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 ABSTRACT Let G  be a finite connected simple graph. The degree distance index )(GDD  
of G  is defined as   )(},{ ))(deg)()(deg,(GVvu vGuGvuGd , where )(deg uG is the 

degree of vertex u  in G  and ),( vuGd  is the distance between two vertices u  and v  in G . 
In this paper, we determine the degree distance of the complement of arbitrary Mycielskian 
graphs. It is well known that almost all graphs have diameter two. We determine this graphical 
invariant for the Mycielskian of graphs with diameter two. 

KEYWORDS Degree distance • Zagreb indices • Mycielskian. 
 

1. INTRODUCTION 

 Throughout this paper we consider (non trivial) simple graphs, that are finite and undirected 
graphs without loops or multiple edges. Let E(G))(G), (V G   be a connected graph of 
order n = |V(G)| and of size m = |E(G)|. The distance between two vertices u  and v  is 
denoted by ),( vudG  and is the length of a shortest path between u  and v  in G . The 

diameter of G  is V(G)}  vu,  :v)(u,max{dG  . It is well known that almost all graphs have 
diameter two. The degree of vertex u  is the number of edges adjacent to u  and is denoted 
by )(deg uG . 

A chemical graph is a graph whose vertices denote atoms and edges denote bonds 
between those atoms of the underlying chemical structure. A topological index for a 
(chemical) graph G  is a numerical quantity invariant under automorphisms of G  and it 
does not depend on the labeling or pictorial representation of the graph. Topological indices 
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and graph invariants based on the distances between vertices of a graph or vertex degrees 
are widely used for characterizing molecular graphs, establishing relationships between 
structure and properties of molecules, predicting biological activity of chemical 
compounds, and making their chemical applications. 

The concept of topological index came from work done by Harold Wiener in 1947 
while he was working on boiling point of paraffin. The Wiener index of G  is defined as 

 


)(},{
),()(

GVvu G vudGW . Two important topological indices introduced about forty 

years ago by Ivan Gutman and Trinajstić [5] are the first Zagreb index )(1 GM  and the 
second Zagreb index )(2 GM  which are defined as 

.)(deg)(deg)(,))((deg))(deg)((deg)(
)(

2
)(

2

)(
1 




GEuv

GG
GVu

G
GEuv

GG vuGMuvuGM  

The degree distance was introduced by Dobrynin and Kochetova [1] and Gutman 
[4] as a weighted version of the Wiener index. The degree distance of G , denoted by 

)(GDD , is defined as follows and it is computed for important families of graphs ( see[8] 
and [12]  for instance): 





)(},{

)).(deg)((deg),()(
GVvu

GGG vuvudGDD  

For a graph ),( EVG  , the Mycielskian of G  is the graph )(G  (or simply,  ) 
with the disjoint union }{xXV   as its vertex set and 

}1:{}:{ nixxEvvxvE ijiji   as its edge set, where },...,,{ 21 nvvvV   and  

},...,,{ 21 nxxxX  , see [9]. The Mycielskian and generalized Mycielskians have fascinated 
graph theorists a great deal. This has resulted in studying several graph parameters of these 
graphs. Fisher et al. [3] determine the domination number of the Mycielskian in 1998, Taeri 
et al. [2] determine the Wiener index of the Mycielskian in 2012, and Ashrafi et al. [6] 
determine Zagreb coindices of the Mycielskian in 2012. 

In this paper we determine the degree distance index of the Mycielskian of each 
graph with diameter two. Also, we determine the degree distance of the complement of 
Mycielskian of arbitrary graphs. 
 
2. DEGREE DISTANCE OF THE MYCIELSKIAN  

In order to determine the degree distance index of Mycielskian graphs, we need the 
following observations. From now on we will always assume that G  is a connected graph, 

,)(,)(},,...,,{},,...,,{)( 2121 XGVxXGVxxxXvvvGV nn    

and   is the Mycielskian of G , where 
}.1:{)}(:{)()(},{)()( nixxGEvvxvGEExXGVV ijiji    
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Observation 1.  Let   be the Mycielskian of G . Then for each )(Vv  we have  















iiG

iiG

vvv
xvv
xvn

v
)(deg2

)(deg1)(deg  

Observation 2.  In the Mycielskian   of G , the distance between two vertices )(, Vvu   
are given as follows. 
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Specially, the diameter of the Mycielskian graph is at most four. 
 

There are |)(| GE  unordered pairs of vertices in )(GVV   whose distance is one, and  

).(2))(deg)((deg2))(deg)((deg 1
)(

1),(
),(

GMvuvu
GEuv

GG

vud
VVvu

GG

G

 





 

Lemma 1. Let G be a graph of size m whose vertex set is },...,,{ 21 nvvvV  . Then, 

.2)1())(deg)((deg
},{

mnvu
Vvv

GG
ji




 

Proof. For each },...,2,1{][ nni  , 1|}:][},{{|  nijnji . Therefore, 

.2)1()(deg)1())(deg)((deg
1][},{

mnvnvv
n

i
iG

nji
jGiG  



 

� 

Lemma 2. For each graph G  of size m  we have 
).()1(2))(deg)((deg 1

)(},{

GMnmvv
GEvv

jGiG
ji



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Proof. Since each vertex )(GVvi   has )(deg iG v  neighbors in G , the number of non-

adjacent vertices to iv  in G  equals )(deg1 iG vn  . This implies that 

).()1(2

))((deg)(deg)1(

)(deg))(deg1())(deg)((deg

1

1

2

1

1)(},{

GMnm

vvn

vvnvv

n

i

n

i
iGiG

n

i
iGiG

GEvv
jGiG

ji







 



 



 

� 

It is a well known fact that almost all graphs have diameter two. This means that 
graphs of diameter two play an important role in the theory of graphs and their applications. 

 

Theorem 1. Let G  be an n -vertex graph of size m whose diameter is 2. If    is the 
Mycielskian of G , then the degree distance index of   is given by 

.)128()17()()(4)( 1 mnnnGMGDDDD   

Proof.  By the definition of degree distance index, we have 





)(},{

)).(deg)((deg),())((



Vvu

vuvudGDD  

Regarding to the different possible cases which u  and v  can be chosen from the set )(V , 
the following cases are considered. In what follows, the notations are as before and two 
observations 1 and 2 are applied for computing degrees and distances in  . 

Case 1. xu   and Xv : 





n

i
iG

n

i
ii mnnvnxxxxd

11
.2)1())(deg1())(deg)((deg),(   

Case 2. xu   and )(GVv : 





n

i
iG

n

i
ii mnvnvxvxd

1

2

1
).4(2))(deg2(2))(deg)((deg),(   

Case 3. Xvu },{ : 
Using Lemma 1 we see that 

.)1(422

))(deg)((deg2
2

4

))(deg)(deg2(2))(deg)((deg),(

2

][},{

},{},{

mnnn

vv
n

vvxxxxd
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jGiG

Xxx
jGiG
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



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














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Case 4. )(},{ GVvu  . Since the diameter of G  is two, Observation 2 implies that 
),(),( jiGji vvdvvd  . Hence,  

).(2

))(deg2)(deg2(),())(deg)((deg),(
)(},{)(},{

GDD

vvvvdvvvvd
GVvv

jGiGjiG
GVvv

jiji
jiji



 



 

Case 5. ivu   and ixv  , ni 1 . 

.122

)1)(deg3(2))(deg)((deg),(
11

mn

vxvxvd
n

i
iG

n

i
iiii



 


  

Case 6. ivu   and jxv  , ji  . 

.)1)((deg),(

))(deg)((deg),(

)1)(deg)(deg2(),())(deg)((deg),(

)(},{

)(},{

)(},{)(},{




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Since ),(),( ixjvdjxivd  , 0),(  ivivd , and using Observation 2, we have 

).(2

))(deg)((deg),(2

))(deg)((deg),(2))(deg)((deg),(

)(},{

)(},{)(},{

GDD

vvvvd

vvxvdvvxvd

GVvv
jGiGjiG
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















 

Each edge )(GEivjvjviv   corresponds to two pairs },{ jxiv  and },{ ixjv  of 

distance 1 in the Mycielskian graph  . Since the diameter of G is two and using Lemma 2 
we get 

).()32(2)1(2

))(deg)((deg2)
2

(4

.))(deg)((deg2
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Now the result follows through these six cases.  
� 

 
3. DEGREE DISTANCE OF THE COMPLEMENT OF MYCIELSKIAN  

In order to determine the degree distance index of the complement of Mycielskian graphs, 
we need two following observations. 

Observation 3. Let   be the complement of Mycielskian   of G . Then for each )(Vv  
we have  















iiG

iiG
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v
)(deg22

))(deg1(2)(deg  

Observation 4. In the complement of Mycielskian   of G , the distance between two 
vertices )(, Vvu  are given as follows. 
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Specially, the diameter of   is exactly 2. 

 
Theorem 2. Let G  be an n -vertex graph of size m  and let   be the complement of the 
Mycielskian   of G .Then, the degree distance index of   is given by 

).(54)5106()( 1
2 GMmnnnDD   

Proof. By the definition of degree distance, we have 





)(},{

)).(deg)((deg),()(
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Vvu
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We consider the following cases. For computing degrees and distances in   we use two 
observations 3 and 4. 

Case 1. xu   and Xv . 





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ii mnnvnxxxxd
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Case 2. xu   and )(GVv . 
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Case 3. Xvu },{ . Using Lemma 1 we see that 
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Case 4. )(},{ GVvu  . Using Lemma 2 we have 
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jGiG

GVvv
jiji

ji

jiji




























 

Case 5. ivu   and ixv  , ni 1 . 

.64)1)(deg34())(deg)((deg),( 2

11
mnnvnxvxvd

n

i
iG

n

i
iiii  


  

Case 6. ivu   and jxv  , ji  . By Observation 4, ),(),( ixjvdjxivd   is 1 when 

)(GEjviv  , otherwise is 2. Thus,  














)(
),(

)(
),()(},{

))(deg)(deg214(2

))(deg)(deg214())(deg)((deg),(

GEvv
vv

jGiG

GEvv
vv

jGiG

ji
Vxv

jiji

ji
ji

ji
jiji

vvn

vvnxvxvd



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Each vertex iv  can be paired with )(deg1 ivGn   vertices jv  as ),( jviv  with the 

condition )(GEvv ji  . Also, note that  ),( ))(deg)((degjviv jvGivG  is equal to 

 },{ ))(deg)((deg2 jviv jvGivG . Hence, using Lemma 2 we obtain 

)).(1)1(2())(1)1(2(2)14)(22(

)(
),(

)(deg

)(
),(

))(deg)((deg)14()
2

(2

)(
),(

))(deg)(deg214(

GMnmGMnmnmnn

GEjviv
jviv

ivG

GEjviv
jviv

jvGivGnm
n

GEjviv
jviv

jvGivGn



























 

Note that mGEjvivjviv 2|)}(:),{(|   and  

  
n
i ivGGEjvivjviv ivG 1

2))((deg)(:),( )(deg , 

because each vertex iv  has )(deg ivG  neighbors and appears  )(deg ivG  times in the desired 
summation. Thus, using similar arguments we see that 

).(16)14(4

)(
),(

))(deg)(deg214(2 GMnm

GEjviv
jviv

jvGivGn 



  

Now the result follows through these cases. 
□ 

 
By considering Observation 3, it's not hard to check that 

.4242338)(15)(1 nmmnnnGMM   
Thus, Theorems 1 and 2 imply the following result. 
 

Corollary 4. Let G  be an n -vertex graph of size m  and let H  be the complement of the 

Mycielskian of G .Then, ).(12556205273316))(( GMmnmnnnHDD   
� 
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ABSTRACT The vertex-edge Wiener index of a simple connected graph G is defined as 
the sum of distances between vertices and edges of G. Two possible distances ),(1 GeuD  

and ),(2 GeuD  between a vertex u and an edge e of G were considered in the literature 
and according to them, the corresponding vertex-edge Wiener indices )(1 GveW  and

 )(2 GveW  were introduced. In this paper, we present exact formulas for computing the 
vertex-edge Wiener indices of two composite graphs named splice and link. 
 
KEYWORDS Distance in graph • vertexedge Wiener index • Splice • Link. 

 

1. INTRODUCTION 

The graphs considered in this paper are undirected, finite and simple. A topological index 
(also known as graph invariant) is any function on a graph that does not depend on a 
labeling of its vertices. The oldest topological index is the one put forward in 1947 by 
Harold Wiener [1,2] nowadays referred to as the Wiener index. Wiener used his index for 
the calculation of the boiling points of alkanes. The Wiener index )(GW  of a connected 
graph G is defined as the sum of distances between all pairs of vertices of G: 

  )(},{ ),()( GVvu GvudGW , 

where ),( Gvud  denotes the distance between the vertices u and v of G which is defined 

as the length of any shortest path in G connecting them. Details on the mathematical 
properties of the Wiener index and its applications in chemistry can be found in [1–8]. 

In analogy with definition of the Wiener index, the vertex-edge Wiener indices 
are defined based on distance between vertices and edges of a graph [9,10]. Two possible 
distances between a vertex u and an edge e=ab of a connected graph G can be considered. 
 The first distance is denoted by ),(1 GeuD  and defined as [9]: 

)},(),,(min{),(1 GbudGaudGeuD  , 

and the second one is denoted by ),(2 GeuD  and defined as [10]: 

)},(),,(max{),(2 GbudGaudGeuD  . 
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 Based on these two distances, two vertex-edge versions of the Wiener index can 
be introduced. The first and second vertexedge Wiener indices of G are denoted by 

)(1 GveW  and
 

)(2 GveW , respectively, and defined as     )( )( ,),()( GVu GEe GeuiDGiveW  

where }.2,1{i  It should be explained that, the vertex-edge Wiener index introduced in 
[9] is half of the first vertex-edge Wiener index 1veW . However, in the above summation, 

for every vertex u and edge e of G, the distance ),( GeuiD  is taken exactly one time into 
account, so the summation does not need to be multiplied by a half. The first and second 
vertex-edge Wiener indices are also known as minimum and maximum indices, and 
denoted by )(GMin  and )(GMax , respectively. Since these indices are considered as the 
vertex-edge versions of the Wiener index, their present names and notations seem to be 
more appropriate. 

In [10,11], the vertexedge Wiener indices of some chemical graphs were 
computed and in [12,13], the behavior of these indices under some graph operations were 
investigated. In this paper, we present exact formulas for the first and second vertex-edge 
Wiener indices of two composite graphs named splice and link. Readers interested in 
more information on computing topological indices of splice and link of graphs, can be 
referred to [12,14–20]. 

2. RESULTS AND DISCUSSION 

In this section, we compute the first and second vertexedge Wiener indices of splice and 
link of graphs. We start by introducing some notations. 

Let G be a connected graph. For )(GVu , we define: 

                                            ),()(
)(





GVv

GvudGud , 





)(

}.2,1{),,()(
GEe

ii iGeuDGuD  

With the above definitions, 

                                              )(
2
1)(

)(




GVu

GudGW , 

}2,1{),()(
)(

 


iGuDGW
GVu

ivei
. 

2.1 SPLICE 

Let 1G  and 2G  be two connected graphs with disjoint vertex sets )( 1GV  and )( 2GV  and 
edge sets )( 1GE  and )( 2GE , respectively. For given vertices )( 11 GVa   and )( 22 GVa  , 
a splice [17] of 1G  and 2G  by vertices 1a  and 2a  is denoted by ),)(.( 2121 aaGG  and 
defined by identifying the vertices 1a  and 2a  in the union of 1G  and 2G . We denote by 

in  and im  the order and size of the graph iG , respectively. It is easy to see that, 

1)),)(.(( 212121  nnaaGGV  and 212121 )),)(.(( mmaaGGE  . 
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In the following lemma, the distance between two arbitrary vertices of 
),)(.( 2121 aaGG  is computed. The result follows easily from the definition of the splice of 

graphs, so its proof is omitted. 

Lemma 2.1 Let )),)(.((, 2121 aaGGVvu  . Then 

       
















)(),(),(),(

)(,),(

)(,),(

)),)(.(,(

212211

22

11

2121

GVvGVuGvadGaud

GVvuGvud

GVvuGvud

aaGGvud .  

In the following lemma, the distances 1D  and 2D  between vertices and edges of 
),)(.( 2121 aaGG  are computed. 

Lemma 2.2 Let )),)(.(( 2121 aaGGVu  and )),)(.(( 2121 aaGGEe . Then  























)(),(),(),(

)(),(),(),(

)(),(),(

)(),(),(

)),)(.(,(

121122

212211

222

111

2121

GEeGVuGeaDGaud

GEeGVuGeaDGaud

GEeGVuGeuD

GEeGVuGeuD

aaGGeuD

i

i

i

i

i , 

where }2,1{i . 

Proof. Using Lemma 2.1, the proof is obvious.                                                                  

In the following theorem, the first and second vertex-edge Wiener indices of 
),)(.( 2121 aaGG  are computed. 

Theorem 2.3 The first and second vertex-edge Wiener indices of ),)(.( 2121 aaGGG   are 
given by: 

)()()()()( 22111221 GadmGadmGWGWGW
iii veveve      

)()1()()1( 221112 GaDnGaDn ii  , 

where }2,1{i . 

Proof. By definition of the vertex-edge Wiener indices, 
}2,1{,),()(

)( )(
  

 
iGeuDGW

GVu GEe
ivei

. 

Now, we partition the above sum into four sums as follows: 
The first sum 1S  consists of contributions to )(GW

ive  of vertices from )( 1GV  and 

edges from )( 1GE . Using Lemma 2.2, we obtain: 
)(),(),( 1

)( )(
1

)( )(
1

1 11 1

GWGeuDGeuDS
ive

GVu GEe
i

GVu GEe
i    

  

. 

The second sum 2S  consists of contributions to )(GW
ive  of vertices from )( 2GV  

and edges from )( 2GE . Similar to the previous case, we obtain: 
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)(),( 2
)( )(

22
2 2

GWGeuDS
ive

GVu GEe
i   

 

. 

The third sum 3S  consists of contributions to )(GW
ive  of vertices from 

}{\)( 11 aGV  and edges from )( 2GE . Using Lemma 2.2, we obtain: 

  
]),(),([),(

}{\)( )(
2211

}{\)( )(
3

11 211 2

  
  


aGVu GEe

i
aGVu GEe

i GeaDGaudGeuDS  

                        )()1()( 221112 GaDnGadm i . 

The last sum 4S  consists of contributions to )(GW
ive  of vertices from 

}{\)( 22 aGV  and edges from )( 1GE . Similar to the previous case, we obtain: 

 
 


}{\)( )(

11224
22 1

)],(),([
aGVu GEe

i GeaDGaudS  

                                          )()1()( 112221 GaDnGadm i . 

Now the formula of )(GW
ive , }2,1{i , is obtained by adding the quantities 1S , 

2S , 3S  and 4S .                                                                                                                     

2.2 LINK 

Let 1G  and 2G  be two connected graphs with disjoint vertex sets )( 1GV  and )( 2GV  and 
edge sets )( 1GE  and )( 2GE , respectively. For vertices )( 11 GVa   and )( 22 GVa  , a link 
[17] of 1G  and 2G  by vertices 1a  and 2a  is denoted by ),)(~( 2121 aaGG  and obtained by 
joining 1a  and 2a  by an edge in the union of these graphs. We denote by in  and im  the 

order and size of the graph iG , respectively. It is easy to see that, 

212121 )),)(~(( nnaaGGV   and 1)),)(~(( 212121  mmaaGGE . 

In the following lemma, the distance between two arbitrary vertices of 
),)(~( 2121 aaGG  is computed. The result follows easily from the definition of the link of 

graphs, so its proof is omitted. 

Lemma 2.4 Let )),)(~((, 2121 aaGGVvu  . Then 

       
















)(),(1),(),(

)(,),(

)(,),(

)),)(~(,(

212211

22

11

2121

GVvGVuGvadGaud

GVvuGvud

GVvuGvud

aaGGvud .  

In the following lemma, the distances 1D  and 2D  between vertices and edges of 
),)(~( 2121 aaGG  are computed. 

Lemma 2.5 Let )),)(~(( 2121 aaGGVu  and )),)(~(( 2121 aaGGEe . Then  
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





























21222

21111

121122

212211

222

111

2121

),(1),(

),(1),(

)(),(1),(),(

)(),(1),(),(

)(),(),(

)(),(),(

)),)(~(,(

aaeGVuiGaud

aaeGVuiGaud

GEeGVuGeaDGaud

GEeGVuGeaDGaud

GEeGVuGeuD

GEeGVuGeuD

aaGGeuD
i

i

i

i

i , 

where }2,1{i . 

Proof. Using Lemma 2.4, the proof is obvious.                                                                  

In the following theorem, the first and second vertex-edge Wiener indices of 
),)(~( 2121 aaGG  are computed. 

Theorem 2.6 The first and second vertex-edge Wiener indices of ),)(~( 2121 aaGGG   
are given by: 

)()1()()1()()()( 22111221 GadmGadmGWGWGW
iii veveve 

   

               
)1)(()()( 211221221112  innmnmnGaDnGaDn ii , 

where }2,1{i . 

Proof. By definition of the vertex-edge Wiener indices, 
}2,1{,),()(

)( )(
  

 
iGeuDGW

GVu GEe
ivei

. 

Now, we partition the above sum into six sums as follows: 
The first sum 1S  consists of contributions to )(GW

ive  of vertices from )( 1GV  and 

edges from )( 1GE . Using Lemma 2.5, we obtain: 
)(),(),( 1

)( )(
1

)( )(
1

1 11 1

GWGeuDGeuDS
ive

GVu GEe
i

GVu GEe
i    

  

. 

The second sum 2S  consists of contributions to )(GW
ive  of vertices from )( 2GV  

and edges from )( 2GE . Similar to the previous case, we obtain: 
)(),( 2

)( )(
22

2 2

GWGeuDS
ive

GVu GEe
i   

 

. 

The third sum 3S  consists of contributions to )(GW
ive  of vertices from )( 1GV  and 

edges from )( 2GE . Using Lemma 2.5, we obtain: 
]1),(),([),(

)( )(
2211

)( )(
3

1 21 2

   
   GVu GEe

i
GVu GEe

i GeaDGaudGeuDS  

                          21221112 )()( mnGaDnGadm i  . 

The fourth sum 4S  consists of contributions to )(GW
ive  of vertices from )( 2GV  

and edges from )( 1GE . Similar to the previous case, we obtain: 



16                                                                                                                                                    AZARI 

 
 


)( )(

11224
2 1

]1),(),([
GVu GEe

i GeaDGaudS  

                                          12112221 )()( mnGaDnGadm i  . 

The fifth sum 5S  consists of contributions to )(GW
ive  of vertices from )( 1GV  and 

the edge 21aa  of G. By Lemma 2.5, we obtain: 

















 





 

)(
11

)(
11

)(
5

1

1

1 21 2)1),((

1),(
),(

GVu

GVu

GVu aae
i iGaud

iGaud
GeuDS

 

                                       










2)(

1)(

111

11

inGad

iGad
. 

The last sum 6S  consists of contributions to )(GW
ive  of vertices from )( 2GV  and 

the edge 21aa  of G. Similar to the previous case, we obtain: 










  

  2)(

1)(
),(

222

22

)(
6

2 21 inGad

iGad
GeuDS

GVu aae
i . 

Now the formula of )(GW
ive , }2,1{i , is obtained by adding the quantities 1S , 

2S , 3S , 4S , 5S  and 6S .                                                                                                        
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ABSTRACT In this paper operational matrix of Bernstein Polynomials (BPs) is used to 
solve Bratu equation. This nonlinear equation appears in the particular elecotrospun 
nanofibers fabrication process framework. Elecotrospun organic nanofibers have been 
used for a large variety of filtration applications such as in non-wovens and filtration 
industries. By using operational matrix of integration and multiplication the investigated 
equations are turned into set of algebraic equations. Numerical solutions show both 
accuracy and simplicity of the suggested approach. 
 
KEYWORDS Bratu equation • Elecotrospun nanofibers • Bernstein polynomials • 
Operational matrix.  

 

1. INTRODUCTION 

Electrospinning has been recognized as one of the most convenient, direct and 
economical methods for the fabrication of polymer nanofibers. Various polymers have 
been successfully electrospun into ultrafine fibers in recent years mostly in solvent 
solution and some in melt form. Electrospinning is a process for elaborating nanofibers 
with diameters about nm20  by forcing a fluidified polymer through a spinneret by an 
electric field. The elements required for electrospinning include a polymer source, a high-
voltage supply (HV), and a collector (as shown in Fig. 1 ) [4]. Through several different 
collection methods, this process yields nonwoven, nanoporous materials. The basis of 
electrospinning is derived from a large change in electric potential. Many electrospinning 
device were designed in vibration-electrospinning [14, 9], magneto-electrospinning [18], 
bubble-electrospinning [12, 10].  
 In this paper, a mathematical model of the electrospinning process has been 
associated to Bratu equation through thermo-electro-hydrodynamics balance equations. 
This model is considered in terms of fluid velocity at the level of the outer edge of the 
syringue. It has been showed that the problem can be expressed through second-order 
nonlinear ordinary differential Bratue quation: 
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(ݔ)ᇱᇱݑ + ௨(௫)݁ߣ = 0,   0 < ݔ <  is constant                           (1) ߣ       ,1

 with initial conditions (0)ݑ = ܾ଴ = 0 and ݑᇱ(0) = ܾଵ = 0 will be investigated.  
 

 
Figure  1.  Electrospinning process setup.  

 
Colantoni and Boubaker established a model which is the monodimensional Bratu 
equation as following [4]:  

⎩
⎪
⎨

⎪
⎧߲ଶݑ

ଶݔ߲ − ௨݁ߣ = 0,                          

ߣ :ℎݐ݅ݓ =
ܫ)ଶܧ 18 − ଶ(ܧଶ݇ݎ

ସݎଶߩ .
� 

where ߩ is material density, ݎis is the radius of the jet atxial coordinate ݔ (Fig. 1), ܫis the 
electrical current intensity, ݇is a constant which depend only on temperature in the case 
of an in compressible and E  is electric field in the axial direction.  
 The approximation and numerical techniques are utilized to solve this equation. 
Some of these methods were Bspline method [3], Chebyshev wavelets method [16], 
Adomian decomposition method [15], Variational iteration method [1, 8] and other 
method [6,7,13]. 
 In this study, we will generalize the operational matrix for fractional integration 
and multiplication within Bernstein Polynomials. Bernstein polynomials (B-polynomials) 
have many useful properties. They play a prominent role in various areas of mathematics 
and have frequently been used in the solution of integral equations, differential equations 
and approximation theory; see e.g., [5, 17]. The core of this approach is to convert the 
given problem into a system of algebraic equations. This transformation is possible by 
expanding the unspecified function within Bernstein Polynomials. The speed of the 
computation increases. To evaluate the unknown coefficients which appear in this 
approach, we utilized the operational matrix of integral and multiple. 
 Now we are ready to present the organization of our wok: In Section 2, some 
properties of Bernstein polynomials is presented. The operational matrix is computed for 
integration and produc in section 3. The suggested approach is used to approximate the 
Bratu equation in the next section. After that we apply the proposed technique to Bratu 
equation in section 5. A conclusion part in Section 6 closed the manuscript. 
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2. BERNSTEIN POLYNOMIALS AND THEIR PROPERTIES 

2.1  DEFINITION OF BERNSTEIN POLYNOMIALS 
 

The Bernstein polynomials of the ݉th degree on the interval [0, 1] are defined as [2]: 
 

(ݔ)௜,௠ܤ  = ൫௠
௜ ൯ݔ௜(1 − ௠ି௜(ݔ ,   0 ≤ ݔ ≤ ݉.                                (2) 

 
The following Bernstein polynomials satisfy recursive definition:  

 
(ݔ)௜,௠ܤ  = (1 − (ݔ)௜,௠ିଵܤ(ݔ + ݅         ,(ݔ)௜ିଵ,௠ିଵܤݔ = 0,1, ⋯ , ݉.      (3) 

 
 It can easily be shown that each of the Bernstein polynomials is positive and also 
the sum of all the Bernstein polynomials is unity for all real ݔ ∈ [0,1], i.e., 
∑ (ݔ)௜,௠ܤ = 1௠

௜ୀ଴ . By using the binomial expansion of (1 −  ௠ି௜, Bernstein(ݔ
polynomials can be show in terms of linear combination of the basis functions  

 
(ݔ)௜,௠ܤ  = ൫௠

௜ ൯ݔ௜(1 − ௠ି௜(ݔ = ൫௠
௜ ൯ݔ௜൫∑ (−1)௞൫௠ି௜

௞ ൯ݔ௞௠ି௜
௞ୀ଴ ൯ 

                           = ∑ (−1)௞൫௠
௜ ൯௠ି௜

௞ୀ଴ ൫௠ି௜
௞ ൯ݔ௜ା௞ ,         ݅ = 0,1, ⋯ , ݉.                   (4) 

 

 We can show the Bernstein polynomials by ܤ௜,௠(ݔ) = ௜ାଵܣ ௠ܶ(ݔ), for ݅ =
0, 1, ⋯ , ݉, where  

 

௜ାଵܣ = ൥0,0, ⋯ ,0ᇩᇭᇪᇭᇫ
௜ ௧௜௠௘௦

, (−1)଴൫௠
௜ ൯, (−1)ଵ൫௠

௜ ൯൫௠ି௜
ଵ ൯, ⋯ , (−1)௠ି௜൫௠

௜ ൯൫௠ି௜
௠ି௜൯൩,  

 and 

௠ܶ(ݔ) = ቎
1
ݔ
⋮

௠ݔ

቏. 

 
 Now if we define (݉ + 1) × (݉ + 1) matrix ܣ such that  

 

ܣ = ൦

ଵܣ
ଶܣ
⋮

௠ାଵܣ

൪, 

then we have ߶(ݔ) = ܣ ௠ܶ(ݔ), where ߶(ݔ) = ,(ݔ)଴,௠ܤൣ ,(ݔ)ଵ,௠ܤ ⋯ , ൧்(ݔ)௠,௠ܤ
and ܣ is 

an upper triangular matrix given by:  
 

ܣ =

⎣
⎢
⎢
⎢
⎡(1)଴൫௠

଴ ൯ (1)ଵ൫௠
଴ ൯൫௠ି଴

ଵି଴ ൯ ⋯ (1)௠ି଴൫௠
଴ ൯൫௠ି଴

௠ି଴൯

0 (1)଴൫௠
௜ ൯ ⋯ (1)௠ି௜൫௠

௜ ൯൫௠ି௜
௠ି௜൯

⋮
0

⋱
⋯

⋱
0

⋮
(1)଴൫௠

௠൯ ⎦
⎥
⎥
⎥
⎤
, 
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and |ܣ| = ∏ ݉൫௠
௜ ൯௠

௜ୀ଴ , so ܣ is an invertible matrix.  
 

2.2  APPROXIMATION OF FUNCTION 
The set of Bernstein polynomials൛ܤ�଴,௠ , ଵ,௠ܤ  , ⋯ , ,ଶ[0ܮ ௠,௠ൟ�  in Hilbert spaceܤ 1] is a 
complete basis [11]. Therefore, any polynomial of degree ݉can be expanded in terms of 
linear combination of  ܤ௜,௠ : 

(ݔ)݂  = ∑ ܿ௜ܤ௜,௠ = ௠,߶்ܥ
௜ୀ଴                                   (5) 

 
 where ߶் = ଴,௠ܤൣ , ଵ,௠ܤ , ⋯ , ்ܥ ௠,௠൧ andܤ = [ܿ଴, ܿଵ, ⋯ , ܿ௠]. Then ்ܥcan be obtained by  

 
,��߶〉்ܥ ߶〉 = 〈݂��, ߶〉,                                              (6) 

 where  
   

〈݂��, ߶〉 = ∫ ݔ்݀(ݔ)߶(ݔ)݂ = ൣ〈݂��, ,〈଴,௠ܤ 〈݂��, ,〈ଵ,௠ܤ ⋯ , 〈݂��, ௠,௠〉൧,ଵܤ
଴                  (7) 

 
 and 〈߶��, ߶〉 is called dual matrix of ߶ which is showed by ܳ, and the ܳ is obtained as:  

 
ܳ = 〈߶��, ߶〉 = ∫ ଵ,ݔ்݀(ݔ)߶(ݔ)߶

଴                                               (8) 
 and then  

்ܥ = ቀ∫ ଵݔ்݀(ݔ)߶(ݔ)݂
଴ ቁ ܳିଵ.                                        (9) 

  The elements of the dual matrix, Q , are easily computed by  
 

(ܳ)௜ାଵ,௝ାଵ = න (ݔ)௜,௠ܤ
ଵ

଴
 ݔ݀(ݔ)௝,௠ܤ

                                                 =  ൫௡
௜ ൯ ቀ௡

௝ቁ ∫ (1 − ଵ ݔ݀ ௜ା௝ݔଶ௡ି(௜ା௝)(ݔ
଴  

                           =
൫೙

೔ ൯ቀ೙
ೕ ቁ

(ଶ௡ାଵ)ቀ మ೙
೔శೕቁ

,               ݅, ݆ = 0,1, ⋯ , ݉. 

3. OPERATIONAL MATRIX OF BERNSTEIN POLYNOMIALS 

3.1  THE OPERATIONAL MATRIX OF INTEGRAL 

In this section, we describe breifley operational matrix for the Riemann-Liouville integral 
on the basis of BPs from order ݉ as[17]: 

 
∫ ݐ݀(ݐ)߶ ≃௫

଴  (10)                                         ,(ݔ)߶ܲ
 

 by substituting ߶(ݔ) = ܣ ௠ܶ(ݔ) in Eq. (10) we get:  
 

 ∫ ݐ݀(ݐ)߶ = ܣ ∫ ௠ܶ(ݐ)௫
଴ ݐ݀ = ∫ൣܣ 1௫

଴ ,ݐ݀ ∫ ௫ݐ
଴ ,ݐ݀ ⋯ , ∫ ௠௫ݐ

଴ ൧௫ݐ݀
଴

்
 

                                           = ܣ ቂݔ, ௫మ

ଶ
, ⋯ , ௫೘శభ

௠ାଵ
ቃ

்
=  ௠,                                          (11)ܶܦܣ
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 where ܦ is an (݉ + 1) × (݉ + 1) matrix given by  
 

ܦ  =

⎣
⎢
⎢
⎢
⎡1
0

0
ଵ
ଶ

…
…

0
0

⋮ ⋮ ⋱ 0
0 0     … ଵ

௠ାଵ⎦
⎥
⎥
⎥
⎤
, 

and  

 ܶ௠ = ቎

ݔ
ଶݔ

⋮
ଵା௠ݔ

቏. 

 Now we approximate ݔ௜ାଵ by ݉ + 1 terms of the Bernstein basis: 
 

௜ାଵݔ ≃ ௜ܧ
 (12)                                                           .(ݔ)߶்

Therefore we have  
 

௜ܧ = ܳିଵ ቀ∫ ଵݔ݀(ݔ)௜ାଵ߶௠ݔ
଴ ቁ                                                                             (13) 

    = ܳିଵ ቂ∫ ଵ,ݔ݀(ݔ)଴,௠ܤ௜ାଵݔ
଴ ∫ ଵ,ݔ݀(ݔ)ଵ,௠ܤ௜ାଵݔ

଴ ⋯ , ∫ ଵ,ݔ݀(ݔ)௠,௠ܤ௜ାଵݔ
଴ ቃ

்
   

                  = ܳିଵܧ௜ . 
  

where ܧ௜ = ,௜,଴ܧൣ ,௜,ଵܧ ⋯ ,   ௜,௠൧ andܧ
 

௜,௝ܧ  = ∫ ݔ݀(ݔ)௜,௝ܤ௜ାଵݔ = ௠!୻(௜ା௝ାଶ)
୨!୻(௜ା௠ାଷ)

,      ݅, ݆ = 0,1, ⋯ , ݉,ଵ
଴                   (14) 

 
where ܧ is an (݉ + 1) × (݉ + 1) matrix that has vector ܳିଵܧ௜ for ith columns. 
Therefore, we can write  

(ݔ)߶ܲ = ଴ܧ]ܦܣ
,(ݔ)߶் ଵܧ

,(ݔ)߶் ⋯ , ௠ܧ
் = ்[(ݔ)߶  (15)                          .(ݔ)߶்ܧܦܣ

Finally, we obtain  
 ∫ ݐ݀ (ݐ)߶ ≃ ଵ(ݔ)߶ܲ

଴ ,                                          (16) 
 where  

 ܲ =  (17)                                                       ,ܧܦܣ
 

is called the Bernstein polynomials operational matrix of fractional integration.  
 
3.2  BPOLYNOMIALS OPERATIONAL MATRIX OF PRODUCT 
It is always necessary to evaluate the product of ߶(ݔ) and ߶(ݔ)், which is called the 
product matrix for the Bernstein polynomials basis. The operational matrices for the 
product ܥመ is given by  

்(ݔ)߶(ݔ)߶்ܥ  ≃  መ,                                           (18)ܥ்(ݔ)߶

where ܥመ is an (݉ + 1) × (݉ + 1) matrix. So we have 

்(ݔ)߶(ݔ)߶்ܥ  = )(ݔ)߶்ܥ ௠ܶ(ݔ)்்ܣ) = ,(ݔ)߶்ܥൣ ,൯(ݔ)߶்ܥ൫ݔ ⋯ ,  ்ܣ൯൧(ݔ)߶்ܥ௠൫ݔ

                          = ൣ∑ ܿ௜
௠
௜ୀ଴ ௜,௠ܤ , ∑ ܿ௜ݔ௠

௜ୀ଴ ௜,௠ܤ , ⋯ , ∑ ܿ௜
௠
௜ୀ଴  ௜,௠൧                               (19)ܤ௠ݔ
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 Now, we approximate all functions ݔ௞ܤ௜,௠(ݔ) in terms of ൛ܤ௜,௠(ݔ)ൟ

௜ୀ଴
௠

 for 
݅, ݇ = 0,1, ⋯ , ݉. By (5), we have  

௜,௠ܤ௠ݔ  ≃ ݁௞,௜
் ߶௠(ݔ)                                             (20) 

that ݁௞,௜ = ൣ݁௞,௜
଴ , ݁௞,௜

ଵ , ⋯ , ݁௞,௜
௠ ൧்

, then we obtain the components of the vector of ݁௞,௜ 
 

݁௞,௜ = ܳିଵ ቆන ݔ݀(ݔ)߶(ݔ)௜,௠ܤ௞ݔ
ଵ

଴
ቇ 

       = ܳିଵ ቂ∫ ଵݔ݀(ݔ)଴,௠ܤ(ݔ)௜,௠ܤ௞ݔ
଴ , ∫ ,ݔ݀(ݔ)ଵ,௠ܤ(ݔ)௜,௠ܤ௞ݔ ⋯ , ∫ ଵݔ݀(ݔ)௠,௠ܤ(ݔ)௜,௠ܤ௞ݔ

଴
ଵ

଴ ቃ
்

 

       = ொషభ

ଶ௠ା௞ାଵ
ቈ

൫೘
బ ൯

ቀమ೘శೖ
೔శೖ ቁ

,
൫೘

భ ൯

ቀమ೘శೖ
೔శೖశభቁ

, ⋯ ,
൫೘

೘൯

ቀ మ೘శೖ
೔శೖశ೘ቁ

቉
்

,           ݅, ݇ = 0,1, ⋯ , ݉.                                     (21) 

 
Thus we obtain finally  

 

෍ ܿ௜ݔ௞ܤ௜,௠(ݔ)
௠

௜ୀ଴

= ෍ ܿ௜ ൮෍ ݁௞,௜
௝

௠

௝ୀ଴

൲(ݔ)௝,௠ܤ
௠

௜ୀ଴

= ෍ (ݔ)௝,௠ܤ ൭෍ ܿ௜݁௞,௜
௝

௠

௜ୀ଴

൱
௠

௝ୀ଴

 

                                         = ∑ൣ்(ݔ)߶ ܿ௜݁௞,௜
଴௠

௜ୀ଴ , ∑ ܿ௜݁௞,௜
ଵ ,௠

௜ୀ଴ ⋯ , ∑ ܿ௜݁௞,௜
௠௠

௜ୀ଴ ൧்
 

                                         = ,௞,଴݁ൣ்(ݔ)߶ ݁௞,ଵ, ⋯ , ݁௞,௠൧ܥ = ்(ݔ)߶
௞ܸାଵ(22)                    , ܥ 

where ௞ܸାଵ(݇ = 0,1, ⋯ , ݉) is an(݉ + 1) × (݉ + 1) matrix that has vectors ݁௞,௜(݅ =
0,1, ⋯ , ݉) given, for each columns. If we choose an (݉ + 1) × (݉ + 1) matrix ̅ܥ =
[ ଵܸܿ, ଶܸܿ, ⋯ , ௠ܸାଵܿ ], from (19) and (22) we can write: 

 
்(ݔ)߶(ݔ)߶்ܥ  ≃  (23)                                             ்ܣ̅ܥ்(ݔ)߶

 
 and therefore we obtain the operational matrix of product, ܥመ =   .்ܣ

 

4. SOLUTION OF BRATU EQUATION 

Consider Bratu equation given in (1). We first approximate derivative by the Bernstein 
basis   as follows:  

(ݔ)′′ݑ  =  (24)                                                         (ݔ)߶்ܥ
 where  

்ܥ  = [ܿ଴, ܿଵ, ⋯ , ܿ௠],                                                    (25) 
 ߶் = ଴,௠ܤൣ , ଵ,௠ܤ , ⋯ ,  ௠,௠൧,                                         (26)ܤ

are unknowns. Using initial conditions (ݔ)ݑ can be represented as  
(ݔ)ݑ = ߶ଶ்ܲܥ =  (27)                       ,߶்ܩ

where ்ܲܥଶ =  and ܲ is the operational matrix of integration. Here we use the Taylor்ܩ
expansion of the strongly nonlinear term as:  

݁௨ = 1 + ݑ +
ଶݑ

2 +
ଷݑ

3! +
ସݑ

4!  
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 Also using (5) and (23) we approximate constant functions 1 and nonlinear terms 
by the Bernstein basis as:  

1 = ்݀߶,                                                     (28) 
(ݔ)ଶݑ = ܩ்߶߶்ܩ =  (29)                              ,ܩ෠ܩ்߶
(ݔ)ଷݑ =  (30)                                                ,ܩ෠ଶܩ்߶
(ݔ)ସݑ =  (31)                                                ,ܩ෠ଷܩ்߶

 

 Now, by substituting (27) and (28)(31), into (1) we have  

ܥ்߶       = ߣ ቀ߶்݀ + ܩ்߶ + ଵ
ଶ

ܩ෠ܩ்߶ + ଵ
ଷ!

ܩ෠ଶܩ்߶ + ଵ
ସ!

 ቁ                         (32)ܩ෠ଷܩ்߶
 or  

߶் − ൬ܥ − ߣ ቀ߶்݀ + ܩ்߶ + ଵ
ଶ

ܩ෠ܩ்߶ + ଵ
ଷ!

ܩ෠ଶܩ்߶ + ଵ
ସ!

ቁ൰ܩ෠ଷܩ்߶ = 0.              (33) 

  Finally, we obtain the following linear system of algebraic equations:  

 ൬ܥ − ߣ ቀ߶்݀ + ܩ்߶ + ଵ
ଶ

ܩ෠ܩ்߶ + ଵ
ଷ!

ܩ෠ଶܩ்߶ + ଵ
ସ!

ቁ൰ܩ෠ଷܩ்߶ = 0,              (34) 

that by solving this system we can obtain the vector ܥ. Consequently determine the 
approximate value of (ݔ)ݑ can be calculated from (27).  

 

5. ILLUSTRATIVE EXAMPLE 

Below we use the presented approach in order to solve a Bratu equation.  

Example. Consider the second-order initial value problem [1,3,15]  
 

(ݔ)ᇱᇱݑ − ௨(௫)݁ߣ = 0,           0 < ݔ < 1,                (35) 
 

subject to the initial condition (0)ݑ = ᇱ(0)ݑ = 0. The exact solution is (ݔ)ݑ =
2ln (cos(ݔ)). By applying the technique described in Section 4, in Figure 2 the exact 
solution together with the approximate solutions (ݔ)ݑ show for different values of 
݉ = 6, 8, 12 and ߣ = 2. The approximate values of (ݔ)ݑ converge to the exact solutions 
with increase in the number of the Bernstein basis. In Table 1, the obtained results of BPs 
with ݉ = 12 and methods in [4] are showed.   

 
Figure 2. The exact solution: (blue line) and when 2=  approximation 
solutions for m = 12 (red line), m = 8 (dotted) and m = 6 (Longdashed). 
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Table 1. Solution of Bratu equation. 

x Exact BPEs EVIM BPs 
0.03448 0.00118911 0.00118 0.00117 0.00118912 
0.10345 0.010721 0.01061 0.0105 0.0107219 
0.17241 0.0298737 0.02958 0.02929 0.0298804 
0.24138 0.058839 0.05825 0.05766 0.0588668 
0.31034 0.097897 0.09692 0.09592 0.0979798 
0.37931 0.147465 0.14689 0.14632 0.147662 
0.44828 0.20807 0.20599 0.20391 0.208484 
0.51724 0.280393 0.27761 0.27483 0.281178 
0.58621 0.365339 0.36178 0.35822 0.366712 
0.65517 0.464004 0.45943 0.45485 0.466255 
0.72414 0.577847 0.57211 0.56638 0.581339 
0.79313 0.708731 0.70165 0.69462 0.713882 
0.86207 0.858899 0.85038 0.84186 0.866119 
0.93103 1.03165 1.02144 1.01122 1.04121 
1 1.23125 1.21906 1.20687 1.24298 
 
 

6. CONCLUSION 

In this work we have performed an accurate and efficient approachbased using the 
Bernstein polynomials for solving the second-order initial value problems of Bratutype. 
The Bernstein polynomials operational matrixes of integration and multiplication are 
used to reduce the problem to the solution of nonlinear algebraic equations. Illustrative 
example are presented to demonstrate the applicability and validity of the approach. We 
used Mathematica for computations.  
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ABSTRACT Let G be a molecular graph with vertex set V(G) and dG(u,v) be the topological 
distance between vertices u and v in G. The Hosoya polynomial H(G,x) of G is a polynomial 
  )(},{

),(
GVvu

vuGdx  in variable x. In this paper, we obtain an explicit analytical expression 
for the expected value of the Hosoya polynomial of a random benzenoid chain with n 
hexagons. Furthermore, as corollaries, the expected values of the well-known topological 
indices: Wiener index, hyper-Wiener index and TratchStankevitchZefirov index of a 
random benzenoid chain with  n hexagons can be obtained by simple mathematical 
calculations, which generates the results given by I. Gutman et al. [Wiener numbers of random 
benzenoid chains, Chem. Phys. Lett. 173 (1990) 403408]. 
 
KEYWORDS Wiener index • random benzenoid chain • Hosoya polynomial • expected value 
• generating function. 

 

1. INTRODUCTION 

A molecular graph ( or chemical graph) is a representation of the structural formula of a 
chemical compound in terms of graph theory. Specifically, a molecular graph is a simple 
graph whose vertices correspond to the atoms of the compound and edges correspond to 
chemical bonds. Note that hydrogen atoms are often omitted. For example, benzenoid 
chains are molecular graphs of unbranched catacondensed benzenoid hydrocarbons. 
Molecular structure descriptors (or topological indices) of molecular graphs are graph 
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invariants and are used for Quantitative Structure-Activity Relationship (QSAR) and 
Quantitative Structure-Property Relationship (QSPR) studies, which mainly focus on 
structure-dependent chemical behaviours of molecules [4, 18]. 

Let G  be a molecular graph with vertex set V(G), dG(u,v) be the topological distance 
(or distance for short) between vertices u  and v  in G , i.e., the length of a shortest path 
connecting u and v  in G. The subscript is omitted when there is no risk of confusion. The 
Hosoya polynomial} in variable x of G , introduced by Hosoya [12], is defined as 

,),( )(},{
),(  GVvu

vuGdxxGH where the sum is taken over all unordered pairs of (not 

necessarily distinct) vertices in G . Hence the polynomial contains the number of vertices 
as the constant term. 
 The Hosoya polynomial not only contains more information concerning distance in 
the molecular graph than any of the hither to proposed distance-based molecular structure 
descriptors, which were extensively studied in chemical graph theory, see for instance the 
surveys [16, 17], but also deduces some of them. For example, Wiener index ( )W G  of a 
molecular graph G  [20], the oldest and most well-studied molecular structure descriptor so 
far, is equal to the first derivative of the Hosoya polynomial in 1x  , i.e., 

.),()( 1 x
x

xGH
d
dGW                                             (1) 

 The chemical applications and mathematical properties of ( )W G  are well 
documented [5, 6, 9, 10]. Moreover, hyper-Wiener index ( )WW G [14], 
TratchStankevitchZefirov index ( )TSZ G  [19] can be deduced from ( , )H G x  as follows: 

,),(
2
1)( 12

2

 xxGHx
dx
dGWW                                                  (2) 

.),(
!3

1)( 1
2

3

3

 xxGHx
dx
dGTSZ                                                 (3) 

 Two classes of general molecular structure descriptors 

1
1 ),(

!
1




x
k

k

k

xGHx
dx
d

k
and  1),(

!
1

xk

k

xGH
dx
d

k
 

for positive integers k were also studied in Refs. [2, 15]. On the other hand, recently 
Brückler etc. [2] proposed a new class of distance-based molecular structure descriptors: Q-
indices, which can reflect the fact that any kind of interaction between physical objects (in 
particular, between atoms in a molecule) decrease with increasing distance, and showed 
that Q-indices are equal to the Hosoya polynomial.  So the Hosoya polynomial and the 
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quantities derived from it will play a significant role in QSAR and QSPR researches, and 
abundant literature appeared on this topic [3, 8,21, 22, 23]. 

Let Bn+1  denote a benzenoid chain with n+1  hexagons ( 0n  ). There are obviously 
unique benzenoid chains Bn+1 for  0,1n  . More generally, a benzenoid chain 1nB   can be 

regarded as a benzenoid chain nB  to which a new terminal hexagon un, y1, y2, y3, y4, vn  has 
been adjoined. However, when 2n  ,  the terminal hexagon can be attached in three ways, 
resulting in the local arrangements we describe as 1

1nB  ,  2
1nB  , 3

1nB  , according to the related 
position of the terminal hexagon shown in Figure 1.  

1y
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nB nB
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nu nu
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1?nB  

Figure 1. The three types of local arrangements in benzenoid chains 1nB   

 A random benzenoid chain, 1nR   with 1n   hexagons, is a benzenoid chain obtained 

by stepwise additions of terminal hexagons. As the initial steps, 1 1R B , 2 2R B , and for 
each step k  ( 2 k n  ) a random selection is made from one of the three possible 
constructions: 

1
1 kk BB , with probability  p1, 

2
1 kk BB , with probability p2 or 

3
1 kk BB , with probability  q=1- p1- p2. 

 We assume the probabilities p1 and  p2 are constants, invariant to the step parameter 
k. That is, the process described is a Markov chain of order zero with a state space 
consisting of three states [7]. 
 In the present paper, we calculate the expected value of the Hosoya polynomial of a 
random benzenoid chain nR  and give an explicit analytical expression by using the 
mathematical method: generating function. As corollaries, formulae for the expected values 
of some topological indices deduced from the expression can be obtained by using simple 
mathematical operators. 
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2. RECURSION RELATIONS OF HOSOYA POLYNOMIALS OF RANDOM  
            BENZENOID CHAINS 
 
Let G  be a connected graph with vertex set ( )V G . For the simplicity, we define one 
notation as follows: for a vertex uV(G), 
 

,);(
)(

),( 


GVv
vud

G xxuH  

i.e., the contribution of the vertexu  to the Hosoya polynomial H(G,x) of G . As described 
above in the previous section, a benzenoid chain Bn+1 is obtained by attaching to a 
benzenoid chain nB  a terminal hexagon consisting of vertices un, y1, y2, y3, y4, vn (see 
Figure 1).  For this construction the following relations are easily obtained  [10]: 
 

1);();( 23
11  xxxxuxHxyH nnBnB                                         (4a) 

,12);();( 22
21  xxxuHxxyH nnBnB                                           (4b) 

,12);();( 22
31  xxxvHxxyH nnBnB                                           (4c) 

,1);();( 23
41  xxxxvxHxyH nnBnB                                        (4d) 

and 

 



4

1

23
11 ).32();(),(),(

i
inBnn xxxxyHxBHxBH                      (5) 

 Note that the last term on the right-hand side of Eq. (5) appears because the 
contribution of pairs of vertices iy  and jy  (1 4i j   ) to H(Bn+1,x) are calculated twice 
in the second term on the right-hand side of Eq. (5). Substituting  Eq. (4) for Eq.(5), we get  
 

.432));();(()1(),(),( 23
1  xxxxvHxuHxxxBHxBH nBnBnn nn

     (6) 

 In fact, the equations discussed above associated with a concrete benzenoid chain 
are valid for a random benzenoid chain, i.e., Eqs. (4)-(6) still hold when we simultaneously 
replace Bn+1  for  Rn+1and  Bn for Rn. 

In the following we consider  contributions of 1nu   and 1nv   to H(Bn+1,x) according to 
the positions of un+1 and vn+1. There are three cases to consider: 

Case 1. Bn+1 1
2nB . In this case, un+1 = y1 and vn+1=y2=. Consequently, 

);();( 11 11
xyHxuH

nn BnB 
  and ,);();( 21 11

xyHxvH
nn BnB 

  which are given by Eqs. (4a) 

and (4b), respectively. 



Hosoya polynomials of random benzenoid chains                                                                      33 

Case 2. Bn+1 2
2nB . In this case,  31 yun   and 41 yvn  . Consequently, 

);();( 31 11
xyHxuH

nn BnB 
  and ,);();( 41 11

xyHxvH
nn BnB 

 , which are given by Eqs. (4c) 

and (4d), respectively. 
Case 3. Bn+1 3

2nB . In this case, un+1=y2 and 31 yvn  . Consequently, 

,);();( 21 11
xyHxuH

nn BnB 
  and ,);();( 31 11

xyHxvH
nn BnB 

 , which are given by Eqs. (4b) 
and (4c), respectively. 

 
For a random benzenoid chain Rn+1, H(Rn+1,x), );( 11

xuH nRn 
 and );( 11

xvH nRn 
are 

random variables and we denote their expected values by )(,)( 11 xUxH nn    and )(1 xVn , 
respectively, i.e., 
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

  

Since the above three cases occur in random benzenoid chains with probabilities p1, p2 
and 1p1p2, respectively, by the definition of the expected value we immediately obtain 

 

),;();();()( 232111 111
xyqHxyHpxyHpxU

nnn RRRn 
                       (7a) 

  ),;();(;)( 342211 111
xyqHxyHpxyHpxV

nnn RRRn 
                      (7b) 

Substituting the corresponding analogues associated with random benzenoid chains  Rn 
and  Rn+1 to Eq. (4) for Eq. (7), we get 

 

,)1()();();()()( 2
1

32
2

2
11  xpxxxvHxpxuHqxxpxU nRnRn nn

        (8a) 

,)1()();();()()( 2
2

32
1

2
21  xpxxxuHxpxvHqxxpxV nRnRn nn

         (8b) 
 

By applying the expectation operator to Eq. (8), and noting that )())(( 11 xUxUE nn    

and )())(( 11 xVxVE nn   , we obtain 
 

,)1()()()()()( 2
1

32
2

2
11  xpxxxVxpxUqxxpxU nnn                       (9a) 

2
2

32
1

2
21 )1()()()()()(  xPxxxUxpxVqxxpxV nnn                          (9b) 

 
A recursion relation for the expected value of the Hosoya polynomial of a random 

benzenoid chain can be obtained from Eq. (6) by using Rk in place of  Bk  (k=n, n+1) and by 
using the expectation operator: 

 

.432))()(()()()( 232
1  xxxxVxUxxxHxH nnnn                      (10) 
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The system of recursion equations (9) and (10) holds for  n ≥ 0, and has boundary 
conditions: 

.1)(,1)(,2)( 000  xxVxxUxxH                            (11) 

3.  SOLUTION FOR THE SYSTEM OF RECURSION EQUATIONS 

To solve the recursion equations (9) and (10), we use the method of the generating function 
[1]. First define the following generating functions in variable t. Let  
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From  Eqs. (9)(11), we get relations of their generating functions as follows: 
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23
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


 x

t
xxxttVtUtxxtHttH                     (12c) 

As Eqs. (12a) and (12b) comprise a system of two linear equations in two variables 
U(t) and  V(t), a straight forward calculation results in 

 

,
1

1
1

1
)1)(1(

)1()(
)1)(1(

)1)(1(
)1)(1(
)1()1(

)1()1(
)1()( 2

232
212

2
1

2
1

2
1






























xttxqtt

xxtppp
tx

xxp
txx

xxp
xtx

xxptU        (13a) 

.
1

1
1

1
)1)(1(

)1()(
)1)(1(

)1)(1(
)1)(1(
)1()1(

)1)(1(
)1()( 2

232
121

2
2

2
2

2
2






























xttxqtt

xxtppp
tx

xxp
txx

xxp
xtx

xxptV    (13b) 

Substituting Eq. (13) for Eq. (12) and then rearranging, we can easily get: 
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Applying two special cases of Newton's generalized binomial theorem 
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to Eq. (14) and then rearranging it, we get 
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4. RESULTS AND DISCUSSION 

From Eq. (15), we have the following main theorem. 

Theorem 4.1. Let Hn(x) be the expected value of the Hosoya polynomial of a random 
benzenoid chain with n  hexagons. Then 

;6663)( 23
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and  when  and  n ≥3, 
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We can obtain some corollaries by taking parameters as special values or Eqs. (1)(3). 
When q =1 (in this case  p1 = p2 = 0), a random benezoid chain is definitely a linear 
benzenoid chain, i.e., a benzoid chain without no turns. So from Theorem 4.1 we have 
 
Corollary 4.2. [21] Let G be a benzenoid chain with n hexagons. If  G has no turns, then 
the Hosoya polynomial of G is 

2 2 2 2

2
( 4)( 1) 2 ( 1)( 1)( , ) 2 .

1 ( 1)

nn x x x x x xH G x x
x x

    
   

 
 

If  p1=1 or  p2=2, a random benzenoid chain with n hexagons is definitely a helicene with  n 
hexagons, then we get 
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Corollary 4.3.  [21] Let G be a helicene with n hexagons. Then the Hosoya polynomial of  
G is 
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 In addition, from Eqs. (1)(3), we can obtain the expected values of some molecular 
structure descriptors from Theorem 4.1. 
 
Corollary 4.4. [13] The expected value Wn of the Wiener index of a random benzenoid 
chain with n hexagons is 
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Corollary 4.5. The expected value  WWn of the hyper-Wiener index of a random benzenoid 
chain with  n hexagons is 
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Corollary 4.6. The expected value  TSZn of the Tratch-Stankevitch-Zefirov index of a 
random benzenoid chain with n  hexagons is 
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ABSTRACT The idea of “forcing” has long been used in many research fields, such as 
colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin 
squares, block designs and Steiner systems in combinatorics [D. Donovan, E. S. 
Mahmoodian, C. Ramsay, A. P. Street, Defining sets in combinatorics: A survey, in: C. 
D. Wensley (Ed.), Surveys in Combinatorics, Cambridge Univ. Press, 2003, pp. 
115174]. Recently, the forcing on perfect matchings has been attracting more 
researchers’ attention. A forcing set of a perfect matching M of a graph G is a subset of 
M contained in no other perfect matchings of G. A global forcing set of G, introduced by 
Vukičević et al., is a subset of E(G) on which there are distinct restrictions of any two 
different perfect matchings of G. Combining the above “forcing” and “global” ideas. Xu 
et al. in [Complete forcing numbers of catacondensed benzenoid, J. Combin. Optim. 29 
(2015) 803814.] introduced a complete forcing set of G defined as a subset of E(G) on 
which the restriction of any perfect matching M of G is a forcing set of M. The minimum 
cardinality of complete forcing sets is the complete forcing number of G. In this paper, 
we give the explicit expressions for the complete forcing number of several classes of 
polyphenyl systems. 
 
KEYWORDS Complete forcing number • polyphenyl system • global 
forcing number. 

 

1. INTRODUCTION 

The molecular graphs (or more precisely, the graphs representing the carbon-atoms) of 
polyphenyls are called the polyphenyl systems. This kind of macrocyclic aromatic 
hydrocarbons called polyphenyls and their derivatives attracted the attention of chemists 
for many years [3, 4, 5]. The derivatives of polyphenyls are very important organic 
chemicals, which can be used in organic synthesis, drug synthesis, heat exchanger, etc. 
Biphenyl compounds also have extensive industrial applications. For example, 4,4bis 
(chloromethyl) biphenyl can be used for the synthesis of brightening agents. Especially, 
polychlorinated biphenyls (PCBs) can be applied in print and dyeing extensively [6, 7]. 
On the other side, PCBs are dangerous organic pollutants, which lead to global pollution. 
Many years ago, a series of physical properties were discussed [813]. 
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A perfect matching M (or Kekulé structure, 1-factor) of a graph G is a set of 
independent edges such that every vertex of G is incident with exactly one edge in M.       

Let G be a graph with edge set E(G) that admits a perfect matching M. A forcing set 
of M is a subset S of M contained in no other perfect matchings of G. The minimum 
possible cardinality of forcing set S is called the forcing number of M.  

The notions of a forcing edge and the forcing number of a perfect matching first 
appeared in 1991 in a paper of Harary, Klein and Živković [14]. The root of these 
concepts can be traced to the works [15, 16] by Randić and Klein in 19851987, where 
the forcing number was introduced under the name of “innate degree of freedom” of a 
Kekulé structure, which plays an important role in the resonance theory in chemistry. 

Over the past two decades, more and more mathematicians were attracted to the 
study on forcing sets (including forcing edges and forcing faces, etc) and the forcing 
numbers of perfect matchings of a graph. The scope of graphs in consideration has been 
extended from polyhexes to various bipartite graphs and non-bipartite graphs.    

Some varied topics such as global (or total) forcing matchings and anti-forcing 
matching also emerged.  

Klein and Randić [15] proposed the degree of freedom of a graph from the global 
point of view, defined as the sum of forcing numbers over all perfect matchings of a 
graph, and showed by evidence that the degree of freedom of a chemical graph actually 
measures graphical characteristics distinct from those measured by a couple of common 
resonance energy estimators. Because of extensive industrial and medical applications, 
one class of chemical graph-macrocyclic aromatic hydrocarbons called polyphenyls and 
their derivatives attracted the attention of chemists for many years [3, 4, 5]. A series of 
linear and branched polyphenyls and their derivatives were synthesized and some 
physical properties were discussed [813]. 

 Gutman [17] showed that the values which the Wiener indices of isometric 
polyphenyls may assume are all congruent modulo 36. Bian and Zhang [18, 19] 
determined the polyphenyl chain with minimum and maximum Wiener (or edge-Wiener) 
indices among all the polyphenyl chains with n hexagons. Li and Bian [20] gave the 
extremal polyphenyl chains concerning k-matchings and k-independent sets. In 2013, Ma 
and Bian [21] also gave the extremal polyphenyl spiders concerning k-matchings and k-
independent sets. A complete forcing set of G, introduced by Xu et al. [2] recently, is a 
subset of E(G) on which the restriction of any perfect matching is a forcing set of the 
perfect matching. The minimum possible cardinality of complete forcing sets of G is the 
complete forcing number of G, denote it by cf(G). Xu et al. gave an expression for the 
complete forcing number of a hexagonal chain and a recurrence relation for complete 
forcing number of cata-condensed hexagonal system. In 2014, Xu et al. [22] by the 
constructive proof, gave an explicit analytical expression for the complete forcing 
number of a primitive coronoid, a circular single chain consisting of congruent regular 
hexagons. 

Based on these works, in this paper, we give the explicit expressions for the 
complete forcing number of several classes of polyphenyl systems. 
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2. PRELIMINARIES  

All graphs in this paper are simple connected and have perfect matchings. For all terms 
and notations used but not defined here, we refer the reader to the textbooks [23, 24]. 

 
Figure 1. A tree-like polyphenyl system and corresponding tree. 

 A polyphenyl system H is said to be tree-like (see Figure 1), if each vertex of H 
lies in a hexagon and the graph obtained by contracting every hexagon into a vertex in 
original molecular graph is a tree. 
 A hexagon r of a tree-like polyphenyl system may have one, two, three, four, five 
or six neighboring hexagons. If r has one neighboring hexagon, then it is said to be 
terminal, and internal otherwise. Also it is branched if it has three or more neighboring 
hexagons. 
 
Definition 1. If every hexagon in a polyphenyl system has exactly two neighboring 
hexagons, then it is called primitive coronoid polyphenyl system. The set of primitive 
coronoid polyphenyl systems with n hexagons is denoted by CHn (see Figure 2). 

  
Figure 2. A primitive coronoid polyphenyl system with 8 hexagons. 
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Definition 2. A tree-like polyphenyl system without branched hexagons is called a 
polyphenyl chain. A polyphenyl chain with n hexagons is denoted by Hn (see Figure 3).  

 
Figure 3. A polyphenyl chain with 7 hexagons. 

For a hexagon C, two vertices u and v of C are said to be in orthoposition if they 
are adjacent in C. If two vertices are at distance 2, they are in metaposition. Finally, if u 
and v are at distance 3, we say that they are in paraposition. Examples of pairs of 
vertices in ortho, meta, and paraposition are shown in Figure 4. 

  
Figure 4. Orhto, meta, and parapositions of vertices u and v in C. 

 
An internal hexagon C in a polyphenyl chain is called orthohexagon, 

metahexagon, or parahexagon, if the two vertices of C incident with two edges which 
connect other two hexagons are in ortho, meta, or paraposition, respectively. 
 Following  Lovász and Plummer [24], an edge of G is said to be allowed if it is 
contained in some perfect matching of G and forbidden otherwise. 
 
Theorem 1. Let H be a tree-like polyphenyl system with n hexagons. Then we have cf(H) 
= 2n. 
 
Proof. Suppose that H is a tree-like polyphenyl system with n hexagons. 

First we claim that every edge incident with the terminal hexagons is forbidden edge. 
In fact, if an edge incident with a terminal hexagon C is allowed edge, then it lies in some 
perfect matching M of H, hence, the number of the rest of vertices in C besides the vertex 
incident with the allowed edge is odd, which contradicts that H has the perfect matching.  
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We can delete all edges incident with terminal hexagons, and obtain the resulting 
graph, which consists of a small tree-like polyphenyl system and some independent 
hexagons. 

Now we consider the small tree-like polyphneyl system, we also can show that every 
edge incident with the terminal hexagons of the small polyphenyl system is forbidden 
edge, then we delete all edges incident with terminal hexagons of the small tree-like 
polyphenyl system again. By iterating the same proceed, until the resulting graph is an 
independent hexagon. We can conclude that all edges between the two hexagons are 
forbidden edges, and the edges lie in every hexagon are allowed edges of H. Moreover, 
there are two perfect matchings in each hexagon, the union of perfect matching of each 
hexagon will be a perfect matching of H, and the number of perfect matching of H is 2n. 

By definition of complete forcing number, we take any two adjacent edges in every 
hexagon, the set of these edges will be a complete forcing set of H. Then we have cf(H) = 
2n.                                                                                                                                        ■ 

 
Since the polyphenyl chain can be viewed as a special tree-like polyphenyl system, as 

a corollary of Theorem 1, we easily have the following result. 
 
Corollary 2. Let Hn be any polyphenyl chain with n hexagons. Then we have cf(Hn) 

=2n. 
 
For a primitive coronoid polyphenyl system CH, the metahexagon in CH will affect 

the number of perfect matchings of CH, according to whether CH has metahexagons or 
not, we distinguish the following two cases. 
 
Theorem 3. Let CHn be a primitive coronoid polyphenyl system with n hexagons such 
that CHn has no metahexagons. Then we have cf(CHn) = 2n + 1. 
 
Proof. By the assumption, any hexagon C of CHn is either orthohexagon or 
parahexagon, so the two vertices of C incident with two edges which connect other two 
hexagons are in orthoposition or paraposition. 

First, we claim that G has a perfect matching M consisting of edges connecting two 
hexagons with the remainder two independent edges of every hexagon by deleting the 
two ortho (or para) position vertices of C. Moreover, every hexagon has two perfect 
matchings, the union of a perfect matching of every hexagon will be a perfect matching 
of CHn. So the number of perfect matchings of CHn is 2n + 1. 

We can obtain a complete forcing set of CHn by taking any one edge connecting two 
hexagons and two adjacent edges of every hexagon in CHn. Hence, the complete forcing 
number of CHn is 2n + 1.                                                                                                     ■ 

 
Theorem 4. Let CHn be any primitive coronoid polyphenyl system with n hexagons such 
that CHn has at least one metahexagon. Then we have cf(CHn) = 2n. 
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Proof. According to assumption, CHn has at least one metahexagon C. We claim that 
none of the two edges incident with the two meta-position vertices of C is allowed edge. 
In fact, if one of the two edges is allowed edge, then it must be matched by some perfect 
matching M of CHn, in this case, the remainder vertices of C besides the vertex incident 
with the allowed edge cannot be completely matched by M, which contradicts that M is a 
perfect matching of CHn. 

So, the vertices of every hexagon in CHn must be matched by themselves in M, 
namely, any edge connecting two hexagons must be forbidden edge of CHn. The resulting 
graph is the set of independent hexagons by deleting all the forbidden edges of CHn. It is 
clear that the number of perfect matchings of CHn is 2n, and we can obtain the complete 
forcing set of CHn by taking two adjacent edges of every hexagon of CHn. Hence, the 
complete forcing number of CHn is 2n.                                                                               ■ 

 
4. CONCLUDING REMARKS 

In this section, we discuss the global forcing number of the polyphenyl system. For a 
simple connected graph G with a perfect matching, let M(G) denote the set of all perfect 
matchings in G, and f : M(G) → {0, 1}|E(G)| a characteristic function of perfect matchings 
of G. Any set S ⊆ E(G) such that f|S is an injection is called a global forcing set in G, and 
the cardinality of smallest such S is called the global forcing number of G. Tomislav 
Došlić et al. showed that the global forcing number of graph G has lower bound 
⌈log2|M(G)|⌉ and upper bound |E(G)| − |V (G)| + 1. We can easily show that the lower 
and upper bounds of the global forcing number for a tree-like polyphenyl system with n 
hexagons (in particular a polyphenyl chain with n hexagons) and a primitive coronoid 
polyphenyl system with n hexagons which has no meta- hexagons are all tight. And the 
global forcing number of a tree-like polyphenyl system with n hexagons (in particular a 
polyphenyl chain with n hexagons) is n, the global forcing number of a primitive 
coronoid polyphenyl system with n hexagons which has no metahexagons is n+1. For a 
primitive coronoid polyphenyl system with n hexagons which has at least one 
metahexagon, only the lower bound of the global forcing number for this primitive 
coronoid polyphenyl system is tight, and the global forcing number of it is n. These 
results are similar to that of the complete forcing number of the polyphenyl system. 
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ABSTRACT A quantitative structure-activity relationship (QSAR) study was conducted 
for the prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one 
analogues as inhibitors of 5-Lipoxygenase. The inhibitory activities of the 1-phenyl[2H]-
tetrahydro-triazine-3-one analogues modeled as a function of molecular structures using 
chemometrics methods such as multiple linear regression (MLR) and least squares 
support vector machines (LS-SVM). The obtained models were applied to predict the 
inhibitory activity of compounds which were not in the modeling procedure. The results 
of models showed high prediction ability with root mean square error of prediction of 
0.167 and 0.061 for MLR and LS-SVM, respectively. The LS-SVM method was used for 
prediction of inhibitory activity of the new inhibitor derivatives. 
 
KEYWORDS QSAR • 1phenyl[2H]tetrahydrotriazine3oneanalogues • MLR • 
LSSVM. 

 

1. INTRODUCTION 

Lipoxygenases (LOs) are a class of widely occurring, non-heme iron-containing 
oxygenases that can be isolated from animals, higher plants, and fungi. Currently, three 
distinct mammalian LOs have been characterized, 5-LO, 12-LO, and 15-LO, which 
oxygenate arachidonic acid at specific carbon centers (C5, C12, and C15, respectively) 
[1].The 5-Lipoxygenase is the first dedicated enzyme in the biosynthetic pathway leading 
to the leukotrienes. Since leukotrienes have been implicated as important mediators in 
such diseases as asthma, psoriasis, ulcerative colitis, and rheumatoid arthritis, inhibition 
of 5-Lipoxygenase offers a potential approach for the therapy of these diseases [2]. 
 In the present study, the inhibitory activity data of 1-phenyl[2H]-tetrahydro-
triazine-3-one analogues as inhibitors of 5-Lipoxygenase were used to construct a 
mathematical model with structural information, a so-called QSAR (quantitative 
structure–activity relationship). Quantitative structure-activity relationships (QSAR) are 
an important tool in agrochemistry, pharmaceutical chemistry, toxicology, and eventually 



48                                                                                      BAGHBAN SHAHRI, NIAZI AND AKRAMI 

most facts of chemistry [3, 4]. QSAR models are mathematical equations which relate 
chemical structure of a compound to its physical, chemical, biological and technological 
properties. The main goal of QSAR studies is to establish an empirical rule or function to 
relate the structural descriptors of compounds under investigation to bioactivities. This 
rule or function is then utilized to predict the same bioactivities of compounds which are 
not involved in the training set from their structural descriptors. Model development in 
QSAR studies comprises different critical steps as (1) descriptor generation, (2) data 
splitting to calibration (or training) and prediction (or validation) sets, (3) variable 
selection, (4) finding appropriate model between selected variables and activity and (5) 
model validation [5].  
 Among the investigation of QSAR, one of the most important factors affecting the 
quality of the model is the method to build the model. Many multivariate data analysis 
methods such as multiple linear regression (MLR) [6, 7], artificial neural network (ANN) 
[8] and partial least squares (PLS) [9] have been used in QSAR studies. MLR, as most 
commonly used chemometrics method, has been extensively applied to QSAR 
investigations. The artificial neural network (ANN) offers satisfactory accuracy in most 
cases but tends to over fit the training data. The PLS method is based on factor analysis 
that is originally suggested and chemically applied by Wold et al [10]. The support vector 
machine (SVM) is a popular algorithm developed from the machine learning community. 
Due to its advantages and remarkable generalization performance over other methods, 
SVM has attracted attention and gained extensive applications [11, 12]. As a 
simplification of traditional SVM, Suykens and Vandewalle [13, 14] have proposed the 
use of least-squares SVM (LS-SVM). LS-SVM encompasses similar advantages as SVM, 
but its additional advantage is that it requires solving a set of linear equations (linear 
programming), which is much easier computationally [15, 16]. In this study, the MLR 
and LS-SVM methods were proposed to model and predict the inhibitory activity of 1-
phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-Lipoxygenase. 
 
2. THEORY 

The LS-SVM [13] is capable of dealing with linear and nonlinear multivariate 
calibration. In LS-SVM a linear estimation is made in kernel-induced feature space (y = 
wT(x) + b). As in SVM, it is necessary to minimize a cost function (C) containing a 
penalized regression error, as follow: 
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for all Ni ,...,1 , where  denotes the feature map.  
 The first part of this cost function is a weight decay which is used to regularize 
weight sizes and penalize large weights. Due to this regularization, the weights converge 
to similar value. Large weights deteriorate the generalization ability of the LS-SVM 
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because they can cause excessive variance. The second part of Eq. (1) is the regression 
error for all training data. The parameter , which has to be optimized by the user, gives 
the relative weight of this part as compared to the first part. The restriction supplied by 
Eq. (2) gives the definition of the regression error. Eq. (1) and its restriction given by Eq. 
(2), could be concluded to be a typical problem of convex optimization [14] which might 
be solved by the Lagrange multipliers method, as follow: 

 
 


N

i
iii

N

i

T
i yebxwewL

1 1

22
)3(})({

2
1   

where 

., 2

1

2

1

2

1





























































N

i

N

i

N

i and

e

e
e

e

y

y
y

y








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generates  the weights that are the linear combinations of the training data:  
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where a positive definite kernel is used as follows: 
)7()()(),( j

T
iji xxxxK   

 An important result of this approach is that the weights )(w  can be written as 
linear combinations of the Lagrange multipliers with corresponding data training )( ix . 

Substituting the result of Eq. (6) into the original regression line ),)(( bxwy T    the 
following result is obtained: 
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for a point iy  to be evaluated it is: 
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The   vector follows from solving a set of linear equation: 
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where M  is a square matrix given by: 
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Where K  denotes the kernel matrix with ijth  element )()(),( j
T
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denotes the identity matrix ,NN   .]111[1 T
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As demonstrated in Eqs. (11) and (12), all Lagrange multipliers (the support vectors) are 
usually nonzero, which means that all training objects contribute to the solution. In 
contrast, with standard SVM the LS-SVM solution is usually not sparse. However, as 
described by Suykens and J. Vandewalle [13] a sparse solution can be easily achieved via 
pruning or reduction techniques. Depending on the number of training data set either 
direct solvers or iterative solvers such as conjugate gradients methods (for large data sets) 
can be used in both cases with numerically reliable methods.  
 In applications involving nonlinear regression, it is enough to change the inner 
product )(),( ji xx   of Eq. (9) by a kernel function and the ijth  element of matrix K  

equals ).()( j
T

iij xxK  If this kernel function meets Mercer’s condition, the kernel 

implicitly determines both a nonlinear mapping, )(xx  and the corresponding inner 

product ).()( j
T

i xx   This leads to the following nonlinear regression function: 
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for a point jx  to be evaluated it is:  
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 The attainment of the kernel function is cumbersome and it will depend on each 
case. However, the kernel function is more used as the radial basis function (RBF), 

),2/)(exp( 22
ji xx   a simple Gaussian function, and polynomial functions ,,

d
ji xx  

where 2  is the width of the Gaussian function and d is the polynomial degree, which 
should be optimized by the user, to obtain the support vector. For   of the RBF kernel 
and d of the polynomial kernel it is of significant importance to do a careful model 
selection of the tuning parameters, in combination with the regularization constant  , in 
order to achieve a good generalization model. 
 

3. MATERIALS AND COMPUTATIONAL METHODS 

3.1. HARDWARE AND SOFTWARE 
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The computations were made with the ASUS Personal Computer (1 GB RAM) that was 
equipped with the Windows 7 operating system and MATLAB (Version 9.0, Mathwork 
Inc.). The LS-SVM optimization and model results were obtained using the LS-SVM lab 
toolbox (Matlab/C Toolbox for Least-Squares Support Vector Machines). The MLR 
analysis with a stepwise forward selection method was carried out by using the SPSS 21 
software. Kennard-Stones program was written in MATLAB according to the algorithm 
[17, 18]. ChemOffice package (Version 2010) was used to draw the molecular structure 
and optimization by the AM1. Descriptors were calculated using Dragon software 
(Milano Chemometrics and QSAR research group, http://www.disat.unimib.it/chm/). 
These descriptors are calculated using two-dimensional representation of the molecules 
and therefore geometry optimization is not essential for calculating these types of 
descriptors. 

 

3.2. DATA SET  

The inhibitory activity values of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues were 
taken from literature [2]. The chemical structures of 1-phenyl[2H]-tetrahydro-triazine-3-
one analogues (Figure 1) and their corresponding inhibitory activity values have been 
listed in Table 1. In order to assure that training and prediction sets cover the total space 
occupied by the original data set, it was divided into parts of training and prediction set 
according to the Kennard-Stones algorithm [17, 18]. The Kennard-Stones algorithm is 
known as one of the best ways of building training and prediction sets and it has been 
used in many QSAR studies. 

 
Figure 1. Chemical structure of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues. 

 

Table 1. Structures and observed inhibitory activity of 5-Lipoxygenase of 
1-phenyl[2H]-tetrahydro-triazine-3-one analogues. 

 
No. Substitution  log(1/IC50) 

X R3′ R5′ R2 R4 R5 obsa 
1 CH H H H H CH2OCH2Ph 6.00 
2 CH H H H H Bu 5.82 
3 CH H H H H i-Pr 5.17 
4 CH H H H H Me(R) 5.17 

5 b CH H H H H Me2 5.17 
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6 CH H H H H Et 5.16 
7 b CH H H H H Me 4.94 
8 CH H H H H CH2OC2H4OMe 4.85 
9 CH H H H H Me(S) 4.85 

10 CH H H H H CO2Me 4.70 
11 b CH H H H H H 4.68 
12 CH H OCH2Ph H H H 5.96 
13 CH H Br H H H 5.31 
14 CH H Cl H H H 5.20 
15 CH H Et H H H 4.89 
16 CH H SMe H H H 4.85 

17b CH H Me H H H 4.82 
18 CH H CF3 H H H 4.77 
19 CH H F H H H 4.72 
20 CH H CN H H H 4.43 
21 CH H OMe H H H 4.33 
22 CH H NO2 H H H 4.31 
23 CH H NH2 H H H 3.75 
24 CH H Br H H Me 5.59 
25 CH H Cl H H Me 5.57 
26 CH H F H H Me 5.20 

27b CH H Me H H Me 4.72 
28 CH H H H C(=O)-i-Pr H 5.89 
29 CH H H H C(=O)Et H 5.59 
30 CH H H H C(=O)Me Me  5.48 
31 CH H H H C(=O)Me H 5.47 
32 CH H H H OCH2Ph Me 5.37 
33 CH H H H OH Me 5.22 
34 CH H H H OEt Me 5.13 
35 CH H H H OCH2Ph H 5.08 
36 CH H H C(=O)Et C(=O)Et H 4.90 
37 CH H H H OMe Me 4.65 
38 CH H H C(=O)Me C(=O)Me H 4.40 
39 N Br H H H Me 5.62 
40 N Br H H H H 5.46 
41 N Cl H H H Me 5.46 

42 b N Me H H H Me 5.42 
43 N Me H H H H 5.26 
44 N OMe H H H Me 5.26 
45 N Cl H H H H 5.25 
46 N F H H H Me 5.18 
47 N F H H H H 5.04 
48 N OMe H H H H 5.02 
49 N H H H H Me 4.66 
50 N H H H H H 4.59 
51 CH H Cl H C(=O)Me H 5.89 
52 CH H Cl H OH Me 5.41 
53 CH H F H OH Me 5.16 
54 CH Me Me H OH H 5.08 
55 CH F F H H H 5.05 
56 CH Me Me H H H 4.92 

57 b N Cl H H H H 5.48 
58 b CH H Cl H H H 5.35 
59 b CH H H H H H 4.77 
60 CH Cl Me H H H 5.48 

a Observed inhibitory activity . 
b The compounds selected as the test set. 
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3.3. MOLECULAR DESCRIPTORS 

A major step in constructing QSAR model is generation of the corresponding numerical 
descriptors of the molecular structures. Molecular descriptors define the molecular 
structure and physicochemical properties of molecules by a single number. To calculate 
the different kinds of theoretical descriptors for each molecule, the Dragon (Milano 
Chemometrics and QSAR research group, http://www.disat.unimib.it/chm/) software was 
utilized. The Dragon is able to calculate different molecular descriptors such as 
constitutional, topological, molecular walk counts, BCUT, Galvez topol. Charge indices, 
2D autocorrelations, charge, aromaticity indices, Randic molecular profiles, geometrical, 
RDF, 3D-MoRSE, WHIM, GETAWAY, functional groups, atom-centered fragments,  
properties and empirical. In this study, just GETAWAY (geometry, topology, and atom-
weights assembly) and WHIM (weighted holistic invariant molecular) descriptors were 
used. Here, 293 descriptors were calculated by Dragon for each molecule, therefore we 
have 60×293 data matrix X. The rows and columns of this matrix are the number of 
molecules and molecular descriptors respectively. 
 
4. RESULTS AND DISCUSSION 

4.1. PRINCIPAL COMPONENT ANALYSIS OF THE DATA SET  

Principal components analysis (PCA) was performed on the calculated structural 
descriptors to the whole data set (Table1), for investigation the distribution in the 
chemical space, which shows the spatial location of samples to assist the separation of the 
data into training and prediction sets. The PCA results show that three PCs (PC1, PC2 
and PC3) describe 81.35% of the overall variances (Figure 2). Since almost all variables 
can be accounted for the first three PCs, their score plot is a reliable presentation of the 
spatial distribution of the points for the data set. As can be seen in Figure 2, there is not a 
clear clustering between compounds. The data separation is very important in the 
development of reliable and robust QSAR models. The quality of the prediction depends 
on the data set used to develop the model. For regression analysis, data set was separated 
into two groups, a training set (51 data) and a prediction set (9 data) according to 
Kennard-Stones algorithm. As shown in Figure 2, the distribution of the compounds in 
each subset seems to be relatively well-balanced over the space of the principal 
components. 
 
4.2. MLR ANALYSIS 

The multivariate calibration is a powerful tool for modeling, because it extracts more 
information from the data and allows building more robust models. Among the 
descriptors calculated, the most significant molecular descriptors were identified using 
multiple linear regression analysis with a stepwise forward selection method. According 
to inhibitory activity data (Table 1), the data classified to training and prediction sets 
according to Kennard-Stones algorithm and the MLR model was run.  
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Figure 2. Principal components analysis of the descriptors for the data set,  

                  (a) PC2 versus PC1, (b) PC3 versus PC1 and (c) PC3 versus PC2. 
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 The best equation obtained for the inhibitory activity of 1-phenyl[2H]-tetrahydro-
triazine-3-one analogues derivatives was: 
 
log(1/IC50) = 3.095–1.131R7e –38.269R6U+–4.942R1u+ 4.897R2u–5.247P2u + 
3.787H2v + 18.425G3e–0.008Vu 
 
 As seen, the resulting model has eight significant descriptors. Table 2 shows the 
calculated descriptors for each molecule, the descriptors coefficients, the standard error 
of coefficients, the t values for null hypothesis, and their related P values.  

 
Table 2. Results of multiple linear regression analysis. 

 

Notation Descriptors Coefficient S.E.a of 
coefficient t value P value 

Intercept - 3.095 2.358 1.312 0.197 

R7e 
R autocorrelation of lag 7 / 

weighted by Sanderson 
electronegativity 

-1.131 0.282 -4.018 0.000 

R6U+ 
R maximal autocorrelation of 

lag 6 / unweighted -38.269 8.865 -4.317 0.000 

R1u R autocorrelation of lag 1 / 
unweighted -4.942 0.747 -6.613 0.000 

R2u R autocorrelation of lag 2 / 
unweighted 4.897 0.794 6.169 0.000 

P2u 
2nd component shape 

directional WHIM index / 
unweighted 

-5.247 1.147 -4.575 0.000 

H2v 
H autocorrelation of lag 2 / 
weighted by van der Waals 

volume 
3.787 0.455 8.330 0.000 

G3e 

3rd component symmetry 
directional WHIM index / 

weighted by Sanderson 
electronegativity 

18.425 5.821 3.165 0.003 

Vu V total size index / 
unweighted -0.008 0.003 -2.209 0.033 

a Standard error. 
 
4.3. LSSVM ANALYSIS  

LS-SVM was performed with radial basis function (RBF) as a kernel functions. In the 
model development using LS-SVM and RBF kernel,  and 2 parameters were a 
manageable task. To determine the optimal parameters, a grid search was performed 
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based on leave-one-out cross-validation on the original training set for all parameter 
combinations of γ and σ2 from 0.1 to 10 and 1 to 100, respectively.  In Table 3 is shown 
the optimum  and 2 parameters for the LS-SVM and RBF kernel, using the training sets 
for 51 inhibitory activity data.  
 

Table 3. Observation and calculation values of log(1/IC50) using MLR and LS-SVM 
models. 

 

No. of 
compounds 
(Table 1 ) 

Observation 
log(1/IC50) 

MLR LS-SVM 
 

Predicted 
 

Error (%) 
 

Predicted 
 

Error (%) 
5 5.170 4.980 -3.675 5.081 -1.721 
7 4.940 4.792 -2.996 4.856 -1.700 

11 4.680 4.836 3.333 4.716 0.769 
17 4.820 4.851 0.643 4.832 0.249 
27 4.720 4.916 4.152 4.771 1.080 
42 5.420 5.189 -4.262 5.356 -1.181 
57 5.480 5.327 -2.792 5.389 -1.660 
58 5.350 5.227 -2.299 5.309 -0.766 
59 4.770 4.966 4.109 4.746 -0.503 

    0.500 
2   10.000 
RMSEP  0.167 0.061 
RSEP (%)  3.315 1.212 

 
4.4. MODEL VALIDATION AND PREDICTION OF INHIBITORY ACTIVITY 

The predictive ability of these methods (MLR and LS-SVM) were investigated by 
prediction of inhibitory of 9 molecules (their structures are given in Table 1). Validation 
of predictive ability is another key step in QSAR studies. Several statistical parameters 
have been used for the evaluation of the suitability of the developed QSAR models for 
prediction of the property of the studied compounds this include the root mean square 
error of prediction (RMSEP) and relative standard error of prediction (RSEP), validation 
through an external prediction set.  
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where prediy ,  is the predicted of the inhibitory activity using different model, obsiy ,  is the 

observed value of the inhibitory activity, and n  is the number of compounds in the 
prediction set. The statistical parameters obtained by these methods are listed in Table 3. 



Quantitative Structure Activity Relationship Study of Inhibitory Activities                     57 

Table 3 shows RMSEP, RSEP and the percentage error for prediction of inhibitory 
activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues. As can be seen, the good 
results were achieved in LS-SVM model with percentage error ranges from -1.721 to 
1.080 for inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues. The 
plots of the predicted inhibitory activity versus actual values are shown in Figure 3 for 
each model (line equations and R2 values are also shown). The correlation coefficients 
(R2) for LS-SVM model were better than the MLR model. Also, it is possible to see that 
LS-SVM presents excellent prediction abilities when compared with MLR model. 

 
Figure 3. Plots of predicted versus actual log(1/IC50), (a) MLR and (b) LS-SVM. 

 
4.5. MOLECULAR DESIGN 

As an application of proposed method, we investigated LS-SVM model to predict the 
inhibitory activity of four new 1-phenyl[2H]-tetrahydro-triazine-3-one analogues whose 
biological tests were not performed with them yet. Table 4 shows the chemical structure 
of four new compounds and their inhibitory activity calculated by this proposed method. 
 

Table 4. New structures of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues and 
predicted log(1/IC50) by LS-SVM. 

 
Number 

of 
Design 

Substitution log(1/IC50) 
Calc.a X R3′ R5′ R2 R4 R5 

1 N H Me H H Me 4.617 
2 N F H H H Br 6.138 
3 CH Br H H H Cl 5.856 
5 CH H OH H Cl H 5.149 

a Calculated by LS-SVM model. 
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5. CONCLUSION 

Using LS-SVM, a QSAR model has been successfully developed for the prediction of 
inhibitory activity for 60 compounds. The results well illustrate the power of descriptors 
in prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues. 
The model could predict the inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one 
analogues derivatives not existed in the modeling procedure accurately. The work, shows 
that descriptors are capable to recognize the physicochemical information and be can 
useful to predict the inhibitory activity of the new compounds. 
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ABSTRACT The Harary index H can be viewed as a molecular structure descriptor 
composed of increments representing interactions between pairs of atoms, such that their 
magnitude decreases with the increasing distance between the respective two atoms. A 
generalization of the Harary index, denoted by Hk, is achieved by employing the Steiner-
type distance between k-tuples of atoms. We show that the linear combination H + H3 is 
significantly better correlated with a variety of physico-chemical properties of alkanes than 
H itself. 
 
KEYWORDS Harary index • multicenter Harary index • Steiner distance • molecular 
graph.  

 

 

1. INTRODUCTION 

Let G be a molecular graph [1] and 1 2, , , nv v v   be its vertices. The distance [1,2] 

between the vertices iv  and jv , denoted by ( , )i jd v v , is the number of edges in (= the 

length of)  a shortest path that connects iv  and jv . The oldest distance-based molecular 

structure descriptor is the Wiener index, defined as [3,4] 
 

( ) ( , )i j
i j

W W G d v v


  .     (1) 

Although this topological index found numerous chemical applications, a general 
objection to it is that pairs of vertices at the greatest distance have the greatest 
contributions to the numerical value of W. Bearing in mind that vertices of a molecular 
graph represent atoms [1], this property of the Wiener index seemingly contradicts the 
fact that the interaction between near-lying atoms are greatest. Several attempts were 
made to eliminate this difficulty [5-7], but the simplest and more efficient solution was 
achieved by modifying Eq. (1) as 

1( )
( , )i j i j

H H G
d v v

  .     (2) 
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Formula (2) was independently conceived by Ivanciuc at al. [8] and Plavšić et al. 
[9]. The molecular structure descriptor H was named “Harary index” (in honor of Frank 
Harary [10]). Eventually, this index attracted much attention; see the surveys [11,12], the 
recent book [13], and the recent papers [1416]. 
 Same as the Wiener index, Eq. (1), the Harary index H, Eq. (2), may also be 
viewed as a sum of structural increments representing pairs of atoms, i.e., two-center 
interatomic interactions. Following an idea outlined in a recent paper [17], one could 
think of three-center, four-center, etc. interactions that would lead to the following 
evident multicenter extension of the Harary-index concept: 

3 3
1( )

( , , )i j k i j k

H H G
d v v v 

      (3) 

                   4 4
1( )

( , , , )i j k l i j k l

H H G
d v v v v  

    

and in the general case, 

1 2 1 2

1( )
( , , , )

k k

k k
i i i i i i

H H G
d v v v  

  
 

. 

In the above formulas, for the multiple-vertex distances we take the standard Steiner 
distance (introduced in graph theory as early as in the 1980s [18]). For details on the 
Steiner distance see the recent paper [17] or in appropriate monographs [19-21]. 
 In nutshell:  The Steiner distance 

1 2
( , , , )

ki i id v v v of k distinct vertices 

1 2
, , ,

ki i iv v v  of a graph G, is the number of edges of a connected subgraph of G, with 
smallest number of edges, containing all the vertices 

1 2
, , ,

ki i iv v v .  
 The multicenter Harary indices, based on Steiner distances of k-tuples of vertices, 
will be denoted as Hk . For reasons explained in the subsequent section, in what follows 
we shall be concerned only with the three-center Harary index H3.   
 
2. AN AUXILIARY LEMMA 

In the general case, the calculation of the Steiner distance 
1 2

( , , , )
ki i id v v v of a k-tuple of 

vertices of a molecular graph is a difficult and computation-extensive task. In the case 
3k  , this calculation is significantly simplified by means of the following Lemma: 

 
Lemma 1. Let G be a (connected) graph and , ,x y z its three distinct vertices. Then the 
Steiner distance of , ,x y z  is related to the ordinary distance of these vertices as: 

 1( , , ) ( , ) ( , ) ( , )
2

d x y z d x y d x z d y z   .   (4) 

Proof. Any connected subgraph of G with the smallest number of edges is necessarily a 
tree (i.e., it is acyclic). We have to distinguish between two cases: when the three vertices 

, ,x y z are not collinear and when these are collinear, see Figure 1. 
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Figure 1. Two different arrangements of the vertices , ,x y z  in a 
molecular graph; for details see the proof of Lemma 1. 

 

Case 1: , ,x y z are not collinear. Then, using the notation specified in Fig. 1,  
( , , ) ( , ) ( , ) ( , )d x y z d x w d y w d z w   .    (5) 

On the other hand, 
( , ) ( , ) ( , )
( , ) ( , ) ( , )
( , ) ( , ) ( , )

d x y d x w d y w
d x z d x w d z w
d y z d y w d z w

 
 
 

       

which  yields    ( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , )d x y d x z d y z d x w d y w d z w     . Then Eq. (4) 

follows by bearing in mind (5). 
 

Case 2: , ,x y z are collinear. Then, using the notation specified in Fig. 1,  
( , , ) ( , )d x y z d x z .     (6) 

Then we have 

   1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , )
2 2

d x z d x z d x z d x y d y z d x z      

and Eq. (4) directly follows from (6). 
This completes the proof of Lemma 1. 

 

By means of Lemma 1, the calculation of the three-center Harary index, Eq. (3), 
becomes quite easy and is of equal (low) complexity as the calculation of the respective 
Wiener index. Unfortunately, results analogous to Lemma 1 could not be established for 

4k  . 
 

3. NUMERICAL WORK 

We first present two results that look rather discouraging. In Figure 2 is shown the 
correlation between the Harary and three-center Harary indices in the case of isomeric 
octanes. In Figure 3a is shown the correlation between Harary index and standard 
enthalpy of formation ( o

fH ) of the same set of octanes [22]. In Figure 3b is displayed 

the analogous plot for the three-center Harary index. In view of the very good linear 
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correlation between H and H3 (cf. Figure 2), there is no statistical difference between the 
two correlations shown in Figure 3, and both are disappointingly weak. 
 

 
Figure 2. Correlation between the three-center Harary index H3 , Eq. (3), and 
the ordinary Harary index H, Eq. (2) for the set of isomeric octanes (18 data 
points); the correlation coefficient is 0.9980R  .  

 
 

 
 

Figure 3. (a) Correlation between the standard enthalpy of formation ( o
fH ) 

of isomeric octanes [22] and the ordinary Harary index H ; 0.576R   .  
(b) Analogous correlation with the three-center Harary index H3 ; R = 
0.528. 

 
 A remarkable improvement is obtained by means of the linear combination of the 
two Harary indices, namely 3H H , shown in Figure 4, where the optimized value 

0.443    is used for the parameter  . 
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Figure 4. Correlation between the standard enthalpy of formation ( o
fH ) of 

isomeric octanes [22] and the linear combination 3H H  of the two Harary 
indices. The best results are obtained for 0.433   in which case the 
correlation coefficient increases to 0.928R  . 

 

Analogous improvements have been found also in the case of a number of other 
physico-chemical properties of octanes. The respective statistical data are collected in 
Table 1. 
 

Property ( )R H  3( )R H  3( )R H H    
o
fH  0.576 0.542 0.928 0.433 

oS  0.929 0.914 0.954 0.356 
evH  0.779 0.745 0.928 0.414 

BP 0.573 0.533 0.831 0.429 
CT 0.111 0.063 0.756 0.451 
CP 0.505 0.540 0.754 0.483 

log P  0.184 0.192 0.223 0.503 
 

Table 1. Correlation coefficients for the correlation between physico-chemical 
properties of octane isomes [22] and Harary index ( ( )R H ), three-center Harary 
index ( 3( )R H ), and the linear combination thereof  ( 3( )R H H ); o

fH  = 
standard enthalpy of formation,  oS = standard entropy, evH = enthalpy of 
evaporation, BP = boiling point at atmospheric pressure, CT = critical 
temperature, CP = critical pressure, log P = logarithm of octanol/water partition 
coefficient; in the last column is the optimized value of the parameter   for 
which 3( )R H H  is maximal. 
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4. DISCUSSION AND CONCLUDING REMARKS 

If the topological indices H and H3 were exactly linearly correlated, then their linear 
combination would not result in any improvement. From the data shown in Table 1 we 
see that in some cases significant improvements are obtained, which may be viewed as a 
kind of (convenient) surprise. This especially is the case for formation enthalpy, critical 
temperature, and critical pressure. Remarkably, whereas the indices H and H3 are 
completely uncorrelated with critical temperature, i.e., 3( ) ( ) 0R H R H  , their linear 

combination results in a moderately good correlation, 3( ) 0.75R H H  .  
In all cases, the linear combination of H and H3 improves the quality of the 

correlations. However, in some cases, the gain is minor and insignificant. This 
(necessarily) happens for properties that are well correlated with H and H3 (e.g., entropy), 
but also when the initial correlations are weak (e.g. partition coefficient). 

A noteworthy fact is that the optimized value of the parameter   is nearly equal 
for all physico-chemical properties examined, and is always negative-valued. 

The Harary index is constructed so as to take into account (in a rather rough 
manner) interactions between pairs of atoms. In the case of usually employed molecular 
graphs, these are pairs of carbon atoms. At the first glance, by means of the three-center 
version of the Harary index, some more subtle interatomic interactions might be also 
taken into account. However, the fact that the parameter  is relatively large and always 
negative, indicates that the ordinary Harary index seems to overestimate the interactions 
between pairs of atoms. Thus, the principal role of H3 would be to provide a 
compensation for the intrinsic error of the Harary index. As we could see, this 
compensation is often very efficient. 

From a practitioner's point of view, neither the original Harary index, nor its 
version improved by the three-center index, are sufficient to accurately reproduce a 
physico-chemical (or any other) property of the considered organic compounds. This is 
clearly seen by inspecting Figures 2 and 3. This apparent deficiency of graph-based 
structure descriptors is nowadays well understood and individual descriptors are 
nowadays hardly ever used for modeling properties of organic molecules. The successful 
strategy is to simultaneously use several such descriptors and construct QSPR/QSAR 
models [4,2325]. The interested reader is referred to the recent survey [25] in which the 
design of several commercially interesting pharmacologically active substances 
(including those with anti-cancer activity) is described. 

The present studies indicate that the efficiency of QSPR/QSAR models would be 
much improved if instead of the Harary index, its combination with three-center Harary 
index would be utilized. 
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ABSTRACT Integrally skinned asymmetric membranes based on nanocomposite 
polyethersulfone were prepared by the phase separation process using the supercritical CO2 
as a nonsolvent for the polymer solution. In present study, the effects of temperature and 
nanoparticle on selectivity performance and permeability of gases has been investigated. It 
is shown that the presence of silica nanoparticles not only disrupts the original polymer 
chain packing but also alters the chemical affinities of penetrants in polyethersulfone 
matrices. Because, in the presence of hydrophilic silica, CO2 affinity filler, hydrogen-bond 
interactions between the oxygen atoms of carbon dioxide and the hydrogen atoms of 
hydroxyl group on the nanosilica surface would take place at the interface and thus 
solubility and consequently permeability towards CO2 are higher in comparison with CH4 
for the membranes. Furthermore, in present study, a novel mathematical approach has been 
proposed to develop a model for permeation flux and selectivity performance of the 
membrane using Support Vector Machine. 
       SVM is employed to develop model to estimate process output variables of a 
nanocomposite membrane including permeation flux and selectivity performance. Model 
development that consists of training, optimization and test was performed using randomly 
selected 80%, 10%, and 10% of available data respectively. Test results from the SVM 
based model showed to be in better agreement with operating experimental data compared 
to other developed mathematical model. The minimum calculated squared correlation 
coefficient for estimated process variables is 0.99. Based on the results of this case study 
SVM proved that it can be a reliable accurate estimation method. 
 
KEYWORDS Nanocomposite material • polyerthersulfone membrane • silica 
nanoparticles • Support Vector Machine (SVM).  

 

1. INTRODUCTION 

Support Vector Machine introduced first by Vapnik, is a supervised learning method with 
associated learning algorithm that analyzes data and recognizes patterns of input/output 
data. In recent years, ANN has been demonstrated to be a substitute for deterministic 
modeling and estimation methods with good potentials to be explored. 
 SVM is based on the structural risk minimization principle from computational 
learning theory. It is one of the most sophisticated non-parametric supervised classifiers 
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available today, with many different configurations depending on kernel function used to 
generate transform function that maps input space into output space. Commonly, several 
functions including linear, polynomial, Radial Basis Function (RBF) and multilayer 
perceptron are used as the kernel function in SVM. By the use of kernels necessary 
computations are performed directly in the input space .Although, it is mostly considered 
as a linear algorithm in a high dimensional feature space, it does not necessitate the 
practical input/output mapping problem to be a high dimensional space problem. A brief 
discussion on mathematical basis of SVM is presented here that helps understanding the 
way SVM works and the features that render it superiority over other learning algorithms. 
 

2. MATHEMATICAL MODEL 

Pattern recognition or classification can be performed by SVM in a data set consisting of 
N data point {ݔ௞, ݇ {௞ݕ = 1,2, … , ܰ where ݔ௞ is a p-dimensional vector and ݕ௞  can take 
one of the two values, either +1 or -1 (i.e., ݕ௞߳{+1, −1} indicating the class to which the 
point ݔ௞ belongs. In their basic form, they learn a linear hyperplane that separates a set of 
positive samples from a set of negative samples with maximum margin. Consider Figure 
1 which shows two possible separating hyperplanes and their associated margins. Both 
hyperplanes can correctly classify all the given data. However, we expect the hyperplane 
with the larger margin to be more accurate in classifying new data than the hyperplane 
with the smaller margin. This is the reason that SVM searches for the hyperplane with the 
largest margin. 
 

 
Figure 1. Support Vector Machine Classifier. 

 

 A separating hyperplane can be written as ݓ. ݔ − ܾ = 0 [1, 2], where w is the 
normal vector to the hyperplane and b represents the offset of the hyperplane from origin 
that is referred to as bias. The offset along the vector w from the origin can be determined 
by  ܾ

ൗ||ݓ|| . As shown in Figure 2, for the cases that the training data are linearly 
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separable, two hyperplanes can separate the data in a way that there are no data points 
between them. Obviously these hyperplanes can be described as: 
 

.ݓ ݔ − ܾ = 1 (2) 

.ݓ ݔ − ܾ = −1 (3) 

 

 
Figure 2. Hyperplane Definition. 

 

 By using geometry, one can show that distance between these two hyperplanes is 
2

ൗ||ݓ|| , so the problem of ||w|| minimization is required to maximize hyperplane margin. 

It is also required to prevent data points from falling into the margin, and other necessary 
constraints are imposed as: 
 

w.ݔ௞b ≥ 1 For ݔ௞ of the first class (4) 
w.ݔ௞b ≤ 1 For ݔ௞ of the second class             (5) 
 
That can be rewritten as: 

.ݓ)௜ݕ ௞ݔ − ܾ) ≥ 1 For ݈݈ܽ   1 ≤ ݇ ≤ ܰ                                      (6) 
 
 Constraint minimization of ||w|| is thus required to develop an ideal classifier. 
Such minimization problem is difficult to solve, however it is possible to substitute 0.5 
 ଶ  instead of ||w|| in problem. It was shown that, minimization problem can be||ݓ||
formulated as: 

min
௪,௕

max
௔ஹ଴

൝
1
2

ห|ݓ|หଶ
− ෍ ܽ௜

ே

௜ୀଵ

ݔݓ)௜ݕ) − ܾ) − 1)ൡ                         (7) 

where i  is Lagrangian multiplier that helps in finding the local minimum or maximum 
of a function. The problem of Eq. 7 can be solved by standard quadratic 
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programming techniques that results in finding normal vector to the hyperplane as 
presented in Eq. 8:  

ݓ = ෍ ܽ௜

௡

௞ୀଵ

௜ݕ  ௜                                            (8)ݔ

 Input/output support vector machine model with the general form of ݕ =  (ݔ)݂
takes the form of Eq.9 in feature space: 
 

(ݔ)݂ = ෍ ܽ௜

ே

௞ୀଵ

. ,ݔ)ܭ (௞ݔ + ܾ                        (9) 

where ݂(ݔ) represents output vector and ݔ)ܭ,  ௞) is the kernel function calculated fromݔ
the inner product of the two vectors x and xk in the feasible region built by the inner 
product of the vectors Ф(x) and Ф(xk) as follows: 

,ݔ)ܭ ௥ (ݔ)௞)=Фݔ . Ф(xk)                         (10) 
 Among choices for Kernel function the Radial Basis Function (RBF) Kernel that 
is used extensively has been applied in this work that is presented in Eq. 11, 

,ݔ)ܭ ௞)=expቀି||௫ೖି୶||మݔ

ఙమ ቁ                               (11) 
where σ is kernel parameter to be determined by an external optimization algorithm 
during the internal SVM calculations. Bias, b, is usually determined by using primal 
constraints as: 
 

b = ቀଵ
ଶ
ቁ ൣmax{௜,௬೔ୀିଵ}൫∑ ௜ܽ௜ݕ

௠
௝ఢ{ௌ௏} ௜ݔ)ܭ , ௝)൯൧ݔ + min{௜,௬೔ୀିଵ}൫∑ ௜ܽ௜ݕ

௠
௝ఢ{ௌ௏} ௜ݔ)ܭ ,  ௝)൯          (12)ݔ

 
 Lagrangian multipliers, ܽ௜, can be calculated by solving following quadratic 
programming problem: 

ω(ܽ) = ∑ ܽ௜
ே
௜ୀଵ − ଵ

ଶ
∑ ܽ௜ ௝ܽݕ௜ ,௜ݔ)ܭ௝ݕ ௝)ேݔ

௜,௝ୀଵ                                (13) 
Subject to constraints 0≤ ܽ௜ ≤γ, i = 1,…, N, where γ is regularization parameter and 
controls the tradeoff between complexity of the support vector machine model and the 
number of non-separable points. This compact formulation of quadratic optimization has 
been proved to have a unique solution. In conclusion, the SVM takes the form of the 
constrained optimization problem of Eq. 14 in order to obtain the optimum value of γ  

minఠ,ఉ,క೔క೔
∗

ଵ
ଶ

||߱||ଶ + ∑.ߛ ௜ߦ) , ௜ߦ
∗)ே

௜ୀଵ                                         (14) 
Subject to 

௜ݕ − ௜ݔ்߱ − ܾ ≤ ߝ + ݐ                    ௜ߦ = 1, … , ܰ 
௜ݔ்߱ + ܾ − ௜ݕ ≤ ߝ + ௜ߦ

ݐ                    ∗ = 1, … , ܰ 
ߦ ≥ ݐ                                                      0 = 1, … , ܰ 
௜ߦ ≥ ݐ                                                      0 = 1, … , ܰ 
 
where  is the precision threshold and ߦ௜, ߦ௜

∗  represent the slack variables with 
nonnegative values to ensure feasible constraints. The first term in Eq. 14 represents 
model complexity while the second term represents the model accuracy or error 
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tolerance. The Mean Square Error (MSE) and Mean Absolute Error (MAE) as defined by 
Eqs. 15 and 16 are used to calculate prediction error of the developed SVM model. 

MSE = ∑ (ை೔ି்೔)మ೙
೔సభ

௡
                                              (15) 

MAE = ଵ
௡

∑ |ܱ௜ − ௜ܶ|௡
௜ୀଵ                                       (16) 

where  Oi is the simulation results of SVM model, Ti represents real time plant data of the 
natural gas sweetening plant and n denotes the number of the data used for model 
evaluation. 
 

3. RESULTS AND DISCUSSION 

The Figurs 3, 4 show the effect of nanoparticle on the CO2 permeation of an integrally 
skinned asymmetric polyethersulfone membrane formed at T=45˚C, P=100 bar, 
DMAc/PES mass ratio of 2.5 and the depressurization rate of 1.83 bar/min. The 
incorporation of silica nanoparticle in the membranes results in further increase in 
permeability towards CO2 compared to CH4 and thus increases the membrane selectivity. 
It is believed that the presence of silica nanoparticles not only disrupts the original 
polymer chain packing but also alters the chemical affinities of penetrants in 
polyethersulfone matrices. Because, in the presence of hydrophilic silica, CO2 affinity 
filler, hydrogen-bond interactions between the oxygen atoms of carbon dioxide and the 
hydrogen atoms of hydroxyl group on the nanosilica surface would take place at the 
interface and thus solubility and consequently permeability towards CO2 are higher in 
comparison with CH4 for the membranes. 
 

 
Figure 3. Effect of silica nanoparticle on the CO2 permeation of the 
integrally skinned polyethersulfone membrane. 
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Figure 4. Effect of silica nanoparticle on membrane selectivity of the 
integrally skinned polyethersulfone membrane. 

 
 The operating plant data collected over the span of one year is used in this case 
study. The data has been normalized between -1 and +1 to prevent truncation error due to 
wide ranges of numerical values for input/output variables to be included in the SVM 
model. Since the model development is based on normalizing data, it is necessary to map 
input data to normalized space accordingly. Normalized model output should also be 
mapped into the space of real values for output variable to be compared to operating plant 
data. To develop input/output model the calculation procedure of section 3 that is 
programmed in Matlab environment is executed on an Intel dualcore2.40 GHz processor 
accompanied by 4G RAM that it took around 12 hours to get convergence. Convergence 
indicates that optimum model is achieved; however, it does not guarantee accuracy of 
model predictions. To ensure model reliability the input variables of test data subset are 
entered to the developed model and model predictions are validated against experimental 
data and are also compared with ANN model prediction where available. The ANN based 
model is of feed-forward back propagation type and was developed using the same 
training data that is used in this research work.  

 

4. CONCLUSION 

The effects of experimental operating conditions such as the temperature and the 
presence of silica nanoparticles in the structure of dense nanocomposite layers were 
investigated. It was found that, it is possible to induce a very-controlled asymmetry in a 
dense film and pore sizes by changing the temperature and pressure. Also, presence of 
silica nanoparticle proved to increase the permeability of CO2 and thus the membrane 
selectivity. Also this study demonstrates the applicability of SVM to develop accurate 
input/output model of the operational variables of ananocomposite membrane. The kernel 
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parameters for developed model are determined and model predictions are compared with 
those obtained from another mathematical model. Beside the general advantages that are 
cited for SVM over ANN as an input/output modeling tool, the predicted data in this 
study showed better performance of support vector machine over artificial neural 
networks in terms of accuracy. The numerical values of AAD% calculated showed a 
minimum 12% improvement gained by SVM over ANN that is of great importance if the 
predicted data are to be used for monitoring and/or control purposes. This study reveals 
some the application potentials of SVM as a modeling tool in oil and gas industries that 
requires much more attention to be fully understood. 
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ABSTRACT: In this article using the inverse Laplace transform, we show analytical solutions 
for the generalized mass transfers with (and without) a chemical reaction. These transfers have 
been expressed as the Couette flow with the fractional derivative of the Caputo sense. Also, 
using the Hankel contour for the Bromwich's integral, the solutions are given in terms of the 
generalized Airy functions.  

Keywords: Lévêque Problem, Laplace transform, Generalized Airy functions, Fractional 
derivative. 

 
 
1. INTRODUCTION 
 
The mass transfer operations play a critical role in chemistry and other related science 
especially in chemical engineering. These operations are closely connected with the 
analogous problems of the convective heat transfer from non-isothermal surfaces. When a 
system contains more than one component whose concentration varies from one location to 
another, there is a natural propensity for mass to be transferred. There are many transfer 
operations in the literature such as solid dissolving in a liquid, gas absorption in a liquid 
and etc. which provides wide class of researches in chemical and energy sciences. For 
example in [7], analytical solutions and asymptotic expressions are proposed for 
homogenous and heterogeneous chemical reactions. Elperin et al. [11] have been solved the 
problem of mass transfer with a heterogeneous chemical reaction of the first order in 
boundary layer flows on non-newtonian power-low fluids. 
 Luchko and Punzi presented physical behavior behind the anomalous processes 
described by the continuous time random walk (CTRW) model and discussed on its 
feasibility for modeling of heat transform processes heterogeneous media [13]. Also, they 



78                                                                                             ANSARI AND AHMADI DARANI 
 
deduce a macroscopic model in form of a generalized fractional diffusion equation from the 
CTRW model on the microscopic level. Oldham demonstrated that that the electric current 
is linearly related to the temporal semiderivative of the concentrations at the electrode of 
the species involved in the electrochemical reaction [14]. 
 The problem of mass transfer with (without) an irreversible chemical reaction in 
different flows has been discussed in the literature and has been mostly presented in the 
Newtonian and non-Newtonian liquids, or in the case of permeable surfaces. This problem 
can be formulated in the following form [7], [9, 10], [11]  
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                                                                        (13) 

 A short treatise of the above equation with different situations may be considered as [7]:   
    • In case 0=a  and 0b , it is known as the uniform (plug) flow.  
    • In case 0a  and 0=b , it is known as the Couette flow.  
    • In case 0a  and 0b , it is known as the Couette flow with moving interface.  
 For the above three cases, if we set 0=k , then this mass transfer is interpreted 
without a chemical reaction and for 0k , it is considered as a homogenous chemical 
reaction. For solving this problem, the Laplace integral transform method has been 
proposed which leads to the analytical solutions with the closed form and corresponding 
asymptotic expressions. For these solutions, the Airy function of the first kind [19]  
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plays an important role for determining the structures and forms of them. This function is 
appeared in the inverse Laplace transform of the Bromwich's integral on the Hankel 
contour, see Figure 1 and references [7],[18]. 
 As generalization of the problem (11), in this paper, first we consider the 
following partial differential equation with the higher order derivatives  
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Figure  1. The Hankel Contour. 

  
and show that the solution of this problem is writhen in terms of the generalized Airy 
function [1]  
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 In second step, we modify the solution of problem (15) with respect to the 
fractional derivative in the Caputo sense [17]  
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for the following problem  
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To express our motivation, in Section 2 we survey the preliminaries properties of the 
generalized Airy functions (18) and in next sections we solve the problems (15) and 
(110) in different cases of parameters kba ,,  using the Laplace transform. The solutions 
are obtained with respect to the Bromwich's integral on the Hankel contour in terms of the 
generalized Airy functions.  
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Table 1.  Positive zeros of )(12 xn  function for 1,2,3,4=n . 
 

1=n  )(3 xA  - 
2=n  )(5 xA  2.754254=21  
3=n  )(7 xA  5.35923=2.65450,= 3231   
4=n  )(9 xA  7.97432=5.33275,=2.65927,= 434241   

 
 
2. THE GENERALIZED AIRY FUNCTIONS 

The generalized Airy function (18) is the solution of ordinary differential equation of 
order n2   

 .0,=1)( )(21   xxyy nn           (21) 
 
This solution can be obtained using the Laplace integral method  
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where contour C  is chosen such that the function )(zv  must vanish at boundaries. After 
deformation and normalization of integral (2-3), we rewrite the y  as the )(12 xn  function 
as follows  
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with value [1]  
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 Figure 2 shows the behavior of the )(12 xA n  function for 1,2,3,4=n  which is 

similar to the Airy function. It is obvious that the )(12 xn  function has infinite negative 
roots on the negative semiaxes and 1n  positive roots on positive semiaxes, see Table 1 
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for some positive roots of the )(12 xn  function. Also, for more applications and 
contributions of this function in partial fractional differential equations especially higher 
order heat equation  

 ),(=,0)(),,(=),( 0 xuxutxu
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t n

n


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
                  (27) 

see [25], [6], [12] [15, 16]. 

 
Figure 2. The generalized Airy functions for 1,2,3,4=n  

 
3. THE GENERALIZED MASS TRANSFER IN COUETTE FLOW 

In this section we start with a theorem for the inverse Laplace transform of multi-valued 
function )(sF . We assume that the point 0=s  is a branch point and F  has no poles, then 
the inverse Laplace transform of )(sF , can be computed by means of the integral of a real-
valued function.  
 
Theorem 3.1 (Titchmarsh theorem [8]) Let )(sF  be an analytic function which has a 
branch cut on the real negative semiaxis, furthermore )(sF  has the following properties  
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for any sector  |<)(| sarg  where  <<0 . Then the inverse Laplace transform of 

)(sF , can be written as the Laplace transform of the imaginary part of the function 
)( ireF    
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3.1  THE COUETTE FLOW WITHOUT CHEMICAL REACTION: THE GENERALIZED LÉVÊQUE PROBLEM   
 
Problem 3.2 We consider a mass transfer without chemical reaction which is known as the 
Lévêque problem in the literature [7]. In this case we generalize and reformulate it with 
equation (15) as  
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For solving this problem, we apply the Laplace transform on both sided of equation (32) 
with respect to x   
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and use the boundary condition to derive the relation  
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In view of the finiteness of solution and n2  linear independent solutions of the above 
differential equation, we get the solution with respect to the )(12 xn  function in the 
following form  
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 Applying other boundary condition, we obtain the unknown coefficient )(sC , that is  
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 The inverse of (38) is obtained by considering the Bromwich's integral  
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which has a branch point at the origin. By using the suitable change of the Bromwich 
contour of integration (Figure 1) and applying the Titchmarsh Theorem 3.1, we get the 
solution as  
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 For simplification of the above solution for 1=n  in terms of the Bessel functions, 
first consider the following identity in terms of the modified Bessel functions [7] 
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and use the Theorem 3.1 to obtain the solution in terms of the imaginary parts of Airy 
function as follows 
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Also, the solution of equation (32), can be generalized by replacing the term 
x
u

  by 

uDx
C   as the Caputo fractional derivative. In the sense, by using the fact [17]  
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and applying the similar procedure for solving the new problem, we obtain the solution 
(310) in the following form  
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Problem 3.3 We consider other type of the generalized Lévêque problem as  
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In similar procedure to the previous problem, after applying the Laplace transform we get  
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which its inverse is obtained by the following Bromwich's integral  
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The integrand of the Bromwich's integral has the branch point at the origin and infinite 
number of poles ns  as  
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where nj  are the zeros of the 12 n  function. It is evident that the all poles 12= n
njjs   are 

outside the contour of integration except 1n  positive roots of them. Some of these 
positive zeros has been shown in Table 1. Therefore, for obtaining the residues at the 
simple poles 1,,1,=, njs j   we have  
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According to the above value and Titchmarsh theorem, we finally get the solution of 
Problem 2 as  
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Also, in the case of the fractional derivative model of problem with respect to x , we get the 
solution of problem in the following form  

 ,}
)(

)({1)(1=),(
1212

12

1212
12

0
0

0, dr
er

yere
r

uuIyxu
n

i
n

n

n
i

n
nrx

n













  



 


                (322) 

 where  

 .)(
)('

1)(2=
12

12
12

1

1=
,

x

n

ni
nin

ninni

n

i
n eynI


 








  


                                (323) 

 For simplification of the solution (3-21) in 1=n  in terms of the Bessel functions, similar 
to the previous procedure in (3-11), we use Theorem 3.1 to obtain 
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3.2.  THE COUETTE FLOW WITH A CHEMICAL REACTION 
 
At this point, we consider the Couette flow in the presence of a chemical reaction. 
 
Problem 3.4 We consider the following Couette flow with a chemical reaction  
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For this problem similar to the previous problem, after applying the Laplace transform and 
boundary conditions, we get the solution as  
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In view of the 1n  positive simple poles 1,,1,2,=,1=
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Also, in the case of the fractional derivative model of problem, we get the solution of 
problem in the following form  
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where  
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 Moreover, for simplification of the solution (329) in 1=n  in terms of the Bessel 
functions, we get 
 













































































 0 .

3
2

3
13

2

3
13

22

3
13

22

3
1

3
2

3
12

3
)1(

3
2

3
13

2

3
1)2

3
)1(

3
2(

3
1

2
1

)1(
2

2
1

300),( dr

r
J

r
J

r
J

r
J

r
JryJ

r
Jry

r
J

rxe
r
ryuyeuyxu

 

(333) 
 

4.  CONCLUDING REMARKS 

This paper provides new results in obtaining the analytical solutions of some generalized 
partial differential equations. These equations have been interpreted as the Couette flows 
with (without) chemical reactions. We considered fractional derivative models (in Caputo 
sense) for these PDEs and solved them by the Laplace transform. We encountered with the 
generalized Airy functions in the Bromwich's integral of inverse Laplace transform. Zeros 
of these functions were the first steps in obtaining the solutions as the simple poles of 
integrands. Finally, the desired solutions have been written in terms of the Laplace 
transform of the imaginary parts of the generalized Airy functions.  
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ABSTRACT In this paper, the hyper-Zagreb index of the Cartesian product, composition 
and corona product of graphs are computed. These results correct some errors in G. H. 
Shirdel et al. [Iranian J. Math. Chem. 4 (2) (2013) 213220]. 
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1. INTRODUCTION 

Throughout this paper, we consider only simple connected graphs. Let ܩ be such a graph 
with vertex set ܸ(ܩ) and edge set (ܩ)ܧ. The degree of a vertex ݓ ∈  is the number (ܩ)ܸ
of vertices adjacent to ݓ and is denoted by ݀ீ(ݓ). We refer to [11] for unexplained 
terminology and notation. 

 In theoretical chemistry, the physico-chemical properties of chemical compounds 
are often modeled by means of molecular-graph-based structure-descriptors, which are 
also referred to as topological indices [10, 15]. The Zagreb indices are widely studied 
degree-based topological indices, and were introduced by Gutman and Trinajstiܿ ′ [9] in 
1972. The first and the second Zagreb indices of a graph ܩ are respectively defined as  

(ܩ)ଵܯ = ∑  ௨∈௏(ீ) (ܩ)ଶܯ ଶ and(ݑ)ீ݀ = ∑  ௨௩∈ா(ீ)  .(ݒ)ீ݀(ݑ)ீ݀
The first Zagreb index can also be expressed as a sum over edges of ܩ,  

(ܩ)ଵܯ = ∑  ௨௩∈ா(ீ) (ݑ)ீ݀] +  .[(ݒ)ீ݀
Recently, G.H. Shirdel, H. Rezapour and A.M. Sayadi [14] introduced a new 

version of Zagreb index named hyper-Zagreb index which is defined for a graph ܩ as  
(ܩ)ܯܪ = ∑  ௨௩∈ா(ீ) (ݑ)ீ݀) +   .ଶ((ݒ)ீ݀

Some new results on the hyper-Zagreb index can be found in [7, 8]. 
  The Cartesian product ܩ × ܩ)ܸ has the vertex set ܪ and ܩ of graphs ܪ × (ܪ =

(ܩ)ܸ × ,ܽ) and (ܪ)ܸ ,ܾ)(ݔ ܩ is an edge of (ݕ × ܽ if ܪ = ܾ and ݕݔ ∈ ܾܽ or ,(ܪ)ܧ ∈
ݔ and (ܩ)ܧ = ,ܽ) If .ݕ ܩ is a vertex of (ݔ × ,ܽ))then ݀ீ×ு ,ܪ ((ݔ = ݀ீ(ܽ) + ݀ு(ݔ). 

  The composition [ܪ]ܩ of graphs ܩ and ܪ with disjoint vertex sets ܸ(ܩ) and ܸ(ܪ) 
and edge sets (ܩ)ܧ and (ܪ)ܧ is the graph with vertex set ܸ(ܩ) × ,ܽ) and (ܪ)ܸ  is (ݔ
adjacent to (ܾ, ܽ whenever ܽ is adjacent to ܾ or (ݕ = ܾ and ݔ is adjacent to ݕ. If (ܽ,  is (ݔ
a vertex of [ܪ]ܩ, then ݀ீ[ு]((ܽ, ((ݔ = (ܽ)ீ݀|(ܪ)ܸ| + ݀ு(ݔ). 
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  The corona product ܩ ∘  by ܪ and ܩ is defined as the graph obtained from ܪ
taking one copy of ܩ and |ܸ(ܩ)| copies of ܪ and then by joining with an edge each 
vertex of the ݅௧௛ copy of ܪ which is named (ܪ, ݅) with the ݅௧௛ vertex of ܩ for ݅ =
1,2, . . . , ܩ is a vertex of ݑ If .|(ܩ)ܸ| ∘   then ,ܪ

݀ீ∘ு(ݑ) = ൜݀ீ(ݑ) + ݑ  ݂݅       |(ܪ)ܸ| ∈ ,(ܩ)ܸ
݀ு(ݑ) + ݑ  ݂݅              1 ∈ ,ܪ)ܸ ݅).

� 

   G. H. Shirdel et al. [14] computed the hyper-Zagreb index of some graph 
operations. However, the formulae of Theorem 2, Theorem 3, and Theorem 4 of their 
paper for computing the hyper-Zagreb index of Cartesian product, composition, and 
corona product are incorrect. In this paper, we give correct expressions for the hyper-
Zagreb index of the Cartesian product, composition and corona product of graphs. 
Readers interested in more information on computing topological indices of graph 
operations can be referred to [16, 12, 13]. 
 

2. RESULTS 

Theorem 2.1 Let ܩ and ܪ be graphs. Then  
ܩ)ܯܪ × (ܪ = (ܪ)ܯܪ|(ܩ)ܸ| + |(ܪ)ܧ|(ܩ)ଵܯ12+ (ܩ)ܯܪ|(ܪ)ܸ| +  .|(ܩ)ܧ|(ܪ)ଵܯ12

 
Proof. By definition of the hyper-Zagreb index, we have 

ܩ)ܯܪ × (ܪ = ∑  (௔,௫)(௕,௬)∈ா(ீ×ு) [݀ீ×ு((ܽ, ((ݔ + ݀ீ×ு((ܾ,   ଶ[((ݕ

         = ∑  ௔∈௏(ீ) ∑  ௫௬∈ா(ு) [݀ீ(ܽ) + ݀ு(ݔ) + ݀ீ(ܽ) + ݀ு(ݕ)]ଶ 

         + ∑  ௫∈௏(ு) ∑  ௔௕∈ா(ீ) [݀ு(ݔ) + ݀ீ(ܽ) + ݀ு(ݔ) + ݀ீ(ܾ)]ଶ 

         = ∑  ௔∈௏(ீ) ∑  ௫௬∈ா(ு) [2݀ீ(ܽ) + ݀ு(ݔ) + ݀ு(ݕ)]ଶ 

         + ∑  ௫∈௏(ு) ∑  ௔௕∈ா(ீ) [2݀ு(ݔ) + ݀ீ(ܽ) + ݀ீ(ܾ)]ଶ 

         = ∑  ௔∈௏(ீ) ∑  ௫௬∈ா(ு) [4݀ீ(ܽ)ଶ + (݀ு(ݔ) + ݀ு(ݕ))ଶ + 4݀ீ(ܽ)(݀ு(ݔ) + ݀ு(ݕ))] 

        + ∑  ௫∈௏(ு) ∑  ௔௕∈ா(ீ) [4݀ு(ݔ)ଶ + (݀ீ(ܽ) + ݀ீ(ܾ))ଶ + 4݀ு(ݔ)(݀ீ(ܽ) + ݀ீ(ܾ))] 

        = (ܩ)ଵܯ|(ܪ)ܧ|4 + (ܪ)ܯܪ|(ܩ)ܸ| +  (ܪ)ଵܯ|(ܩ)ܧ|8

(ܪ)ଵܯ|(ܩ)ܧ|4+          + (ܩ)ܯܪ|(ܪ)ܸ| +   .(ܩ)ଵܯ|(ܪ)ܧ|8

  □ 

As an application of Theorem 2.1, we list explicit formulae for the hyper-Zagreb 
index of the rectangular grid ௥ܲ × ௦ܲ, ܥସ −nanotube ௥ܲ × ସܥ ௤, andܥ −nanotorus ܥ௣ ×  .௤ܥ
The formulae follow from Theorem 2.1 by using the expressions ܯଵ( ௡ܲ) = 4݊ − 6, 
݊ > (௡ܥ)ଵܯ ;1 = 4n; ܯܪ( ௡ܲ) = 16݊ − 30, ݊ > 2 and ܯܪ(ܥ௡) = 16݊.  

 
Corollary 2.2 ܯܪ( ௥ܲ × ௦ܲ) = ݏݎ128 − ݎ150 − ݏ150 + ,ݎ ,144 ݏ > 2; 

)ܯܪ            ௥ܲ × (௤ܥ = ݍݎ128 − ݎ ,ݍ150 > ௣ܥ)ܯܪ ;2 × (௤ܥ =   .ݍ݌128

Theorem 2.3  Let ܩ and ܪ be graphs. Then 

([ܪ]ܩ)ܯܪ  = (ܩ)ܯܪସ|(ܪ)ܸ| +  (ܪ)ܯܪ|(ܩ)ܸ|

(ܩ)ଵܯ|(ܪ)ܧ|ଶ|(ܪ)ܸ|12+                     + (ܪ)ଵܯ|(ܩ)ܧ||(ܪ)ܸ|10 +  .|(ܩ)ܧ|ଶ|(ܪ)ܧ|8
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Proof. Using the definition of the hyper-Zagreb index, we have 

([ܪ]ܩ)ܯܪ = ∑  (௔,௫)(௕,௬)∈ா(ீ[ு]) [݀ீ[ு]((ܽ, ((ݔ + ݀ீ[ு]((ܾ,   ଶ[((ݕ

      = ∑  ௫∈௏(ு) ∑  ௬∈௏(ு) ∑  ௔௕∈ா(ீ) (ܽ)ீ݀|(ܪ)ܸ|] + ݀ு(ݔ) + (ܾ)ீ݀|(ܪ)ܸ| + ݀ு(ݕ)]ଶ 

      + ∑  ௔∈௏(ீ) ∑  ௫௬∈ா(ு) (ܽ)ீ݀|(ܪ)ܸ|] + ݀ு(ݔ) + (ܽ)ீ݀|(ܪ)ܸ| + ݀ு(ݕ)]ଶ 

      = ∑  ௫∈௏(ு) ∑  ௬∈௏(ு) ∑  ௔௕∈ா(ீ) (ܽ)ீ݀)ଶ|(ܪ)ܸ|] + ݀ீ(ܾ))ଶ + ݀ு(ݔ)ଶ + ݀ு(ݕ)ଶ 

      +2݀ு(ݔ)݀ு(ݕ)  + (ܽ)ீ݀)|(ܪ)ܸ|2 + ݀ீ(ܾ))(݀ு(ݔ) + ݀ு(ݕ))]   

     +∑  ௔∈௏(ீ) ∑  ௫௬∈ா(ு) ଶ݀ீ(ܽ)ଶ|(ܪ)ܸ|4] + (݀ு(ݔ) + ݀ு(ݕ))ଶ 

 [((ݕ)ு݀+  (ݔ)ு݀)(ܽ)ீ݀|(ܪ)ܸ|4+     

                   = หܸ(ܪ)|ସ(ܩ)ܯܪ + (ܪ)ଵܯห(ܩ)ܧห|(ܪ)ܸ| + (ܪ)ଵܯ|(ܩ)ܧห|(ܪ)ܸ| +  |(ܩ)ܧ|ଶ|(ܪ)ܧ|8

|(ܪ)ܧ|2)(ܩ)ଵܯଶ|(ܪ)ܸ|2+                  + (|(ܪ)ܧ|2 + (ܩ)ଵܯ|(ܪ)ܧ|ଶ|(ܪ)ܸ|4 +  (ܪ)ܯܪ|(ܩ)ܸ|

  .(ܪ)ଵܯ|(ܩ)ܧ||(ܪ)ܸ|8+                    

□ 

As an application of Theorem 2.3, we present formulae for the hyper-Zagreb index 
of the fence graph ௡ܲ[ܭଶ] and the closed fence graph ܥ௡[ܭଶ].  
 

Corollary 2.4 ܯܪ( ௡ܲ[ܭଶ]) = 500݊ − 816, ݊ > ([ଶܭ]௡ܥ)ܯܪ ;2 = 500݊.  
 

Theorem 2.5  Let ܩ and ܪ be graphs. Then  

ܩ)ܯܪ ∘ (ܪ  = + (ܩ)ܯܪ  (ܪ)ܯܪ|(ܩ)ܸ|   + (ܩ)ଵܯ|(ܪ)ܸ|5   + (ܪ)ଵܯ|(ܩ)ܸ|5  +

|(ܩ)ܧ|ଶ|(ܪ)ܸ|4   + |(ܪ)ܧ||(ܩ)ܸ|4 + |(ܪ)ܸ|)|(ܪ)ܸ||(ܩ)ܸ|+ |(ܪ)ܧ||(ܩ)ܧ|8 + 1)ଶ   

|(ܪ)ܸ|)4 + + |(ܪ)ܸ||(ܩ)ܧ|)(1 +  .(|(ܩ)ܸ||(ܪ)ܧ|
 
Proof. By definition of the hyper-Zagreb index, we have 

ܩ)ܯܪ ∘ (ܪ = ∑  ௨௩∈ா(ீ∘ு) [݀ீ∘ு(ݑ) + ݀ீ∘ு(ݒ)]ଶ  

        = ∑  ௨௩∈ா(ீ) (ݑ)ீ݀] + |(ܪ)ܸ| + (ݒ)ீ݀ +  ଶ[|(ܪ)ܸ|

        + ∑  ௨௩∈ா(ு) ∑  |௏(ீ)|
௜ୀଵ [݀ு(ݑ) + 1 + ݀ு(ݒ) + 1]ଶ 

        + ∑  ௨∈௏(ீ) ∑  ௩∈௏(ு) (ݑ)ீ݀] + |(ܪ)ܸ| + ݀ு(ݒ) + 1]ଶ. 

It is easy to see that 

∑  ௨௩∈ா(ீ) (ݑ)ீ݀] + (ݒ)ீ݀ + ∑=ଶ[|(ܪ)ܸ|2  ௨௩∈ா(ீ) (ݑ)ீ݀)] + ଶ((ݒ)ீ݀ +  ଶ              (2.1)|(ܪ)ܸ|4

(ݑ)ீ݀)|(ܪ)ܸ|4+ + =   [((ݒ)ீ݀ (ܩ)ܯܪ + |(ܩ)ܧ|ଶ|(ܪ)ܸ|4 +  .(ܩ)ଵܯ|(ܪ)ܸ|4

 ∑  ௨௩∈ா(ு) ∑  |௏(ீ)|
௜ୀଵ [݀ு(ݑ) + ݀ு(ݒ) + 2]ଶ=∑  ௨௩∈ா(ு) ∑  |௏(ீ)|

௜ୀଵ [(݀ு(ݑ) + ݀ு(ݒ))ଶ + 4 

                   +4(݀ு(ݑ) + ݀ு(ݒ))]    = (ܪ)ܯܪ൫|(ܩ)ܸ| + |(ܪ)ܧ|4 +  ൯.                     (2.2)(ܪ)ଵܯ4

 ∑  ௨∈௏(ீ) ∑  ௩∈௏(ு) (ݑ)ீ݀] + ݀ு(ݒ) + |(ܪ)ܸ| + 1]ଶ = ∑  ௨∈V(ீ) ∑  ௩∈௏(ு) ଶ(ݑ)ீ݀] + ݀ு(ݒ)ଶ 

(ݒ)ு݀(ݑ)2݀ீ+           + |(ܪ)ܸ|) + 1)ଶ + |(ܪ)ܸ|)2 + (ݑ)ீ݀)(1 + ݀ு(ݒ))] 

 = (ܩ)ଵܯ|(ܪ)ܸ| + (ܪ)ଵܯ|(ܩ)ܸ| + |(ܪ)ܧ||(ܩ)ܧ|8 + |(ܪ)ܸ|)|(ܪ)ܸ||(ܩ)ܸ| + 1)ଶ  



92                                                                                                          BASAVANAGOUD AND PATIL 

|(ܪ)ܸ|)4+     + |(ܪ)ܸ||(ܩ)ܧ|)(1 +  (2.3)                                              .(|(ܩ)ܸ||(H)ܧ|

By adding Eqs. (2.1), (2.2), and (2.3) the proof is completed.                                           □ 
 

Using Theorem 2.5, we can compute the hyper-Zagreb index of the ݇ −thorny 
cycle ܥ௡ ∘   .௞ܭ

 

Corollary 2.6 ܥ)ܯܪ௡ ∘ (௞ܭ = 16݊ + 25݊݇ + 10݊݇ଶ + ݊݇ଷ.  
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ABSTRACT QSPR study on benzene derivatives have been made using recently introduced 

topological methodology. In this study the relationship between the Randic' (
1
x), Balaban (J), 

Szeged (Sz),Harary (H), Wiener (W), HyperWiener(WW) and Wiener Polarity (WP) to the 

thermal energy (Eth), heat capacity (CV) and entropy (S) of benzene derivatives is represented.  

Physicochemical properties are taken from the quantum mechanics methodology with HF 

level using the ab initio 6-31G basis sets. The multiple linear regressions (MLR) and back 

ward methods (with significant at the 0.05 level) were employed to give the QSPR models. 

The satisfactory obtained results show that combining the two descriptors (Sz, WW) are 

useful topological descriptors for predicted (CV) and (S) of the 45 benzene derivatives. The 

training set models established by MLR method have not good correlation of (Eth), which 

means QSPR models could not predict the thermal energy of compounds. 

 

KEYWORDS QSPR • Topological index • benzene derivatives • graph theory • multiple 

linear regressions (MLR). 

 

 

1. INTRODUCTION 

Benzene derivatives compounds are widely used industrial chemicals and thus have a high 

potential for environmental pollution. The eventual release and accumulation of these 

compounds into the environment in both terrestrial and aquatic systems requires an 

assessment of their environmental risk. Science experimental measurements of 

physicochemical properties are extremely time- consuming and expensive.  
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Quantitative structure – property relationships (QSPRs) have provided a valuable 

approach in research into physicochemical properties of organic chemicals [1]. Many 

investigators have used quantum – chemical parameters [25].Among the different 

approaches employing computational chemistry, those based on chemical graph theory 

have been useful in establishing QSPR [6]. 

The basic strategy of QSPR is to find the optimum quantitative relationship which 

can then be used for the prediction of the properties of molecular structures including those 

unmeasured or even unknown [79].  

The premise of QSPR is that physicochemical properties can be correlated with 

molecular structure characteristics (geometric and electronic) expressed in terms of 

appropriate molecular descriptors [10]. 

QSPR have been traditionally developed by selecting, a priori, an analytical model 

(typically) linear, polynomial or laglinear to quantity the correlation between selected 

molecular indices and desired physicochemical properties, followed by regression analysis 

to determine model parameters [1113]. 

In the present study, the multiple linear regression (MLR) techniques and back ward 

methods are used for modeling the thermal energy (Eth), heat capacity (CV) and entropy (S) 

of 45 benzene derivatives. 

The proposed QSPR models were based on molecular descriptors (topological 

indices) that can be calculated for any compound utilizing only the knowledge of its 

molecular structure (molecular graph). 

The topological indices used for the QSPR analysis were Wiener [14], Szeged [15], 

first order molecular connectivity [16], Balaban [17], HyperWiener [18], Wiener Polarity 

[19] and Harary [20] indices. 

 

2. MATERIALS AND METHODS 

2.1. QUANTUM CHEMISTRY CALCULATIONS 

The thermal energy (Eth), heat capacity (CV) and entropy (S) of 45 benzene derivatives are 

taken from the quantum mechanics methodology with HartreeFock (HF) level using the 

ab initio 631G basis sets. The quantum chemistry data of the 45 congeners are listed in 

Table 1. 

 

2.2. TOPOLOGICAL INDICES 

All the used topological indices were calculated using all hydrogen suppressed graph by 

deleting all the carbon hydrogen as well as heteroatomic hydrogen bonds from the 
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structure of the benzene derivatives. The descriptors were calculated with chemicalize 

software [21]. Six topological indices tested in the present study are recorded in Table 2. 

 

2.3. STATISTICAL ANALYSIS 

Structure- Property models (MLR models) are generated using the multilinear regression 

procedure of SPSS version 16. The thermal energy )(
mol

kcal
Eth , heat capacity )(

molK

cal
Cv  

and entropy )(
molK

cal
S are used as the dependent variable and 

1
x, J, Sz, H, WP and WW 

indices as the independent variables. The models are assessed with R value (correlation 

coefficient), the R
2
(coefficient of determination), the R

2
- adjusted, the SD value (root of the 

mean square of errors), the F value (Fischer statistic) and the sig (significant). 

 

3.  RESULTS 

Several linear QSPR models involving one, two, three, four and five descriptors are 

established and strongest multivariable correlations are identified by the back ward method 

are significant at the 0.05 level and regression analysis of the SPSS program.  

In the first of this study we drown scattering plots of CV, S and Eth versus the six 

topological indices, 
1
x, J, W, Sz, WW and WP. Some of these plots are given in Fig. (18), 

respectively. Distribution of the dependent variable against the independent variable for 45 

chemicals employed in developing quantitative structureproperties relationship. 

 

3.1. QSPR MODELS FOR HEAT CAPACITY (CV) 

Model 1 

CV = 18.000 – 0.573
1
x - 4.038 J – 0.051 H – 0.103 WW – 0.006 WP +0.257 Sz 

N= 45          R= 0.966           R
2
 =0.933 922.02 adjR  SD=2.342 

F= 88.125              sig = 0.000                                                                                              (1) 

 

Model 2 

CV = 18.045 – 0.574
1
x - 4.048 J – 0.051 H – 0.103 WW - 0.256Sz 

N= 45          R= 0.966           R
2
 =0.933 924.02 adjR  SD=2.312 

F= 108.531              sig = 0.000                                                                                            (2) 

 



96                                                           PASHM FORUSH, SHAFIEI AND DIALAMEHPOUR 

Model 3 

CV= 18.351 – 0.556
1
x - 4.180 J – 0.106 WW - 0.266 Sz 

N= 45          R= 0.966           R
2
 =0.933 926.02 adjR  SD=2.284 

F= 138.960              sig = 0.000                                                                                            (3) 

 

Model 4 

CV = 16.779– 3.975 J – 0.102 WW - 0.252 Sz 

N= 45          R= 0.966           R
2
 =0.933 928.02 adjR  SD=2.261 

F= 188.938              sig = 0.000                                                                                            (4) 

 

Model 5 

CV = 10.629– 0.085 WW + 0.216 Sz 

N= 45          R= 0.964           R
2
 =0.929 926.02 adjR  SD=2.292 

F= 274.854              sig = 0.000                                                                                            (5) 

 

 It turns out that the heat capacity (CV) has a good correlation with all six topological 

indices as well as with WW and Sz (Eq. (5)). 

 

3.2. QSPR MODELS FOR THERMAL ENERGY (ETH) 

Model 6 

Eth = 112.146 – 1.952
1
x - 16.645 J + 1.496 H – 0.167 WW – 0.702 WP -0.356 Sz 

N= 45          R= 0.425           R
2
 =0.181 052.02 adjR  SD=18.837 

F= 1.400              sig = 0.240                                                                                               (6) 

 

Model 7 

Eth = 106.705- 15.971 J + 1.473 H + 0.180 WW + 0.689 WP - 0.396 Sz 

N= 45          R= 0.425           R
2
 =0.180 075.02 adjR  SD=18.603 

F= 1.715              sig = 0.154                                                                                               (7) 
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Model 8 

Eth = 102.046- 14.980 J + 1.454 H + 0.130 WW - 0.271 Sz 

N= 45          R= 0.422           R
2
 =0.178 096.02 adjR  SD=18.396 

F= 2.162              sig = 0.091                                                                                               (8) 

 

Model 9 

Eth = 112.147- 22.272 J + 0.666 H + 0.021 WW  

N= 45          R= 0.414           R
2
 =0.171 111.02 adjR  SD=18.240 

F= 2.828              sig = 0.050                                                                                                (9) 

 

Model 10 

Eth = 108.116- 23.268 J + 1.190 H  

N= 45          R= 0.408           R
2
 =0.167 127.02 adjR  SD=18.074 

F= 4.199              sig = 0.022                                                                                             (10) 

 

Model 11 

Eth = 66.730+0.699 H  

N= 45          R= 0.365           R
2
 =0.134 113.02 adjR  SD=18.214 

F= 6.629              sig = 0.014                                                                                              (11) 

 

 It turns out that the correlation coefficient values of all models for Eth, is less than 

0.2, which means that there is no strong linear relation between Eth and descriptors. 
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3.3. QSPR MODELS FOR ENTROPY (S)  

Model 12 

S = 72.845 – 0.598
1
x - 4.788 J + 0.259 H – 0.116 WW + 0.334 WP + 0.272 Sz 

N= 45          R= 0.948           R
2
 =0.898 882.02 adjR  SD=4.008 

F= 55.810              sig = 0.000                                                                                            (12) 

Model 13 

S = 71.179- 4.581 J + 0.252 H – 0.112 WW - 0.33 WP - 0.259 Sz 

N= 45          R= 0.948           R
2
 =0.898 885.02 adjR  SD= 3.960 

F= 68.590              sig = 0.000                                                                                            (13) 

 

Model 14 

S = 72.903- 5.259 J– 0.130 WW - 0.322 WP + 0.312Sz 

N= 45          R= 0.947           R
2
 =0.897 887.02 adjR  SD= 3.930 

F= 86.936              sig = 0.000                                                                                            (14) 

 

Model 15 

S = 70.664- 4.772 J– 0.153 WW + 0.369 Sz 

N= 45          R= 0.946           R
2
 =0.895 888.02 adjR  SD= 3.910 

F= 116.931              sig = 0.000                                                                                         (15) 

 

Model 16 

S = 63.280 – 0.133 WW + 0.324 Sz 

N= 45          R= 0.945           R
2
 =0.893 888.02 adjR  SD= 3.911 

F= 174.741              sig = 0.000                                                                                          (16) 
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 It turns out that the entropy(S) has a good correlation with all six topological 

indices as well as with WW and Sz (Eq. (16)). 

4. DISCUSSION 

We studied the relationship between topological indices and the thermal energy (Eth), heat 

capacity (CV) and entropy (S). 

The elaborated QSPR models (Eqs 1 – 5) reveal that the heat capacity of the 

benzene derivatives could be explained by two, three, four, five and six parameter. All of 

models can explain about 93% of the experimental variance of the dependent variable CV. 

The combination of the two parameters (WW, Sz) increases remarkably the predictive 

power of the QSPR model given by Eq. (5) ( 929.02 R , 926.02 adjR , SD = 2.29, F = 

274.854). 

As can be seen from the statistical parameters of the above equation, a high F of 

Fischer (F = 274.854) which confirms that the model (5) predicts the heat capacity 

(dependent variable) in a statistically satisfactory significant manner. 

The back ward values of the entropy shows that all of models (Eqs 12 – 16) can 

explain about 0.90% of the variance of the entropy. The combination of two parameters 

(WW, Sz) recorded in Eq (16) has highest F of Fischer (F = 174.741) which explain that 

the model (16) for predict entropy is better than another models. The QSPR models (Eqs 6 

– 11) explains only 18% of the variance of the thermal energy besides a low F and a low 

standard deviation (SD) which confirms that all of models (Eqs 6 – 11) could not use to 

predicts the thermal energy. 

The comparison between the observed data and predicted values using Eq (16) of 

entropy (S) is presented in Table 3. The linear relations between the observed and 

predicted values of the entropy of 45 benzene derivatives show in Figure (9). 

The comparison between the observed data and predicted values using Eq (5) of CV 

is presented in Table 3. The linear relations between the observed and predicted values of 

the heat capacity of 45 benzene derivatives show in Figure (10). 

5. CONCLUSION 

The aforementioned results and discussion lead us to conclude that combining the two 

descriptors (Sz, WW) can be used successfully for modeling and predicting the heat 

capacity (CV) and entropy (S) of 45benzene derivatives. The training set models 

established by MLR method have not good correlation of the thermal energy (Eth), which 

means QSPR models could not predict the thermal energy of compounds. 
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Table 1. Benzene derivatives and their thermal energy (Eth), heat capacity (CV) 

                         and entropy (S) 

 

compounds 

 
No. 

mol
kcalEth

 
molK

calCv  
molK

calS  

Bromobenzene 1 65.29 18.974 77.412 
Phenol 

2 74.241 19.556 73.301 

1,2-Dichlorobenzene 
3 59.638 22.459 81.422 

3-Chlorotoluene 
4 84.812 24.561 86.151 

1,3-Dihydroxybenzene 
5 77.539 24.356 78.827 

3-Hydroxyanisole 6 97.706 28.52 85.825 

4-Methyl-3-nitroaniline 7 103.88 36.498 97.218 

2,4-Dimethylphenol 8 113.333 31.213 95.395 

2,6-Dimethylphenol 9 113.476 30.971 88.024 

3-Nitrotoluene 10 93.604 28.973 92.842 

2,6-Dinitrotoluene 11 93.307 39.695 104.851 

4-Methyl-2,6-dinitroaniline 12 105.713 44.947 114.965 

5-Methyl-2,6-dinitroaniline 13 105.837 44.81 107.737 

5-Methyl-2,4-dinitroaniline 
14 105.62 45.252 109.238 

2,4-Dinitrotoluene 
15 93.169 39.727 105.107 

4-Nitrophenol 
16 77.413 27.692 86.473 

4-Chlorotoluene 17 77.206 31.85 96.426 

2,4,6-Trichlorophenol 18 57.376 30.862 93.417 

Toluene 19 82.941 27.892 89.047 

3-Methyl-6-nitroaniline 20 104.149 35.841 96.864 

4-Methyl-2-nitroaniline 21 106.04 33.951 94.282 

1,2,4-Trichlorobenzene 22 53.93 26.321 88.346 

3,4-Dichlorotoluene 23 79.161 28.303 93.362 

2,4-Dichlorotoluene 24 79.266 28.227 88.762 

Chlorobenzene 
25 65.308 18.726 74.858 

1,3,5-Trinitrobenzene 
26 74.783 43.544 111.19 

1,2,3,4-Tetrachlorobenzene 
27 48.143 29.99 94.375 
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Table 1. (Continued). 
 

2,3,4,5,6-Pentachlorophenol 28 45.776 38.209 105.427 

1,3-Dichlorobenzene 
29 59.625 22.593 81.815 

2-Chlorophenol 
30 68.741 23.201 79.752 

3-Methylphenol 
31 93.75 25.379 83.997 

2,3-Dinitrotoluene 
32 93.312 39.473 103.012 

1,4-Dimethylbenzene 33 109.926 26.47 90.836 

2,3,4,5-Tetrachlorophenol 34 51.504 34.552 99.256 

2,3,6-Trinitrotoluene 35 96.277 47.777 115.335 

4-Methylphenol 36 93.737 25.413 83.681 

4-Methyl-3,5-dinitroaniline 37 105.556 45.32 110.557 

1,3,5-Trichlorobenzene 38 53.896 26.473 88.731 

Benzene 39 70.931 14.87 67.85 

2-Nitrotoluene 
40 93.788 28.598 87.958 

1,4-Dinitrobenzene 
41 75.38 32.677 96.457 

2-Methyl-3,6-dinitroaniline 
42 107.521 43.693 107.087 

2-Methyl-4,6-dinitrophenol 
43 96.803 43.786 108.582 

2,5-Dinitrotolueno 44 93.252 39.676 105.278 

1,2-Dinitrobenzene 45 75.477 32.524 95.425 
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Table 2. Benzene derivatives and their topological indices used in present study 

Comp. No. 1
 J H HW WP Sz 

1 3.39 1.82 12.92 71 5 78 

2 3.39 1.82 12.92 71 5 78 

3 3.8 2.28 16.17 106 8 106 

4 3.79 2.23 16.08 110 7 108 

5 3.79 2.23 16.08 110 7 108 

6 4.33 1.98 19.15 176 9 146 

7 5.11 2.25 26.67 315 14 232 

8 4.2 2.09 19.53 160 10 144 

9 4.22 2.15 19.67 151 11 140 

10 4.7 2.32 22.72 245 11 186 

11 6.04 2.4 34.6 545 19 348 

12 6.43 2.7 39.2 669 31 420 

13 6.45 2.72 39.13 667 22 418 

14 6.43 2.65 38.83 698 21 430 

15 6.02 2.33 34.3 576 18 360 

16 4.7 2.26 22.6 262 11 192 

17 3.79 2.19 16.03 115 7 110 

18 4.61 2.49 23.28 215 13 184 

19 3.39 1.82 12.92 71 5 78 

20 5.11 2.22 26.6 327 14 236 

21 5.11 2.27 26.67 315 14 232 

22 4.2 2.09 19.53 160 10 144 

23 4.2 2.09 19.53 160 10 144 

24 4.2 2.09 19.53 160 10 144 

25 3.39 1.82 12.92 71 5 78 

26 6.91 2.46 42.6 906 21 516 

27 4.63 2.52 23.37 211 14 182 

28 5.46 2.76 31.6 357 21 282 

29 3.79 2.23 16.08 110 7 108 

30 3.8 2.28 6.17 106 8 106 

31 3.79 2.23 16.08 110 7 108 

32 6.04 2.47 34.83 511 19 336 

33 3.79 2.19 16.03 115 7 110 

34 5.04 2.39 27.32 281 17 230 

35 7.36 2.83 47.97 1036 26 588 

36 2.18 2.19 16.3 115 7 110 

37 6.43 2.7 39.02 669 21 420 

38 4.18 2.08 19.5 159 9 144 

39 3 2 10 42 3 54 

40 4.72 2.4 22.9 231 12 180 

41 5.61 2.3 29.74 521 15 314 

42 6.45 2.64 38.87 717 22 434 

43 6.43 2.66 38.85 691 21 428 

44 6.02 2.28 34.14 616 18 372 

45 5.63 2.54 30.43 416 16 278 
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Table 3. Comparison between predicted and observed values of entropy and heat capacity 

of respect benzene derivatives. 

 
Comp. No.  Observed 

 (S)  

Predicted 

(S)  

Residual  Observed 

(CV)  

Predicted 

(CV)  

Residual  

1 77.41 79.11 1.70 18.97 21.44 2.47 

2 73.30 79.11 5.81 19.57 21.44 1.87 

3 81.42 83.53 2.11 22.46 24.52 2.06 

4 86.15 83.64 -2.51 24.56 24.61 0.05 

5 78.83 83.64 4.81 24.36 24.61 0.25 

6 85.82 87.18 1.36 28.52 27.20 -1.32 

7 97.22 96.55 -0.67 36.50 33.97 -2.53 

8 95.40 88.66 6.74 31.21 28.13 -3.08 

9 88.02 88.56 0.54 30.97 28.03 -2.94 

10 92.84 90.96 -1.88 28.97 29.98 1.01 

11 104.85 103.55 -1.30 39.70 39.47 -0.23 

12 114.96 110.38 -4.58 44.95 44.48 -0.47 

13 107.74 110.00 2.26 44.81 44.22 -0.59 

14 109.24 109.77 0.53 45.25 44.18 -1.07 

15 105.11 103.31 -1.80 39.73 39.43 -0.30 

16 86.47 90.64 4.17 27.69 29.83 2.14 

17 96.43 83.62 12.81 31.85 24.61 -7.24 

18 93.42 94.30 0.88 30.86 32.09 1.23 

19 89.05 79.11 -9.94 27.89 21.44 -6.45 

20 96.86 96.25 -0.61 35.84 33.81 -2.03 

21 94.28 96.55 2.27 33.95 33.97 0.02 

22 88.35 88.66 0.31 26.32 28.13 1.81 

23 93.36 88.66 -4.70 28.30 28.13 -0.17 

24 88.76 88.66 -0.10 28.23 28.13 -0.10 

25 74.86 79.11 4.25 18.73 21.44 2.71 

26 111.19 109.97 -1.22 43.54 45.08 1.54 

27 94.38 94.18 -0.20 29.99 32.01 2.02 

28 105.43 107.17 1.74 38.21 41.20 2.99 

29 81.82 83.64 1.82 22.59 24.61 2.02 

30 79.75 83.53 3.78 23.20 24.52 1.32 

31 84.00 83.64 -0.36 25.38 24.61 -0.77 

32 103.01 104.18 1.17 39.47 39.77 0.30 

33 90.84 83.49 -7.35 26.47 24.53 -1.94 

34 99.26 100.29 1.03 34.55 36.34 1.79 

35 115.34 116.00 0.66 47.78 49.58 1.80 

36 83.68 83.62 -0.06 25.41 24.61 -0.80 

37 110.58 110.38 -0.20 45.32 44.48 -0.84 

38 88.73 88.79 0.06 26.47 28.22 1.75 

39 67.85 75.19 7.34 14.87 18.72 3.85 

40 87.96 90.88 2.92 28.60 29.87 1.27 

41 96.46 95.72 -0.74 32.68 34.17 1.49 

42 107.09 108.54 1.45 43.69 43.43 -0.26 

43 108.58 110.05 1.47 43.79 44.34 0.55 

44 105.28 101.88 -3.40 39.68 38.62 -1.06 

45 95.42 98.02 2.60 32.52 35.32 2.8 
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Figure 1. Plots of the Szeged index (Sz) versus entropy of 45 benzene derivatives. 
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Figure 2. Plots of the Randić index (
1
x) versus entropy of 45 benzene derivatives. 
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Figure 3.  Plots of the HyperWiener (WW) index versus entropy of 45 benzene 

                          derivatives. 
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Figure 4. Plots of the Balaban index (J) versus entropy of 45 benzene derivatives. 
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Figure 5. Plots of the Szeged index (Sz) indexversus  heat capacity (Cv) of 45 benzene  

                    derivatives. 
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Figure 6. Plots of the  Harrary index(H) versus heat capacity (Cv) of 45 benzene derivatives. 
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Figure 7. Plots of the   Szeged index (Sz) index versus thermal energy (Eth) of 45 benzene  

                      derivatives . 
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Figure 8. Plots of the Randić index (
1
x) index versus thermal energy (Eth) of 45 benzene 

                   derivatives. 
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Figure 9. Comparison between the predicted and observed values of entropy by MLR. 

 

 
 

Figure 10. Comparison between the predicted and observed values of thermal energy by 
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Degree Distance Index of the Mycielskian and its 
Complement 

 
ALI BEHTOEI AND MAHDI ANBARLOEI 

 
Department of Mathematics, Imam Khomeini International University, P. O. Box: 
34149-16818, Qazvin, Iran 
 
 

آن مکمل و میسیلیسکی گراف درجه-فاصله شاخص  
 

طائري بیژن : رابط ادیتور  
 

 چکیده

درجه مکمل میسیلیسکی گراف هاي دلخواه را مشخص -فاصله در این مقاله ما مقدار دقیق شاخص
قطر دو  نمائیم. قضیه مشهوري وجود دارد مبنی بر این که با دید احتمالاتی تقریبا همه گراف ها بامی

  .کنیمگراف هاي با قطر دو مشخص می درجه را براي میسیلیسکی-فاصله هستند. بر این اساس شاخص
  

  میسیلیسکی. ساختار زاگرب، هاي شاخص درجه،-فاصله :لغات کلیدي
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A Note on VertexEdge Wiener Indices of Graphs 

MAHDIEH AZARI 

 
Department of Mathematics, Kazerun Branch, Islamic Azad University, P. O. Box: 73135-168, 
Kazerun, Iran 
 

هاگراف یالی- رأسی وینر هايشاخص بر یادداشتی  
 

اشرفی علیرضا : رابط ادیتور  
 

 چکیده

 Gبه صورت مجموع فواصل بین رأس ها و یال هاي  G يیالی گراف همبند ساده-یرأسشاخص وینر 
1),(شود. دو فاصله ي ممکن تعریف می GeuD 2),(و GeuD   بین رأسu  و یالe  ازG ها در نوشته

)( به یالی مربوط- هاي وینر رأسیها شاخصنظر گرفته شدند و با توجه به آن در
1

GWve و )(
2

GWve 

الی دو گراف ی-هاي وینر رأسیي شاخصهاي دقیقی براي محاسبهمعرفی شدند. در این مقاله فرمول
  .کنیمها ارائه مییوستگی و اتصال گرافپهمترکیبی تحت عنوان به

  
  .، اتصالیوستگیپهمبهیالی، -فاصله در گراف، شاخص وینر رأسی :لغات کلیدي
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ElectroSpunorganic Nanofibers Elaboration Process 
Investigations using BPs Operational Matrices 

 
HOSSEIN JAFARI1 AND HALEH TAJADODI2 

 
1
Department of Mathematics, University of Mazandaran, P. O. Box 4741695447, Babolsar, Iran 

2
Department of Mathematical Science, University of Sistan and Baluchestan, Zahedan, Iran 

 
 

 با گانیکار شده الکتروریسی نانوفیبرهاي تولید چرخه فرآیند بررسی
  BP عملیاتی ماتریس از استفاده

 

گوتمن ایوان : رابط ادیتور  
 

 چکیده

هاي برنشتاین براي حل معادله براتو استفاده اياز چندجملهحاصل هاي عملیاتی ماتریس ،در این مقاله
شده ویژه ظاهر این معادله غیرخطی، در چارچوب فرآیند ساخت نانوفیبرهاي الکتروریسی شده است.

شده در گستره وسیعی از کاربردهاي فیلتراسیون از جمله صنایع شود. نانوفیبرهاي آلی الکتروریسیمی
هاي عملیاتی انتگرال و با استفاده از ماتریس. گیرندمیاستفاده قرار مورد بافت فیلترسازي و منسوجات بی

دقت و  ،هاي عدديجوابشود. معادلات جبري تبدیل می به دستگاهی از مورد بحثمعادله  ،حاصلضرب
   .دندهسادگی روش پیشنهادي را نشان می

  
  هاي عملیاتی.ماتریس اي برنشتاین،شده، چندجملهمعادله براتو، نانوفیبرهاي الکتروریسی :لغات کلیدي
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Hosoya Polynomials of Random Benzenoid Chains 

SHOU-JUN XUa,  QING-HUA HEa,  SHAN ZHOUb AND WAI HONG CHANc 
 

aSchool of Mathematics and Statistics,  Lanzhou University,  Lanzhou, Gansu 730000,  China  
b School of Mathematics and Statistics,  Jiangsu Normal University, Xuzhou,  Jiangsu 221116,  
China 
cDepartment of Mathematics and Information Technology,  The Hong Kong Institute of  Education,  
Tai Po,  Hong Kong,  R. R.  China 
 

تصادفی بنزوئید زنجیرهاي هوسویاي هايايچندجمله  
 

اشرفی رضا علی : رابط ادیتور   
 

 چکیده

فاصله توپولوژیکی بین  v,u(Gd(و ، V)G(هاي با مجموعه رأس یک گراف مولکولی Gفرض کنید 
اي یک چندجمله Gاز گراف   G,x(H(اي هوسویاي جملهباشد. چند Gدر گراف  vو  uهاي رأس

  )(},{
),(

GVvu
vuGdx  با متغیرx براي مقدار مورد انتظار از  صریحی . در این مقاله بیان تحلیلیاست

هاي مقادیر مورد انتظار از شاخصهمچنین دهیم. ضلعی ارائه میتا شش- nیک زنجیر بنزوئید تصادفی با 
وینر و شاخص - توپولوژیکی شناخته شده: شاخص وینر، شاخص هایپر

TratchStankevitchZefirov  از یک زنجیر بنزوئید تصادفی باn تواند توسط ضلعی میشش
  شود. محاسبات ساده ریاضی بدست بیاید، که با نتایج بدست آمده توسط ایوان گوتمن تولید می

  
 تابع انتظار، مورد مقدار هوسویا، اي جمله چند تصادفی، بنزوئید زنجیر وینر، شاخص :لغات کلیدي

  کننده. تولید
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Complete Forcing Numbers of Polyphenyl Systems 

BINGJIE LIU1, HONG BIAN1 AND HAIZHENG YU2 

 
1School of Mathematical Sciences, Xinjiang Normal University, Urumqi, Xinjiang 830054,  
 P. R. China 
2College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P. R. China 
 

فنیلپلی هايسیستم کامل (اجبار)نفوذ اعداد  
 

آذري یوسفی حسن : رابط ادیتور   
 

 چکیده

آمیزي، رنگ مانند:تحقیقاتی وجود داشته است،  هاياز شاخه مدت زیادي در بسیاري "(اجبار)نفوذ " ایده
تین،  لاهاي به همان خوبی مربع که ،در نظریه گراف غالبهاي گیري، کمترین فاصله و مجموعهجهت

هاي کامل اخیرا بحث نفوذ روي جورسازي .باشدهاي استینر در ترکیبیات میهاي بلوك و سیستمطراحی
سازي کامل گراف است. یک مجموعه اجباري از یک جور  توجه بسیاري از محققان را به خود جلب کرده

G ، اي از زیرمجموعهM است که در هیچ جورسازيG   اجباري سراسري مشمول نباشد. یک مجموعهG 
که براي هر  هاي ذاتیبا محدودیت  E(G)که توسط واکیسویچ و دیگران معرفی شد، یک زیر مجموعه از 

زو و  ،یک مجموعه "سراسري"و  "اجباري "هاي. با ترکیب ایده، استوجود دارد  Gسازي مختلفدو جور
که  هاییبا محدودیت E(G)اي از را که به صورت زیر مجموعه  Gدیگران یک مجموعه اجباري کامل از

هاي اجباري مینیمم کاردینال مجموعه  .معرفی کردند، شودتعریف میG از  Mبراي هر جورسازي کامل 
ي کامل براي چندین است. در این مقاله بیان صریحی براي عدد اجبار G کامل، تعداد اجبارهاي کامل

   .کنیمائه میفنیل ارهاي پلیدسته از سیستم
  

  سراسري. اجباري عدد فنیل،پلی سیستم کامل، اجبار عدد  :ت کلیديلغا
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Quantitative Structure Activity Relationship Study of 
Inhibitory Activities of 5Lipoxygenase and Design 
new Compounds by Different Chemometrics Methods  

 
FATEMEH BAGHBAN SHAHRI, ALI NIAZI AND AHMAD AKRAMI 

 
Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran 

 

 
- 5 یکنندگمهار هايفعالیت براي ساختار-فعالیت کمی ارتباط مطالعه

 ککمومتری هايروش توسط جدید ترکیبات طراحی و ژناس لیپوکسی
 مختلف

 
گوتمن ایوان : رابط ادیتور   

 
 چکیده

درو یتتراه2H فنیل-1بینی بازدارندگی فعالیت براي پیش )QSAR(ساختار - مطالعه ارتباط کمی فعالیت
 -هاي بازدارندگی فنیلباشد. فعالیتلیپوکسی ژناس می-5کننده نالوگ به عنوان مهاریک آ 3تریازین

2Hاز هاي کمومتریک روش و با استفاده از به عنوان تابعی از ساختارهاي مولکولی 3درو تریازینیتتراه
 (LS-SVM) هاي برداريکه از ماشینحداقل مربعات و  (MLR)رگرسیون خطی چندتایی قبیل
فعالیت مهارکنندگی  بینیبه منظور پیشآمده دستهاي بهمدل شود.سازي می، مدلکندت میحمای

بینی نشان داد که توانایی پیشها . نتایج مدلاندکار گرفته شدهمدلسازي نبودند، به ترکیباتی که در فرآیند
 0.061و  0/167به ترتیب برابر است با:  LS-SVMو  MLRبراي ریشه خطاي مربع  بالا با میانگین

بینی فعالیت مهارکننده مشتقات مهارکننده جدید مورد استفاده براي پیش LS-SVMروش  باشد.می
  .قرار گرفت

  
  .MLR ، LS-SVM ،3درو تریازینیتتراه2H فنیل-QSAR، 1 :لغات کلیدي
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ThreeCenter Harary Index and its Applications 
 

BORIS FURTULA, IVAN GUTMAN AND VLADIMIR KATANIĆ 

 
Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia 

 

 
کاربردهایش و مرکزيسه رارياه شاخص   

 
اشرفی رضا علی : رابط ادیتور   

 
 چکیده

گر ساختار مولکولی در نظر گرفته شود که متشکل از تواند به عنوان یک توصیفیم  Hرارياهشاخص 
با افزایش فاصله بین مقدارشان است، به طوري که  هااتمبین جفت شدهدادههاي نشانافزایش بر همکنش

کارگیري با به ،شودنشان داده می Hkراري،که با اشاخص ه یک تعمیم از. یابدمی، کاهش دو اتم مربوطه
به  H+λH3دهیم ترکیب خطی نشان میما آید. ها به دست میتایی از اتم- kنوع استینر بین از فاصله

  بهتر است. Hنسبت به خود  ،شیمی آلکان ها-خواص فیزیک از نظر تنوعداري صورت معنی
  

  راري چند مرکزي، فاصله استینر، گراف مولکولی.اراري، شاخص هاشاخص ه :لغات کلیدي
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Investigation the Effect of Nanocomposite Material on 
Permeation Flux of Polyerthersulfone Membrane using 

a Mathematical Approach 
 

MARJAN ADIB 
 

Department of Mathematics, Payame Noor University (PNU), Iran 

  با فوناترسلیپل غشاء شار نفوذ روي نانوکامپوزیت مواد تأثیر رسیبر

ریاضی رویکرد با  
گوتمن ایوان : رابط ادیتور   

 چکیده
جداسازي  فرآینداترسلفون توسط اي یکپارچه، بر اساس نانوکامپوزیت پلیهاي نامتقارن  پوستهغشاء

CO2  در این پژوهش، اثرات دما . اندشده تهیهپلیمر  محلولیک غیرحلال براي یک  به عنوانبحرانی فوق
نشان داده شده همچنین  .رات بر عملکرد انتخابی و نفوذپذیري گازها مورد بررسی قرار گرفته استو نانوذ

بلکه باعث کند، اي پلیمر اصلی را مختل میبندي زنجیرهنانوذرات سیلیکا نه تنها بستهاست که حضور 
یل حضور هیدروفیلیک دلبه .شودیورتسولفون میهاي پلیها در ماتریسایجاد تغییرات شیمیایی پانسیون

اکسیدکربن هاي اکسیژن از ديپرکننده وابستگی، پیوند هیدروژن  فعل و انفعالات بین اتم CO2 سیلیکا ،
افتد و بنابراین اتفاق می پیوندهاي هیدروژن از گروه هیدروکسیل روي سطح نانوسیلیکا در و اتم

ها بیشتر است. علاوه بر براي غشاء CH4 در مقایسه با CO2پذیري و در نتیجه نفوذپذیري به سمت حل
براي شار نفوذي و این، در مطالعه حاضر، یک رویکرد ریاضی جدید پیشنهاد شده است  تا یک مدل جدید 

براي  SVM .شود، توسعه یابدرداري استفاده میماشین بءاي که تحت پشتیبان عملکرد انتخابی از غشا
تخمین فرآیند متغیرهاي خروجی از یک غشاء نانوکامپوزیت که شامل شار نفوذي  به منظورمدلی  توسعه

سازي و آزمایشی که .  توسعه مدل که شامل آموزش، بهینهکار گرفته می شودبه، و عملکرد انتخابی است
 .، انجام شدرودبه کار میدرصد متغیر ها  10 درصد انتخاب تصادفی  و  10، درصد 80به ترتیب براي 

هاي تجربی در مقایسه با سایر توافق بهتري با دادهدهنده نشان SVM بر اساس مدلتایج آزمایش ن
براي فرآیند تخمین شده قدار همبستگی مربعی محاسبه. کمترین ماست هاي ریاضی پیشرفتهمدل

 ،ینثابت کرد که این روش تخم SVMمی باشد. بر اساس نتایج این نمونه مطالعه  0.99متغیرها برابر 
  دقیق و قابل اعتماد است. 

 اترسلفون، نانو ذرات سیلیکا، پشتیبان ماشین برداريواد نانوکامپوزیت، غشاء پلیم لغات کلیدي:
)SVM.(  
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On The Generalized Mass Transfer  with a Chemical 
Reaction:  Fractional Derivative Model 

 

ALIREZA ANSARI AND MOHAMMADREZA AHMADI DARANI 
 

Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University, 

P.O.Box 115, Shahrekord, Iran   

 

 
 شتقم مدل :شیمیایی واکنش یک با یافتهتعمیم جرم انتقال باب در

 کسري
 

اشرفی رضا علی : رابط ادیتور   
 

 چکیده

جوابهاي تحلیلی براي انتقال جرم تعمیم یافته با   ،با استفاده از معکوس تبدیل لاپلاس ، مادر این مقاله
جریان کوت با مشتق کسري  عنوان بهدهیم. این انتقالات واکنش شیمیایی را نشان می  یک (بدون)

توابع  جوابها بر حسب ،شوند. همچنین با استفاده از مسیر هنکل براي انتگرال برومویچپوتو بیان میاک
  .شوندمی  ارائهایري تعمیم یافته 

   .مشتق کسري ،توابع ایري تعمیم یافته، تبدیل لاپلاس مساله لوِك، :لغات کلیدي
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گراف عملگرهاي ابرزاگرب شاخص درباره یادداشتی  

 
اشرفی رضا علی : رابط ادیتور   

 
 چکیده

ها ضرب کروناي گرافضرب ترکیبی و حاصلدکارتی، حاصلضرب شاخص ابرزاگرب حاصل ،هدر این مقال
  کند.می تصحیحو همکارانش را در مقاله شیردل  هاخطاشود. این نتایج بعضی محاسبه می

  
   گراف. عملشاخص ابرزاگرب، شاخص زاگرب،  :لغات کلیدي
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 یاییشیم-یفیزیک خواص از برخی خاصیت-ساختار کمی ارتباط مطالعه
توپولوژیکی هايشاخص از استفاده با بنزن مشتقات  

 

گوتمن ایوان : رابط ادیتور   
 

 چکیده

خاصیت مشتقات بنزن پرداخته -هاي توپولوژیکی به مطالعه ارتباط کمی ساختارامروزه با استفاده  ازروش
 )،J) ، بالابان(1راندیک اتصال یک( هاي توپولوژیکارتباط بین شاخصشده است. در این تحقیق 

هاي به روش نظریه گراف براي مشتق )WP) و وینر پلاریتی (WWوینر(ابر)، Hهاراري()، Szسگد(
هاي توپولوژیک با خواصی نظیر انرژي سپس همبستگی این شاخص .نظر محاسبه گردیدبنزن مورد

بدست آمده از روش مکانیک   (S)وآنتروپی(Cv)  در حجم ثابت)، ظرفیت گرمایی Ethگرمایی(
افزارهاي  گوس ویو وگوسین شیمیایی فوق باکمک نرم-خواص فیزیکی مورد بررسی قرار گرفت.کوانتومی 

سپس به  محاسبه گردید. 31G-6فاك و سري پایه -هارتري هاي آغازینبا استفاده از یکی از روش و98
، روش برگشتی رگرسیون خطی SPSSنرم افزار آماري  خاصیت از –ساختار منظور مطالعه رابطه کمی 

هاي ظرفیت معین گردید که براي پیشگویی کمیتبدین طریق  استفاده شد. )MLR( چند متغیره
گر مشتق هاي بنزن مورد مطالعه، ترکیبی از دو توصیف (S) وآنتروپی CV)گرمایی در حجم ثابت (

 MLRروش  با توجه به نتایج بدست آمده از اما باشد.وینر مناسب میابرشاخصهاي سگد و  توپولوژیکی،
بدین  باشند.مناسب نمی )،Ethهاي مورد مطالعه جهت پیشگویی انرژي گرمایی(یک از شاخصهیچ

هاي مولکولی مورد سازي و تعیین خاصیتهاي توپولوژیکی مورد استفاده در مدلترتیب کارایی شاخص
  نظر، معین گردید.

رگرسیون  نظریه گراف، شاخص توپولوژیکی، مشتقات بنزن، خاصیت، -بررسی کمی ساختار غات کلیدي:ل
  .)MLR( خطی چند متغیره
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