the
solution as
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1

u(x, ) =ty — e IA L (F e ) dr. (3-10)

u, J*wl
A 5,1 (0) 0 1
For simplification of the above solution for » =1 in terms of the Bessel functions,

first consider the following identity in terms of the modified Bessel functions [7]
Jx
3
and use the Theorem 3.1 to obtain the solution in terms of the imaginary parts of Airy

Ai(x) = (1_1(§x2)—11(§x2)),

function as follows

1

1
L
u03ér(§) % 1 L s L3
jo—se-”‘ya/1 (grzyz)dr. (3-11)
6 3

u(x,y) = u, T

Also, the solution of equation (3-2), can be generalized by replacing the term g_u by
X

“D%u as the Caputo fractional derivative. In the sense, by using the fact [17]

A D%u(x,y);s} =s"Uu(s,y)—s“u0,y), 0<a<l, (3-12)
and applying the similar procedure for solving the new problem, we obtain the solution
(3—10) in the following form

Uy
A 5,1 (0)
Problem 3.3 We consider other type of the generalized Lévéque problem as

o | e T
u(x, y) =ty - [[=emSiA,, (e 2 y)dr. (3-13)

0 p

ou 0*"u
(1+y)=—=D,=—5, neN, (3-14)
ox oy™"
u(0,y) =0,u(x,0) = u,, (3-15)
lim u(x, y) < oo (3-16)
yo®©

In similar procedure to the previous problem, after applying the Laplace transform we get
1
~ u
(5,9) = A, (57 (14 1), (3-17)
SA il (S 2n+1 )

which its inverse is obtained by the following Bromwich's integral
1

A, (s*y)e™ds. (3-18)

u c+io0 1
u(,y)=—-| ————
27 Je-i® —
SA - (S2n+l )
The integrand of the Bromwich's integral has the branch point at the origin and infinite

number of poles s, as
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1

A 2n+1 (S_/?VH—] ) =A 2n+1 (ﬂ“n/) =0, J= 1,2, (3_19)
function. It is evident that the all poles s, = /”Lijf’” are

where 1, are the zeros of the A, ,

outside the contour of integration except n—1 positive roots of them. Some of these
positive zeros has been shown in Table 1. Therefore, for obtaining the residues at the
simple poles s, j=1,---,n—1, we have
n=l 1 U
I = Z:Res{—lAzn+1 (s2m1y)e™;s, = /lf”f'“}
T s

i 2n+1 2nely
DY e .()l JA ()™ (3-20)
=l it 2n+l ni

According to the above value and Titchmarsh theorem, we finally get the solution of
Problem 2 as

R Y
=1
u 001 _ A r2n+le 2n+l
() = (1 1y =0 [ L gm0 700)
T A, . (re l2n+1)
n+

Also, in the case of the fractional derivative model of problem with respect to x, we get the

vdr. (3-21)

solution of problem in the following form
- (rme onil )

u(x, )= (1 1 g 20 [ Lo br, (3-22)
T r

A - (7' 2n+le 2n+1 )

where

2n+l1

|
2 2n+) s

I = E —A A y)emr . 3-23

" i=1 aﬂ’niA 2n+l'(ﬂ’ni) 2"+1( "ly) ( )

For simplification of the solution (3-21) in n =1 in terms of the Bessel functions, similar
to the previous procedure in (3-11), we use Theorem 3.1 to obtain

N LGPy Gr) - 1(3r5(1+y)5)J1 Gr)
_u03 (1+y) J‘wlefrx 3 3 3 (3_24)
2 0y 2 3
FGr 2)+Jﬁ(§ - Jﬁ(g ), Gr)

3 3
3.2. THE COUETTE FLOW WITH A CHEMICAL REACTION

u(x,y) =t

At this point, we consider the Couette flow in the presence of a chemical reaction.

Problem 3.4 We consider the following Couette flow with a chemical reaction
ou _ D 0”"u

—=D,——-u,neN, 3-25
y@x "oy ( )
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u(0,y) = 0,u(x,0) =u,, (3-26)
lim u(x, y) < oo. (3-27)
Yoo

For this problem similar to the previous problem, after applying the Laplace transform and
boundary conditions, we get the solution as

~ u I+s
(s, ) = 0 Adnsl| =5 | (3-28)
n
1 2n+1
SA2I’Z+1 n s
g2n+l
In view of the n—1 positive simple poles s, = ——,i=1,2,---,n—1, the inverse Laplace
A2
transform of the above function is given by
1+re™
Ay [——,1
o | =7\ 2n+1
u(x,y)=(1+1,)u, -2 [ =™ (e ™ s, (3-29)
T r 1
Ay [——,1
(re_i”)2n+1
where
1+ sy
A2n+1 (Tn)
n—1
I, = % Res s2n+l s = 1
T PR 2n+1
$2n+1 "
Y X
2n+l | 2n+1
n—1 A 2n A 2n
S Sy L0 YV R P T (3-30)
i=1 2nhpiA2n41' Api) Mni

Also, in the case of the fractional derivative model of problem, we get the solution of
problem in the following form
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u(x,y) =1+ 1,)ug —%fgoée_rxﬁ dr, (3-31)

where

1+—2 x

20l | | TaEr
_ _"2"1: 2n+1) A Az . /1,121.706
i=l 2]’1(Xﬂ,m.A 2n+1 '(A’ni) e A .

(3-32)

n,a
ni

Moreover, for simplification of the solution (3-29) in n=1 in terms of the Bessel
functions, we get

3 3
2 By 2 2 Py 2
1 1 J1C-(=m)2)J 1(}—J 1| S=m)2 Jl(J
5 . 5 3 3r - 3r -3 3 3 3r
u(x,y)zuoe_y—u03 ISO( ) e dr.
21 r 2( 2 2 (2 2 2
JN— |+ |- 1| =WV
1{ 3, 13 ——\3r) —\3r
3 3 3 3
(3-33)

4. CONCLUDING REMARKS

This paper provides new results in obtaining the analytical solutions of some generalized
partial differential equations. These equations have been interpreted as the Couette flows
with (without) chemical reactions. We considered fractional derivative models (in Caputo
sense) for these PDEs and solved them by the Laplace transform. We encountered with the
generalized Airy functions in the Bromwich's integral of inverse Laplace transform. Zeros
of these functions were the first steps in obtaining the solutions as the simple poles of
integrands. Finally, the desired solutions have been written in terms of the Laplace
transform of the imaginary parts of the generalized Airy functions.
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ABSTRACT In this paper, the hyper-Zagreb index of the Cartesian product, composition
and corona product of graphs are computed. These results correct some errors in G. H.
Shirdel et al. [Iranian J. Math. Chem. 4 (2) (2013) 213-220].
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1. INTRODUCTION

Throughout this paper, we consider only simple connected graphs. Let G be such a graph
with vertex set V' (G) and edge set E(G). The degree of a vertex w € V(G) is the number
of vertices adjacent to w and is denoted by d;(w). We refer to [11] for unexplained
terminology and notation.

In theoretical chemistry, the physico-chemical properties of chemical compounds
are often modeled by means of molecular-graph-based structure-descriptors, which are
also referred to as topological indices [10, 15]. The Zagreb indices are widely studied
degree-based topological indices, and were introduced by Gutman and Trinajstic’ [9] in
1972. The first and the second Zagreb indices of a graph G are respectively defined as

M, (G) = ZuEV(G) dg(u)? and M, (G) = ZquE(G) de(W)de(v).
The first Zagreb index can also be expressed as a sum over edges of G,
M, (G) = Zuver(s) [de () + dg(v)].

Recently, G.H. Shirdel, H. Rezapour and A.M. Sayadi [14] introduced a new

version of Zagreb index named hyper-Zagreb index which is defined for a graph G as
HM(G) = Yuver ) (de(w) +dg(v))%
Some new results on the hyper-Zagreb index can be found in [7, 8].

The Cartesian product G X H of graphs G and H has the vertex set V(G X H) =
V(G) xV(H) and (a,x)(b,y) is an edge of G X H if a=b and xy € E(H), or ab €
E(G)and x = y. If (a,x) is a vertex of G X H, then d;«y((a,x)) = dg(a) + dy(x).

The composition G[H] of graphs G and H with disjoint vertex sets V(G) and V (H)
and edge sets E(G) and E(H) is the graph with vertex set V(G) X V(H) and (a,x) is
adjacent to (b, y) whenever a is adjacent to b or a = b and x is adjacent to y. If (a, x) is
a vertex of G[H], then dg ) ((a, x)) = |[V(H)|dg(a) + dy(x).
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The corona product G o H is defined as the graph obtained from G and H by
taking one copy of G and |V (G)| copies of H and then by joining with an edge each
vertex of the i*" copy of H which is named (H,i) with the i*" vertex of G for i =
1,2,...,|V(G)|. Ifu is a vertex of G o H, then

oy = {20 F VDI i w €V (G)
° dy(u) +1 if ueV(H,i).

G. H. Shirdel et al. [14] computed the hyper-Zagreb index of some graph
operations. However, the formulae of Theorem 2, Theorem 3, and Theorem 4 of their
paper for computing the hyper-Zagreb index of Cartesian product, composition, and
corona product are incorrect. In this paper, we give correct expressions for the hyper-
Zagreb index of the Cartesian product, composition and corona product of graphs.
Readers interested in more information on computing topological indices of graph
operations can be referred to [1-6, 12, 13].

2. RESULTS

Theorem 2.1 Let G and H be graphs. Then
HM(G x H) = |V(G)|HM(H) + |V(H)|HM(G) +12M,(G)|E(H)| + 12M,(H)|E(G)|.
Proof. By definition of the hyper-Zagreb index, we have
HM(G X H) = L (ax)by)ee@xn) [doxn (@ X)) + dexu (b, y)]?
= Yaev(6) Lxyee) [dg(a) +dy(x) +dg(a) +dy W"1?
+ Yxev() Zaver) [Au(x) +dg(a) + dy(x) +dg ()]?
= Yaev(6) Lxyer) [2dg(a) + dy(x) +dy "1?
+ Yxev(m) Zaver) [2du(x) + dg(a) + dg(b)]?
= Yaev () Layer) [4de(@)? + (du () + du())? + 4dg(a)(du (x) + du ()]
+ Zxev ) Zaver() [4dn(0)? + (dg(@) + dg(b))? + 4dy (x) (dg(a) + dg(D))]
= 4|[E(H)IM,(G) + |V(G)|HM(H) + 8|E(G)| My (H)
+4|E(G)|M1(H) + |V(H)|[HM(G) + 8|E(H)|M4(G).
m

As an application of Theorem 2.1, we list explicit formulae for the hyper-Zagreb
index of the rectangular grid B. X P;, C, —nanotube B. X Cg, and C, —nanotorus C,, X C,.
The formulae follow from Theorem 2.1 by using the expressions M;(P,) = 4n — 6,

n>1; M;(C,) = 4n; HM(P,) = 16n —30,n > 2 and HM(C,,)) = 16n.
Corollary 2.2 HM(P. X P;) = 128rs — 150r — 150s + 144, r,5 > 2;
HM(B. X C;) = 128rq — 150q, r > 2; HM(C, X C;) = 128pq.
Theorem 2.3 Let G and H be graphs. Then
HM(G[H]) = [VUHD)|*HM(G) + |V(G)|HM (H)
+12|V(H)|*|E(H)|M,(G) + 10|[VUDIIE(G) My (H) + 8|E(H)|?|E(G)].
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Proof. Using the definition of the hyper-Zagreb index, we have
HM(G[H]) = X(ax)by)yeeia) [depu (@ x)) + dep (b, y))]?
= Yxev(n) Lyev(n) Zabee) IV(H)|dg(a) + dy(x) + [V(H)|dg (D) + dy ()]
+ Zaev () Layeea [V dg(a) + dy(x) + [V(H)|dg(a) + dy()]?
= Zxevn) Lyev(n) Zaver(e) [IVH)?(de(a) + dg(b))? + dy(0)? + du(y)?
+2dp(x)dp(y) +2|V(H)|(dg(a) + dg(b))(dp(x) + du(y))]
X aev () Lryee) [4IVIH)?de(@)? + (du(x) + dy(1))?
+4|V(H)|dg(a)(du(x) +dy ()]
= [VUD*HM(G) + V(DI |E(Q) | My (H) + V(DI |E(G) 1My (H) + 8IE(H)|*|E(6)
+2|V(H) |*M (G)IEH)| + 2|E(H)D) + 4V (H) [P |E(H) M, (G) + |V (G)|HM (H)
+8|V(H)I|E(G)| My (H).
O

As an application of Theorem 2.3, we present formulae for the hyper-Zagreb index
of the fence graph P,[K;] and the closed fence graph C, [K,].

Corollary 2.4 HM(P,[K,]) = 500n — 816, n > 2; HM(C,[K,]) = 500n.

Theorem 2.5 Let G and H be graphs. Then

HM(G o H) = HM(G) + |[V(G)|IHM(H) + 5|V(H)|M,(G) + 5|V(G)|M.(H) +
AVIDIPIEG)] +4IVOIIEMH)| + 8IE@IIEMHE)| +V(@ IV H)I(V(H)| + 1)
T4V + DAE@ONV| + [EEDIIVG)D.

Proof. By definition of the hyper-Zagreb index, we have
HM(G o H) = YyverGon) [dgon (W) + dgoy (v)]?
= Yuver(e) [deW) + [V(H)| + de(v) + [V(H)I]?

+ Tweran 2o [dy(w) + 1+ dy(v) + 1]2

+ Xueve) Lvevan [de() + [V(H)| + dy(v) + 1]%.

It is easy to see that
Yuwer) [de() + de(v) + 2|V (H)|1*=Zuver(e) [(de@) + de(v))? + 4|V(H)|? (2.1)

+4[V(H)|(de(w) + dg(v)] = HM(G) + 4[V(H)|*|E(G)] + 4|V (H) M (G).
Tuvern 2oy (A @) + dy(@) + 2P=Zuveran Ziey ) [([dr (@) + duy (©))? +4

+4(dy (W) + dy ()] = IVEI(HM(H) + 4|E(H)| + 4M;(H)). (2.2)
Suer(6) Toeveay [de () + du @) + [V + 117 = Buevie) Sveven [de @) + dy (©)?

+2dg(Wdy (v) + (VH)| + D? + 2(I[V(H)| + 1) (de (W) + dy (v))]
= [V(H)|M1(G) + |V(G)|My(H) + 8|E(OI||EH)| + V(@ IVEDI(V(H)| + 1)?
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+4(VHE) | + D(E@ONVE) |+ [EMD[V(G)D. (2.3)
By adding Egs. (2.1), (2.2), and (2.3) the proof is completed. O

Using Theorem 2.5, we can compute the hyper-Zagreb index of the k —thorny
cycle C, o K.

Corollary 2.6 HM(C,, o K},) = 16n + 25nk + 10nk? + nk3.

ACKNOWLEDGEMENT. This research is supported by UGC-UPE
(Non—-NET)-Fellowship, K. U. Dharwad, No. KU/Sch/UGC-UPE/2014-15/897, dated:
24 Nov 2014.

REFERENCES

[1] H. Abdo, D. Dimitrov, The total irregularity of graphs under graph operations,
Miskolc Math. Notes 15(1) (2014) 3—17.

[2] A. R. Ashrafi, T. Dosli¢, A. Hamzeh, The Zagreb coindices of graph operations,
Discrete Appl. Math. 158 (2010) 1571-1578.

[3] M. Azari, Sharp lower bounds on the Narumi-Katayama index of graph operations,
Appl. Math. Comput. 239 (2014) 409-421.

[4] M. Azari, A. Iranmanesh, Some inequalities for the multiplicative sum Zagreb
index of graph operations, J. Math. Inequal. 9 (3) (2015) 727-738.

[S] M. Azari, A. Iranmanesh, Chemical graphs constructed from rooted product and
their Zagreb indices, MATCH Commun. Math. Comput. Chem. 70 (2013) 901-909.

[6] K. C. Das, A. Yurttas, M. Togan, A. S. Cevik, I. N. Cangul, The multiplicative
Zagreb indices of graph operations, J. Inequal. Appl. 2013 2013:90.

[7] M. R. Farahani, The hyper-Zagreb index of TUSC,Cg(S) nanotubes, Int. J. Eng.
Technol. Res. 3 (1) (2015) 1-6.

[8] M. R. Farahani, Computing the hyper-Zagreb index of hexagonal nanotubes, J.
Chem. Mat. Res. 2 (1) (2015) 16-18.

[9] L. Gutman, N. Trinajsti¢, Graph theory and molecular orbitals. Total m-electron
energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.

[10] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry,
Springer, Berlin 1986.

[11] F. Harary, Graph Theory, Addison—Wesley, Reading, Mass. 1969.

[12] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The first and second Zagreb
indices of some graph operations, Discrete Appl. Math. 157 (2009) 804—-811.

[13] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The hyper-Wiener index of graph
operations, Comput. Math. Appl. 56 (2008) 1402—-1407.

[14] G. H. Shirdel, H. Rezapour, A.M. Sayadi, The hyper-Zagreb index of graph
operations, lranian J. Math. Chem. 4 (2) (2013) 213-220.

[15] N. Trinajsti¢, Chemical Graph Theory, CRC Press, Boca Raton, FL 1992.



Iranian Journal of Mathematical Chemistry, Vol. 7, No. 1, March 2016, pp. 93-110 I]MC

QSPR Study on Benzene Derivatives to some Physico—
Chemical Properties by using Topological Indices

M. PASHM FORUSH! F. SHAFIEI? AND F. DIALAMEHPOUR?

1Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
’Department of Chemistry, Science Faculty, Arak Branch, Islamic Azad University, Arak,
Iran

Correspondence should be addressed to f-shafiei@iau-arak.ac.ir (Fatemeh Shafiei).
Received 17 May 2015; Accepted 30 May 2015

ACADEMIC EDITOR: IVAN GUTMAN

ABSTRACT QSPR study on benzene derivatives have been made using recently introduced
topological methodology. In this study the relationship between the Randic' (*x), Balaban (J),
Szeged (Sz),Harary (H), Wiener (W), HyperWiener(WW) and Wiener Polarity (Wp) to the
thermal energy (E), heat capacity (Cy) and entropy (S) of benzene derivatives is represented.
Physicochemical properties are taken from the quantum mechanics methodology with HF
level using the ab initio 6-31G basis sets. The multiple linear regressions (MLR) and back
ward methods (with significant at the 0.05 level) were employed to give the QSPR models.
The satisfactory obtained results show that combining the two descriptors (Sz, WW) are
useful topological descriptors for predicted (Cy) and (S) of the 45 benzene derivatives. The
training set models established by MLR method have not good correlation of (Ey,), which
means QSPR models could not predict the thermal energy of compounds.

KEYWORDS QSPR « Topological index * benzene derivatives » graph theory « multiple
linear regressions (MLR).

1. INTRODUCTION

Benzene derivatives compounds are widely used industrial chemicals and thus have a high
potential for environmental pollution. The eventual release and accumulation of these
compounds into the environment in both terrestrial and aquatic systems requires an
assessment of their environmental risk. Science experimental measurements of
physicochemical properties are extremely time- consuming and expensive.
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Quantitative structure — property relationships (QSPRs) have provided a valuable
approach in research into physicochemical properties of organic chemicals [1]. Many
investigators have used quantum — chemical parameters [2-5].Among the different
approaches employing computational chemistry, those based on chemical graph theory
have been useful in establishing QSPR [6].

The basic strategy of QSPR is to find the optimum quantitative relationship which
can then be used for the prediction of the properties of molecular structures including those
unmeasured or even unknown [7-9].

The premise of QSPR is that physicochemical properties can be correlated with
molecular structure characteristics (geometric and electronic) expressed in terms of
appropriate molecular descriptors [10].

QSPR have been traditionally developed by selecting, a priori, an analytical model
(typically) linear, polynomial or lag—linear to quantity the correlation between selected
molecular indices and desired physicochemical properties, followed by regression analysis
to determine model parameters [11-13].

In the present study, the multiple linear regression (MLR) techniques and back ward
methods are used for modeling the thermal energy (E:,), heat capacity (Cy) and entropy (S)
of 45 benzene derivatives.

The proposed QSPR models were based on molecular descriptors (topological
indices) that can be calculated for any compound utilizing only the knowledge of its
molecular structure (molecular graph).

The topological indices used for the QSPR analysis were Wiener [14], Szeged [15],
first order molecular connectivity [16], Balaban [17], HyperWiener [18], Wiener Polarity
[19] and Harary [20] indices.

2. MATERIALS AND METHODS

2.1. QUANTUM CHEMISTRY CALCULATIONS

The thermal energy (E), heat capacity (Cy) and entropy (S) of 45 benzene derivatives are
taken from the quantum mechanics methodology with Hartree—Fock (HF) level using the
ab initio 6-31G basis sets. The quantum chemistry data of the 45 congeners are listed in
Table 1.

2.2. TOPOLOGICAL INDICES

All the used topological indices were calculated using all hydrogen suppressed graph by
deleting all the carbon hydrogen as well as heteroatomic hydrogen bonds from the



QSPR Study on Benzene Derivatives 95

structure of the benzene derivatives. The descriptors were calculated with chemicalize
software [21]. Six topological indices tested in the present study are recorded in Table 2.

2.3. STATISTICAL ANALYSIS

Structure- Property models (MLR models) are generated using the multilinear regression

procedure of SPSS version 16. The thermal energy (Ey kc_all)1 heat capacity (Cv CE:IK)
mo mo

cal
molK
indices as the independent variables. The models are assessed with R value (correlation
coefficient), the R*(coefficient of determination), the R*- adjusted, the SD value (root of the
mean square of errors), the F value (Fischer statistic) and the sig (significant).

and entropy (S )are used as the dependent variable and x, J, Sz, H, Wp and WW

3. RESULTS

Several linear QSPR models involving one, two, three, four and five descriptors are
established and strongest multivariable correlations are identified by the back ward method
are significant at the 0.05 level and regression analysis of the SPSS program.

In the first of this study we drown scattering plots of Cy, S and Ey, versus the six
topological indices, *x, J, W, Sz, WW and Wp. Some of these plots are given in Fig. (1-8),
respectively. Distribution of the dependent variable against the independent variable for 45
chemicals employed in developing quantitative structure—properties relationship.

3.1. QSPR MODELS FOR HEAT CAPACITY (CV)

Model 1

Cy = 18.000 — 0.573"x - 4.038 J — 0.051 H — 0.103 WW — 0.006 WP +0.257 Sz

N= 45 R=0.966 R?=0.933 R, =0.922 SD=2.342

F=88.125 sig = 0.000 (1)

Model 2

Cy = 18.045 — 0.574"x - 4.048 J — 0.051 H — 0.103 WW - 0.256Sz

N= 45 R=0.966 R?=0.933 R, =0.924 SD=2.312

F=108.531 sig = 0.000 )
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Model 3
Cy= 18.351 — 0.556x - 4.180 J — 0.106 WW - 0.266 Sz
N= 45 R=0.966 R%=0.933 R2 =0.926 SD=2.284

adj

F= 138.960 sig = 0.000 (3)

Model 4

Cv =16.779-3.975J - 0.102 WW - 0.252 Sz

N= 45 R=0.966 R?=0.933 R, =0.928 SD=2.261

F=188.938 sig = 0.000 (4)

Model 5

Cv =10.629-0.085 WW + 0.216 Sz

N= 45 R=0.964 R?=0.929 R, =0.926 SD=2.292

F=274.854 sig = 0.000 (%)

It turns out that the heat capacity (Cy) has a good correlation with all six topological
indices as well as with WW and Sz (Eq. (5)).

3.2. QSPR MODELS FOR THERMAL ENERGY (ETH)

Model 6

Ew = 112.146 — 1.952'x - 16.645 J + 1.496 H — 0.167 WW — 0.702 Wp -0.356 Sz
N= 45 R=0.425 R?=0.181 R2. =0.052 SD=18.837

adj

F=1.400 sig = 0.240 (6)

Model 7

E¢, = 106.705- 15.971 J + 1.473 H + 0.180 WW + 0.689 W5 - 0.396 Sz
N= 45 R=0.425 R?=0.180 R, =0.075 SD=18.603

F=1.715 sig = 0.154 )
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Model 8

Ewn = 102.046- 14.980 J + 1.454 H + 0.130 WW - 0.271 Sz

N= 45 R=0.422 R?=0.178
F=2.162 sig = 0.091
Model 9

Ew, =112.147-22.272 J + 0.666 H + 0.021 WW

N= 45 R=0.414 R?=0.171
F=2.828 sig = 0.050
Model 10

Ewn =108.116- 23.268 J + 1.190 H

N= 45 R= 0.408 R?=0.167
F=4.199 sig = 0.022
Model 11

Ew = 66.730+0.699 H
N= 45 R=0.365 R?=0.134

F=6.629 sig =0.014

97
Ri; =0.096 SD=18.396

(8)
R%; =0.111 SD=18.240

(9)
R =0.127 SD=18.074

(10)
R =0.113 SD=18.214

(11)

It turns out that the correlation coefficient values of all models for Ey, is less than
0.2, which means that there is no strong linear relation between E, and descriptors.
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3.3.  QSPR MODELS FOR ENTROPY (S)

Model 12

S =72.845—-0.598'x - 4.788 J + 0.259 H—0.116 WW + 0.334 Wp + 0.272 Sz

N= 45 R=0.948 R?=0.898 R2: =0.882 SD=4.008

adj
F=55.810 sig = 0.000
Model 13

S=71179-4.581J+0.252 H-0.112 WW - 0.33 W5p - 0.259 Sz
N= 45 R=0.948 R?=0.898 R2. =0.885 SD=3.960

adj

F=68.590 sig = 0.000

Model 14
S =72.903- 5.259 J— 0.130 WW - 0.322 W5 + 0.312Sz
N= 45 R=0.947 R?=0.897 R2. =0.887 SD=3.930

adj

F=86.936 sig = 0.000

Model 15

S=70.664-4.772 J- 0.153 WW + 0.369 Sz

N= 45 R=0.946 R%=0.895 R2 =0.888 SD=23.910

adj

F=116.931 sig = 0.000

Model 16

S$=63.280-0.133 WW + 0.324 Sz

Py
N
Il

N= 45 R=0.945 R?=0.893 0.888 SD=3.911

adj

F=174.741 sig = 0.000

(12)

(13)

(14)

(15)

(16)
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It turns out that the entropy(S) has a good correlation with all six topological
indices as well as with WW and Sz (Eq. (16)).

4. DISCUSSION

We studied the relationship between topological indices and the thermal energy (Ey,), heat
capacity (Cy) and entropy (S).

The elaborated QSPR models (Eqs 1 — 5) reveal that the heat capacity of the
benzene derivatives could be explained by two, three, four, five and six parameter. All of
models can explain about 93% of the experimental variance of the dependent variable Cy,.
The combination of the two parameters (WW, Sz) increases remarkably the predictive

power of the QSPR model given by Eq. (5) (R* =0.929 R =0.926, SD = 2.29, F =

adj
274.854).
As can be seen from the statistical parameters of the above equation, a high F of
Fischer (F = 274.854) which confirms that the model (5) predicts the heat capacity
(dependent variable) in a statistically satisfactory significant manner.

The back ward values of the entropy shows that all of models (Eqs 12 — 16) can
explain about 0.90% of the variance of the entropy. The combination of two parameters
(WW, Sz) recorded in Eq (16) has highest F of Fischer (F = 174.741) which explain that
the model (16) for predict entropy is better than another models. The QSPR models (Eqgs 6
— 11) explains only 18% of the variance of the thermal energy besides a low F and a low
standard deviation (SD) which confirms that all of models (Egs 6 — 11) could not use to
predicts the thermal energy.

The comparison between the observed data and predicted values using Eq (16) of
entropy (S) is presented in Table 3. The linear relations between the observed and
predicted values of the entropy of 45 benzene derivatives show in Figure (9).

The comparison between the observed data and predicted values using Eq (5) of Cy
is presented in Table 3. The linear relations between the observed and predicted values of
the heat capacity of 45 benzene derivatives show in Figure (10).

5. CONCLUSION

The aforementioned results and discussion lead us to conclude that combining the two
descriptors (Sz, WW) can be used successfully for modeling and predicting the heat
capacity (Cy) and entropy (S) of 45benzene derivatives. The training set models
established by MLR method have not good correlation of the thermal energy (E), which
means QSPR models could not predict the thermal energy of compounds.
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Table 1. Benzene derivatives and their thermal energy (E,), heat capacity (Cv)

and entropy (S)
compounds No. E,, kc%ol Cv ca%nOIK s Ca%nOIK
Bromobenzene 1 65.29 18.974 77.412
Phenol 2 74.241 19.556 73.301
1,2-Dichlorobenzene 3 59.638 22.459 81.422
3-Chlorotoluene 4 84.812 24561 86.151
1,3-Dihydroxybenzene 5 77.539 24.356 78.827
3-Hydroxyanisole 6 97.706 28.52 85.825
4-Methyl-3-nitroaniline 7 103.88 36.498 97.218
2,4-Dimethylphenol 8 113.333 31.213 95.395
2,6-Dimethylphenol 9 113.476 30.971 88.024
3-Nitrotoluene 10 93.604 28.973 92.842
2,6-Dinitrotoluene 11 93.307 39.695 104.851
4-Methyl-2,6-dinitroaniline 12 105.713 44,947 114.965
5-Methyl-2,6-dinitroaniline 13 105.837 44.81 107.737
5-Methyl-2,4-dinitroaniline 14 105.62 45.252 109.238
2,4-Dinitrotoluene 15 93.169 39.727 105.107
4-Nitrophenol 16 77.413 27.692 86.473
4-Chlorotoluene 17 77.206 31.85 96.426
2,4,6-Trichlorophenol 18 57.376 30.862 93.417
Toluene 19 82.941 27.892 89.047
3-Methyl-6-nitroaniline 20 104.149 35.841 96.864
4-Methyl-2-nitroaniline 21 106.04 33.951 94.282
1,2,4-Trichlorobenzene 29 53.93 26.321 88.346
3,4-Dichlorotoluene 23 79.161 28.303 93.362
2,4-Dichlorotoluene 24 79.266 28.227 88.762
Chlorobenzene 25 65.308 18.726 74.858
1,3,5-Trinitrobenzene 26 74.783 43.544 111.19

1,2,3,4-Tetrachlorobenzene 27 48.143 29.99 04.375
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Table 1. (Continued).
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2,3,4,5,6-Pentachlorophenol 28 45.776
1,3-Dichlorobenzene 29 59.625
2-Chlorophenol 30 68.741
3-Methylphenol 31 93.75

2,3-Dinitrotoluene 32 93.312
1,4-Dimethylbenzene 33 109.926
2,3,4,5-Tetrachlorophenol 34 51.504
2,3,6-Trinitrotoluene 35 96.277
4-Methylphenol 36 93.737
4-Methyl-3,5-dinitroaniline 37 105.556
1,3,5-Trichlorobenzene 38 53.896
Benzene 39 70.931
2-Nitrotoluene 40 93.788
1,4-Dinitrobenzene 41 75.38

2-Methyl-3,6-dinitroaniline 42 107.521
2-Methyl-4,6-dinitrophenol 43 96.803
2,5-Dinitrotolueno 44 93.252

1,2-Dinitrobenzene 45 75477

38.209
22.593
23.201
25.379
39.473
26.47
34.552
47.777
25413
45.32
26.473
14.87
28.598
32.677
43.693
43.786
39.676
32.524

105.427
81.815
79.752
83.997

103.012
90.836
99.256

115.335
83.681

110.557
88.731

67.85
87.958
96.457

107.087
108.582
105.278
95.425
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Table 2. Benzene derivatives and their topological indices used in present study

Comp. No. Ly J H HW WP Sz
1 3.39 1.82 12.92 71 5 78
2 3.39 1.82 12.92 71 5 78
3 3.8 2.28 16.17 106 8 106
4 3.79 2.23 16.08 110 7 108
5 3.79 2.23 16.08 110 7 108
6 4.33 1.98 19.15 176 9 146
7 5.11 2.25 26.67 315 14 232
8 4.2 2.09 19.53 160 10 144
9 4.22 2.15 19.67 151 11 140
10 4.7 2.32 22.72 245 11 186
11 6.04 2.4 34.6 545 19 348
12 6.43 2.7 39.2 669 31 420
13 6.45 2.72 39.13 667 22 418
14 6.43 2.65 38.83 698 21 430
15 6.02 2.33 343 576 18 360
16 4.7 2.26 22.6 262 11 192
17 3.79 2.19 16.03 115 7 110
18 4.61 2.49 23.28 215 13 184
19 3.39 1.82 12.92 71 5 78
20 5.11 2.22 26.6 327 14 236
21 5.11 2.27 26.67 315 14 232
22 4.2 2.09 19.53 160 10 144
23 4.2 2.09 19.53 160 10 144
24 4.2 2.09 19.53 160 10 144
25 3.39 1.82 12.92 71 5 78
26 6.91 2.46 42.6 906 21 516
27 4.63 2.52 23.37 211 14 182
28 5.46 2.76 31.6 357 21 282
29 3.79 2.23 16.08 110 7 108
30 3.8 2.28 6.17 106 8 106
31 3.79 2.23 16.08 110 7 108
32 6.04 2.47 34.83 511 19 336
33 3.79 2.19 16.03 115 7 110
34 5.04 2.39 27.32 281 17 230
35 7.36 2.83 47.97 1036 26 588
36 2.18 2.19 16.3 115 7 110
37 6.43 2.7 39.02 669 21 420
38 4.18 2.08 19.5 159 9 144
39 3 2 10 42 3 54
40 4.72 2.4 22.9 231 12 180
41 5.61 2.3 29.74 521 15 314
42 6.45 2.64 38.87 717 22 434
43 6.43 2.66 38.85 691 21 428
44 6.02 2.28 34.14 616 18 372

45 5.63 2.54 30.43 416 16 278
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Table 3. Comparison between predicted and observed values of entropy and heat capacity
of respect benzene derivatives.

Comp. No.  Observed Predicted Residual Observed  Predicted Residual
S) S (Cv) (Cv)
1 77.41 79.11 1.70 18.97 21.44 2.47
2 73.30 79.11 5.81 19.57 21.44 1.87
3 81.42 83.53 2.11 22.46 24.52 2.06
4 86.15 83.64 -2.51 24.56 24.61 0.05
5 78.83 83.64 4.81 24.36 24.61 0.25
6 85.82 87.18 1.36 28.52 27.20 -1.32
7 97.22 96.55 -0.67 36.50 33.97 -2.53
8 95.40 88.66 6.74 31.21 28.13 -3.08
9 88.02 88.56 0.54 30.97 28.03 -2.94
10 92.84 90.96 -1.88 28.97 29.98 1.01
11 104.85 103.55 -1.30 39.70 39.47 -0.23
12 114.96 110.38 -4.58 44.95 44.48 -0.47
13 107.74 110.00 2.26 44.81 44.22 -0.59
14 109.24 109.77 0.53 45.25 44.18 -1.07
15 105.11 103.31 -1.80 39.73 39.43 -0.30
16 86.47 90.64 4.17 27.69 29.83 2.14
17 96.43 83.62 12.81 31.85 24.61 -7.24
18 93.42 94.30 0.88 30.86 32.09 1.23
19 89.05 79.11 -9.94 27.89 21.44 -6.45
20 96.86 96.25 -0.61 35.84 33.81 -2.03
21 94.28 96.55 2.27 33.95 33.97 0.02
22 88.35 88.66 0.31 26.32 28.13 1.81
23 93.36 88.66 -4.70 28.30 28.13 -0.17
24 88.76 88.66 -0.10 28.23 28.13 -0.10
25 74.86 79.11 4.25 18.73 21.44 2.71
26 111.19 109.97 -1.22 43.54 45.08 1.54
27 94.38 94.18 -0.20 29.99 32.01 2.02
28 105.43 107.17 1.74 38.21 41.20 2.99
29 81.82 83.64 1.82 22.59 24.61 2.02
30 79.75 83.53 3.78 23.20 24.52 1.32
31 84.00 83.64 -0.36 25.38 24.61 -0.77
32 103.01 104.18 1.17 39.47 39.77 0.30
33 90.84 83.49 -7.35 26.47 24.53 -1.94
34 99.26 100.29 1.03 34.55 36.34 1.79
35 115.34 116.00 0.66 47.78 49.58 1.80
36 83.68 83.62 -0.06 25.41 24.61 -0.80
37 110.58 110.38 -0.20 45.32 44.48 -0.84
38 88.73 88.79 0.06 26.47 28.22 1.75
39 67.85 75.19 7.34 14.87 18.72 3.85
40 87.96 90.88 2.92 28.60 29.87 1.27
41 96.46 95.72 -0.74 32.68 34.17 1.49
42 107.09 108.54 1.45 43.69 43.43 -0.26
43 108.58 110.05 1.47 43.79 44.34 0.55
44 105.28 101.88 -3.40 39.68 38.62 -1.06

45 95.42 98.02 2.60 32.52 35.32 2.8
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Figure 1. Plots of the Szeged index (Sz) versus entropy of 45 benzene derivatives.
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Figure 2. Plots of the Randi¢ index (*x) versus entropy of 45 benzene derivatives.
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Figure 3. Plots of the Hyper—Wiener (WW) index versus entropy of 45 benzene
derivatives.
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Figure 4. Plots of the Balaban index (J) versus entropy of 45 benzene derivatives.
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Figure 5. Plots of the Szeged index (Sz) indexversus heat capacity (Cv) of 45 benzene
derivatives.
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Figure 6. Plots of the Harrary index(H) versus heat capacity (Cv) of 45 benzene derivatives.
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Figure 7. Plots of the Szeged index (Sz) index versus thermal energy (E) of 45 benzene
derivatives .
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Figure 8. Plots of the Randi¢ index (*x) index versus thermal energy (Es) of 45 benzene
derivatives.
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Predicted values by MLR
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Figure 9. Comparison between the predicted and observed values of entropy by MLR.
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