OF MATHEMATICAL CHEMISTRY

Editor-in-Chief:

A R Ashrafi (University of Kashan, Iran)

Managing Director:

B Bazigaran (University of Kashan, Iran)

Language Editor:

S Mosazadeh (University of Kashan, Iran)

Technical Manager:

M Pourbabaee (University of Kashan, Iran)

Editorial Board:

A R Ashrafi (University of Kashan, Iran)
B Bazigaran (University of Kashan, Iran)
M R Darafsheh (University of Tehran, Iran)
M Deza (Ecole Normale Supérieure, France)
M Diudea (Babes-Bolyai University, Romania)
T Dosslić (University of Zagreb, Croatia)
A Gholami (University of Qom, Iran)
I Gutman (University of Kragujevac, Serbia)
A Iranmanesh (Tarbiat Modares University, Iran)
M A Iranmanesh (Yazd University, Iran)
P E John (Technical University of Ilmenau, Germany)
S Klavžar (University of Maribor, Slovenia)
X Li (Nankai University,China)
H R Maimani (Shahid Rajaee Teacher Training University, Iran)
O Ori (Actinum Chemical Research, Italy)
M V Puts (West University of Timisoara, Romania)
M Salavati-Niasari (University of Kashan, Iran)
B Shareghi- Boroujeni (University of Shahrkord, Iran)
B Taeri (Isfahan University of Technology, Iran)
H Yousefi-Azari (University of Tehran, Iran)
S Yousefi (Malek-Ashtar University Of Technology, Iran)
B Zhou (South China Normal University, China)

Past Editor

A Graovac (Ruder Boskǒovic iństitute, Croatia)

Iranian Journal of Mathematical Chemistry

Iranian Journal of Mathematical Chemistry (IJMC) publishes quality original research papers and survey articles in Mathematical Chemistry and related areas that are of the highest possible quality.

Research papers and review articles are selected through a normal refereeing process by a member of editorial board.

It is intended that the journal may act as an interdisciplinary forum for publishing chemically important mathematical papers. Papers published in this journal must have a clear connection to chemistry with non-trivial mathematics.

Aims and Scopes: Iranian Journal of Mathematical Chemistry is a bi publication of the University of Kashan. It contains research and expository papers as well as short communications on chemically important mathematical problems.

Preparation of Manuscripts: An abstract of 150 words or less and keywords clarifying the subject of the manuscripts are required. Authors should submit the paper electronically in word file to ijmc@kashanu.ac.ir.

The language of the journal is English. Authors who are less familiar with English language are advised to seek assistance from proficient scholars to prepare manuscripts that are grammatically and linguistically free from errors. Manuscripts should be typed with double spacing and wide margins. Papers submitted for consideration for publication have to be prepared concisely and must not exceed 30 typewritten pages, (font $12,1.15$ spacing, including tables \& graphs). Diagrams and figures should be submitted as original drawings. Figures and tables are to be numbered in the sequence in which they are cited in the manuscript. Every table must have a caption that explains its content. Tables and diagrams are to be prepared in separate pages and placed at the end of the manuscript. References to the literature should be numbered in square brackets in the order in which they appear in the text. A complete list of references should be presented in numerical order at the end of the manuscript. References to journals, books, proceedings and patents must be presented in accordance with the following examples:

Journals: I. Gutman, B. Zhou and B. Furtula, The Laplacian-energy like invariant is an energy like invarint MATCH Commun. Math. Comput. Chem., 64(1) (2010), 85-96.

Patents: Primack, H.S.; Method of Stabilizing Polyvalent Metal Solutions, U.S. patent No. 4, 373, 104(1983).

Indexing/ Abstracting: The Iranian Journal of Mathematoical Chemistry is indexed/abstracted in the following:

- Islamic World Science Citation Center (ISC)
- Zentralblatt für Mathematik
- Web of Science (ISI)

EditorialBoard

Iranian Journal of M athematical Chemistry

Vol. 7, No. 1 March 2016
CONTENTS pages
Degree distance index of the Mycielskian and its complement 1
A. Behtoei and M. Anbarloei
A note on vertex-edge Wiener indices of graphs 11
M. Azari
Electro-spunorganicnanofibers elaboration process investigations using BPs operational 19 matrices
H. Jafari and H. Tajadodi
Hosoya polynomials of random benzenoid chains 29S.-J. Xu, Q.-H. He, S. Zhou and W. H. Chan
Complete forcing numbers of polyphenyl systems 39
B. Liu, H. Bian and H. Yu
Quantitative structure activity relationship study of inhibitory activities of 5-lipoxygenase 47 and design new compounds by different chemometrics methods
F. Bagheban-Shahri, A. Niaziand A. Akrami
Three-center Harary index and its applications61B. Furtula, I. Gutman and V. Katanic
Investigation the effect of nanocomposite material on permeation flux of 69 polyerthersulfone membrane using a mathematical approach M. Adib
On the generalized mass transfer with a chemical reaction: Fractional derivative model 77
A. Ansari andM. AhmadiDarani
A note on hyper-Zagreb index of graph operations 89
B. Basavanagoud andS. Patil
QSPR study on benzene derivatives to some physico-chemical properties by using 93 topological indices
M. PashmForush, F. Shafiei andF. Dialamehpour

Degree Distance Index of the Mycielskian and its Complement

Ali Behtoei and Mahdi Anbarloei

Department of Mathematics, Imam Khomeini International University, P. O. Box: 34149-16818, Qazvin, Iran

Correspondence should be addressed to a.behtoei@sci.ikiu.ac.ir
Received 28 December 2014; Accepted 7 June 2015
Academic Editor: Bijan Taeri AbSTRACT Let G be a finite connected simple graph. The degree distance index $D D(G)$ of G is defined as $\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v)\left(\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)\right)$, where $\operatorname{deg}_{G}(u)$ is the degree of vertex u in G and $d_{G}(u, v)$ is the distance between two vertices u and v in G. In this paper, we determine the degree distance of the complement of arbitrary Mycielskian graphs. It is well known that almost all graphs have diameter two. We determine this graphical invariant for the Mycielskian of graphs with diameter two.

KEYWORDS Degree distance • Zagreb indices • Mycielskian.

1. INTRODUCTION

Throughout this paper we consider (non trivial) simple graphs, that are finite and undirected graphs without loops or multiple edges. Let $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G})$) be a connected graph of order $\mathrm{n}=|\mathrm{V}(G)|$ and of size $\mathrm{m}=|\mathrm{E}(G)|$. The distance between two vertices u and v is denoted by $d_{G}(u, v)$ and is the length of a shortest path between u and v in G. The diameter of G is $\max \left\{\mathrm{d}_{\mathrm{G}}(\mathrm{u}, \mathrm{v}): \mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G})\right\}$. It is well known that almost all graphs have diameter two. The degree of vertex u is the number of edges adjacent to u and is denoted by $\operatorname{deg}_{G}(u)$.

A chemical graph is a graph whose vertices denote atoms and edges denote bonds between those atoms of the underlying chemical structure. A topological index for a (chemical) graph G is a numerical quantity invariant under automorphisms of G and it does not depend on the labeling or pictorial representation of the graph. Topological indices
and graph invariants based on the distances between vertices of a graph or vertex degrees are widely used for characterizing molecular graphs, establishing relationships between structure and properties of molecules, predicting biological activity of chemical compounds, and making their chemical applications.

The concept of topological index came from work done by Harold Wiener in 1947 while he was working on boiling point of paraffin. The Wiener index of G is defined as $W(G)=\sum_{\{u, v\rangle \subseteq V(G)} d_{G}(u, v)$. Two important topological indices introduced about forty years ago by Ivan Gutman and Trinajstić [5] are the first Zagreb index $M_{1}(G)$ and the second Zagreb index $M_{2}(G)$ which are defined as

$$
M_{1}(G)=\sum_{u v \in E(G)}\left(\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)\right)=\sum_{u \in V(G)}\left(\operatorname{deg}_{G}(u)\right)^{2}, M_{2}(G)=\sum_{u v \in E(G)} \operatorname{deg}_{G}(u) \operatorname{deg}_{G}(v) .
$$

The degree distance was introduced by Dobrynin and Kochetova [1] and Gutman [4] as a weighted version of the Wiener index. The degree distance of G, denoted by $D D(G)$, is defined as follows and it is computed for important families of graphs (see[8] and [12] for instance):

$$
D D(G)=\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v)\left(\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)\right) .
$$

For a graph $G=(V, E)$, the Mycielskian of G is the graph $\mu(G)$ (or simply, μ) with the disjoint union $V \cup X \cup\{x\}$ as its vertex set and $E \cup\left\{v_{i} x_{j}: v_{i} v_{j} \in E\right\} \cup\left\{x x_{i}: 1 \leq i \leq n\right\} \quad$ as its edge set, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, see [9]. The Mycielskian and generalized Mycielskians have fascinated graph theorists a great deal. This has resulted in studying several graph parameters of these graphs. Fisher et al. [3] determine the domination number of the Mycielskian in 1998, Taeri et al. [2] determine the Wiener index of the Mycielskian in 2012, and Ashrafi et al. [6] determine Zagreb coindices of the Mycielskian in 2012.

In this paper we determine the degree distance index of the Mycielskian of each graph with diameter two. Also, we determine the degree distance of the complement of Mycielskian of arbitrary graphs.

2. Degree distance of the Mycielskian

In order to determine the degree distance index of Mycielskian graphs, we need the following observations. From now on we will always assume that G is a connected graph,

$$
V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, V(G) \cap X=\phi, x \notin V(G) \cup X,
$$

and μ is the Mycielskian of G, where

$$
V(\mu)=V(G) \cup X \cup\{x\}, E(\mu)=E(G) \cup\left\{v_{i} x_{j}: v_{i} v_{j} \in E(G)\right\} \cup\left\{x x_{i}: 1 \leq i \leq n\right\}
$$

Observation 1. Let μ be the Mycielskian of G. Then for each $v \in V(\mu)$ we have

$$
\operatorname{deg}_{\mu}(v)= \begin{cases}n & v=x \\ 1+\operatorname{deg}_{G}\left(v_{i}\right) & v=x_{i} \\ 2 \operatorname{deg}_{G}\left(v_{i}\right) & v=v_{i}\end{cases}
$$

Observation 2. In the Mycielskian μ of G, the distance between two vertices $u, v \in V(\mu)$ are given as follows.

$$
d_{\mu}(u, v)= \begin{cases}1 & u=x, v=x_{i} \\
2 & u=x, v=v_{i} \\
2 & u=x_{i}, v=x_{j} \\
d_{G}\left(v_{i}, v_{j}\right) & u=v_{i}, v=v_{j}, d_{G}\left(v_{i}, v_{j}\right) \leq 3 \\
4 & u=v_{i}, v=v_{j}, d_{G}\left(v_{i}, v_{j}\right) \geq 4 \\
2 & u=v_{i}, v=x_{j}, i=j \\
d_{G}\left(v_{i}, v_{j}\right) & \begin{array}{l}
u=v_{i}, v=x_{j}, i \neq j, d_{G}\left(v_{i}, v_{j}\right) \leq 2 \\
3
\end{array} \\
u=v_{i}, v=x_{j}, i \neq j, d_{G}\left(v_{i}, v_{j}\right) \geq 3 .\end{cases}
$$

Specially, the diameter of the Mycielskian graph is at most four.

There are $|E(G)|$ unordered pairs of vertices in $V=V(G)$ whose distance is one, and

$$
\sum_{\substack{u, v) \in V \times V \\ d_{G}(u, v)=1}}\left(\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)\right)=2 \sum_{u v \in E(G)}\left(\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)\right)=2 M_{1}(G) .
$$

Lemma 1. Let G be a graph of size m whose vertex set is $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then,

$$
\sum_{\left\{v_{i}, v_{j}\right\} \subseteq V}\left(\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)\right)=(n-1) 2 m .
$$

Proof. For each $i \in[n]=\{1,2, \ldots, n\},|\{\{i, j\} \subseteq[n]: j \neq i\}|=n-1$. Therefore,

$$
\sum_{\{i, j\} \subseteq[n]}\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right)=\sum_{i=1}^{n}(n-1) \operatorname{deg}_{G}\left(v_{i}\right)=(n-1) 2 m .
$$

Lemma 2. For each graph G of size m we have

$$
\sum_{\left\{v_{i}, v_{j}\right\} \notin E(G)}\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right)=2 m(n-1)-M_{1}(G) .
$$

Proof. Since each vertex $v_{i} \in V(G)$ has $\operatorname{deg}_{G}\left(v_{i}\right)$ neighbors in G, the number of nonadjacent vertices to v_{i} in G equals $n-1-\operatorname{deg}_{G}\left(v_{i}\right)$. This implies that

$$
\begin{aligned}
\sum_{\left\{v_{i}, v_{j}\right\} \notin E(G)}\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right) & =\sum_{i=1}^{n}\left(n-1-\operatorname{deg}_{G}\left(v_{i}\right)\right) \operatorname{deg}_{G}\left(v_{i}\right) \\
& =(n-1) \sum_{i=1}^{n} \operatorname{deg}_{G}\left(v_{i}\right)-\sum_{i=1}^{n}\left(\operatorname{deg}_{G}\left(v_{i}\right)\right)^{2} \\
& =2 m(n-1)-M_{1}(G) .
\end{aligned}
$$

It is a well known fact that almost all graphs have diameter two. This means that graphs of diameter two play an important role in the theory of graphs and their applications.

Theorem 1. Let G be an n-vertex graph of size m whose diameter is 2 . If μ is the Mycielskian of G, then the degree distance index of μ is given by

$$
D D(\mu)=4 D D(G)-M_{1}(G)+(7 n-1) n+(8 n+12) m .
$$

Proof. By the definition of degree distance index, we have

$$
D D(\mu(G))=\sum_{\{u, v\} \subseteq V(\mu)} d_{\mu}(u, v)\left(\operatorname{deg}_{\mu}(u)+\operatorname{deg}_{\mu}(v)\right) .
$$

Regarding to the different possible cases which u and v can be chosen from the set $V(\mu)$, the following cases are considered. In what follows, the notations are as before and two observations 1 and 2 are applied for computing degrees and distances in μ.

Case 1. $u=x$ and $v \in X$:

$$
\sum_{i=1}^{n} d_{\mu}\left(x, x_{i}\right)\left(\operatorname{deg}_{\mu}(x)+\operatorname{deg}_{\mu}\left(x_{i}\right)\right)=\sum_{i=1}^{n}\left(n+1+\operatorname{deg}_{G}\left(v_{i}\right)\right)=n(n+1)+2 m .
$$

Case 2. $u=x$ and $v \in V(G)$:

$$
\sum_{i=1}^{n} d_{\mu}\left(x, v_{i}\right)\left(\operatorname{deg}_{\mu}(x)+\operatorname{deg}_{\mu}\left(v_{i}\right)\right)=\sum_{i=1}^{n} 2\left(n+2 \operatorname{deg}_{G}\left(v_{i}\right)\right)=2\left(n^{2}+4 m\right) .
$$

Case 3. $\{u, v\} \subseteq X$:
Using Lemma 1 we see that

$$
\begin{aligned}
\sum_{\left\{x_{i}, x_{j}\right\} \leq X} d_{\mu}\left(x_{i}, x_{j}\right)\left(\operatorname{deg}_{\mu}\left(x_{i}\right)+\operatorname{deg}_{\mu}\left(x_{j}\right)\right) & =\sum_{\left\{x_{i}, x_{j}\right\} \leq X} 2\left(2+\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right) \\
& =4\binom{n}{2}+2 \sum_{\{i, j\} \subseteq[n]}\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right) \\
& =2 n^{2}-2 n+4(n-1) m .
\end{aligned}
$$

Case 4. $\{u, v\} \subseteq V(G)$. Since the diameter of G is two, Observation 2 implies that $d_{\mu}\left(v_{i}, v_{j}\right)=d_{G}\left(v_{i}, v_{j}\right)$. Hence,

$$
\begin{aligned}
\sum_{\left\{v_{i}, v_{j}\right\} \subseteq V(G)} d_{\mu}\left(v_{i}, v_{j}\right)\left(\operatorname{deg}_{\mu}\left(v_{i}\right)+\operatorname{deg}_{\mu}\left(v_{j}\right)\right) & =\sum_{\left\{v_{i}, v_{j}\right\} \subseteq V(G)} d_{G}\left(v_{i}, v_{j}\right)\left(2 \operatorname{deg}_{G}\left(v_{i}\right)+2 \operatorname{deg}_{G}\left(v_{j}\right)\right) \\
& =2 D D(G) .
\end{aligned}
$$

Case 5. $u=v_{i}$ and $v=x_{i}, 1 \leq i \leq n$.

$$
\begin{aligned}
\sum_{i=1}^{n} d_{\mu}\left(v_{i}, x_{i}\right)\left(\operatorname{deg}_{\mu}\left(v_{i}\right)+\operatorname{deg}_{\mu}\left(x_{i}\right)\right) & =\sum_{i=1}^{n} 2\left(3 \operatorname{deg}_{G}\left(v_{i}\right)+1\right) \\
& =2 n+12 m
\end{aligned}
$$

Case 6. $u=v_{i}$ and $v=x_{j}, i \neq j$.

$$
\begin{aligned}
\sum_{\substack{\left.v_{i}, x_{j}\right\} \in V(\mu) \\
i \neq j}} d_{\mu}\left(v_{i}, x_{j}\right)\left(\operatorname{deg}_{\mu}\left(v_{i}\right)+\operatorname{deg}_{\mu}\left(x_{j}\right)\right)= & \sum_{\substack{v_{i}, x_{j} \mid \backslash V(\mu) \\
i \neq j}} d_{\mu}\left(v_{i}, x_{j}\right)\left(2 \operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)+1\right) \\
= & \sum_{\substack{\left\{v_{i}, x_{j}\right\} \in V(\mu) \\
i \neq j}} d_{\mu}\left(v_{i}, x_{j}\right)\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right) \\
& +\sum_{\substack{\left\{v_{i}, x_{j}\right\} \in V(\mu) \\
i \neq j}} d_{\mu}\left(v_{i}, x_{j}\right)\left(\operatorname{deg}_{G}\left(v_{i}\right)+1\right) .
\end{aligned}
$$

Since $d_{\mu}\left(v_{i}, x_{j}\right)=d_{\mu}\left(v_{j}, x_{i}\right), d_{\mu}\left(v_{i}, v_{i}\right)=0$, and using Observation 2, we have

$$
\begin{aligned}
\sum_{\substack{\left\{v_{i}, x_{j}\right\} \subseteq V(\mu) \\
i \neq j}} d_{\mu}\left(v_{i}, x_{j}\right)\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right)= & 2 \sum_{\substack{\left\{v_{i}, v_{j}\right\} \subseteq V(G) \\
i \neq j}} d_{\mu}\left(v_{i}, x_{j}\right)\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right) \\
& =2 \sum_{\substack{\left\{v_{i}, v_{j}\right\} \subseteq V(G)}} d_{G}\left(v_{i}, v_{j}\right)\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right) \\
& =2 D D(G) .
\end{aligned}
$$

Each edge $v_{i} v_{j}=v_{j} v_{i} \in E(G)$ corresponds to two pairs $\left\{v_{i}, x_{j}\right\}$ and $\left\{v_{j}, x_{i}\right\}$ of distance 1 in the Mycielskian graph μ. Since the diameter of G is two and using Lemma 2 we get

$$
\begin{aligned}
\sum_{\substack{\left\{v_{i}, x_{j}\right\} \backslash V(\mu) \\
i \neq j}} d_{\mu}\left(v_{i}, x_{j}\right)\left(\operatorname{deg}_{G}\left(v_{i}\right)+1\right)= & \sum_{\substack{\left\{v_{i}, x_{j}\right\} \in V(\mu) \\
v_{i} j_{j} \in E(G)}} 1\left(1+\operatorname{deg}_{G}\left(v_{i}\right)\right)+\sum_{\substack{\left.v_{i}, x_{j}\right\} \in V(\mu) \\
v_{i} j_{j} \notin(G)}} 2\left(1+\operatorname{deg}_{G}\left(v_{i}\right)\right) \\
= & 2 m+\sum_{v_{i} v_{j} \in E(G)}\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right) . \\
& +4\left(\binom{n}{2}-m\right)+2 \sum_{\substack{v_{i} v_{j} \notin E(G)}}\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right) \\
= & 2 n(n-1)+2 m(2 n-3)-M_{1}(G) .
\end{aligned}
$$

Now the result follows through these six cases.

3. Degree distance of the complement of Mycielskian

In order to determine the degree distance index of the complement of Mycielskian graphs, we need two following observations.

Observation 3. Let $\bar{\mu}$ be the complement of Mycielskian μ of G. Then for each $v \in V(\bar{\mu})$ we have

$$
\operatorname{deg}_{\bar{\mu}}(v)= \begin{cases}n & v=x \\ 2 n-\left(1+\operatorname{deg}_{G}\left(v_{i}\right)\right) & v=x_{i} \\ 2 n-2 \operatorname{deg}_{G}\left(v_{i}\right) & v=v_{i}\end{cases}
$$

Observation 4. In the complement of Mycielskian μ of G, the distance between two vertices $u, v \in V(\bar{\mu})$ are given as follows.

$$
d_{\bar{\mu}}(u, v)= \begin{cases}2 & u=x, v=x_{i} \\ 1 & u=x, v=v_{i} \\ 1 & u=x_{i}, v=x_{j} \\ 1 & u=v_{i}, v=v_{j}, d_{G}\left(v_{i}, v_{j}\right)>1 \\ 2 & u=v_{i}, v=v_{j}, d_{G}\left(v_{i}, v_{j}\right)=1 \\ 1 & u=v_{i}, v=x_{j}, i=j \\ 1 & u=v_{i}, v=x_{j}, i \neq j, d_{G}\left(v_{i}, v_{j}\right)>1 \\ 2 & u=v_{i}, v=x_{j}, i \neq j, d_{G}\left(v_{i}, v_{j}\right)=1 .\end{cases}
$$

Specially, the diameter of $\bar{\mu}$ is exactly 2 .

Theorem 2. Let G be an n-vertex graph of size m and let $\bar{\mu}$ be the complement of the Mycielskian μ of G.Then, the degree distance index of $\bar{\mu}$ is given by

$$
D D(\bar{\mu})=n\left(6 n^{2}+10 n-5\right)-4 m-5 M_{1}(G) .
$$

Proof. By the definition of degree distance, we have

$$
D D(\bar{\mu})=\sum_{\{u, v\} \subseteq V(\bar{\mu})} d_{\bar{\mu}}(u, v)\left(\operatorname{deg}_{\bar{\mu}}(u)+\operatorname{deg}_{\bar{\mu}}(v)\right) .
$$

We consider the following cases. For computing degrees and distances in $\bar{\mu}$ we use two observations 3 and 4.

Case 1. $u=x$ and $v \in X$.

$$
\sum_{i=1}^{n} d_{\bar{\mu}}\left(x, x_{i}\right)\left(\operatorname{deg}_{\bar{\mu}}(x)+\operatorname{deg}_{\bar{\mu}}\left(x_{i}\right)\right)=\sum_{i=1}^{n} 2\left(3 n-\operatorname{deg}_{G}\left(v_{i}\right)-1\right)=6 n^{2}-2 n-4 m .
$$

Case 2. $u=x$ and $v \in V(G)$.

$$
\sum_{i=1}^{n} d_{\bar{\mu}}\left(x, v_{i}\right)\left(\operatorname{deg}_{\bar{\mu}}(x)+\operatorname{deg}_{\bar{\mu}}\left(v_{i}\right)\right)=\sum_{i=1}^{n}\left(3 n-2 \operatorname{deg}_{G}\left(v_{i}\right)\right)=3 n^{2}-4 m .
$$

Case 3. $\{u, v\} \subseteq X$. Using Lemma 1 we see that

$$
\begin{aligned}
\sum_{\left\{x_{i}, x_{j}\right\} \subseteq X} d_{\bar{\mu}}\left(x_{i}, x_{j}\right)\left(\operatorname{deg}_{\bar{\mu}}\left(x_{i}\right)+\operatorname{deg}_{\bar{\mu}}\left(x_{j}\right)\right) & =\sum_{\{i, j\} \subseteq[n]}\left(4 n-2-\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right)\right) \\
& =4 n^{2}-2 n-2 m(n-1) .
\end{aligned}
$$

Case 4. $\{u, v\} \subseteq V(G)$. Using Lemma 2 we have

$$
\begin{aligned}
\sum_{\left\{v_{i}, v_{j}\right\} \subseteq V(G)} d_{\bar{\mu}}\left(v_{i}, v_{j}\right)\left(\operatorname{deg}_{\bar{\mu}}\left(v_{i}\right)+\operatorname{deg}_{\bar{\mu}}\left(v_{j}\right)\right)= & \sum_{v_{i} v_{j} \notin E(G)}\left(4 n-2\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right)\right) \\
& +2 \sum_{v_{i} v_{j} \in E(G)}\left(4 n-2\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right)\right) \\
= & 4 n\left(\binom{n}{2}-m\right)-2\left(2 m(n-1)-M_{1}(G)\right) \\
& +8 m n-4 M_{1}(G) \\
= & 2 n^{2}(n-1)+4 m-2 M_{1}(G) .
\end{aligned}
$$

Case 5. $u=v_{i}$ and $v=x_{i}, 1 \leq i \leq n$.

$$
\sum_{i=1}^{n} d_{\bar{\mu}}\left(v_{i}, x_{i}\right)\left(\operatorname{deg}_{\bar{\mu}}\left(v_{i}\right)+\operatorname{deg}_{\bar{\mu}}\left(x_{i}\right)\right)=\sum_{i=1}^{n}\left(4 n-3 \operatorname{deg}_{G}\left(v_{i}\right)-1\right)=4 n^{2}-n-6 m .
$$

Case 6. $u=v_{i}$ and $v=x_{j}, i \neq j$. By Observation $4, d_{\bar{\mu}}\left(v_{i}, x_{j}\right)=d_{\bar{\mu}}\left(v_{j}, x_{i}\right)$ is 1 when $v_{i} v_{j} \notin E(G)$, otherwise is 2 . Thus,

$$
\sum_{\substack{\left\{v_{i}, x_{j}\right\} \backslash V(\bar{\mu}) \\ i \neq j}} d_{\bar{\mu}}\left(v_{i}, x_{j}\right)\left(\operatorname{deg}_{\bar{\mu}}\left(v_{i}\right)+\operatorname{deg}_{\bar{\mu}}\left(x_{j}\right)\right)=\sum_{\substack{\left(v_{i}, v_{j}\right) \\ v_{i}, j_{j} E(G)}}\left(4 n-1-2 \operatorname{deg}_{G}\left(v_{i}\right)-\operatorname{deg}_{G}\left(v_{j}\right)\right)
$$

Each vertex v_{i} can be paired with $n-1-\operatorname{deg}_{G}\left(v_{i}\right)$ vertices v_{j} as $\left(v_{i}, v_{j}\right)$ with the condition $v_{i} v_{j} \notin E(G)$. Also, note that $\sum_{\left(v_{i}, v_{j}\right)}\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right)$ is equal to $2 \sum_{\left\{v_{i}, v_{j}\right\}}\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right)$. Hence, using Lemma 2 we obtain

$$
\begin{aligned}
& \sum_{\substack{\left(v_{i}, v_{j}\right) \\
v_{i} v_{j} \notin E(G)}}\left(4 n-1-2 \operatorname{deg}_{G}\left(v_{i}\right)-\operatorname{deg}_{G}\left(v_{j}\right)\right)=2\left(\binom{n}{2}-m\right)(4 n-1)-\sum_{\substack{\left.v_{i}, v_{j}\right) \\
v_{i} v_{j} \notin E(G)}}\left(\operatorname{deg}_{G}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{j}\right)\right) \\
&-\sum_{\left(v_{i}, v_{j}\right)}^{\operatorname{deg}_{G}\left(v_{i}\right)} \\
& v_{i} v_{j} \notin E(G) \\
&=\left(n^{2}-n-2 m\right)(4 n-1)-2\left(2 m(n-1)-M_{1}(G)\right)-\left(2 m(n-1)-M_{1}(G)\right) .
\end{aligned}
$$

Note that $\left|\left\{\left(v_{i}, v_{j}\right): v_{i} v_{j} \in E(G)\right\}\right|=2 m$ and

$$
\sum_{\left(v_{i}, v_{j}\right): v_{i} v_{j} \in E(G)}^{\operatorname{deg}_{G}\left(v_{i}\right)=\sum_{i=1}^{n}\left(\operatorname{deg}_{G}\left(v_{i}\right)\right)^{2}, ~}
$$

because each vertex v_{i} has $\operatorname{deg}_{G}\left(v_{i}\right)$ neighbors and appears $\operatorname{deg}_{G}\left(v_{i}\right)$ times in the desired summation. Thus, using similar arguments we see that

$$
\sum_{\left(v_{i}, v_{j}\right)}^{v_{i} v_{j} \in E(G)} 22\left(4 n-1-2 \operatorname{deg}_{G}\left(v_{i}\right)-\operatorname{deg}_{G}\left(v_{j}\right)\right)=4 m(4 n-1)-6 M_{1}(G) .
$$

Now the result follows through these cases.

By considering Observation 3, it's not hard to check that

$$
M_{1}(\bar{\mu})=5 M_{1}(G)+8 n^{3}-3 n^{2}-24 m n+4 m+n
$$

Thus, Theorems 1 and 2 imply the following result.
Corollary 4. Let G be an n-vertex graph of size m and let H be the complement of the Mycielskian of G.Then, $D D(\mu(H))=16 n^{3}+73 n^{2}+5 n+20 m+56 m n-25 M_{1}(G)$.

REFERENCES

1. A. A. Dobrynin and A. A. Kochetova, Degree Distance of a Graph: A Degree Analogue of the Wiener Index, J. Chem. Inf. Comput. Sci., 34 (1994) 1082-1086.
2. M. Eliasi, G. Raeisi, B. Taeri, Wiener index of some graph operations, Discret. Appl. Math., 160 (2012) 1333-1344.
3. D.C. Fisher, P.A. McKena, E.D. Boyer, Hamiltonicity, diameter, domination, packing and biclique partitions of Mycielskis graphs, Discret. Appl. Math., 84 (1998) 93-105.
4. I. Gutman, Selected Properties of the Schultz Molecular Topological Index, J. Chem. Inf. Comput. Sci., 34 (1994) 1087-1089.
5. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972) 535-538.
6. H. Hua, A. R. Ashrafi, L. Zhang, More on Zagreb coindices of graphs, Filomat, 26 (2012) 1215-1225.
7. M. H. Khalifeh, H. Yousefi Azari, A. R. Ashrafi, S. Wagner, Some new results on distancebased graph invariants, Eur. J. Comb., 30 (2009) 1149-1163.
8. A. Ilić, S. Klavžar, D. Stevanović, Calculating the degree distance of partial Hamming graphs, MATCH Commun. Math. Comput. Chem., 63 (2010) 411-424.
9. J. Mycielski, Sur le colouriage des graphes, Colloq. Math., 3 (1955) 161-162.
10. M. Tavakoli, F. Rahbarnia, Applications of some graph operations in computing some invariants of chemical graphs, Iranian J. Math. Chem., 4 (2013) 221-230.
11. K. Xu, M. Liu, K. C. Das, I. Gutman and B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem., 71 (2014) 461-508.
12. Z. Yarahmadi, Computing some topological indices of tensor product of graphs, Iranian J. Math. Chem., 2 (2011) 109-118.

A Note on Vertex-Edge Wiener Indices of Graphs

Mahdieh Azari
Department of Mathematics, Kazerun Branch, Islamic Azad University, P. O. Box: 73135-168, Kazerun, Iran
Correspondence should be addressed to azari@kau.ac.ir, mahdie.azari@gmail.com
Received 3 April 2015; Accepted 4 May 2015
Academic Editor: Ali Reza Ashrafi

> ABSTRACT The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances $D_{1}(u, e \mid G)$ and $D_{2}(u, e \mid G)$ between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices $W_{v e_{1}}(G)$ and $W_{v e_{2}}(G)$ were introduced. In this paper, we present exact formulas for computing the vertex-edge Wiener indices of two composite graphs named splice and link.

KEYWORDS Distance in graph • vertex-edge Wiener index • Splice •Link.

1. INTRODUCTION

The graphs considered in this paper are undirected, finite and simple. A topological index (also known as graph invariant) is any function on a graph that does not depend on a labeling of its vertices. The oldest topological index is the one put forward in 1947 by Harold Wiener [1,2] nowadays referred to as the Wiener index. Wiener used his index for the calculation of the boiling points of alkanes. The Wiener index $W(G)$ of a connected graph G is defined as the sum of distances between all pairs of vertices of G :

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)^{d}(u, v \mid G),},
$$

where $d(u, v \mid G)$ denotes the distance between the vertices u and v of G which is defined as the length of any shortest path in G connecting them. Details on the mathematical properties of the Wiener index and its applications in chemistry can be found in [1-8].

In analogy with definition of the Wiener index, the vertex-edge Wiener indices are defined based on distance between vertices and edges of a graph [9,10]. Two possible distances between a vertex u and an edge $e=a b$ of a connected graph G can be considered.

The first distance is denoted by $D_{1}(u, e \mid G)$ and defined as [9]:

$$
D_{1}(u, e \mid G)=\min \{d(u, a \mid G), d(u, b \mid G)\},
$$

and the second one is denoted by $D_{2}(u, e \mid G)$ and defined as [10]:

$$
D_{2}(u, e \mid G)=\max \{d(u, a \mid G), d(u, b \mid G)\} .
$$

Based on these two distances, two vertex-edge versions of the Wiener index can be introduced. The first and second vertex-edge Wiener indices of G are denoted by $W_{v e_{1}}(G)$ and $W_{v e_{2}}(G)$, respectively, and defined as $W_{v e_{i}}(G)=\sum_{u \in V(G)} \Sigma_{e \in E(G)} D_{i}(u, e \mid G)$, where $i \in\{1,2\}$. It should be explained that, the vertex-edge Wiener index introduced in [9] is half of the first vertex-edge Wiener index $W_{v e_{1}}$. However, in the above summation, for every vertex u and edge e of G, the distance $D_{i}(u, e \mid G)$ is taken exactly one time into account, so the summation does not need to be multiplied by a half. The first and second vertex-edge Wiener indices are also known as minimum and maximum indices, and denoted by $\operatorname{Min}(G)$ and $\operatorname{Max}(G)$, respectively. Since these indices are considered as the vertex-edge versions of the Wiener index, their present names and notations seem to be more appropriate.

In $[10,11]$, the vertex-edge Wiener indices of some chemical graphs were computed and in [12,13], the behavior of these indices under some graph operations were investigated. In this paper, we present exact formulas for the first and second vertex-edge Wiener indices of two composite graphs named splice and link. Readers interested in more information on computing topological indices of splice and link of graphs, can be referred to [12,14-20].

2. ReSUlTS AND DISCUSSION

In this section, we compute the first and second vertex-edge Wiener indices of splice and link of graphs. We start by introducing some notations.

Let G be a connected graph. For $u \in V(G)$, we define:

$$
\begin{aligned}
d(u \mid G) & =\sum_{v \in V(G)} d(u, v \mid G), \\
D_{i}(u \mid G) & =\sum_{e \in E(G)} D_{i}(u, e \mid G), \quad i \in\{1,2\} .
\end{aligned}
$$

With the above definitions,

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{u \in V /(G)} d(u \mid G), \\
W_{v e_{i}}(G) & =\sum_{u \in V(G)} D_{i}(u \mid G), \quad i \in\{1,2\} .
\end{aligned}
$$

2.1 Splice

Let G_{1} and G_{2} be two connected graphs with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$, respectively. For given vertices $a_{1} \in V\left(G_{1}\right)$ and $a_{2} \in V\left(G_{2}\right)$, a splice [17] of G_{1} and G_{2} by vertices a_{1} and a_{2} is denoted by $\left(G_{1} . G_{2}\right)\left(a_{1}, a_{2}\right)$ and defined by identifying the vertices a_{1} and a_{2} in the union of G_{1} and G_{2}. We denote by n_{i} and m_{i} the order and size of the graph G_{i}, respectively. It is easy to see that, $\left|V\left(\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)\right|=n_{1}+n_{2}-1$ and $\left|E\left(\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)\right|=m_{1}+m_{2}$.

In the following lemma, the distance between two arbitrary vertices of $\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)$ is computed. The result follows easily from the definition of the splice of graphs, so its proof is omitted.

Lemma 2.1 Let $u, v \in V\left(\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)$. Then

$$
d\left(u, v \mid\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)=\left\{\begin{array}{ll}
d\left(u, v \mid G_{1}\right) & u, v \in V\left(G_{1}\right) \\
d\left(u, v \mid G_{2}\right) & u, v \in V\left(G_{2}\right) \\
d\left(u, a_{1} \mid G_{1}\right)+d\left(a_{2}, v \mid G_{2}\right) & u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)
\end{array} .\right.
$$

In the following lemma, the distances D_{1} and D_{2} between vertices and edges of $\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)$ are computed.

Lemma 2.2 Let $u \in V\left(\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)$ and $e \in E\left(\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)$. Then

$$
D_{i}\left(u, e \mid\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)=\left\{\begin{array}{ll}
D_{i}\left(u, e \mid G_{1}\right) & u \in V\left(G_{1}\right), e \in E\left(G_{1}\right) \\
D_{i}\left(u, e \mid G_{2}\right) & u \in V\left(G_{2}\right), e \in E\left(G_{2}\right) \\
d\left(u, a_{1} \mid G_{1}\right)+D_{i}\left(a_{2}, e \mid G_{2}\right) & u \in V\left(G_{1}\right), e \in E\left(G_{2}\right) \\
d\left(u, a_{2} \mid G_{2}\right)+D_{i}\left(a_{1}, e \mid G_{1}\right) & u \in V\left(G_{2}\right), e \in E\left(G_{1}\right)
\end{array},\right.
$$

where $i \in\{1,2\}$.
Proof. Using Lemma 2.1, the proof is obvious.
In the following theorem, the first and second vertex-edge Wiener indices of $\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)$ are computed.

Theorem 2.3 The first and second vertex-edge Wiener indices of $G=\left(G_{1} . G_{2}\right)\left(a_{1}, a_{2}\right)$ are given by:

$$
\begin{aligned}
W_{v e_{i}}(G) & =W_{v e_{i}}\left(G_{1}\right)+W_{v e_{i}}\left(G_{2}\right)+m_{2} d\left(a_{1} \mid G_{1}\right)+m_{1} d\left(a_{2} \mid G_{2}\right) \\
& +\left(n_{2}-1\right) D_{i}\left(a_{1} \mid G_{1}\right)+\left(n_{1}-1\right) D_{i}\left(a_{2} \mid G_{2}\right),
\end{aligned}
$$

where $i \in\{1,2\}$.
Proof. By definition of the vertex-edge Wiener indices,

$$
W_{v e_{i}}(G)=\sum_{u \in V(G)} \sum_{e \in E(G)} D_{i}(u, e \mid G), \quad i \in\{1,2\} .
$$

Now, we partition the above sum into four sums as follows:
The first sum S_{1} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{1}\right)$ and edges from $E\left(G_{1}\right)$. Using Lemma 2.2, we obtain:

$$
S_{1}=\sum_{u \in V\left(G_{1}\right) e \in E\left(G_{1}\right)} \sum_{i}(u, e \mid G)=\sum_{u \in V\left(G_{1}\right)} \sum_{e \in E\left(G_{1}\right)} D_{i}\left(u, e \mid G_{1}\right)=W_{v e_{i}}\left(G_{1}\right) .
$$

The second sum S_{2} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{2}\right)$ and edges from $E\left(G_{2}\right)$. Similar to the previous case, we obtain:

$$
S_{2}=\sum_{u \in V\left(G_{2}\right)} \sum_{e \in E\left(G_{2}\right)} D_{i}\left(u, e \mid G_{2}\right)=W_{v e_{i}}\left(G_{2}\right) .
$$

The third sum S_{3} consists of contributions to $W_{v_{i}}(G)$ of vertices from $V\left(G_{1}\right) \backslash\left\{a_{1}\right\}$ and edges from $E\left(G_{2}\right)$. Using Lemma 2.2, we obtain:

$$
\begin{aligned}
S_{3} & =\sum_{u \in V\left(G_{1}\right) \backslash\left\{a_{1}\right\}} \sum_{\} \in E\left(G_{2}\right)} D_{i}(u, e \mid G)=\sum_{u \in V\left(G_{1}\right) \backslash\left\{a_{1}\right\}} \sum_{e \in E\left(G_{2}\right)}\left[d\left(u, a_{1} \mid G_{1}\right)+D_{i}\left(a_{2}, e \mid G_{2}\right)\right] \\
& =m_{2} d\left(a_{1} \mid G_{1}\right)+\left(n_{1}-1\right) D_{i}\left(a_{2} \mid G_{2}\right) .
\end{aligned}
$$

The last sum S_{4} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{2}\right) \backslash\left\{a_{2}\right\}$ and edges from $E\left(G_{1}\right)$. Similar to the previous case, we obtain:

$$
\begin{aligned}
S_{4} & =\sum_{u \in V\left(G_{2}\right)\left\{\left\{a_{2}\right\}\right.} \sum_{e \in E\left(G_{1}\right)}\left[d\left(u, a_{2} \mid G_{2}\right)+D_{i}\left(a_{1}, e \mid G_{1}\right)\right] \\
& =m_{1} d\left(a_{2} \mid G_{2}\right)+\left(n_{2}-1\right) D_{i}\left(a_{1} \mid G_{1}\right) .
\end{aligned}
$$

Now the formula of $W_{v e_{i}}(G), i \in\{1,2\}$, is obtained by adding the quantities S_{1}, S_{2}, S_{3} and S_{4}.

2.2 Link

Let G_{1} and G_{2} be two connected graphs with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$, respectively. For vertices $a_{1} \in V\left(G_{1}\right)$ and $a_{2} \in V\left(G_{2}\right)$, a link [17] of G_{1} and G_{2} by vertices a_{1} and a_{2} is denoted by $\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)$ and obtained by joining a_{1} and a_{2} by an edge in the union of these graphs. We denote by n_{i} and m_{i} the order and size of the graph G_{i}, respectively. It is easy to see that, $\left|V\left(\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)\right|=n_{1}+n_{2}$ and $\left|E\left(\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)\right|=m_{1}+m_{2}+1$.

In the following lemma, the distance between two arbitrary vertices of $\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)$ is computed. The result follows easily from the definition of the link of graphs, so its proof is omitted.

Lemma 2.4 Let $u, v \in V\left(\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)$. Then

$$
d\left(u, v \mid\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)=\left\{\begin{array}{ll}
d\left(u, v \mid G_{1}\right) & u, v \in V\left(G_{1}\right) \\
d\left(u, v \mid G_{2}\right) & u, v \in V\left(G_{2}\right) \\
d\left(u, a_{1} \mid G_{1}\right)+d\left(a_{2}, v \mid G_{2}\right)+1 & u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)
\end{array} .\right.
$$

In the following lemma, the distances D_{1} and D_{2} between vertices and edges of $\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)$ are computed.

Lemma 2.5 Let $u \in V\left(\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)$ and $e \in E\left(\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)$. Then

$$
D_{i}\left(u, e \mid\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)= \begin{cases}D_{i}\left(u, e \mid G_{1}\right) & u \in V\left(G_{1}\right), e \in E\left(G_{1}\right) \\ D_{i}\left(u, e \mid G_{2}\right) & u \in V\left(G_{2}\right), e \in E\left(G_{2}\right) \\ d\left(u, a_{1} \mid G_{1}\right)+D_{i}\left(a_{2}, e \mid G_{2}\right)+1 & u \in V\left(G_{1}\right), e \in E\left(G_{2}\right) \\ d\left(u, a_{2} \mid G_{2}\right)+D_{i}\left(a_{1}, e \mid G_{1}\right)+1 & u \in V\left(G_{2}\right), e \in E\left(G_{1}\right) \\ d\left(u, a_{1} \mid G_{1}\right)+i-1 & u \in V\left(G_{1}\right), e=a_{1} a_{2} \\ d\left(u, a_{2} \mid G_{2}\right)+i-1 & u \in V\left(G_{2}\right), e=a_{1} a_{2}\end{cases}
$$

where $i \in\{1,2\}$.
Proof. Using Lemma 2.4, the proof is obvious.
In the following theorem, the first and second vertex-edge Wiener indices of $\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)$ are computed.

Theorem 2.6 The first and second vertex-edge Wiener indices of $G=\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)$ are given by:

$$
\begin{aligned}
W_{v e_{i}}(G)= & W_{v e_{i}}\left(G_{1}\right)+W_{v e_{i}}\left(G_{2}\right)+\left(m_{2}+1\right) d\left(a_{1} \mid G_{1}\right)+\left(m_{1}+1\right) d\left(a_{2} \mid G_{2}\right) \\
& +n_{2} D_{i}\left(a_{1} \mid G_{1}\right)+n_{1} D_{i}\left(a_{2} \mid G_{2}\right)+n_{1} m_{2}+n_{2} m_{1}+\left(n_{1}+n_{2}\right)(i-1),
\end{aligned}
$$

where $i \in\{1,2\}$.
Proof. By definition of the vertex-edge Wiener indices,

$$
W_{v e_{i}}(G)=\sum_{u \in V(G) \in \in E(G)} D_{i}(u, e \mid G), \quad i \in\{1,2\} .
$$

Now, we partition the above sum into six sums as follows:
The first sum S_{1} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{1}\right)$ and edges from $E\left(G_{1}\right)$. Using Lemma 2.5, we obtain:

$$
S_{1}=\sum_{u \in V\left(G_{1}\right) \in \in E\left(G_{1}\right)} \sum_{i}(u, e \mid G)=\sum_{u \in V\left(G_{1}\right) \in e \in\left(G_{1}\right)} D_{i}\left(u, e \mid G_{1}\right)=W_{v v_{i}}\left(G_{1}\right) .
$$

The second sum S_{2} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{2}\right)$ and edges from $E\left(G_{2}\right)$. Similar to the previous case, we obtain:

$$
S_{2}=\sum_{u \in V\left(G_{2}\right) e \in E\left(G_{2}\right)} \sum_{i}\left(u, e \mid G_{2}\right)=W_{v e_{i}}\left(G_{2}\right) .
$$

The third sum S_{3} consists of contributions to $W_{\text {vei }}(G)$ of vertices from $V\left(G_{1}\right)$ and edges from $E\left(G_{2}\right)$. Using Lemma 2.5, we obtain:

$$
\begin{aligned}
S_{3} & =\sum_{u \in V\left(G_{1}\right)} \sum_{e \in E\left(G_{2}\right)} D_{i}(u, e \mid G)=\sum_{u \in V\left(G_{1}\right)} \sum_{e \in E\left(G_{2}\right)}\left[d\left(u, a_{1} \mid G_{1}\right)+D_{i}\left(a_{2}, e \mid G_{2}\right)+1\right] \\
& =m_{2} d\left(a_{1} \mid G_{1}\right)+n_{1} D_{i}\left(a_{2} \mid G_{2}\right)+n_{1} m_{2} .
\end{aligned}
$$

The fourth sum S_{4} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{2}\right)$ and edges from $E\left(G_{1}\right)$. Similar to the previous case, we obtain:

$$
\begin{aligned}
S_{4} & =\sum_{u \in V\left(G_{2}\right)} \sum_{e \in E\left(G_{1}\right)}\left[d\left(u, a_{2} \mid G_{2}\right)+D_{i}\left(a_{1}, e \mid G_{1}\right)+1\right] \\
& =m_{1} d\left(a_{2} \mid G_{2}\right)+n_{2} D_{i}\left(a_{1} \mid G_{1}\right)+n_{2} m_{1} .
\end{aligned}
$$

The fifth sum S_{5} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{1}\right)$ and the edge $a_{1} a_{2}$ of G. By Lemma 2.5, we obtain:

$$
\begin{aligned}
S_{5}=\sum_{u \in V\left(G_{1}\right)} \sum_{e=a_{1} a_{2}} D_{i}(u, e \mid G) & = \begin{cases}\sum_{u \in V(G)} d\left(u, a_{1} \mid G_{1}\right) & i=1 \\
\sum_{u \in V(G)}\left(d\left(u, a_{1} \mid G_{1}\right)+1\right) & i=2\end{cases} \\
& = \begin{cases}d\left(a_{1} \mid G_{1}\right) & i=1 \\
d\left(a_{1} \mid G_{1}\right)+n_{1} & i=2\end{cases}
\end{aligned}
$$

The last sum S_{6} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{2}\right)$ and the edge $a_{1} a_{2}$ of G. Similar to the previous case, we obtain:

$$
S_{6}=\sum_{u \in V\left(G_{2}\right)} \sum_{e=a_{1} a_{2}} D_{i}(u, e \mid G)=\left\{\begin{array}{ll}
d\left(a_{2} \mid G_{2}\right) & i=1 \\
d\left(a_{2} \mid G_{2}\right)+n_{2} & i=2
\end{array} .\right.
$$

Now the formula of $W_{v e_{i}}(G), i \in\{1,2\}$, is obtained by adding the quantities S_{1}, $S_{2}, S_{3}, S_{4}, S_{5}$ and S_{6}.

ACKNOWLEDGMENTS

The author would like to thank the referee for his/her valuable comments.

References

1. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
2. H. Wiener, Correlation of heats of isomerization and differences in heats of vaporization of isomers among the paraffin hydrocarbons, J. Am. Chem. Soc. 69 (1947) 2636-2638.
3. A. R. Ashrafi, Wiener index of nanotubes, toroidal fullerenes and nanostars, In: F. Cataldo, A. Graovac, O. Ori (Eds.), The Mathematics and Topology of Fullerenes, Springer Netherlands, Dordrecht, 2011, pp. 21-38.
4. M. V. Diudea, Wiener index of dendrimers, MATCH Commun. Math. Comput. Chem. 32 (1995) 71-83.
5. I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem. 36(A) (1997) 128-132.
6. A. Iranmanesh, Y. Alizadeh and S. Mirzaie, Computing Wiener polynomial, Wiener index and hyper Wiener index of C_{80} fullerene by GAP program, Fullerenes, Nanotubes, Carbon Nanostruct. 17(5) (2009) 560-566.
7. M. Knor, P. Potočnik and R. Škrekovski, Wiener index of iterated line graphs of trees homeomorphic to H, Discrete Math. 313 (2013) 1104-1111.
8. A. Nikseresht and Z. Sepasdar, On the Kirchhoff and the Wiener indices of graphs and block decomposition, Electron. J. Combin. 21(1) (2014) \# P1.25.
9. M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. G. Wagner, Some new results on distance-based graph invariants, European J. Combin. 30 (2009) 11491163.
10. M. Azari, A. Iranmanesh and A. Tehranian, Two topological indices of three chemical structures, MATCH Commun. Math. Comput. Chem. 69 (2013) 69-86.
11. M. Azari and A. Iranmanesh, Computation of the edge Wiener indices of the sum of graphs, Ars Combin. 100 (2011) 113-128.
12. M. Azari and A. Iranmanesh, Computing Wiener-like topological invariants for some composite graphs and some nanotubes and nanotori, In: I. Gutman (Ed.), Topics in Chemical Graph Theory, University of Kragujevac, Kragujevac, 2014, pp. 69-90.
13. M. Azari, A. Iranmanesh and A. Tehranian, Maximum and minimum polynomials of a composite graph, Austral. J. Basic Appl. Sci. 5(9) (2011) 825-830.
14. A. R. Ashrafi, A. Hamzeh and S. Hosseinzadeh, Calculation of some topological indices of splices and links of graphs, J. Appl. Math. Inf. 29 (2011) 327-335.
15. M. Azari, Sharp lower bounds on the Narumi-Katayama index of graph operations, Appl. Math. Comput. 239C (2014) 409-421.
16. M. Azari, A. Iranmanesh and I. Gutman, Zagreb indices of bridge and chain graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 921-938.
17. T. Došlić, Splices, links and their degree-weighted Wiener polynomials, Graph Theory Notes New York 48 (2005) 47-55.
18. A. Iranmanesh, M. A. Hosseinzadeh and I. Gutman, On multiplicative Zagreb indices of graphs, Iranian J. Math. Chem. 3(2) (2012) 145-154.
19. M. Mogharrab and I. Gutman, Bridge graphs and their topological indices, MATCH Commun. Math. Comput. Chem. 69 (2013) 579-587.
20. R. Sharafdini and I. Gutman, Splice graphs and their topological indices, Kragujevac J. Sci. 35 (2013) 89-98.

Electro-Spunorganic Nanofibers Elaboration Process Investigations using BPs Operational Matrices

Hossein Jafari ${ }^{1}$ and Haleh Tajadodi ${ }^{\mathbf{2}}$
${ }^{1}$ Department of Mathematics, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran
${ }^{2}$ Department of Mathematical Science, University of Sistan and Baluchestan, Zahedan, Iran
Correspondence should be addressed to jafari@umz.ac.ir, jafari.ho1@gmail.com
Received 9 January 2015; Accepted 3 February 2015
AcADEMIC EdITOR: IVAN GUTMAN

Abstract

In this paper operational matrix of Bernstein Polynomials (BPs) is used to solve Bratu equation. This nonlinear equation appears in the particular elecotrospun nanofibers fabrication process framework. Elecotrospun organic nanofibers have been used for a large variety of filtration applications such as in non-wovens and filtration industries. By using operational matrix of integration and multiplication the investigated equations are turned into set of algebraic equations. Numerical solutions show both accuracy and simplicity of the suggested approach.

KEYWORDS Bratu equation • Elecotrospun nanofibers • Bernstein polynomials •

 Operational matrix.
1. Introduction

Electrospinning has been recognized as one of the most convenient, direct and economical methods for the fabrication of polymer nanofibers. Various polymers have been successfully electrospun into ultrafine fibers in recent years mostly in solvent solution and some in melt form. Electrospinning is a process for elaborating nanofibers with diameters about 20 nm by forcing a fluidified polymer through a spinneret by an electric field. The elements required for electrospinning include a polymer source, a highvoltage supply (HV), and a collector (as shown in Fig. 1) [4]. Through several different collection methods, this process yields nonwoven, nanoporous materials. The basis of electrospinning is derived from a large change in electric potential. Many electrospinning device were designed in vibration-electrospinning [14, 9], magneto-electrospinning [18], bubble-electrospinning [12, 10].

In this paper, a mathematical model of the electrospinning process has been associated to Bratu equation through thermo-electro-hydrodynamics balance equations. This model is considered in terms of fluid velocity at the level of the outer edge of the syringue. It has been showed that the problem can be expressed through second-order nonlinear ordinary differential Bratue quation:

$$
\begin{equation*}
u^{\prime \prime}(x)+\lambda e^{u(x)}=0, \quad 0<x<1, \quad \lambda \text { is constant } \tag{1}
\end{equation*}
$$

with initial conditions $u(0)=b_{0}=0$ and $u^{\prime}(0)=b_{1}=0$ will be investigated.

Figure 1. Electrospinning process setup.
Colantoni and Boubaker established a model which is the monodimensional Bratu equation as following [4]:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial x^{2}}-\lambda e^{u}=0 \\
\text { with: } \lambda=\frac{18 E^{2}\left(I-r^{2} k E\right)^{2}}{\rho^{2} r^{4}}
\end{array}\right.
$$

where ρ is material density, r is is the radius of the jet atxial coordinate x (Fig. 1), I is the electrical current intensity, k is a constant which depend only on temperature in the case of an in compressible and E is electric field in the axial direction.

The approximation and numerical techniques are utilized to solve this equation. Some of these methods were B-spline method [3], Chebyshev wavelets method [16], Adomian decomposition method [15], Variational iteration method [1, 8] and other method [6,7,13].

In this study, we will generalize the operational matrix for fractional integration and multiplication within Bernstein Polynomials. Bernstein polynomials (B-polynomials) have many useful properties. They play a prominent role in various areas of mathematics and have frequently been used in the solution of integral equations, differential equations and approximation theory; see e.g., [5, 17]. The core of this approach is to convert the given problem into a system of algebraic equations. This transformation is possible by expanding the unspecified function within Bernstein Polynomials. The speed of the computation increases. To evaluate the unknown coefficients which appear in this approach, we utilized the operational matrix of integral and multiple.

Now we are ready to present the organization of our wok: In Section 2, some properties of Bernstein polynomials is presented. The operational matrix is computed for integration and produc in section 3. The suggested approach is used to approximate the Bratu equation in the next section. After that we apply the proposed technique to Bratu equation in section 5. A conclusion part in Section 6 closed the manuscript.

2. Bernstein Polynomials and Their Properties

2.1 Definition of Bernstein Polynomials

The Bernstein polynomials of the m th degree on the interval $[0,1]$ are defined as [2]:

$$
\begin{equation*}
B_{i, m}(x)=\binom{m}{i} x^{i}(1-x)^{m-i}, \quad 0 \leq x \leq m . \tag{2}
\end{equation*}
$$

The following Bernstein polynomials satisfy recursive definition:

$$
\begin{equation*}
B_{i, m}(x)=(1-x) B_{i, m-1}(x)+x B_{i-1, m-1}(x), \quad i=0,1, \cdots, m . \tag{3}
\end{equation*}
$$

It can easily be shown that each of the Bernstein polynomials is positive and also the sum of all the Bernstein polynomials is unity for all real $x \in[0,1]$, i.e., $\sum_{i=0}^{m} B_{i, m}(x)=1$. By using the binomial expansion of $(1-x)^{m-i}$, Bernstein polynomials can be show in terms of linear combination of the basis functions

$$
\begin{align*}
B_{i, m}(x) & =\binom{m}{i} x^{i}(1-x)^{m-i}=\binom{m}{i} x^{i}\left(\sum_{k=0}^{m-i}(-1)^{k}\binom{m-i}{k} x^{k}\right) \\
& =\sum_{k=0}^{m-i}(-1)^{k}\binom{m}{i}\binom{m-i}{k} x^{i+k}, \quad i=0,1, \cdots, m . \tag{4}
\end{align*}
$$

We can show the Bernstein polynomials by $B_{i, m}(x)=A_{i+1} T_{m}(x)$, for $i=$ $0,1, \cdots, m$, where

$$
A_{i+1}=\left[0\left[\begin{array}{c}
i \text { times } \\
0,0, \cdots, 0
\end{array},(-1)^{0}\binom{m}{i},(-1)^{1}\binom{m}{i}\binom{m-i}{1}, \cdots,(-1)^{m-i}\binom{m}{i}\binom{m-i}{m-i}\right],\right.
$$

and

$$
T_{m}(x)=\left[\begin{array}{c}
1 \\
x \\
\vdots \\
x^{m}
\end{array}\right]
$$

Now if we define $(m+1) \times(m+1)$ matrix A such that

$$
A=\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{m+1}
\end{array}\right],
$$

then we have $\phi(x)=A T_{m}(x)$, where $\phi(x)=\left[B_{0, m}(x), B_{1, m}(x), \cdots, B_{m, m}(x)\right]^{T}$ and A is an upper triangular matrix given by:

$$
A=\left[\begin{array}{cccc}
(1)^{0}\binom{m}{0} & (1)^{1}\binom{m}{0}\binom{m-0}{1-0} & \cdots & (1)^{m-0}\binom{m}{0}\binom{m-0}{m-0} \\
0 & (1)^{0}\binom{m}{i} & \cdots & (1)^{m-i}\binom{m}{i}\binom{m-i}{m-i} \\
\vdots & \ddots & & \ddots \\
\vdots & \cdots & 0 & (1)^{0}\binom{m}{m}
\end{array}\right],
$$

and $|A|=\prod_{i=0}^{m} m\binom{m}{i}$, so A is an invertible matrix.

2.2 Approximation of Function

The set of Bernstein polynomials $\left\{B_{0, m}, B_{1, m}, \cdots, B_{m, m}\right\}$ in Hilbert space $L^{2}[0,1]$ is a complete basis [11]. Therefore, any polynomial of degree mcan be expanded in terms of linear combination of $B_{i, m}$:

$$
\begin{equation*}
f(x)=\sum_{i=0}^{m} c_{i} B_{i, m}=C^{T} \phi, \tag{5}
\end{equation*}
$$

where $\phi^{T}=\left[B_{0, m}, B_{1, m}, \cdots, B_{m, m}\right]$ and $C^{T}=\left[c_{0}, c_{1}, \cdots, c_{m}\right]$. Then C^{T} can be obtained by

$$
\begin{equation*}
C^{T}\langle\phi, \phi\rangle=\langle f, \phi\rangle, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle f, \phi\rangle=\int_{0}^{1} f(x) \phi(x)^{T} d x=\left[\left\langle f, B_{0, m}\right\rangle,\left\langle f, B_{1, m}\right\rangle, \cdots,\left\langle f, B_{m, m}\right\rangle\right] \tag{7}
\end{equation*}
$$

and $\langle\phi, \phi\rangle$ is called dual matrix of ϕ which is showed by Q, and the Q is obtained as:

$$
\begin{equation*}
Q=\langle\phi, \phi\rangle=\int_{0}^{1} \phi(x) \phi(x)^{T} d x \tag{8}
\end{equation*}
$$

and then

$$
\begin{equation*}
C^{T}=\left(\int_{0}^{1} f(x) \phi(x)^{T} d x\right) Q^{-1} \tag{9}
\end{equation*}
$$

The elements of the dual matrix, Q, are easily computed by

$$
\begin{aligned}
(Q)_{i+1, j+1} & =\int_{0}^{1} B_{i, m}(x) B_{j, m}(x) d x \\
& =\binom{n}{i}\binom{n}{j} \int_{0}^{1}(1-x)^{2 n-(i+j)} x^{i+j} d x \\
& =\frac{\binom{n}{i}\binom{n}{j}}{(2 n+1)\left(\begin{array}{l}
2 n \\
i+j)
\end{array}\right.}, \quad i, j=0,1, \cdots, m .
\end{aligned}
$$

3. Operational matrix of Bernstein Polynomials

3.1 The Operational Matrix of Integral

In this section, we describe breifley operational matrix for the Riemann-Liouville integral on the basis of BPs from order m as[17]:

$$
\begin{equation*}
\int_{0}^{x} \phi(t) d t \simeq P \phi(x) \tag{10}
\end{equation*}
$$

by substituting $\phi(x)=A T_{m}(x)$ in Eq. (10) we get:

$$
\begin{align*}
\int_{0}^{x} \phi(t) d t & =A \int_{0}^{x} T_{m}(t) d t=A\left[\int_{0}^{x} 1 d t, \int_{0}^{x} t d t, \cdots, \int_{0}^{x} t^{m} d t\right]^{T} \\
& =A\left[x, \frac{x^{2}}{2}, \cdots, \frac{x^{m+1}}{m+1}\right]^{T}=A D \bar{T}_{m}, \tag{11}
\end{align*}
$$

where D is an $(m+1) \times(m+1)$ matrix given by

$$
D=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & \frac{1}{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \frac{1}{m+1}
\end{array}\right]
$$

and

$$
\bar{T}_{m}=\left[\begin{array}{c}
x \\
x^{2} \\
\vdots \\
x^{1+m}
\end{array}\right] .
$$

Now we approximate x^{i+1} by $m+1$ terms of the Bernstein basis:

$$
\begin{equation*}
x^{i+1} \simeq E_{i}^{T} \phi(x) . \tag{12}
\end{equation*}
$$

Therefore we have

$$
\begin{align*}
E_{i} & =Q^{-1}\left(\int_{0}^{1} x^{i+1} \phi_{m}(x) d x\right) \tag{13}\\
& =Q^{-1}\left[\int_{0}^{1} x^{i+1} B_{0, m}(x) d x, \int_{0}^{1} x^{i+1} B_{1, m}(x) d x, \cdots, \int_{0}^{1} x^{i+1} B_{m, m}(x) d x\right]^{T} \\
& =Q^{-1} \bar{E}_{i} .
\end{align*}
$$

where $\bar{E}_{i}=\left[\bar{E}_{i, 0}, \bar{E}_{i, 1}, \cdots, \bar{E}_{i, m}\right]$ and

$$
\begin{equation*}
\bar{E}_{i, j}=\int_{0}^{1} x^{i+1} B_{i, j}(x) d x=\frac{m!\Gamma(i+j+2)}{\mathrm{j}!\Gamma(i+m+3)}, \quad i, j=0,1, \cdots, m, \tag{14}
\end{equation*}
$$

where E is an $(m+1) \times(m+1)$ matrix that has vector $Q^{-1} \bar{E}_{i}$ for ith columns. Therefore, we can write

$$
\begin{equation*}
P \phi(x)=A D\left[E_{0}^{T} \phi(x), E_{1}^{T} \phi(x), \cdots, E_{m}^{T} \phi(x)\right]^{T}=A D E^{T} \phi(x) . \tag{15}
\end{equation*}
$$

Finally, we obtain

$$
\begin{equation*}
\int_{0}^{1} \phi(t) d t \simeq P \phi(x) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
P=A D E, \tag{17}
\end{equation*}
$$

is called the Bernstein polynomials operational matrix of fractional integration.

3.2 B-Polynomials Operational Matrix of Product

It is always necessary to evaluate the product of $\phi(x)$ and $\phi(x)^{T}$, which is called the product matrix for the Bernstein polynomials basis. The operational matrices for the product \hat{C} is given by

$$
\begin{equation*}
C^{T} \phi(x) \phi(x)^{T} \simeq \phi(x)^{T} \hat{C} \tag{18}
\end{equation*}
$$

where \hat{C} is an $(m+1) \times(m+1)$ matrix. So we have

$$
\begin{align*}
C^{T} \phi(x) \phi(x)^{T} & =C^{T} \phi(x)\left(T_{m}(x)^{T} A^{T}\right)=\left[C^{T} \phi(x), x\left(C^{T} \phi(x)\right), \cdots, x^{m}\left(C^{T} \phi(x)\right)\right] A^{T} \\
& =\left[\sum_{i=0}^{m} c_{i} B_{i, m}, \sum_{i=0}^{m} c_{i} x B_{i, m}, \cdots, \sum_{i=0}^{m} c_{i} x^{m} B_{i, m}\right] \tag{19}
\end{align*}
$$

Now, we approximate all functions $x^{k} B_{i, m}(x)$ in terms of $\left\{B_{i, m}(x)\right\}_{i=0}^{m}$ for $i, k=0,1, \cdots, m$. By (5), we have

$$
\begin{equation*}
x^{m} B_{i, m} \simeq e_{k, i}^{T} \phi_{m}(x) \tag{20}
\end{equation*}
$$

that $e_{k, i}=\left[e_{k, i}^{0}, e_{k, i}^{1}, \cdots, e_{k, i}^{m}\right]^{T}$, then we obtain the components of the vector of $e_{k, i}$

$$
\begin{align*}
& e_{k, i}=Q^{-1}\left(\int_{0}^{1} x^{k} B_{i, m}(x) \phi(x) d x\right) \\
& =Q^{-1}\left[\int_{0}^{1} x^{k} B_{i, m}(x) B_{0, m}(x) d x, \int_{0}^{1} x^{k} B_{i, m}(x) B_{1, m}(x) d x, \cdots, \int_{0}^{1} x^{k} B_{i, m}(x) B_{m, m}(x) d x\right]^{T} \\
& =\frac{Q^{-1}}{2 m+k+1}\left[\frac{\binom{m}{0}}{\binom{m+k}{i+k}}, \frac{\binom{m}{1}}{\binom{2 m+k}{i+k+1}}, \cdots, \frac{\binom{m}{m}}{\binom{2 m+k}{i+k+m}}\right]^{T}, \quad i, k=0,1, \cdots, m \text {. } \tag{21}
\end{align*}
$$

Thus we obtain finally

$$
\begin{align*}
\sum_{i=0}^{m} c_{i} x^{k} B_{i, m}(x) & =\sum_{i=0}^{m} c_{i}\left(\sum_{j=0}^{m} e_{k, i}^{j} B_{j, m}(x)\right)=\sum_{j=0}^{m} B_{j, m}(x)\left(\sum_{i=0}^{m} c_{i} e_{k, i}^{j}\right) \\
& =\phi(x)^{T}\left[\sum_{i=0}^{m} c_{i} e_{k, i}^{0}, \sum_{i=0}^{m} c_{i} e_{k, i}^{1} \cdots, \sum_{i=0}^{m} c_{i} e_{k, i}^{m}\right]^{T} \\
& =\phi(x)^{T}\left[e_{k, 0}, e_{k, 1}, \cdots, e_{k, m}\right] C=\phi(x)^{T} V_{k+1} C \tag{22}
\end{align*}
$$

where $V_{k+1}(k=0,1, \cdots, m)$ is an $(m+1) \times(m+1)$ matrix that has vectors $e_{k, i}(i=$ $0,1, \cdots, m)$ given, for each columns. If we choose an $(m+1) \times(m+1)$ matrix $\bar{C}=$ [$V_{1} c, V_{2} c, \cdots, V_{m+1} c$], from (19) and (22) we can write:

$$
\begin{equation*}
C^{T} \phi(x) \phi(x)^{T} \simeq \phi(x)^{T} \bar{C} A^{T} \tag{23}
\end{equation*}
$$

and therefore we obtain the operational matrix of product, $\hat{C}=A^{T}$.

4. Solution of Bratu Equation

Consider Bratu equation given in (1). We first approximate derivative by the Bernstein basis ϕ as follows:

$$
\begin{equation*}
u^{\prime \prime}(x)=C^{T} \phi(x) \tag{24}
\end{equation*}
$$

where

$$
\begin{align*}
C^{T} & =\left[c_{0}, c_{1}, \cdots, c_{m}\right], \tag{25}\\
\phi^{T} & =\left[B_{0, m}, B_{1, m}, \cdots, B_{m, m}\right], \tag{26}
\end{align*}
$$

are unknowns. Using initial conditions $u(x)$ can be represented as

$$
\begin{equation*}
u(x)=C^{T} P^{2} \phi=G^{T} \phi \tag{27}
\end{equation*}
$$

where $C^{T} P^{2}=G^{T}$ and P is the operational matrix of integration. Here we use the Taylor expansion of the strongly nonlinear term as:

$$
e^{u}=1+u+\frac{u^{2}}{2}+\frac{u^{3}}{3!}+\frac{u^{4}}{4!}
$$

Also using (5) and (23) we approximate constant functions 1 and nonlinear terms by the Bernstein basis as:

$$
\begin{align*}
1 & =d^{T} \phi \tag{28}\\
u^{2}(x) & =G^{T} \phi \phi^{T} G=\phi^{T} \widehat{G} G \tag{29}\\
u^{3}(x) & =\phi^{T} \widehat{G}^{2} G \tag{30}\\
u^{4}(x) & =\phi^{T} \widehat{G}^{3} G \tag{31}
\end{align*}
$$

Now, by substituting (27) and (28)-(31), into (1) we have

$$
\begin{equation*}
\phi^{T} C=\lambda\left(\phi^{T} d+\phi^{T} G+\frac{1}{2} \phi^{T} \widehat{G} G+\frac{1}{3!} \phi^{T} \widehat{G}^{2} G+\frac{1}{4!} \phi^{T} \widehat{G}^{3} G\right) \tag{32}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi^{T}-\left(C-\lambda\left(\phi^{T} d+\phi^{T} G+\frac{1}{2} \phi^{T} \widehat{G} G+\frac{1}{3!} \phi^{T} \widehat{G}^{2} G+\frac{1}{4!} \phi^{T} \widehat{G}^{3} G\right)\right)=0 \tag{33}
\end{equation*}
$$

Finally, we obtain the following linear system of algebraic equations:

$$
\begin{equation*}
\left(C-\lambda\left(\phi^{T} d+\phi^{T} G+\frac{1}{2} \phi^{T} \widehat{G} G+\frac{1}{3!} \phi^{T} \widehat{G}^{2} G+\frac{1}{4!} \phi^{T} \widehat{G}^{3} G\right)\right)=0 \tag{34}
\end{equation*}
$$

that by solving this system we can obtain the vector C. Consequently determine the approximate value of $u(x)$ can be calculated from (27).

5. Illustrative Example

Below we use the presented approach in order to solve a Bratu equation.
Example. Consider the second-order initial value problem [1,3,15]

$$
\begin{equation*}
u^{\prime \prime}(x)-\lambda e^{u(x)}=0, \quad 0<x<1, \tag{35}
\end{equation*}
$$

subject to the initial condition $u(0)=u^{\prime}(0)=0$. The exact solution is $u(x)=$ $2 \ln (\cos (x))$. By applying the technique described in Section 4, in Figure 2 the exact solution together with the approximate solutions $u(x)$ show for different values of $m=6,8,12$ and $\lambda=2$. The approximate values of $u(x)$ converge to the exact solutions with increase in the number of the Bernstein basis. In Table 1, the obtained results of BPs with $m=12$ and methods in [4] are showed.

Figure 2. The exact solution: (blue line) and when $\lambda=2$ approximation solutions for $m=12$ (red line), $m=8$ (dotted) and $m=6$ (Long-dashed).

Table 1. Solution of Bratu equation.

x	Exact	BPEs	EVIM	BPs
0.03448	0.00118911	0.00118	0.00117	0.00118912
0.10345	0.010721	0.01061	0.0105	0.0107219
0.17241	0.0298737	0.02958	0.02929	0.0298804
0.24138	0.058839	0.05825	0.05766	0.0588668
0.31034	0.097897	0.09692	0.09592	0.0979798
0.37931	0.147465	0.14689	0.14632	0.147662
0.44828	0.20807	0.20599	0.20391	0.208484
0.51724	0.280393	0.27761	0.27483	0.281178
0.58621	0.365339	0.36178	0.35822	0.366712
0.65517	0.464004	0.45943	0.45485	0.466255
0.72414	0.577847	0.57211	0.56638	0.581339
0.79313	0.708731	0.70165	0.69462	0.713882
0.86207	0.858899	0.85038	0.84186	0.866119
0.93103	1.03165	1.02144	1.01122	1.04121
1	1.23125	1.21906	1.20687	1.24298

6. CONCLUSION

In this work we have performed an accurate and efficient approachbased using the Bernstein polynomials for solving the second-order initial value problems of Bratu-type. The Bernstein polynomials operational matrixes of integration and multiplication are used to reduce the problem to the solution of nonlinear algebraic equations. Illustrative example are presented to demonstrate the applicability and validity of the approach. We used Mathematica for computations.

REFERENCES

1. Batiha, B. (2010). Numerical solution of Bratu-type equations by the variational iteration method, Hacet. J. Math. Stat. 39, 23-29.
2. Bhatti, M.; Bracken, P. (2007). Solutions of Differential Equations in a Bernstein Polynomial Basis, J. Comput. Appl. Math. 205, 272-280.
3. Caglar, H.; Caglar, N.; Özeret, M. Valarıstos, A.; Anagnostopoulos, A. N. (2010). B-spline method for solving Bratu's problem, Int. J. Comput. Math. 87, 1885-1891.
4. Colantoni, A.; Boubaker, K. (2014). Electro-spun organic nanofibers elaboration process investigations using comparative analytical solutions, Carbohydrate Polymers 101, 307-312.
5. Doha, E. H.; Bhrawy, A. H.; Saker, M. A. (2011). Integrals of Bernstein polynomials: an application for the solution of high even-order differential equations, Appl. Math. Lett. 24, 559-565.
6. Hassan, I. H. A. H.; Erturk, V. S. (2007). Applying differential transformation method to the One-dimensional planar Bratu problem, Int. J. Contemp. Math. Sci. 2, 1493-1504.
7. Hassan, H. N. Semary, M. S. (2013). Analytic approximate solution for the Bratu's problem by optimal homotopy analysis method, Commun. Numer. Anal. Art. ID 00139, 14 pp.
8. He, J. H.; Kong, H. Y.; Chen, R. X.; Hu, M. S.; Chen, Q. L. (2014). Variational iteration method for Bratu-like equation arising in electrospinning, Carbohydrate Polymers 105, 229-230.
9. He, J. H.; Wan, Y. Q.; Yu, J. Y. (2004). Application of vibration technology to polymer electrospinning. Int. J. Nonlinear Sci. Numer. Simulat. 5 (3), 253-262.
10. He, J. H.; Liu, Y.; Xu, L.; Yu, J. Y.; Sun, G. (2008). BioMimic fabrication of electrospun nanofibers with high-throughput, Chaos Solitons Fractals 37 (3), 643-651.
11. Kreyszig, E. (1978). Introductory Functional Analysis with Applications, New York: John Wiley and Sons.
12. Liu, Y. He, JH. (2007). Bubble electrospinning for mass production of nanofibers, Int. J. Nonlinear Sci. Numer. Simulat. 8(3), 393-396.
13. Rashidinia, J.; Maleknejad, K.; Taheri, N. (2013). Sinc-Galerkin method for numerical solution of the Bratu's problem, Numer. Algorithms 62, 1-11.
14. Wan, Y. Q.; He, J.-H.; Wu, Y.; Yu, J. Y. (2007). Vibrorheological effect on electrospun polyacrylonitrile (PAN) nanofibers, Mater. Lett. 60 (27), 3296-3300.
15. Wazwaz, A. M. (2005). Adomian decomposition method for a reliable treatment of the Bratu-type equations, Appl. Math. Comput. 166, 652-663.
16. Yang, C.; Hou, J. (2013). Chebyshev wavelets method for solving Bratu's problem, Bound. Value Prob. 2013 9pp.
17. Yousefi, S. A.; Behroozifar, M. (2010). Operational matrices of Bernstein polynomials and their applications, Int. J. Syst. Sci. 41 (6), 709-716.
18. Yue, Wu. Jian-Yong, Yu. Ji-Huan, He. Yu-Qin, Wan. (2007). Controlling stability of the electrospun fiber by magneticeld, Chaos Solitons Fractals 32 (1), 5-7.

Hosoya Polynomials of Random Benzenoid Chains

Shou-Jun Xu ${ }^{\text {a }}$, Qing-Hua He ${ }^{\text {a }}$, Shan Zhou ${ }^{\text {b }}$ and Wai Hong Chan ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
${ }^{\text {c D Department of Mathematics and Information Technology, The Hong Kong Institute of Education, }}$ Tai Po, Hong Kong, R. R. China

Correspondence should be addressed to shjxu@lzu.edu.cn (S.-J. Xu).
Received 27 October 2014; Accepted 30 November 2014
Academic Editor: Ali Reza Ashrafi

ABSTRACT Let G be a molecular graph with vertex set $V(G)$ and $d_{G}(u, v)$ be the topological distance between vertices u and v in G. The Hosoya polynomial $H(G, x)$ of G is a polynomial $\sum_{\{u, v\} \subseteq V(G)} x^{d G_{G}^{(u, v)}}$ in variable x. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with n hexagons. Furthermore, as corollaries, the expected values of the well-known topological indices: Wiener index, hyper-Wiener index and Tratch-Stankevitch-Zefirov index of a random benzenoid chain with n hexagons can be obtained by simple mathematical calculations, which generates the results given by I. Gutman et al. [Wiener numbers of random benzenoid chains, Chem. Phys. Lett. 173 (1990) 403-408].

KEYWORDS Wiener index • random benzenoid chain • Hosoya polynomial • expected value - generating function.

1. INTRODUCTION

A molecular graph (or chemical graph) is a representation of the structural formula of a chemical compound in terms of graph theory. Specifically, a molecular graph is a simple graph whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds. Note that hydrogen atoms are often omitted. For example, benzenoid chains are molecular graphs of unbranched catacondensed benzenoid hydrocarbons. Molecular structure descriptors (or topological indices) of molecular graphs are graph
invariants and are used for Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) studies, which mainly focus on structure-dependent chemical behaviours of molecules [4, 18].

Let G be a molecular graph with vertex set $V(G), d_{G}(u, v)$ be the topological distance (or distance for short) between vertices u and v in G, i.e., the length of a shortest path connecting u and v in G. The subscript is omitted when there is no risk of confusion. The Hosoya polynomial $\}$ in variable x of G, introduced by Hosoya [12], is defined as $H(G, x)=\sum_{\{u, v\} \subseteq V(G)} x^{d} G^{(u, v)}$, where the sum is taken over all unordered pairs of (not necessarily distinct) vertices in G. Hence the polynomial contains the number of vertices as the constant term.

The Hosoya polynomial not only contains more information concerning distance in the molecular graph than any of the hither to proposed distance-based molecular structure descriptors, which were extensively studied in chemical graph theory, see for instance the surveys $[16,17]$, but also deduces some of them. For example, Wiener index $W(G)$ of a molecular graph G [20], the oldest and most well-studied molecular structure descriptor so far, is equal to the first derivative of the Hosoya polynomial in $x=1$, i.e.,

$$
\begin{equation*}
W(G)=\left.\frac{d}{d_{x}} H(G, x)\right|_{x=1} . \tag{1}
\end{equation*}
$$

The chemical applications and mathematical properties of $W(G)$ are well documented [5, 6, 9, 10]. Moreover, hyper-Wiener index $W W(G)$ [14], Tratch-Stankevitch-Zefirov index $\operatorname{TSZ}(G)$ [19] can be deduced from $H(G, x)$ as follows:

$$
\begin{align*}
& W W(G)=\left.\frac{1}{2} \frac{d^{2}}{d x^{2}} x H(G, x)\right|_{x=1} \tag{2}\\
& \operatorname{TSZ}(G)=\left.\frac{1}{3!} \frac{d^{3}}{d x^{3}} x^{2} H(G, x)\right|_{x=1} . \tag{3}
\end{align*}
$$

Two classes of general molecular structure descriptors

$$
\left.\frac{1}{k!} \frac{d^{k}}{d x^{k}} x^{k-1} H(G, x)\right|_{x=1} \text { and }\left.\frac{1}{k!} \frac{d^{k}}{d x^{k}} H(G, x)\right|_{x=1}
$$

for positive integers k were also studied in Refs. [2, 15]. On the other hand, recently Brückler etc. [2] proposed a new class of distance-based molecular structure descriptors: Qindices, which can reflect the fact that any kind of interaction between physical objects (in particular, between atoms in a molecule) decrease with increasing distance, and showed that Q-indices are equal to the Hosoya polynomial. So the Hosoya polynomial and the
quantities derived from it will play a significant role in QSAR and QSPR researches, and abundant literature appeared on this topic [3, 8,21, 22, 23].

Let B_{n+1} denote a benzenoid chain with $n+1$ hexagons ($n \geq 0$). There are obviously unique benzenoid chains B_{n+1} for $n=0,1$. More generally, a benzenoid chain B_{n+1} can be regarded as a benzenoid chain B_{n} to which a new terminal hexagon $u_{n}, y_{1,}, y_{2}, y_{3}, y_{4}, v_{n}$ has been adjoined. However, when $n \geq 2$, the terminal hexagon can be attached in three ways, resulting in the local arrangements we describe as $B_{n+1}^{1}, B_{n+1}^{2}, B_{n+1}^{3}$, according to the related position of the terminal hexagon shown in Figure 1.

$B_{n ? 1}^{1}$

$B_{n 11}^{2}$

Figure 1. The three types of local arrangements in benzenoid chains B_{n+1}
A random benzenoid chain, R_{n+1} with $n+1$ hexagons, is a benzenoid chain obtained by stepwise additions of terminal hexagons. As the initial steps, $R_{1}=B_{1}, R_{2}=B_{2}$, and for each step $k(2 \leq k \leq n)$ a random selection is made from one of the three possible constructions:

$$
\begin{aligned}
& B_{k} \rightarrow B_{k+1}^{1}, \text { with probability } p_{1}, \\
& B_{k} \rightarrow B_{k+1}^{2}, \text { with probability } p_{2} \text { or } \\
& B_{k} \rightarrow B_{k+1}^{3}, \text { with probability } \mathrm{q}=1-p_{1}-p_{2} .
\end{aligned}
$$

We assume the probabilities p_{1} and p_{2} are constants, invariant to the step parameter k. That is, the process described is a Markov chain of order zero with a state space consisting of three states [7].

In the present paper, we calculate the expected value of the Hosoya polynomial of a random benzenoid chain R_{n} and give an explicit analytical expression by using the mathematical method: generating function. As corollaries, formulae for the expected values of some topological indices deduced from the expression can be obtained by using simple mathematical operators.

2. Recursion Relations of Hosoya Polynomials of Random Benzenoid Chains

Let G be a connected graph with vertex set $V(G)$. For the simplicity, we define one notation as follows: for a vertex $u \in V(G)$,

$$
H_{G}(u ; x)=\sum_{v \in V(G)} x^{d(u, v)},
$$

i.e., the contribution of the vertex u to the Hosoya polynomial $H(G, x)$ of G. As described above in the previous section, a benzenoid chain B_{n+1} is obtained by attaching to a benzenoid chain B_{n} a terminal hexagon consisting of vertices $u_{n}, y_{1}, y_{2}, y_{3}, y_{4}, v_{n}$ (see Figure 1). For this construction the following relations are easily obtained [10]:

$$
\begin{align*}
& H_{B_{n+1}}\left(y_{1} ; x\right)=x H_{B_{n}}\left(u_{n} ; x\right)+x^{3}+x^{2}+x+1 \tag{4a}\\
& H_{B_{n+1}}\left(y_{2} ; x\right)=x^{2} H_{B_{n}}\left(u_{n} ; x\right)+x^{2}+2 x+1, \tag{4b}\\
& H_{B_{n+1}}\left(y_{3} ; x\right)=x^{2} H_{B_{n}}\left(v_{n} ; x\right)+x^{2}+2 x+1, \tag{4c}\\
& H_{B_{n+1}}\left(y_{4} ; x\right)=x H_{B_{n}}\left(v_{n} ; x\right)+x^{3}+x^{2}+x+1, \tag{4d}
\end{align*}
$$

and

$$
\begin{equation*}
H\left(B_{n+1}, x\right)=H\left(B_{n}, x\right)+\sum_{i=1}^{4} H_{B_{n+1}}\left(y_{i} ; x\right)-\left(x^{3}+2 x^{2}+3 x\right) . \tag{5}
\end{equation*}
$$

Note that the last term on the right-hand side of Eq. (5) appears because the contribution of pairs of vertices y_{i} and $y_{j}(1 \leq i<j \leq 4)$ to $H\left(B_{n+1}, x\right)$ are calculated twice in the second term on the right-hand side of Eq. (5). Substituting Eq. (4) for Eq.(5), we get

$$
\begin{equation*}
H\left(B_{n+1}, x\right)=H\left(B_{n}, x\right)+x(x+1)\left(H_{B_{n}}\left(u_{n} ; x\right)+H_{B_{n}}\left(v_{n} ; x\right)\right)+x^{3}+2 x^{2}+3 x+4 . \tag{6}
\end{equation*}
$$

In fact, the equations discussed above associated with a concrete benzenoid chain are valid for a random benzenoid chain, i.e., Eqs. (4)-(6) still hold when we simultaneously replace B_{n+1} for R_{n+1} and B_{n} for R_{n}.

In the following we consider contributions of u_{n+1} and v_{n+1} to $H\left(B_{n+1}, x\right)$ according to the positions of u_{n+1} and v_{n+1}. There are three cases to consider:

Case 1. $B_{n+1} \rightarrow B_{n+2}^{1}$. In this case, $u_{n+1}=y_{1}$ and $v_{n+1}=y_{2}=$. Consequently, $H_{B_{n+1}}\left(u_{n+1} ; x\right)=H_{B_{n+1}}\left(y_{1} ; x\right)$ and $H_{B_{n+1}}\left(v_{n+1} ; x\right)=H_{B_{n+1}}\left(y_{2} ; x\right)$, which are given by Eqs. (4a) and (4b), respectively.

Case 2. $B_{n+1} \rightarrow B_{n+2}^{2}$. In this case, $u_{n+1}=y_{3}$ and $v_{n+1}=y_{4}$. Consequently, $H_{B_{n+1}}\left(u_{n+1} ; x\right)=H_{B_{n+1}}\left(y_{3} ; x\right)$ and $H_{B_{n+1}}\left(v_{n+1} ; x\right)=H_{B_{n+1}}\left(y_{4} ; x\right)$, which are given by Eqs. (4c) and (4d), respectively.

Case 3. $B_{n+1} \rightarrow B_{n+2}^{3}$. In this case, $u_{n+1}=\mathrm{y}_{2}$ and $v_{n+1}=y_{3}$. Consequently, $H_{B_{n+1}}\left(u_{n+1} ; x\right)=H_{B_{n+1}}\left(y_{2} ; x\right)$, and $H_{B_{n+1}}\left(v_{n+1} ; x\right)=H_{B_{n+1}}\left(y_{3} ; x\right)$, which are given by Eqs. (4b) and (4c), respectively.

For a random benzenoid chain $R_{n+1}, H\left(R_{n+1}, x\right), H_{R_{n+1}}\left(u_{n+1} ; x\right)$ and $H_{R_{n+1}}\left(v_{n+1} ; x\right)$ are random variables and we denote their expected values by $H_{n+1}(x), U_{n+1}(x)$ and $V_{n+1}(x)$, respectively, i.e.,

$$
\begin{gathered}
H_{n+1}(x)=E\left(H\left(R_{n+1}, x\right)\right), U_{n+1}(x)=E\left(H_{R_{n+1}}\left(u_{n+1} ; x\right)\right), \\
V_{n+1}(x)=E\left(H_{R_{n+1}}\left(v_{n+1} ; x\right)\right) .
\end{gathered}
$$

Since the above three cases occur in random benzenoid chains with probabilities p_{1}, p_{2} and $1-p_{1}-p_{2}$, respectively, by the definition of the expected value we immediately obtain

$$
\begin{array}{r}
U_{n+1}(x)=p_{1} H_{R_{n+1}}\left(y_{1} ; x\right)+p_{2} H_{R_{n+1}}\left(y_{3} ; x\right)+q H_{R_{n+1}}\left(y_{2} ; x\right), \\
V_{n+1}(x)=p_{1} H_{R_{n+1}}\left(y_{2} ; x\right)+p_{2} H_{R_{n+1}}\left(y_{4} ; x\right)+q H_{R_{n+1}}\left(y_{3} ; x\right), \tag{7b}
\end{array}
$$

Substituting the corresponding analogues associated with random benzenoid chains R_{n} and R_{n+1} to Eq. (4) for Eq. (7), we get

$$
\begin{align*}
U_{n+1}(x) & =\left(p_{1} x+q x^{2}\right) H_{R_{n}}\left(u_{n} ; x\right)+p_{2} x^{2} H_{R_{n}}\left(v_{n} ; x\right)+\left(x^{3}-x\right) p_{1}+(x+1)^{2}, \tag{8a}\\
V_{n+1}(x) & =\left(p_{2} x+q x^{2}\right) H_{R_{n}}\left(v_{n} ; x\right)+p_{1} x^{2} H_{R_{n}}\left(u_{n} ; x\right)+\left(x^{3}-x\right) p_{2}+(x+1)^{2}, \tag{8b}
\end{align*}
$$

By applying the expectation operator to Eq. (8), and noting that $E\left(U_{n+1}(x)\right)=U_{n+1}(x)$ and $E\left(V_{n+1}(x)\right)=V_{n+1}(x)$, we obtain

$$
\begin{align*}
& U_{n+1}(x)=\left(p_{1} x+q x^{2}\right) U_{n}(x)+p_{2} x^{2} V_{n}(x)+\left(x^{3}-x\right) p_{1}+(x+1)^{2}, \tag{9a}\\
& V_{n+1}(x)=\left(p_{2} x+q x^{2}\right) V_{n}(x)+p_{1} x^{2} U_{n}(x)+\left(x^{3}-x\right) P_{2}+(x+1)^{2} \tag{9b}
\end{align*}
$$

A recursion relation for the expected value of the Hosoya polynomial of a random benzenoid chain can be obtained from Eq. (6) by using R_{k} in place of $B_{k}(k=n, n+1)$ and by using the expectation operator:

$$
\begin{equation*}
H_{n+1}(x)=H_{n}(x)+\left(x+x^{2}\right)\left(U_{n}(x)+V_{n}(x)\right)+x^{3}+2 x^{2}+3 x+4 . \tag{10}
\end{equation*}
$$

The system of recursion equations (9) and (10) holds for $n \geq 0$, and has boundary conditions:

$$
\begin{equation*}
H_{0}(x)=x+2, U_{0}(x)=x+1, V_{0}(x)=x+1 . \tag{11}
\end{equation*}
$$

3. Solution for the System of Recursion Equations

To solve the recursion equations (9) and (10), we use the method of the generating function [1]. First define the following generating functions in variable t. Let

$$
U(t)=\sum_{n \geq 0} U_{n}(x) t^{n}, \quad V(t)=\sum_{n \geq 0} V_{n}(x) t^{n}, \quad H(t)=\sum_{n \geq 0} H_{n}(x) t^{n}, \quad 0<t<1 .
$$

From Eqs. (9)-(11), we get relations of their generating functions as follows:

$$
\begin{align*}
& U(t)=t\left(p_{1} x+q x^{2}\right) U(t)+p_{2} t x^{2} V(t)+\frac{t\left(x^{3}-x\right) p_{1}+t(x+1)^{2}}{1-t}+x+1 \tag{12a}\\
& V(t)=t\left(p_{2} x+q x^{2}\right) V(t)+p_{1} t x^{2} U(t)+\frac{t\left(x^{3}-x\right) p_{2}+t(x+1)^{2}}{1-t}+x+1, \tag{12b}\\
& H(t)=t H(t)+\left(x+x^{2}\right) t(U(t)+V(t))+\frac{t\left(x^{3}+2 x^{2}+3 x+4\right)}{1-t}+x+2 \tag{12c}
\end{align*}
$$

As Eqs. (12a) and (12b) comprise a system of two linear equations in two variables $U(t)$ and $V(t)$, a straight forward calculation results in

$$
\begin{align*}
& U(t)=\frac{p_{1} x(x+1)^{2}}{(x-1)(1-x t)}+\frac{\left(1-p_{1}\right) x(x+1)}{(x-1)\left(1-x^{2} t\right)}+\frac{\left(p_{1} x^{2}+1\right)(x+1)}{(1-x)(1-t)}+\frac{p_{2}\left(p_{1}-p_{2}\right) t^{2} x^{3}(x+1)^{2}}{(1-t)(1-q t)}\left(\frac{1}{1-x^{2} t}-\frac{1}{1-x t}\right), \tag{13a}\\
& V(t)=\frac{p_{2} x(x+1)^{2}}{(x-1)(1-x t)}+\frac{\left(1-p_{2}\right) x(x+1)}{(x-1)\left(1-x^{2} t\right)}+\frac{\left(p_{2} x^{2}+1\right)(x+1)}{(1-x)(1-t)}+\frac{p_{1}\left(p_{2}-p_{1}\right) t^{2} x^{3}(x+1)^{2}}{(1-t)(1-q t)}\left(\frac{1}{1-x^{2} t}-\frac{1}{1-x t}\right) . \tag{13b}
\end{align*}
$$

Substituting Eq. (13) for Eq. (12) and then rearranging, we can easily get:

$$
\begin{align*}
& H(t)=\frac{x+2}{1-t}+\frac{\left(x^{3}+2 x^{2}+3 x+4\right) t}{(1-t)^{2}}+\frac{(1-q) x^{2}(x+1)^{3} t}{(x-1)(1-t)(1-x t)}+\frac{(1+q) x^{2}(x+1)^{2} t}{(x-1)(1-t)\left(1-x^{2} t\right)} \tag{14}\\
& +\frac{(x+1)^{2}\left((1-q) x^{3}+2 x\right) t}{(1-x)(1-t)^{2}}-\frac{\left(p_{1}-p_{2}\right)^{2} x^{4}(x+1)^{3} t^{3}}{(1-a t)(1-t)^{2}}\left(\frac{1}{1-x^{2} t}-\frac{1}{1-x t}\right) .
\end{align*}
$$

Applying two special cases of Newton's generalized binomial theorem

$$
\frac{1}{1-y}=\sum_{n=0}^{+\infty} y^{n} \quad \text { and } \quad \frac{1}{(1-y)^{2}}=\sum_{n=0}^{+\infty}(n+1) y^{n}
$$

to Eq. (14) and then rearranging it, we get

$$
\begin{align*}
& H(t)=x+2+3\left(x^{3}+2 x^{2}+2 x+2\right) t+\left(2 x^{5}+6 x^{4}+12 x^{3}+14 x^{2}+11 x+10\right) t^{2}+ \\
& \sum_{n=3}^{+\infty}\left[x+2+n\left(x^{3}+2 x^{2}+3 x+4\right)+\frac{n(x+1)^{2}\left((1-q) x^{3}+2 x\right)}{1-x}+\frac{(1-q) x^{2}(x+1)^{3}\left(x^{n}-1\right)}{(x-1)^{2}} \cdots\right. \tag{15}\\
& \left.+\frac{(1+q) x^{2}(x+1)\left(x^{2 n}-1\right)}{(x-1)^{2}}-\left(p_{1}-p_{2}\right)^{2} x^{4}(x+1)^{3} \sum_{l=0}^{n-3} q^{l}\left(\sum_{k=0}^{n-3-l}(n-l-k-2)\left(x^{2 k}-x^{k}\right)\right)\right] t^{n} .
\end{align*}
$$

4. Results and Discussion

From Eq. (15), we have the following main theorem.
Theorem 4.1. Let $H_{n}(x)$ be the expected value of the Hosoya polynomial of a random benzenoid chain with n hexagons. Then

$$
\begin{gathered}
H_{1}(x)=3 x^{3}+6 x^{2}+6 x+6 \\
H_{2}(x)=2 x^{5}+6 x^{4}+12 x^{3}+14 x^{2}+11 x+10
\end{gathered}
$$

and when and $n \geq 3$,

$$
\begin{aligned}
& H_{n}(x)=x+2+n\left(x^{3}+2 x^{2}+3 x+4\right)+\frac{n(x+1)^{2}\left((1-q) x^{3}+2 x\right)}{1-x}+ \\
& \frac{(1-q) x^{2}(x+1)\left(x^{2 n}-1\right)}{(x-1)^{2}}-\left(p_{1}-p_{2}\right)^{2} x^{4}(x+1)^{3} \sum_{l=0}^{n-3} q^{l}\left(\sum_{k=0}^{n-3-l}(n-l-k-2)\left(x^{2 k}-x^{k}\right)\right) .
\end{aligned}
$$

We can obtain some corollaries by taking parameters as special values or Eqs. (1)-(3). When $q=1$ (in this case $p_{1}=p_{2}=0$), a random benezoid chain is definitely a linear benzenoid chain, i.e., a benzoid chain without no turns. So from Theorem 4.1 we have

Corollary 4.2. [21] Let G be a benzenoid chain with n hexagons. If G has no turns, then the Hosoya polynomial of G is

$$
H(G, x)=x+2+\frac{n\left(x^{2}-x-4\right)\left(x^{2}+1\right)}{x-1}+\frac{2 x^{2}(x+1)\left(x^{2 n}-1\right)}{(x-1)^{2}} .
$$

If $p_{1}=1$ or $p_{2}=2$, a random benzenoid chain with n hexagons is definitely a helicene with n hexagons, then we get

Corollary 4.3. [21] Let G be a helicene with n hexagons. Then the Hosoya polynomial of G is

$$
\begin{aligned}
H(G, x)= & x+2+\frac{x^{2}(x+1)\left((x+1)^{3} x^{n}-(n-1) x^{5}-x^{4}+(n-3) x^{3}-x^{2}-2 x-2\right)}{(x-1)^{2}} \\
& +\frac{n\left(x^{5}+x^{4}+2 x^{3}+3 x^{2}+x+4\right)}{1-x}
\end{aligned}
$$

In addition, from Eqs. (1)-(3), we can obtain the expected values of some molecular structure descriptors from Theorem 4.1.

Corollary 4.4. [13] The expected value W_{n} of the Wiener index of a random benzenoid chain with n hexagons is

$$
W_{n}=4 n^{3}+16 n^{2}+6 n+1+\frac{4}{3} q\left(n^{3}-3 n^{2}+2 n\right)-\frac{4}{3}\left(p_{1}-p_{2}\right)^{2} \sum_{l=0}^{n-3} l(l+1)(l+2) q^{n-3-l}
$$

Corollary 4.5. The expected value $W W_{n}$ of the hyper-Wiener index of a random benzenoid chain with n hexagons is

$$
\begin{aligned}
W W_{n}= & \frac{1}{3}\left[3+(11+26 q) n+(79-33 q) n^{2}+(28+4 q) n^{3}+(5+3 q) n^{4}\right]- \\
& \left(p_{1}-p_{2}\right)^{2} \sum_{l=0}^{n-3} l(l+1)(l+2)(l+9) q^{n-3-l}
\end{aligned}
$$

Corollary 4.6. The expected value $T S Z_{n}$ of the Tratch-Stankevitch-Zefirov index of a random benzenoid chain with n hexagons is

$$
\begin{aligned}
T S Z_{n}= & \frac{1}{30}\left[30+(-58+566 q) n+(1185-635 q) n^{2}+(490-10 q) n^{3}+(135+65 q) n^{4}\right. \\
& +(18+14 q) n^{5}-\left(p_{1}-p_{2}\right)^{2} \sum_{l=0}^{n-3} l(l+1)(l+2)\left(14(l+3)^{2}+139(l+3)+510\right) q^{n-3-l}
\end{aligned}
$$

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (Grants Nos. 11001113, 61202315). Part of this work was completed while S.-J. Xu was visiting Department of Mathematics and Information Technology at Hong Kong Institute of Education, Tai Po, Hong Kong SAR, China.

References

1. M. Bóna, A Walk Through Combinatorics. World Scientic: New Jersey, 2002.
2. F. M. Brückler, T. Došlić, A. Graovac, I. Gutman, On a class of distance based molecular structure descriptors. Chem. Phys. Lett. 503 (2001), 336-338.
3. J. Chen, S.-J. Xu, H. Zhang, Hosoya polynomials of $\mathrm{TUC}_{4} \mathrm{C}_{8}(\mathrm{R})$ nanotubes. Int. J. Quantum Chem. 109 (4) (2009), 641-649.
4. M. V. Diudea, I. Gutman, L. Jantschi, Molecular Topology. Nova Science: New York, 2001.
5. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications. Acta Appl. Math. 66 (2001), 211-249.
6. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems. Acta Appl. Math. 72 (2002), 247-294.
7. D. Freedman, Markov Chains. Springer-Verlag: New York, 1983.
8. I. Gutman, E. Estrada, O. Ivanciuc, Some properties of the Hosoya polynomial of trees. Graph Theory Notes New York 36 (1999), 7-13.
9. I. Gutman, S. Klavžar, B. Mohar, (eds.) Fifty years of the Wiener index. MATCH Commun. Math. Comput. Chem. 35 (1997), 1-259.
10. I. Gutman, S. Klavžar, B. Mohar, (eds.) Fiftieth anniversary of the Wiener index. Discrete Appl. Math. 80(1) (1997), 1-113.
11. I. Gutman, S. Klavžar, M. Petkovšek, P. On some counting polynomials in chemistry. MATCH Commun. Math. Comput. Chem. 43 (2001), 49-66.
12. H. Hosoya, On some counting polynomials in chemistry. Discrete Appl. Math., 19 (1988), 239-257.
13. I. Gutman, J. W. Kennedy, L. V. Quintas, Wiener numbers of random benzenoid chains. Chem. Phys. Lett. 173 (1990), 403-408.
14. D. J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures. J. Chem. Inf. Comput. Sci. 35 (1995), 50-52.
15. E. V. Konstantinova, M. V. Diudea, The Wiener polynomial derivatives and other topological indices in chemical research. Croat. Chem. Acta. 73 (2000), 383-403.
16. B. Lučić, I. Lukovits, S. Nikolić, N. Trinajstić, Distance-related indexes in the quantitative structure-property relationship modeling. J. Chem. Inf. Comput. Sci. 41 (2001), 527-535.
17. Z. Mihalić, N. Trinajstić, A graph-theoretical approach to structure-property relationships. J. Chem. Educ. 69 (1992), 701-712.
18. R. Todeschini, V. Consonni, Handbook of Molecular Descriptors; Wiley-vch: Weinheim, 2000.
19. S. S. Tratch, M. I. Stankevitch, N. S. Zefirov, Combinatorial models and algorithms in chemistry. The expanded Wiener number - A novel topological index. J. Comput. Chem. 11 (1990), 899-908.
20. H. Wiener, Structural determination of paraffin boiling points. J. Amer. Chem. Soc. 69 (1947), 17-20.
21. S.-J. Xu, H. Zhang, Hosoya polynomials under gated amalgamations. Discrete Appl. Math. 156 (2008), 2407-2419.
22. S.-J. Xu, H. Zhang, The Hosoya polynomial decomposition for catacondensed benzenoid graphs. Discrete Appl. Math. 156 (2008), 2930-2938.
23. B. Y. Yang, Y.-N. Yeh, Wiener polynomials of some chemically interesting graphs. Int. J. Quantum Chem. 99 (2) (2004), 80-91.

Complete Forcing Numbers of Polyphenyl Systems

Bingjie LiU ${ }^{1}$, Hong Bian ${ }^{1}$ and Haizheng Yu ${ }^{\mathbf{2}}$
${ }^{1}$ School of Mathematical Sciences, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. China
${ }^{2}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P. R. China

Correspondence should be addressed to bh_1218@sina.com (H. Bian)
Received 25 March 2015; Accepted 10 August 2015
Academic Editor: Hassan Yousefi-Azari

Abstract

The idea of "forcing" has long been used in many research fields, such as colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin squares, block designs and Steiner systems in combinatorics [D. Donovan, E. S. Mahmoodian, C. Ramsay, A. P. Street, Defining sets in combinatorics: A survey, in: C. D. Wensley (Ed.), Surveys in Combinatorics, Cambridge Univ. Press, 2003, pp. 115-174]. Recently, the forcing on perfect matchings has been attracting more researchers' attention. A forcing set of a perfect matching M of a graph G is a subset of M contained in no other perfect matchings of G. A global forcing set of G, introduced by Vukičević et al., is a subset of $\mathrm{E}(\mathrm{G})$ on which there are distinct restrictions of any two different perfect matchings of G. Combining the above "forcing" and "global" ideas. Xu et al. in [Complete forcing numbers of catacondensed benzenoid, J. Combin. Optim. 29 (2015) 803-814.] introduced a complete forcing set of G defined as a subset of $E(G)$ on which the restriction of any perfect matching M of G is a forcing set of M . The minimum cardinality of complete forcing sets is the complete forcing number of G. In this paper, we give the explicit expressions for the complete forcing number of several classes of polyphenyl systems.

Keywords Complete forcing number • polyphenyl system • global forcing number.

1. Introduction

The molecular graphs (or more precisely, the graphs representing the carbon-atoms) of polyphenyls are called the polyphenyl systems. This kind of macrocyclic aromatic hydrocarbons called polyphenyls and their derivatives attracted the attention of chemists for many years [3, 4, 5]. The derivatives of polyphenyls are very important organic chemicals, which can be used in organic synthesis, drug synthesis, heat exchanger, etc. Biphenyl compounds also have extensive industrial applications. For example, 4,4-bis (chloromethyl) biphenyl can be used for the synthesis of brightening agents. Especially, polychlorinated biphenyls (PCBs) can be applied in print and dyeing extensively [6, 7]. On the other side, PCBs are dangerous organic pollutants, which lead to global pollution. Many years ago, a series of physical properties were discussed [8-13].

A perfect matching M (or Kekulé structure, 1-factor) of a graph G is a set of independent edges such that every vertex of G is incident with exactly one edge in M.

Let G be a graph with edge set $E(G)$ that admits a perfect matching M. A forcing set of M is a subset S of M contained in no other perfect matchings of G. The minimum possible cardinality of forcing set S is called the forcing number of M.

The notions of a forcing edge and the forcing number of a perfect matching first appeared in 1991 in a paper of Harary, Klein and Živković [14]. The root of these concepts can be traced to the works [15, 16] by Randić and Klein in 1985-1987, where the forcing number was introduced under the name of "innate degree of freedom" of a Kekulé structure, which plays an important role in the resonance theory in chemistry.

Over the past two decades, more and more mathematicians were attracted to the study on forcing sets (including forcing edges and forcing faces, etc) and the forcing numbers of perfect matchings of a graph. The scope of graphs in consideration has been extended from polyhexes to various bipartite graphs and non-bipartite graphs.

Some varied topics such as global (or total) forcing matchings and anti-forcing matching also emerged.

Klein and Randić [15] proposed the degree of freedom of a graph from the global point of view, defined as the sum of forcing numbers over all perfect matchings of a graph, and showed by evidence that the degree of freedom of a chemical graph actually measures graphical characteristics distinct from those measured by a couple of common resonance energy estimators. Because of extensive industrial and medical applications, one class of chemical graph-macrocyclic aromatic hydrocarbons called polyphenyls and their derivatives attracted the attention of chemists for many years [3, 4, 5]. A series of linear and branched polyphenyls and their derivatives were synthesized and some physical properties were discussed [8-13].

Gutman [17] showed that the values which the Wiener indices of isometric polyphenyls may assume are all congruent modulo 36. Bian and Zhang [18, 19] determined the polyphenyl chain with minimum and maximum Wiener (or edge-Wiener) indices among all the polyphenyl chains with n hexagons. Li and Bian [20] gave the extremal polyphenyl chains concerning k-matchings and k-independent sets. In 2013, Ma and Bian [21] also gave the extremal polyphenyl spiders concerning k-matchings and k independent sets. A complete forcing set of G, introduced by Xu et al. [2] recently, is a subset of $E(G)$ on which the restriction of any perfect matching is a forcing set of the perfect matching. The minimum possible cardinality of complete forcing sets of G is the complete forcing number of G, denote it by $c f(G)$. Xu et al. gave an expression for the complete forcing number of a hexagonal chain and a recurrence relation for complete forcing number of cata-condensed hexagonal system. In 2014, Xu et al. [22] by the constructive proof, gave an explicit analytical expression for the complete forcing number of a primitive coronoid, a circular single chain consisting of congruent regular hexagons.

Based on these works, in this paper, we give the explicit expressions for the complete forcing number of several classes of polyphenyl systems.

2. Preliminaries

All graphs in this paper are simple connected and have perfect matchings. For all terms and notations used but not defined here, we refer the reader to the textbooks [23, 24].

Figure 1. A tree-like polyphenyl system and corresponding tree.
A polyphenyl system H is said to be tree-like (see Figure 1), if each vertex of H lies in a hexagon and the graph obtained by contracting every hexagon into a vertex in original molecular graph is a tree.

A hexagon r of a tree-like polyphenyl system may have one, two, three, four, five or six neighboring hexagons. If r has one neighboring hexagon, then it is said to be terminal, and internal otherwise. Also it is branched if it has three or more neighboring hexagons.

Definition 1. If every hexagon in a polyphenyl system has exactly two neighboring hexagons, then it is called primitive coronoid polyphenyl system. The set of primitive coronoid polyphenyl systems with n hexagons is denoted by CH_{n} (see Figure 2).

Figure 2. A primitive coronoid polyphenyl system with 8 hexagons.

Definition 2. A tree-like polyphenyl system without branched hexagons is called a polyphenyl chain. A polyphenyl chain with n hexagons is denoted by H_{n} (see Figure 3).

Figure 3. A polyphenyl chain with 7 hexagons.
For a hexagon C, two vertices u and v of C are said to be in ortho-position if they are adjacent in C. If two vertices are at distance 2 , they are in meta-position. Finally, if u and v are at distance 3, we say that they are in para-position. Examples of pairs of vertices in ortho-, meta-, and para-position are shown in Figure 4.

Figure 4. Orhto--, meta-, and para-positions of vertices u and v in C.
An internal hexagon C in a polyphenyl chain is called ortho-hexagon, meta-hexagon, or para-hexagon, if the two vertices of C incident with two edges which connect other two hexagons are in ortho-, meta-, or para-position, respectively.

Following Lovász and Plummer [24], an edge of G is said to be allowed if it is contained in some perfect matching of G and forbidden otherwise.

Theorem 1. Let H be a tree-like polyphenyl system with n hexagons. Then we have cf(H) $=2 n$.

Proof. Suppose that H is a tree-like polyphenyl system with n hexagons.
First we claim that every edge incident with the terminal hexagons is forbidden edge. In fact, if an edge incident with a terminal hexagon C is allowed edge, then it lies in some perfect matching M of H, hence, the number of the rest of vertices in C besides the vertex incident with the allowed edge is odd, which contradicts that H has the perfect matching.

We can delete all edges incident with terminal hexagons, and obtain the resulting graph, which consists of a small tree-like polyphenyl system and some independent hexagons.

Now we consider the small tree-like polyphneyl system, we also can show that every edge incident with the terminal hexagons of the small polyphenyl system is forbidden edge, then we delete all edges incident with terminal hexagons of the small tree-like polyphenyl system again. By iterating the same proceed, until the resulting graph is an independent hexagon. We can conclude that all edges between the two hexagons are forbidden edges, and the edges lie in every hexagon are allowed edges of H. Moreover, there are two perfect matchings in each hexagon, the union of perfect matching of each hexagon will be a perfect matching of H, and the number of perfect matching of H is $2 n$.

By definition of complete forcing number, we take any two adjacent edges in every hexagon, the set of these edges will be a complete forcing set of H. Then we have $c f(H)=$ $2 n$.

Since the polyphenyl chain can be viewed as a special tree-like polyphenyl system, as a corollary of Theorem 1, we easily have the following result.

Corollary 2. Let H_{n} be any polyphenyl chain with n hexagons. Then we have $c f\left(H_{n}\right)$ $=2 n$.

For a primitive coronoid polyphenyl system CH , the meta-hexagon in CH will affect the number of perfect matchings of CH , according to whether CH has meta-hexagons or not, we distinguish the following two cases.

Theorem 3. Let C_{n} be a primitive coronoid polyphenyl system with n hexagons such that CH_{n} has no meta-hexagons. Then we have $\mathrm{cf}\left(\mathrm{CH}_{n}\right)=2 n+1$.

Proof. By the assumption, any hexagon C of CH_{n} is either ortho-hexagon or para-hexagon, so the two vertices of C incident with two edges which connect other two hexagons are in ortho-position or para-position.

First, we claim that G has a perfect matching M consisting of edges connecting two hexagons with the remainder two independent edges of every hexagon by deleting the two ortho- (or para-) position vertices of C. Moreover, every hexagon has two perfect matchings, the union of a perfect matching of every hexagon will be a perfect matching of CH_{n}. So the number of perfect matchings of CH_{n} is $2 n+1$.

We can obtain a complete forcing set of CH_{n} by taking any one edge connecting two hexagons and two adjacent edges of every hexagon in CH_{n}. Hence, the complete forcing number of CH_{n} is $2 n+1$.

Theorem 4. Let CH_{n} be any primitive coronoid polyphenyl system with n hexagons such that CH_{n} has at least one meta-hexagon. Then we have $c f\left(\mathrm{CH}_{n}\right)=2 n$.

Proof. According to assumption, CH_{n} has at least one meta-hexagon C. We claim that none of the two edges incident with the two meta-position vertices of C is allowed edge. In fact, if one of the two edges is allowed edge, then it must be matched by some perfect matching M of CH_{n}, in this case, the remainder vertices of C besides the vertex incident with the allowed edge cannot be completely matched by M, which contradicts that M is a perfect matching of CH_{n}.

So, the vertices of every hexagon in CH_{n} must be matched by themselves in M , namely, any edge connecting two hexagons must be forbidden edge of CH_{n}. The resulting graph is the set of independent hexagons by deleting all the forbidden edges of CH_{n}. It is clear that the number of perfect matchings of CH_{n} is $2 n$, and we can obtain the complete forcing set of CH_{n} by taking two adjacent edges of every hexagon of CH_{n}. Hence, the complete forcing number of CH_{n} is $2 n$.

4. CONCLUDING REMARKS

In this section, we discuss the global forcing number of the polyphenyl system. For a simple connected graph G with a perfect matching, let $\mathrm{M}(G)$ denote the set of all perfect matchings in G, and $f: \mathrm{M}(G) \rightarrow\{0,1\}^{|\mathrm{E}(G)|}$ a characteristic function of perfect matchings of G. Any set $S \subseteq E(G)$ such that $f \mid S$ is an injection is called a global forcing set in G, and the cardinality of smallest such S is called the global forcing number of G. Tomislav Došlić et al. showed that the global forcing number of graph G has lower bound $\left\lceil\log _{2}|\mathrm{M}(G)|\right]$ and upper bound $|E(G)|-|V(G)|+1$. We can easily show that the lower and upper bounds of the global forcing number for a tree-like polyphenyl system with n hexagons (in particular a polyphenyl chain with n hexagons) and a primitive coronoid polyphenyl system with n hexagons which has no meta- hexagons are all tight. And the global forcing number of a tree-like polyphenyl system with n hexagons (in particular a polyphenyl chain with n hexagons) is n, the global forcing number of a primitive coronoid polyphenyl system with n hexagons which has no meta-hexagons is $n+1$. For a primitive coronoid polyphenyl system with n hexagons which has at least one meta-hexagon, only the lower bound of the global forcing number for this primitive coronoid polyphenyl system is tight, and the global forcing number of it is n. These results are similar to that of the complete forcing number of the polyphenyl system.

ACKNOWLEDGEMENTS

The authors thank the referees for their helpful suggestions to improve the exposition. Work supported by NSFC (Grant No.11361062, 11061035), Xinjiang Natural Science Foundation of General Program (2013211A021), Key Program of Xinjiang Higher Education(XJEDU2012I28, XJEDU2013I04).

References

1. D. Donovan, E. S. Mahmoodian, C. Ramsay, A. P. Street, Defining sets in combinatorics: A survey, in: C. D. Wensley (Ed.), Surveys in Combinatorics,

Cambridge University Press, 2003, pp. 115-174.
2. S.-J. Xu, H. Zhang, J. Cai, Complete forcing numbers of catacondensed benzenoid, J. Combin. Optim. 29 (2015) 803-814.
3. D. R. Flower, On the properties of bit string-based measures of chemical similarity, J. Chem. Inf. Comput. Sci. 38 (1998) 379-386.
4. Q. R. Li, Q. Yang, H. Yin, S. Yang, Analysis of by-products from improved Ullmann reaction using TOFMS and GCTOFMS, J. Univ. Sci. Technol. China 34 (2004) 335-341.
5. S. Tepavcevic, A. T. Wroble, M. Bissen, D. J. Wallace, Y. Choi, L. Hanley, Photoemission studies of polythiophene and polyphenyl films produced via surface polymerization by ion-assisted deposition, J. Phys. Chem. B. 109 (2005) 7134-7140.
6. G. Luthe, J. A. Jacobus, L. W. Robertson, Receptor interactions by polybrominated diphenyl ethers versus polychlorinated biphenyls: A theoretical structure-activity assessment, Environ. Tox. Pharm. 25 (2008) 202-210.
7. M. Bureš, V. Pekárek, T. Ocelka, Thermochemical properties and relative stability of polychlorinated biphenyls, Environ. Tox. Pharm. 25 (2008) 148-155.
8. S. Ozasa, N. Hatada, Y. Fujioka, E. Ibuki, Studies of polyphenyls and polyphenylenes. II. The synthesis and physical properties of polphenyls containing para linkage, Bull. Chem. Soc. Jpn. 53 (1980) 2610-2617.
9. E. Ibuki, S. Ozasa, Y. Fujioka, H. Kitamura, Syntheses and physical properties of several symmetrical sexiphenyls, Chem. Pharm. Bull. 28 (1980) 1468-1476.
10. S. Ozasa, Y. Fujioka, M. Fujiwara, E. Ibuki, Syntheses and physical properties of several octiphenyls and a septiphenyl, Chem. Pharm. Bull. 28 (1980) 3210-3222.
11. S. Ozasa, Y. Fujioka, M. Tsukada, E. Ibuki, Syntheses and physical properties of several octiphenyls containing mixed linkages, Chem. Pharm. Bull. 29 (1980) 344-355.
12. S. Ozasa, Y. Fujioka, M. Okada, H. Izumi, E. Ibuki, Syntheses and physical properties of several deuterium-labelled polyphenyls, Chem. Pharm. Bull. 29 (1980) 370-378.
13. E. Ibuki, S. Ozasa, Y. Fujioka, M. Okada, Y. Yanagihara, Polyphenyl synthesis by means of the Kharash-type Grignard CrossCcoupling Reaction, Chem. Pharm. Bull. 30 (1982) 2369-2379.
14. F. Harary, D. J. Klein, T. P. Živković, Graphical properties of polyhexes: Perfect matching vector and forcing, J. Math. Chem. 6 (1991) 295-306.
15. D. J. Klein, M. Randić, Innate degree of freedom of a graph, J. Comput. Chem. 8 (1987) 516-521.
16. M. Randić, D. J. Klein, in: N. Trinajstić (Ed.), Mathematical and Computational Concepts in Chemistry, Wiley, New York, 1985, pp. 274-282.
17. I. Gutman, G. Dömötör, Wiener number of polyphenyls and phenylenes, Z. Naturforsch. 49a (1994) 1040-1044.
18. Y. Dou, H. Bian, H. Gao, H. Yu, The polyphenyl chains with extremal edge-Wiener indices, MATCH Commun. Math. Comput. Chem. 64 (2010) 757-766.
19. H. Bian, F. Zhang, Tree-like polyphenyl systems with extremal Wiener indices, MATCH Commun. Math. Comput. Chem. 61 (2009) 631-642.
20. S. Li, H. Bian, F. Zhang, G. Wang, Extremal polyphenyl chains concerning k matchings and k-independent sets, Ars Combin. 96 (2010) 97-103.
21. X. L. Ma, H. Bian, Extremal Polyphenyl Spiders Concerning k-matchings and k independent Sets, Ars Combin. 113 (2014) 3-11.
22. S.-J. Xu, X. S. Liu, W. H. Chen, H. Zhang, Complete forcing numbers of primitive coronoids, J. Combin. Optim. 2015, DOI: 10.1007/s10878-015-9881-y.
23. J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, McMillan, London and Elsevier, New York, 1976.
24. L. Lovász, M. D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.

Quantitative Structure Activity Relationship Study of Inhibitory Activities of 5-Lipoxygenase and Design new Compounds by Different Chemometrics Methods

Fatemeh Baghban Shahri, Ali Niazi and Ahmad Akrami
Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
Correspondence should be addressed to f-baghban@iau-arak.ac.ir (F. Bagheban Shahri)
Received 8 March 2015; Accepted 13 March 2015
Academic Editor: Ivan Gutman

Abstract

A quantitative structure-activity relationship (QSAR) study was conducted for the prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-Lipoxygenase. The inhibitory activities of the 1-phenyl[2H]-tetrahydro-triazine-3-one analogues modeled as a function of molecular structures using chemometrics methods such as multiple linear regression (MLR) and least squares support vector machines (LS-SVM). The obtained models were applied to predict the inhibitory activity of compounds which were not in the modeling procedure. The results of models showed high prediction ability with root mean square error of prediction of 0.167 and 0.061 for MLR and LS-SVM, respectively. The LS-SVM method was used for prediction of inhibitory activity of the new inhibitor derivatives.

KEYWORDS QSAR • 1-phenyl[2H]-tetrahydro-triazine-3-oneanalogues • MLR • LS-SVM.

1. Introduction

Lipoxygenases (LOs) are a class of widely occurring, non-heme iron-containing oxygenases that can be isolated from animals, higher plants, and fungi. Currently, three distinct mammalian LOs have been characterized, $5-\mathrm{LO}, 12-\mathrm{LO}$, and $15-\mathrm{LO}$, which oxygenate arachidonic acid at specific carbon centers (C5, C12, and C15, respectively) [1].The 5-Lipoxygenase is the first dedicated enzyme in the biosynthetic pathway leading to the leukotrienes. Since leukotrienes have been implicated as important mediators in such diseases as asthma, psoriasis, ulcerative colitis, and rheumatoid arthritis, inhibition of 5-Lipoxygenase offers a potential approach for the therapy of these diseases [2].

In the present study, the inhibitory activity data of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-Lipoxygenase were used to construct a mathematical model with structural information, a so-called QSAR (quantitative structure-activity relationship). Quantitative structure-activity relationships (QSAR) are an important tool in agrochemistry, pharmaceutical chemistry, toxicology, and eventually
most facts of chemistry [3, 4]. QSAR models are mathematical equations which relate chemical structure of a compound to its physical, chemical, biological and technological properties. The main goal of QSAR studies is to establish an empirical rule or function to relate the structural descriptors of compounds under investigation to bioactivities. This rule or function is then utilized to predict the same bioactivities of compounds which are not involved in the training set from their structural descriptors. Model development in QSAR studies comprises different critical steps as (1) descriptor generation, (2) data splitting to calibration (or training) and prediction (or validation) sets, (3) variable selection, (4) finding appropriate model between selected variables and activity and (5) model validation [5].

Among the investigation of QSAR, one of the most important factors affecting the quality of the model is the method to build the model. Many multivariate data analysis methods such as multiple linear regression (MLR) [6, 7], artificial neural network (ANN) [8] and partial least squares (PLS) [9] have been used in QSAR studies. MLR, as most commonly used chemometrics method, has been extensively applied to QSAR investigations. The artificial neural network (ANN) offers satisfactory accuracy in most cases but tends to over fit the training data. The PLS method is based on factor analysis that is originally suggested and chemically applied by Wold et al [10]. The support vector machine (SVM) is a popular algorithm developed from the machine learning community. Due to its advantages and remarkable generalization performance over other methods, SVM has attracted attention and gained extensive applications [11, 12]. As a simplification of traditional SVM, Suykens and Vandewalle [13, 14] have proposed the use of least-squares SVM (LS-SVM). LS-SVM encompasses similar advantages as SVM, but its additional advantage is that it requires solving a set of linear equations (linear programming), which is much easier computationally [15, 16]. In this study, the MLR and LS-SVM methods were proposed to model and predict the inhibitory activity of 1phenyl $[2 \mathrm{H}]$-tetrahydro-triazine-3-one analogues as inhibitors of 5-Lipoxygenase.

2. THEORY

The LS-SVM [13] is capable of dealing with linear and nonlinear multivariate calibration. In LS-SVM a linear estimation is made in kernel-induced feature space ($y=$ $\left.w^{T} \phi(x)+b\right)$. As in SVM, it is necessary to minimize a cost function (C) containing a penalized regression error, as follow:

$$
\begin{equation*}
C=\frac{1}{2} w^{T} w+\frac{1}{2} \gamma \sum_{i=1}^{N} e_{i}^{2} \tag{1}
\end{equation*}
$$

such that:

$$
\begin{equation*}
y_{i}=w^{T} \phi\left(x_{i}\right)+b+e_{i} \tag{2}
\end{equation*}
$$

for all $i=1, \ldots, N$, where ϕ denotes the feature map.
The first part of this cost function is a weight decay which is used to regularize weight sizes and penalize large weights. Due to this regularization, the weights converge to similar value. Large weights deteriorate the generalization ability of the LS-SVM
because they can cause excessive variance. The second part of Eq. (1) is the regression error for all training data. The parameter γ, which has to be optimized by the user, gives the relative weight of this part as compared to the first part. The restriction supplied by Eq. (2) gives the definition of the regression error. Eq. (1) and its restriction given by Eq. (2), could be concluded to be a typical problem of convex optimization [14] which might be solved by the Lagrange multipliers method, as follow:

$$
\begin{equation*}
L=\frac{1}{2}\|w\|^{2}+\gamma \sum_{i=1}^{N} e_{i}^{2}-\sum_{i=1}^{N} \alpha\left\{w^{T} \phi\left(x_{i}\right)+b+e_{i}-y_{i}\right\} \tag{3}
\end{equation*}
$$

where

$$
y_{i}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right], \quad e_{i}=\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right] \text { and } \quad \alpha_{i}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{N}
\end{array}\right] .
$$

Obtaining the optimum, that is, carrying out $\partial L\left(w, b, e_{i}, \alpha_{i}\right) / \partial w, \partial L\left(w, b, e_{i}, \alpha_{i}\right) / \partial b$, $\partial L\left(w, b, e_{i}, \alpha_{i}\right) / \partial e_{i}, \partial L\left(w, b, e_{i}, \alpha_{i}\right) / \partial \alpha_{i}$ and setting all partial first derivatives to zero, generates the weights that are the linear combinations of the training data:

$$
\begin{gather*}
\frac{\partial L(w, b, e, \alpha)}{\partial w}=w-\sum_{i=1}^{N} \alpha_{i} \phi\left(x_{i}\right)=0 \therefore w=\sum_{i=1}^{N} \alpha_{i} \phi\left(x_{i}\right) \tag{4}\\
\frac{\partial L(w, b, e, \alpha)}{\partial e}=\sum_{i=1}^{N} \gamma e-\alpha=0 \tag{5}
\end{gather*}
$$

and then

$$
\begin{equation*}
w=\sum_{i=1}^{N} \alpha_{i} \phi\left(x_{i}\right)=\sum_{i=1}^{N} \gamma e_{i} \phi\left(x_{i}\right) \tag{6}
\end{equation*}
$$

where a positive definite kernel is used as follows:

$$
\begin{equation*}
K\left(x_{i}, x_{j}\right)=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right) \tag{7}
\end{equation*}
$$

An important result of this approach is that the weights (w) can be written as linear combinations of the Lagrange multipliers with corresponding data training $\left(x_{i}\right)$. Substituting the result of Eq. (6) into the original regression line $\left(y=w^{T} \phi(x)+b\right)$, the following result is obtained:

$$
\begin{equation*}
y=\sum_{i=1}^{N} \alpha_{i} \phi\left(x_{i}\right)^{T} \phi(x)+b=\sum_{i=1}^{N} \alpha_{i}\left\langle\left(\phi\left(x_{i}\right)^{T}, \phi(x)\right\rangle+b\right. \tag{8}
\end{equation*}
$$

for a point y_{i} to be evaluated it is:

$$
\begin{equation*}
y_{i}=\sum_{i=1}^{N} \alpha_{i} \phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)+b=\sum_{i=1}^{N} \alpha_{i}\left\langle\left(\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle+b\right. \tag{9}
\end{equation*}
$$

The α vector follows from solving a set of linear equation:

$$
M\left[\begin{array}{l}
\alpha \tag{10}\\
b
\end{array}\right]=\left[\begin{array}{l}
y \\
0
\end{array}\right]
$$

where M is a square matrix given by:

$$
M=\left[\begin{array}{cc}
K+\frac{I}{\gamma} & 1_{N} \tag{11}\\
1_{N}^{T} & 0
\end{array}\right]
$$

Where K denotes the kernel matrix with ijth element $K=\left(x_{i}, x_{j}\right)=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)$ and I denotes the identity matrix $N \times N, 1_{N}=\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]^{T}$. Hence, the solution is given by:

$$
\left[\begin{array}{l}
\alpha \tag{12}\\
b
\end{array}\right]=M^{-1}\left[\begin{array}{l}
y \\
0
\end{array}\right]
$$

As demonstrated in Eqs. (11) and (12), all Lagrange multipliers (the support vectors) are usually nonzero, which means that all training objects contribute to the solution. In contrast, with standard SVM the LS-SVM solution is usually not sparse. However, as described by Suykens and J. Vandewalle [13] a sparse solution can be easily achieved via pruning or reduction techniques. Depending on the number of training data set either direct solvers or iterative solvers such as conjugate gradients methods (for large data sets) can be used in both cases with numerically reliable methods.

In applications involving nonlinear regression, it is enough to change the inner product $\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle$ of Eq. (9) by a kernel function and the ijth element of matrix K equals $K_{i j}=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)$. If this kernel function meets Mercer's condition, the kernel implicitly determines both a nonlinear mapping, $x \rightarrow \phi(x)$ and the corresponding inner product $\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)$. This leads to the following nonlinear regression function:

$$
\begin{equation*}
y=\sum_{i=1}^{N} \alpha_{i} K\left(x_{i}, x\right)+b \tag{13}
\end{equation*}
$$

for a point x_{j} to be evaluated it is:

$$
\begin{equation*}
y_{j}=\sum_{i}^{N} \alpha_{i} K\left(x_{i}, x_{j}\right)+b \tag{14}
\end{equation*}
$$

The attainment of the kernel function is cumbersome and it will depend on each case. However, the kernel function is more used as the radial basis function (RBF), $\exp \left(-\left(\left\|x_{i}-x_{j}\right\|^{2}\right) / 2 \sigma^{2}\right)$, a simple Gaussian function, and polynomial functions $\left\langle x_{i}, x_{j}\right\rangle^{d}$, where σ^{2} is the width of the Gaussian function and d is the polynomial degree, which should be optimized by the user, to obtain the support vector. For α of the RBF kernel and d of the polynomial kernel it is of significant importance to do a careful model selection of the tuning parameters, in combination with the regularization constant γ, in order to achieve a good generalization model.

3. Materials and Computational Methods

3.1. Hardware and Software

The computations were made with the ASUS Personal Computer (1 GB RAM) that was equipped with the Windows 7 operating system and MATLAB (Version 9.0, Mathwork Inc.). The LS-SVM optimization and model results were obtained using the LS-SVM lab toolbox (Matlab/C Toolbox for Least-Squares Support Vector Machines). The MLR analysis with a stepwise forward selection method was carried out by using the SPSS 21 software. Kennard-Stones program was written in MATLAB according to the algorithm [17, 18]. ChemOffice package (Version 2010) was used to draw the molecular structure and optimization by the AM1. Descriptors were calculated using Dragon software (Milano Chemometrics and QSAR research group, http://www.disat.unimib.it/chm/). These descriptors are calculated using two-dimensional representation of the molecules and therefore geometry optimization is not essential for calculating these types of descriptors.

3.2. Data Set

The inhibitory activity values of 1-phenyl[2 H$]$-tetrahydro-triazine-3-one analogues were taken from literature [2]. The chemical structures of 1-phenyl[2H]-tetrahydro-triazine-3one analogues (Figure 1) and their corresponding inhibitory activity values have been listed in Table 1. In order to assure that training and prediction sets cover the total space occupied by the original data set, it was divided into parts of training and prediction set according to the Kennard-Stones algorithm [17, 18]. The Kennard-Stones algorithm is known as one of the best ways of building training and prediction sets and it has been used in many QSAR studies.

Figure 1. Chemical structure of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues.

Table 1. Structures and observed inhibitory activity of 5-Lipoxygenase of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues.

No.	Substitution						
	X	$\mathrm{R}_{3}{ }^{\prime}$	$\mathrm{R}_{5}{ }^{\prime}$	R_{2}	$\mathrm{R}_{4}\left(1 / \mathrm{IC}_{50}\right)$		
1	CH	H	H	H	H	$\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}$	6.00
2	CH	H	H	H	H	Bu	5.82
3	CH	H	H	H	H	$\mathrm{i}-\mathrm{Pr}$	5.17
4	CH	H	H	H	H	$\mathrm{Me}(\mathrm{R})$	5.17
5^{b}	CH	H	H	H	H	Me_{2}	5.17

6	CH	H	H	H	H	Et	5.16
$7^{\text {b }}$	CH	H	H	H	H	Me	4.94
8	CH	H	H	H	H	$\mathrm{CH}_{2} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{OMe}$	4.85
9	CH	H	H	H	H	$\mathrm{Me}(\mathrm{S})$	4.85
10	CH	H	H	H	H	$\mathrm{CO}_{2} \mathrm{Me}$	4.70
$11^{\text {b }}$	CH	H	H	H	H	H	4.68
12	CH	H	$\mathrm{OCH}_{2} \mathrm{Ph}$	H	H	H	5.96
13	CH	H	Br	H	H	H	5.31
14	CH	H	Cl	H	H	H	5.20
15	CH	H	Et	H	H	H	4.89
16	CH	H	SMe	H	H	H	4.85
$17^{\text {b }}$	CH	H	Me	H	H	H	4.82
18	CH	H	CF_{3}	H	H	H	4.77
19	CH	H	F	H	H	H	4.72
20	CH	H	CN	H	H	H	4.43
21	CH	H	OMe	H	H	H	4.33
22	CH	H	NO_{2}	H	H	H	4.31
23	CH	H	NH_{2}	H	H	H	3.75
24	CH	H	Br	H	H	Me	5.59
25	CH	H	Cl	H	H	Me	5.57
26	CH	H	F	H	H	Me	5.20
$27^{\text {b }}$	CH	H	Me	H	H	Me	4.72
28	CH	H	H	H	$\mathrm{C}(=\mathrm{O})-\mathrm{i}-\mathrm{Pr}$	H	5.89
29	CH	H	H	H	$\mathrm{C}(=\mathrm{O}) \mathrm{Et}$	H	5.59
30	CH	H	H	H	$\mathrm{C}(=\mathrm{O}) \mathrm{Me}$	Me	5.48
31	CH	H	H	H	$\mathrm{C}(=\mathrm{O}) \mathrm{Me}$	H	5.47
32	CH	H	H	H	$\mathrm{OCH}_{2} \mathrm{Ph}$	Me	5.37
33	CH	H	H	H	OH	Me	5.22
34	CH	H	H	H	OEt	Me	5.13
35	CH	H	H	H	$\mathrm{OCH}_{2} \mathrm{Ph}$	H	5.08
36	CH	H	H	$\mathrm{C}(=\mathrm{O}) \mathrm{Et}$	$\mathrm{C}(=\mathrm{O}) \mathrm{Et}$	H	4.90
37	CH	H	H	H	OMe	Me	4.65
38	CH	H	H	$\mathrm{C}(=\mathrm{O}) \mathrm{Me}$	$\mathrm{C}(=\mathrm{O}) \mathrm{Me}$	H	4.40
39	N	Br	H	H	H	Me	5.62
40	N	Br	H	H	H	H	5.46
41	N	Cl	H	H	H	Me	5.46
$42^{\text {b }}$	N	Me	H	H	H	Me	5.42
43	N	Me	H	H	H	H	5.26
44	N	OMe	H	H	H	Me	5.26
45	N	Cl	H	H	H	H	5.25
46	N	F	H	H	H	Me	5.18
47	N	F	H	H	H	H	5.04
48	N	OMe	H	H	H	H	5.02
49	N	H	H	H	H	Me	4.66
50	N	H	H	H	H	H	4.59
51	CH	H	Cl	H	$\mathrm{C}(=\mathrm{O}) \mathrm{Me}$	H	5.89
52	CH	H	Cl	H	OH	Me	5.41
53	CH	H	F	H	OH	Me	5.16
54	CH	Me	Me	H	OH	H	5.08
55	CH	F	F	H	H	H	5.05
56	CH	Me	Me	H	H	H	4.92
$57^{\text {b }}$	N	Cl	H	H	H	H	5.48
$58^{\text {b }}$	CH	H	Cl	H	H	H	5.35
$59^{\text {b }}$	CH	H	H	H	H	H	4.77
60	CH	Cl	Me	H	H	H	5.48

[^0]
3.3. Molecular Descriptors

A major step in constructing QSAR model is generation of the corresponding numerical descriptors of the molecular structures. Molecular descriptors define the molecular structure and physicochemical properties of molecules by a single number. To calculate the different kinds of theoretical descriptors for each molecule, the Dragon (Milano Chemometrics and QSAR research group, http://www.disat.unimib.it/chm/) software was utilized. The Dragon is able to calculate different molecular descriptors such as constitutional, topological, molecular walk counts, BCUT, Galvez topol. Charge indices, 2D autocorrelations, charge, aromaticity indices, Randic molecular profiles, geometrical, RDF, 3D-MoRSE, WHIM, GETAWAY, functional groups, atom-centered fragments, properties and empirical. In this study, just GETAWAY (geometry, topology, and atomweights assembly) and WHIM (weighted holistic invariant molecular) descriptors were used. Here, 293 descriptors were calculated by Dragon for each molecule, therefore we have 60×293 data matrix X. The rows and columns of this matrix are the number of molecules and molecular descriptors respectively.

4. Results And Discussion

4.1. Principal Component Analysis of the data Set

Principal components analysis (PCA) was performed on the calculated structural descriptors to the whole data set (Table1), for investigation the distribution in the chemical space, which shows the spatial location of samples to assist the separation of the data into training and prediction sets. The PCA results show that three PCs (PC1, PC2 and PC3) describe 81.35% of the overall variances (Figure 2). Since almost all variables can be accounted for the first three PCs, their score plot is a reliable presentation of the spatial distribution of the points for the data set. As can be seen in Figure 2, there is not a clear clustering between compounds. The data separation is very important in the development of reliable and robust QSAR models. The quality of the prediction depends on the data set used to develop the model. For regression analysis, data set was separated into two groups, a training set (51 data) and a prediction set (9 data) according to Kennard-Stones algorithm. As shown in Figure 2, the distribution of the compounds in each subset seems to be relatively well-balanced over the space of the principal components.

4.2. MLR Analysis

The multivariate calibration is a powerful tool for modeling, because it extracts more information from the data and allows building more robust models. Among the descriptors calculated, the most significant molecular descriptors were identified using multiple linear regression analysis with a stepwise forward selection method. According to inhibitory activity data (Table 1), the data classified to training and prediction sets according to Kennard-Stones algorithm and the MLR model was run.

Figure 2. Principal components analysis of the descriptors for the data set, (a) PC2 versus PC1, (b) PC3 versus PC1 and (c) PC3 versus PC2.

The best equation obtained for the inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues derivatives was:
$\log \left(1 / \mathrm{IC}_{50}\right)=3.095-1.131 \mathrm{R} 7 \mathrm{e}-38.269 \mathrm{R}^{2} \mathrm{U}^{+}-4.942 \mathrm{R} 1 \mathrm{u}+4.897 \mathrm{R} 2 \mathrm{u}-5.247 \mathrm{P} 2 \mathrm{u}+$ $3.787 \mathrm{H} 2 \mathrm{v}+18.425 \mathrm{G} 3 \mathrm{e}-0.008 \mathrm{Vu}$

As seen, the resulting model has eight significant descriptors. Table 2 shows the calculated descriptors for each molecule, the descriptors coefficients, the standard error of coefficients, the t values for null hypothesis, and their related P values.

Table 2. Results of multiple linear regression analysis.

Notation	Descriptors	Coefficient	S.E. coefficient	t value	P value
Intercept	R7e	R autocorrelation of lag 7 / weighted by Sanderson electronegativity	-1.131	0.282	-4.018
R6U	0.000	R maximal autocorrelation of lag 6 / unweighted	-38.269	8.865	-4.317
R 1 u	R autocorrelation of lag 1/ unweighted	-4.942	0.747	-6.613	0.000
R 2 u	R autocorrelation of lag 2 / unweighted	4.897	0.794	6.169	0.000
P 2 u	2nd component shape directional WHIM index / unweighted	-5.247	1.147	-4.575	0.000
H 2 v	H autocorrelation of lag 2 / weighted by van der Waals volume	3.787	0.455	8.330	0.000
G 3 e	3rd component symmetry directional WHIM index / weighted by Sanderson electronegativity	18.425	5.821	3.165	0.003
Vu	V total size index / unweighted	-0.008	0.003	-2.209	0.033

${ }^{a}$ Standard error.

4.3. LS-SVM ANALYSIS

LS-SVM was performed with radial basis function (RBF) as a kernel functions. In the model development using LS-SVM and RBF kernel, γ and σ^{2} parameters were a manageable task. To determine the optimal parameters, a grid search was performed
based on leave-one-out cross-validation on the original training set for all parameter combinations of γ and σ^{2} from 0.1 to 10 and 1 to 100 , respectively. In Table 3 is shown the optimum γ and σ^{2} parameters for the LS-SVM and RBF kernel, using the training sets for 51 inhibitory activity data.

Table 3. Observation and calculation values of $\log \left(1 / \mathrm{IC}_{50}\right)$ using MLR and LS-SVM models.

No. of compounds (Table 1)	Observation $\log \left(1 / \mathrm{IC}_{50}\right)$	MLR		LS-SVM	
		Predicted	Error (\%)	Predicted	Error (\%)
5	5.170	4.980	-3.675	5.081	-1.721
7	4.940	4.792	-2.996	4.856	-1.700
11	4.680	4.836	3.333	4.716	0.769
17	4.820	4.851	0.643	4.832	0.249
27	4.720	4.916	4.152	4.771	1.080
42	5.420	5.189	-4.262	5.356	-1.181
57	5.480	5.327	-2.792	5.389	-1.660
58	5.350	5.227	-2.299	5.309	-0.766
59	4.770	4.966	4.109	4.746	-0.503
γ					500
σ^{2}					000
RMSEP					. 061
RSEP (\%)			15		212

4.4. Model Validation and Prediction of Inhibitory Activity

The predictive ability of these methods (MLR and LS-SVM) were investigated by prediction of inhibitory of 9 molecules (their structures are given in Table 1). Validation of predictive ability is another key step in QSAR studies. Several statistical parameters have been used for the evaluation of the suitability of the developed QSAR models for prediction of the property of the studied compounds this include the root mean square error of prediction (RMSEP) and relative standard error of prediction (RSEP), validation through an external prediction set.

$$
\begin{align*}
& R M S E P=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i, \text { pred }}-y_{i, o b s}\right)^{2}}{n}} \tag{15}\\
& \operatorname{RSEP}(\%)=100 \times \sqrt{\frac{\sum_{i=1}^{n}\left(y_{i, p r e d}-y_{i, o b s}\right)^{2}}{\sum\left(y_{i, o b s}\right)^{2}}} \tag{16}
\end{align*}
$$

where $y_{i, p r e d}$ is the predicted of the inhibitory activity using different model, $y_{i, o b s}$ is the observed value of the inhibitory activity, and n is the number of compounds in the prediction set. The statistical parameters obtained by these methods are listed in Table 3.

Table 3 shows RMSEP, RSEP and the percentage error for prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues. As can be seen, the good results were achieved in LS-SVM model with percentage error ranges from -1.721 to 1.080 for inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues. The plots of the predicted inhibitory activity versus actual values are shown in Figure 3 for each model (line equations and R^{2} values are also shown). The correlation coefficients $\left(\mathrm{R}^{2}\right)$ for LS-SVM model were better than the MLR model. Also, it is possible to see that LS-SVM presents excellent prediction abilities when compared with MLR model.

Figure 3. Plots of predicted versus actual $\log \left(1 / \mathrm{IC}_{50}\right)$, (a) MLR and (b) LS-SVM.

4.5. Molecular Design

As an application of proposed method, we investigated LS-SVM model to predict the inhibitory activity of four new 1-phenyl[$2 H$]-tetrahydro-triazine-3-one analogues whose biological tests were not performed with them yet. Table 4 shows the chemical structure of four new compounds and their inhibitory activity calculated by this proposed method.

Table 4. New structures of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues and predicted $\log \left(1 / \mathrm{IC}_{50}\right)$ by LS-SVM.

Number of of Design							
	X	$\mathrm{R}_{3}{ }^{\prime}$	$\mathrm{R}_{5}{ }^{\prime}$	R_{2}	R_{4}	R_{5}	(1/\mathrm{IC}_{50})}{Calc. ${ }^{\text {a }}$}
1	N	H	Me	H	H	Me	
2	N	F	H	H	H	Br	6.138
3	CH	Br	H	H	H	Cl	5.856
5	CH	H	OH	H	Cl	H	5.149

[^1]
5. CONCLUSION

Using LS-SVM, a QSAR model has been successfully developed for the prediction of inhibitory activity for 60 compounds. The results well illustrate the power of descriptors in prediction of inhibitory activity of 1-phenyl $[2 H]$-tetrahydro-triazine-3-one analogues. The model could predict the inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues derivatives not existed in the modeling procedure accurately. The work, shows that descriptors are capable to recognize the physicochemical information and be can useful to predict the inhibitory activity of the new compounds.

Acknowledgment

The authors gratefully acknowledge the support to this work from, Islamic Azad University, Arak Branch, and research council.

References

1. A. B. Camargo, E. Marchevsky and J. M. Luco, QSAR study for the soybean 15lipoxygenase inhibitory activity of organosulfur compounds derived from the essential oil of garlic, J. Agric. Food. Chem. 55 (2007) 3096-3103.
2. Y. P. Zhou, J. H. Jiang, W. Q. Lin, H. Y. Zou, H. L. Wu, G. L. Shen and R. Q. Yu , Boosting support vector regression in QSAR studies of bioactivities of chemical compounds, Eur. J. Pharm. Sci. 28 (2006) 344-353.
3. G. Ioele, M. D. Luca, F. Oliverio and G. Ragno, Prediction of photosensitivity of 1,4-dihydropyridine antihypertensives by quantitative structure-property relationship, Talanta 79 (2009) 1418-1424.
4. W. Cui and X. Yan, Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR, Chemomtr. Intell. Lab. Syst. 98 (2009) 130-135.
5. J. B. Ghasemi, S. H. Ahmadi and S. D. Brown, A quantitative structure-retention relationship study for prediction of chromatographic relative retention time of chlorinated monoterpenes, Environ. Chem. Lett. 9 (2011) 87-96.
6. M. Kompany-Zareh, A QSPR study of boiling point of saturated alcohols using genetic algorithm, Acta Chim. Slov. 50 (2003) 259-273.
7. B. Narasimhan, V. Judge, R. Narang, R. Ohlan and S. Ohlan, Quantitative structure activity relationship studies for prediction of antimicrobial activity of synthesized 2,4-hexadienoic acid derivatives, Bioorg. Med. Chem. Lett. 17 (2007) 5836-5845.
8. B. Hemmateenejad, M. A. Safarpour and F. Taghavi, Application of ab initio theory for the prediction of acidity constants of some 1-hydroxy-9,10anthraquinone derivatives using genetic neural network, J. Mol. Struc. (TheoChem) 635 (2003) 183-190.
9. A. Niazi, S. Jameh-Bozorghi and D. Nori-Shargh, Prediction of acidity constants of thiazolidine-4-carbozylic acid derivatives using Ab initio and genetic algorithm-partial least squares, Turk. J. Chem. 30 (2006) 619-628.
10. K. G. Joreskog and H. Wold, "System under indirect Observations" North Holland, Amsterdam, 1982.
11. A. I. Belousov, S. A. Verzakov and J. Von-Frese, A flexible classification approach with optimal generalization performance: support vector machines, J. Chemometr. Intell. Syst. 64 (2002) 15-25.
12. R. Burbidge, M. Trotter, B. Buxton and S. Holden, Drug design by machine learning: support vector machines for pharmaceutical data analysis, Comput. Chem. 26 (2001) 5-14.
13. J. A. K. Suykens and J. Vandewalle, Least squares support vector machine classifiers, Neural Process. Lett. 9 (1999) 293-300.
14. J. A. K. Suykens, T. Van-Gestel, J. De-Brabanter, B. De-Moor and J. Vandewalle, "Least-Squares Support Vector Machines" World Scientifics, Singapore, 2002.
15. A. Niazi, J. B. Ghasemi and M. Zendehdel, Simultaneous voltammetric determination of morphine and noscapine by adsorptive differential pulse stripping method and least-squares support vector machines, Talanta 74 (2007) 247-254.
16. A. Niazi, J. B. Ghasemi and A. Yazdanipour, Simultaneous spectrophotometric determination of nitroaniline isomers after cloud point extraction by using leastsquares support vector machines, Spectrochim. Acta Part A. 68 (2007) 523-530.
17. R. W. Kennard and L. A. Stones, Computer ided Design of Experiments, Technometrics 11 (1969) 137-148.
18. M. Daszykowski, B. Walczak and D. L. Massart, Representative subset selection, Anal. Chim. Acta 468 (2002) 91-103.

Three-Center Harary Index and its Applications

Boris Furtula, Ivan Gutman, Vladimir Katanić
Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia
Correspondence should be addressed to gutman@kg.ac.rs (Ivan Gutman)
Received 18 November 2015; Accepted 6 January 2016
Academic Editor: Ali Reza Ashrafi

Abstract

The Harary index H can be viewed as a molecular structure descriptor composed of increments representing interactions between pairs of atoms, such that their magnitude decreases with the increasing distance between the respective two atoms. A generalization of the Harary index, denoted by H_{k}, is achieved by employing the Steinertype distance between k-tuples of atoms. We show that the linear combination $H+\lambda H_{3}$ is significantly better correlated with a variety of physico-chemical properties of alkanes than H itself.

KEYWORDS Harary index • multicenter Harary index • Steiner distance • molecular graph.

1. InTRODUCTION

Let G be a molecular graph [1] and $v_{1}, v_{2}, \ldots, v_{n}$ be its vertices. The distance [1,2] between the vertices v_{i} and v_{j}, denoted by $d\left(v_{i}, v_{j}\right)$, is the number of edges in (= the length of) a shortest path that connects v_{i} and v_{j}. The oldest distance-based molecular structure descriptor is the Wiener index, defined as [3,4]

$$
\begin{equation*}
W=W(G)=\sum_{i<j} d\left(v_{i}, v_{j}\right) \tag{1}
\end{equation*}
$$

Although this topological index found numerous chemical applications, a general objection to it is that pairs of vertices at the greatest distance have the greatest contributions to the numerical value of W. Bearing in mind that vertices of a molecular graph represent atoms [1], this property of the Wiener index seemingly contradicts the fact that the interaction between near-lying atoms are greatest. Several attempts were made to eliminate this difficulty [5-7], but the simplest and more efficient solution was achieved by modifying Eq. (1) as

$$
\begin{equation*}
H=H(G)=\sum_{i<j} \frac{1}{d\left(v_{i}, v_{j}\right)} . \tag{2}
\end{equation*}
$$

Formula (2) was independently conceived by Ivanciuc at al. [8] and Plavšić et al. [9]. The molecular structure descriptor H was named "Harary index" (in honor of Frank Harary [10]). Eventually, this index attracted much attention; see the surveys [11,12], the recent book [13], and the recent papers [14-16].

Same as the Wiener index, Eq. (1), the Harary index H, Eq. (2), may also be viewed as a sum of structural increments representing pairs of atoms, i.e., two-center interatomic interactions. Following an idea outlined in a recent paper [17], one could think of three-center, four-center, etc. interactions that would lead to the following evident multicenter extension of the Harary-index concept:

$$
\begin{align*}
& H_{3}=H_{3}(G)=\sum_{i<j<k} \frac{1}{d\left(v_{i}, v_{j}, v_{k}\right)} \tag{3}\\
& H_{4}=H_{4}(G)=\sum_{i<j<k<l} \frac{1}{d\left(v_{i}, v_{j}, v_{k}, v_{l}\right)}
\end{align*}
$$

and in the general case,

$$
H_{k}=H_{k}(G)=\sum_{i_{1}<i_{2}<\cdots<i_{k}} \frac{1}{d\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right)} .
$$

In the above formulas, for the multiple-vertex distances we take the standard Steiner distance (introduced in graph theory as early as in the 1980s [18]). For details on the Steiner distance see the recent paper [17] or in appropriate monographs [19-21].

In nutshell: The Steiner distance $d\left(v_{i_{i}}, v_{i_{i}}, \ldots, v_{i_{k}}\right)$ of k distinct vertices $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}$ of a graph G, is the number of edges of a connected subgraph of G, with smallest number of edges, containing all the vertices $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}$.

The multicenter Harary indices, based on Steiner distances of k-tuples of vertices, will be denoted as H_{k}. For reasons explained in the subsequent section, in what follows we shall be concerned only with the three-center Harary index H_{3}.

2. An Auxiliary Lemma

In the general case, the calculation of the Steiner distance $d\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right)$ of a k-tuple of vertices of a molecular graph is a difficult and computation-extensive task. In the case $k=3$, this calculation is significantly simplified by means of the following Lemma:

Lemma 1. Let G be a (connected) graph and x, y, z its three distinct vertices. Then the Steiner distance of x, y, z is related to the ordinary distance of these vertices as:

$$
\begin{equation*}
d(x, y, z)=\frac{1}{2}[d(x, y)+d(x, z)+d(y, z)] . \tag{4}
\end{equation*}
$$

Proof. Any connected subgraph of G with the smallest number of edges is necessarily a tree (i.e., it is acyclic). We have to distinguish between two cases: when the three vertices x, y, z are not collinear and when these are collinear, see Figure 1.

Figure 1. Two different arrangements of the vertices x, y, z in a molecular graph; for details see the proof of Lemma 1.

Case 1: x, y, z are not collinear. Then, using the notation specified in Fig. 1,

$$
\begin{equation*}
d(x, y, z)=d(x, w)+d(y, w)+d(z, w) . \tag{5}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
& d(x, y)=d(x, w)+d(y, w) \\
& d(x, z)=d(x, w)+d(z, w) \\
& d(y, z)=d(y, w)+d(z, w)
\end{aligned}
$$

which yields $d(x, y)+d(x, z)+d(y, z)=2[d(x, w)+d(y, w)+d(z, w)]$. Then Eq. (4) follows by bearing in mind (5).

Case 2: x, y, z are collinear. Then, using the notation specified in Fig. 1,

$$
\begin{equation*}
d(x, y, z)=d(x, z) . \tag{6}
\end{equation*}
$$

Then we have

$$
d(x, z)=\frac{1}{2}[d(x, z)+d(x, z)]=\frac{1}{2}[d(x, y)+d(y, z)+d(x, z)]
$$

and Eq. (4) directly follows from (6).
This completes the proof of Lemma 1.

By means of Lemma 1, the calculation of the three-center Harary index, Eq. (3), becomes quite easy and is of equal (low) complexity as the calculation of the respective Wiener index. Unfortunately, results analogous to Lemma 1 could not be established for $k \geq 4$.

3. Numerical Work

We first present two results that look rather discouraging. In Figure 2 is shown the correlation between the Harary and three-center Harary indices in the case of isomeric octanes. In Figure 3a is shown the correlation between Harary index and standard enthalpy of formation (ΔH_{f}^{o}) of the same set of octanes [22]. In Figure 3b is displayed the analogous plot for the three-center Harary index. In view of the very good linear
correlation between H and H_{3} (cf. Figure 2), there is no statistical difference between the two correlations shown in Figure 3, and both are disappointingly weak.

Figure 2. Correlation between the three-center Harary index H_{3}, Eq. (3), and the ordinary Harary index H, Eq. (2) for the set of isomeric octanes (18 data points); the correlation coefficient is $R=0.9980$.

(a)

(b)

Figure 3. (a) Correlation between the standard enthalpy of formation $\left(\Delta H_{f}^{o}\right)$ of isomeric octanes [22] and the ordinary Harary index $H ; R=-0.576$.
(b) Analogous correlation with the three-center Harary index $H_{3} ; R=$ -0.528 .

A remarkable improvement is obtained by means of the linear combination of the two Harary indices, namely $H+\lambda H_{3}$, shown in Figure 4, where the optimized value $\lambda=-0.443$ is used for the parameter λ.

Figure 4. Correlation between the standard enthalpy of formation (ΔH_{f}^{o}) of isomeric octanes [22] and the linear combination $H+\lambda H_{3}$ of the two Harary indices. The best results are obtained for $\lambda=-0.433$ in which case the correlation coefficient increases to $R=0.928$.

Analogous improvements have been found also in the case of a number of other physico-chemical properties of octanes. The respective statistical data are collected in Table 1.

Property	$R(H)$	$R\left(H_{3}\right)$	$R\left(H+\lambda H_{3}\right)$	λ
ΔH_{f}^{o}	-0.576	-0.542	0.928	-0.433
S^{o}	-0.929	-0.914	0.954	-0.356
$\Delta H_{e v}$	-0.779	-0.745	0.928	-0.414
$B P$	-0.573	-0.533	0.831	-0.429
$C T$	-0.111	-0.063	0.756	-0.451
$C P$	0.505	0.540	0.754	-0.483
$\log P$	-0.184	-0.192	0.223	-0.503

Table 1. Correlation coefficients for the correlation between physico-chemical properties of octane isomes [22] and Harary index $(R(H))$, three-center Harary index $\left(R\left(H_{3}\right)\right)$, and the linear combination thereof $\left(R\left(H+\lambda H_{3}\right)\right) ; \Delta H_{f}^{o}=$ standard enthalpy of formation, $S^{o}=$ standard entropy, $\Delta H_{e v}=$ enthalpy of evaporation, $B P=$ boiling point at atmospheric pressure, $C T=$ critical temperature, $C P=$ critical pressure, $\log P=\operatorname{logarithm}$ of octanol/water partition coefficient; in the last column is the optimized value of the parameter λ for which $R\left(H+\lambda H_{3}\right)$ is maximal.

4. Discussion and Concluding Remarks

If the topological indices H and H_{3} were exactly linearly correlated, then their linear combination would not result in any improvement. From the data shown in Table 1 we see that in some cases significant improvements are obtained, which may be viewed as a kind of (convenient) surprise. This especially is the case for formation enthalpy, critical temperature, and critical pressure. Remarkably, whereas the indices H and H_{3} are completely uncorrelated with critical temperature, i.e., $R(H) \approx R\left(H_{3}\right) \approx 0$, their linear combination results in a moderately good correlation, $R\left(H+\lambda H_{3}\right)>0.75$.

In all cases, the linear combination of H and H_{3} improves the quality of the correlations. However, in some cases, the gain is minor and insignificant. This (necessarily) happens for properties that are well correlated with H and H_{3} (e.g., entropy), but also when the initial correlations are weak (e.g. partition coefficient).

A noteworthy fact is that the optimized value of the parameter λ is nearly equal for all physico-chemical properties examined, and is always negative-valued.

The Harary index is constructed so as to take into account (in a rather rough manner) interactions between pairs of atoms. In the case of usually employed molecular graphs, these are pairs of carbon atoms. At the first glance, by means of the three-center version of the Harary index, some more subtle interatomic interactions might be also taken into account. However, the fact that the parameter λ is relatively large and always negative, indicates that the ordinary Harary index seems to overestimate the interactions between pairs of atoms. Thus, the principal role of H_{3} would be to provide a compensation for the intrinsic error of the Harary index. As we could see, this compensation is often very efficient.

From a practitioner's point of view, neither the original Harary index, nor its version improved by the three-center index, are sufficient to accurately reproduce a physico-chemical (or any other) property of the considered organic compounds. This is clearly seen by inspecting Figures 2 and 3. This apparent deficiency of graph-based structure descriptors is nowadays well understood and individual descriptors are nowadays hardly ever used for modeling properties of organic molecules. The successful strategy is to simultaneously use several such descriptors and construct QSPR/QSAR models [4,23-25]. The interested reader is referred to the recent survey [25] in which the design of several commercially interesting pharmacologically active substances (including those with anti-cancer activity) is described.

The present studies indicate that the efficiency of QSPR/QSAR models would be much improved if instead of the Harary index, its combination with three-center Harary index would be utilized.

References

1 I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
2 F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Redwood, 1990.

3 H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
4 J. Devillers, A. T. Balaban, Eds., Topological Indices and Related Descriptors in QSAR and QSPR, Gordon \& Breach, Amsterdam, 1999.
5 M. V. Diudea, O. Minailiuc, A. T. Balaban, Molecular topology. IV. Regressive vertex degrees (new graph invariants) and derived topological indices, J. Comput. Chem. 12 (1991) 527-535.
6 Z. Mihalić, N. Trinajstić, A graph-theoretical approach to structure-property relationships, J. Chem. Educ. 69 (1992) 701-712.
7 A. T. Balaban, M. V. Diudea, Real number vertex invariants: regressive distance sums and related topological indices, J. Chem. Inf. Comput. Sci. 33 (1993) 421-428.
8 O. Ivanciuc, T. S. Balaban, A. T. Balaban, Design of topological indices. Part 4. Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem. 12 (1993) 309-318.

9 D. Plavšić, S. Nikolić, N. Trinajstić, Z. Mihalić, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993) 235-250.
10 Frank Harary (1921-2005), American mathematician.
11 B. Lučić, A. Miličević, S. Nikolić, N. Trinajstić, Harary index - twelve years later, Croat. Chem. Acta 75 (2002) 847-868.
12 K. Xu, M. Liu, K. C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with respect to distance-based topological indices MATCH Commun. Math. Comput. Chem. 71 (2014) 461-508.
13 K. Xu, K. C. Das, N. Trinajstić, The Harary Index of a Graph, Springer, Heidelberg, 2015.
14 X. X. Li, Y. Z. Fan, The connectivity and the Harary index of a graph, Discr. Appl. Math. 181 (2015) 167-173.
15 B. Furtula, Atom-bond connectivity index versus Graovac-Ghorbani analog, MATCH Commun. Math. Comput. Chem. 75 (2016) 233-242.
16 A. T. Balaban, The Harary index of a graph, MATCH Commun. Math. Comput. Chem. 75 (2016) 243-245.
17 I. Gutman, B. Furtula, X. Li, Multicenter Wiener indices and their applications, J. Serb. Chem. Soc. 80 (2015) 1009-1017.
18 G. Chartrand, O. R. Oellermann, S. Tian, H. B. Zou, Steiner distance in graphs, Časopis Pest. Mat. 114 (1989) 399-410.
19 F. K. Hwang, D. S. Richards, P. Winter, The Steiner Tree Problem, North-Holland, Amserdam, 1992.
20 E. Deza, M. M. Deza, Dictionary of Distances, Elsevier, Amsterdam, 2006.
21 M. M. Deza, E. Deza, Encyclopedia of Distances, Springer, Heidelberg, 2012.
22 Experimental physico-chemical data of octane isomers were taken from the site www.moleculardescriptors.eu.
23 M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley, New York, 2000.

24 F. Shafiei, Relationship between thermodynamic properties and topological indices of the monocarboxylic acids applications in QSPR, Iranian J. Math. Chem. 6 (2015) 15-28.
25 R. Zanni, M. Gálvez-Llompart, R. Garcia-Domenech, J. Gálvez, Latest advances in molecular topology applications for drug discovery, Expert Opin. Drug Discov. 10(9) (2015) 1-13.

Investigation the Effect of Nanocomposite Material on Permeation Flux of Polyerthersulfone Membrane using a Mathematical Approach

Marjan Adib
Department of Mathematics, Payame Noor University (PNU), Iran
Correspondence should be addressed to marjan_ad_1360@yahoo.com (Marjan Adib)
Received 10 August 2015; Accepted 21 September 2015
Academic Editor: Ivan Gutman

Abstract

Integrally skinned asymmetric membranes based on nanocomposite polyethersulfone were prepared by the phase separation process using the supercritical CO_{2} as a nonsolvent for the polymer solution. In present study, the effects of temperature and nanoparticle on selectivity performance and permeability of gases has been investigated. It is shown that the presence of silica nanoparticles not only disrupts the original polymer chain packing but also alters the chemical affinities of penetrants in polyethersulfone matrices. Because, in the presence of hydrophilic silica, CO_{2} affinity filler, hydrogen-bond interactions between the oxygen atoms of carbon dioxide and the hydrogen atoms of hydroxyl group on the nanosilica surface would take place at the interface and thus solubility and consequently permeability towards CO_{2} are higher in comparison with CH_{4} for the membranes. Furthermore, in present study, a novel mathematical approach has been proposed to develop a model for permeation flux and selectivity performance of the membrane using Support Vector Machine.

SVM is employed to develop model to estimate process output variables of a nanocomposite membrane including permeation flux and selectivity performance. Model development that consists of training, optimization and test was performed using randomly selected $80 \%, 10 \%$, and 10% of available data respectively. Test results from the SVM based model showed to be in better agreement with operating experimental data compared to other developed mathematical model. The minimum calculated squared correlation coefficient for estimated process variables is 0.99 . Based on the results of this case study SVM proved that it can be a reliable accurate estimation method.

KEYWORDS Nanocomposite material • polyerthersulfone membrane • silica nanoparticles • Support Vector Machine (SVM).

1. Introduction

Support Vector Machine introduced first by Vapnik, is a supervised learning method with associated learning algorithm that analyzes data and recognizes patterns of input/output data. In recent years, ANN has been demonstrated to be a substitute for deterministic modeling and estimation methods with good potentials to be explored.

SVM is based on the structural risk minimization principle from computational learning theory. It is one of the most sophisticated non-parametric supervised classifiers
available today, with many different configurations depending on kernel function used to generate transform function that maps input space into output space. Commonly, several functions including linear, polynomial, Radial Basis Function (RBF) and multilayer perceptron are used as the kernel function in SVM. By the use of kernels necessary computations are performed directly in the input space .Although, it is mostly considered as a linear algorithm in a high dimensional feature space, it does not necessitate the practical input/output mapping problem to be a high dimensional space problem. A brief discussion on mathematical basis of SVM is presented here that helps understanding the way SVM works and the features that render it superiority over other learning algorithms.

2. Mathematical Model

Pattern recognition or classification can be performed by SVM in a data set consisting of N data point $\left\{x_{k}, y_{k}\right\} k=1,2, \ldots, N$ where x_{k} is a p-dimensional vector and y_{k} can take one of the two values, either +1 or -1 (i.e., $y_{k} \epsilon\{+1,-1\}$ indicating the class to which the point x_{k} belongs. In their basic form, they learn a linear hyperplane that separates a set of positive samples from a set of negative samples with maximum margin. Consider Figure 1 which shows two possible separating hyperplanes and their associated margins. Both hyperplanes can correctly classify all the given data. However, we expect the hyperplane with the larger margin to be more accurate in classifying new data than the hyperplane with the smaller margin. This is the reason that SVM searches for the hyperplane with the largest margin.

Figure 1. Support Vector Machine Classifier.

A separating hyperplane can be written as $w \cdot x-b=0[1,2]$, where w is the normal vector to the hyperplane and b represents the offset of the hyperplane from origin that is referred to as bias. The offset along the vector w from the origin can be determined by $b /\|w\|^{\text {. As }}$. shown in Figure 2, for the cases that the training data are linearly
separable, two hyperplanes can separate the data in a way that there are no data points between them. Obviously these hyperplanes can be described as:

$$
\begin{array}{r}
w \cdot x-b=1 \\
w \cdot x-b=-1 \tag{3}
\end{array}
$$

Figure 2. Hyperplane Definition.

By using geometry, one can show that distance between these two hyperplanes is $2 /\|w\|$, so the problem of $\|\mathrm{w}\|$ minimization is required to maximize hyperplane margin. It is also required to prevent data points from falling into the margin, and other necessary constraints are imposed as:
w. $x_{k}-\mathrm{b} \geq 1$
For x_{k} of the first class
w. $x_{k}-\mathrm{b} \leq-1$
For x_{k} of the second class

That can be rewritten as:

$$
\begin{equation*}
y_{i}\left(w \cdot x_{k}-b\right) \geq 1 \quad \text { For all } 1 \leq k \leq N \tag{6}
\end{equation*}
$$

Constraint minimization of $\|\mathrm{w}\|$ is thus required to develop an ideal classifier. Such minimization problem is difficult to solve, however it is possible to substitute 0.5 $\|w\|^{2}$ instead of $\|\mathrm{w}\|$ in problem. It was shown that, minimization problem can be formulated as:

$$
\begin{equation*}
\min _{w, b} \max _{a \geq 0}\left\{\frac{1}{2}| | w \|^{2}-\sum_{i=1}^{N} a_{i}\left(y_{i}(w x-b)-1\right)\right\} \tag{7}
\end{equation*}
$$

where α_{i} is Lagrangian multiplier that helps in finding the local minimum or maximum of a function. The problem of Eq. 7 can be solved by standard quadratic
programming techniques that results in finding normal vector to the hyperplane as presented in Eq. 8:

$$
\begin{equation*}
w=\sum_{k=1}^{n} a_{i} y_{i} x_{i} \tag{8}
\end{equation*}
$$

Input/output support vector machine model with the general form of $y=f(x)$ takes the form of Eq. 9 in feature space:

$$
\begin{equation*}
f(x)=\sum_{k=1}^{N} a_{i} \cdot K\left(x, x_{k}\right)+b \tag{9}
\end{equation*}
$$

where $f(x)$ represents output vector and $K\left(x, x_{k}\right)$ is the kernel function calculated from the inner product of the two vectors x and x_{k} in the feasible region built by the inner product of the vectors $\Phi(x)$ and $\Phi\left(x_{k}\right)$ as follows:

$$
\begin{equation*}
K\left(x, x_{k}\right)=\Phi(x)^{r} . \Phi\left(x_{k}\right) \tag{10}
\end{equation*}
$$

Among choices for Kernel function the Radial Basis Function (RBF) Kernel that is used extensively has been applied in this work that is presented in Eq. 11,

$$
\begin{equation*}
K\left(x, x_{k}\right)=\exp \left(\frac{-\left\|x_{k}-x\right\|^{2}}{\sigma^{2}}\right) \tag{11}
\end{equation*}
$$

where σ is kernel parameter to be determined by an external optimization algorithm during the internal SVM calculations. Bias, b, is usually determined by using primal constraints as:
$\mathrm{b}=-\left(\frac{1}{2}\right)\left[\max _{\left\{i, y_{i}=-1\right\}}\left(\sum_{j \in\{S V\}}^{m} y_{i} a_{i} K\left(x_{i}, x_{j}\right)\right)\right]+\min _{\left\{i, y_{i}=-1\right\}}\left(\sum_{j \in\{S V\}}^{m} y_{i} a_{i} K\left(x_{i}, x_{j}\right)\right)$
Lagrangian multipliers, a_{i}, can be calculated by solving following quadratic programming problem:

$$
\begin{equation*}
\omega(a)=\sum_{i=1}^{N} a_{i}-\frac{1}{2} \sum_{i, j=1}^{N} a_{i} a_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right) \tag{13}
\end{equation*}
$$

Subject to constraints $0 \leq a_{i} \leq \gamma, i=1, \ldots, N$, where γ is regularization parameter and controls the tradeoff between complexity of the support vector machine model and the number of non-separable points. This compact formulation of quadratic optimization has been proved to have a unique solution. In conclusion, the SVM takes the form of the constrained optimization problem of Eq. 14 in order to obtain the optimum value of γ

$$
\begin{equation*}
\min _{\omega, \beta, \xi_{i} \xi_{i}^{*}} \frac{1}{2}\|\omega\|^{2}+\gamma \cdot \sum_{i=1}^{N}\left(\xi_{i}, \xi_{i}^{*}\right) \tag{14}
\end{equation*}
$$

Subject to
$\begin{array}{lr}y_{i}-\omega^{T} x_{i}-b \leq \varepsilon+\xi_{i} & t=1, \ldots, N \\ \omega^{T} x_{i}+b-y_{i} \leq \varepsilon+\xi_{i}{ }^{*} & t=1, \ldots, N \\ \xi \geq 0 & t=1, \ldots, N \\ \xi_{i} \geq 0 & t=1, \ldots, N\end{array}$
where ε is the precision threshold and $\xi_{i}, \xi_{i}{ }^{*}$ represent the slack variables with nonnegative values to ensure feasible constraints. The first term in Eq. 14 represents model complexity while the second term represents the model accuracy or error
tolerance. The Mean Square Error (MSE) and Mean Absolute Error (MAE) as defined by Eqs. 15 and 16 are used to calculate prediction error of the developed SVM model.

$$
\begin{align*}
& \mathrm{MSE}=\frac{\sum_{i=1}^{n}\left(O_{i}-T_{i}\right)^{2}}{n} \tag{15}\\
& \mathrm{MAE}=\frac{1}{n} \sum_{i=1}^{n}\left|O_{i}-T_{i}\right| \tag{16}
\end{align*}
$$

where O_{i} is the simulation results of $S V M$ model, T_{i} represents real time plant data of the natural gas sweetening plant and n denotes the number of the data used for model evaluation.

3. Results and Discussion

The Figurs 3, 4 show the effect of nanoparticle on the CO_{2} permeation of an integrally skinned asymmetric polyethersulfone membrane formed at $\mathrm{T}=45^{\circ} \mathrm{C}, \mathrm{P}=100$ bar, $\mathrm{DMAc} / \mathrm{PES}$ mass ratio of 2.5 and the depressurization rate of $1.83 \mathrm{bar} / \mathrm{min}$. The incorporation of silica nanoparticle in the membranes results in further increase in permeability towards CO_{2} compared to CH_{4} and thus increases the membrane selectivity. It is believed that the presence of silica nanoparticles not only disrupts the original polymer chain packing but also alters the chemical affinities of penetrants in polyethersulfone matrices. Because, in the presence of hydrophilic silica, CO_{2} affinity filler, hydrogen-bond interactions between the oxygen atoms of carbon dioxide and the hydrogen atoms of hydroxyl group on the nanosilica surface would take place at the interface and thus solubility and consequently permeability towards CO_{2} are higher in comparison with CH_{4} for the membranes.

Figure 3. Effect of silica nanoparticle on the CO_{2} permeation of the integrally skinned polyethersulfone membrane.

Figure 4. Effect of silica nanoparticle on membrane selectivity of the integrally skinned polyethersulfone membrane.

The operating plant data collected over the span of one year is used in this case study. The data has been normalized between -1 and +1 to prevent truncation error due to wide ranges of numerical values for input/output variables to be included in the SVM model. Since the model development is based on normalizing data, it is necessary to map input data to normalized space accordingly. Normalized model output should also be mapped into the space of real values for output variable to be compared to operating plant data. To develop input/output model the calculation procedure of section 3 that is programmed in Matlab environment is executed on an Intel dualcore 2.40 GHz processor accompanied by 4G RAM that it took around 12 hours to get convergence. Convergence indicates that optimum model is achieved; however, it does not guarantee accuracy of model predictions. To ensure model reliability the input variables of test data subset are entered to the developed model and model predictions are validated against experimental data and are also compared with ANN model prediction where available. The ANN based model is of feed-forward back propagation type and was developed using the same training data that is used in this research work.

4. CONCLUSION

The effects of experimental operating conditions such as the temperature and the presence of silica nanoparticles in the structure of dense nanocomposite layers were investigated. It was found that, it is possible to induce a very-controlled asymmetry in a dense film and pore sizes by changing the temperature and pressure. Also, presence of silica nanoparticle proved to increase the permeability of CO_{2} and thus the membrane selectivity. Also this study demonstrates the applicability of SVM to develop accurate input/output model of the operational variables of ananocomposite membrane. The kernel
parameters for developed model are determined and model predictions are compared with those obtained from another mathematical model. Beside the general advantages that are cited for SVM over ANN as an input/output modeling tool, the predicted data in this study showed better performance of support vector machine over artificial neural networks in terms of accuracy. The numerical values of AAD\% calculated showed a minimum 12% improvement gained by SVM over ANN that is of great importance if the predicted data are to be used for monitoring and/or control purposes. This study reveals some the application potentials of SVM as a modeling tool in oil and gas industries that requires much more attention to be fully understood.

References

1 L. A. Gyurova, P. Miniño-Justel, A. K. Schlarb, Modeling the sliding wear and friction properties of polyphenylene sulfide composites using artificial neural networks, Wear 268 (2010) 708-714.
2 N. K. Myshkin, O. K. Kwon, A. Ya. Grigoriev, H. -S. Ahn, H. Kong, Classification of wear debris using neural network, Wear (203-204) (1997) 658-662.

On The Generalized Mass Transfer with a Chemical Reaction: Fractional Derivative Model

Alireza Ansari and Mohammadreza Ahmadi Darani
Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P.O.Box 115, Shahrekord, Iran
Correspondence should be addressed to alireza_1038@yahoo.com (All ReZA ANSARI)
Received 16 November 2014; Accepted 2 December 2014
Academic Editor: Ali Reza Ashrafi

Abstract: In this article using the inverse Laplace transform, we show analytical solutions for the generalized mass transfers with (and without) a chemical reaction. These transfers have been expressed as the Couette flow with the fractional derivative of the Caputo sense. Also, using the Hankel contour for the Bromwich's integral, the solutions are given in terms of the generalized Airy functions.

Keywords: Lévêque Problem, Laplace transform, Generalized Airy functions, Fractional derivative.

1. INTRODUCTION

The mass transfer operations play a critical role in chemistry and other related science especially in chemical engineering. These operations are closely connected with the analogous problems of the convective heat transfer from non-isothermal surfaces. When a system contains more than one component whose concentration varies from one location to another, there is a natural propensity for mass to be transferred. There are many transfer operations in the literature such as solid dissolving in a liquid, gas absorption in a liquid and etc. which provides wide class of researches in chemical and energy sciences. For example in [7], analytical solutions and asymptotic expressions are proposed for homogenous and heterogeneous chemical reactions. Elperin et al. [11] have been solved the problem of mass transfer with a heterogeneous chemical reaction of the first order in boundary layer flows on non-newtonian power-low fluids.

Luchko and Punzi presented physical behavior behind the anomalous processes described by the continuous time random walk (CTRW) model and discussed on its feasibility for modeling of heat transform processes heterogeneous media [13]. Also, they
deduce a macroscopic model in form of a generalized fractional diffusion equation from the CTRW model on the microscopic level. Oldham demonstrated that that the electric current is linearly related to the temporal semiderivative of the concentrations at the electrode of the species involved in the electrochemical reaction [14].

The problem of mass transfer with (without) an irreversible chemical reaction in different flows has been discussed in the literature and has been mostly presented in the Newtonian and non-Newtonian liquids, or in the case of permeable surfaces. This problem can be formulated in the following form [7], [9, 10], [11]

$$
\begin{align*}
& (b+\alpha y) \frac{\partial u}{\partial x}=D \frac{\partial^{2} u}{\partial y^{2}}-k u, D>0, a, b, k \in \mathrm{R} \tag{1-1}\\
& u(0, y)=0, u(x, 0)=u_{0} \tag{1-2}\\
& \lim _{y \rightarrow \infty} u(x, y)<\infty \tag{1-3}
\end{align*}
$$

A short treatise of the above equation with different situations may be considered as [7]:

- In case $a=0$ and $b \neq 0$, it is known as the uniform (plug) flow.
- In case $a \neq 0$ and $b=0$, it is known as the Couette flow.
- In case $a \neq 0$ and $b \neq 0$, it is known as the Couette flow with moving interface.

For the above three cases, if we set $k=0$, then this mass transfer is interpreted without a chemical reaction and for $k \neq 0$, it is considered as a homogenous chemical reaction. For solving this problem, the Laplace integral transform method has been proposed which leads to the analytical solutions with the closed form and corresponding asymptotic expressions. For these solutions, the Airy function of the first kind [19]

$$
\begin{equation*}
\operatorname{Ai}(y)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(y r+\frac{r^{3}}{3}\right) d r, \tag{1-4}
\end{equation*}
$$

plays an important role for determining the structures and forms of them. This function is appeared in the inverse Laplace transform of the Bromwich's integral on the Hankel contour, see Figure 1 and references [7],[18].

As generalization of the problem (1-1), in this paper, first we consider the following partial differential equation with the higher order derivatives

$$
\begin{gather*}
(b+a y) \frac{\partial u}{\partial x}=D_{n} \frac{\partial^{2 n} u}{\partial y^{2 n}}-k u, D_{n}=(-1)^{n+1}, a, b, k \in \mathrm{R}, n \in \cdot \tag{1-5}\\
u(0, y)=0, u(x, 0)=u_{0} \tag{1-6}\\
\lim _{v \rightarrow \infty} u(x, y)<\infty \tag{1-7}
\end{gather*}
$$

Figure 1. The Hankel Contour.
and show that the solution of this problem is writhen in terms of the generalized Airy function [1]

$$
\begin{equation*}
\mathrm{A}_{2 n+1}(y)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(y r+\frac{r^{2 n+1}}{2 n+1}\right) d r . \tag{1-8}
\end{equation*}
$$

In second step, we modify the solution of problem (1-5) with respect to the fractional derivative in the Caputo sense [17]

$$
\begin{equation*}
\left({ }^{C} D_{x}^{\alpha} f\right)(x)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{x}(x-s)^{n-\alpha-1} f^{(n)}(s) d s, n-1<\alpha \leq n, \tag{1-9}
\end{equation*}
$$

for the following problem

$$
\begin{equation*}
(b+a y)^{c} D_{a}^{\alpha} u=D \frac{\partial^{2 n} u}{\partial y^{2 n}}-k u, 0<\alpha \leq 1 . \tag{1-10}
\end{equation*}
$$

To express our motivation, in Section 2 we survey the preliminaries properties of the generalized Airy functions (1-8) and in next sections we solve the problems (1-5) and (1-10) in different cases of parameters a, b, k using the Laplace transform. The solutions are obtained with respect to the Bromwich's integral on the Hankel contour in terms of the generalized Airy functions.

Table 1. Positive zeros of $\mathrm{A}_{2 n+1}(x)$ function for $n=1,2,3,4$.

$n=1$	$A_{3}(x)$	-
$n=2$	$A_{5}(x)$	$\lambda_{21}=2.754254$
$n=3$	$A_{7}(x)$	$\lambda_{31}=2.65450, \lambda_{32}=5.35923$
$n=4$	$A_{9}(x)$	$\lambda_{41}=2.65927, \lambda_{42}=5.33275, \lambda_{43}=7.97432$

2. The Generalized Airy Functions

The generalized Airy function (1-8) is the solution of ordinary differential equation of order $2 n$

$$
\begin{equation*}
(-1)^{n+1} y^{(2 n)}-x y=0, \quad x \in \mathrm{P} . \tag{2-1}
\end{equation*}
$$

This solution can be obtained using the Laplace integral method

$$
\begin{equation*}
y(x)=\int_{C} e^{x z} v(z) d z \tag{2-2}
\end{equation*}
$$

as

$$
\begin{equation*}
y(x)=\int_{C} e^{x z-\frac{z^{2 n+1}}{2 n+1}} d z \tag{2-3}
\end{equation*}
$$

where contour C is chosen such that the function $v(z)$ must vanish at boundaries. After deformation and normalization of integral (2-3), we rewrite the y as the $\mathrm{A}_{2 n+1}(x)$ function as follows

$$
\begin{align*}
& \mathrm{A}_{2 n+1}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i x+i}{\frac{z^{2 n+1}}{2 n+1}}^{2^{2}} d z, \tag{2-4}\\
& =\frac{1}{\pi} \int_{0}^{\infty} \cos \left(x z+\frac{z^{2 n+1}}{2 n+1}\right) d z \tag{2-5}
\end{align*}
$$

with value [1]

$$
\begin{equation*}
\mathrm{A}_{2 n+1}(0)=\frac{\Gamma\left(\frac{1}{2 n+1}\right) \cos \left(\frac{\pi}{2(2 n+1)}\right)}{(2 n+1)^{\frac{2 n}{2 n+1}}} \tag{2-6}
\end{equation*}
$$

Figure 2 shows the behavior of the $A_{2 n+1}(x)$ function for $n=1,2,3,4$ which is similar to the Airy function. It is obvious that the $\mathrm{A}_{2 n+1}(x)$ function has infinite negative roots on the negative semiaxes and $n-1$ positive roots on positive semiaxes, see Table 1
for some positive roots of the $\mathrm{A}_{2 n+1}(x)$ function. Also, for more applications and contributions of this function in partial fractional differential equations especially higher order heat equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=\frac{\partial^{n}}{\partial x^{n}} u(x, t), \quad u(x, 0)=u_{0}(x), \tag{2-7}
\end{equation*}
$$

see [2-5], [6], [12] [15, 16].

Figure 2. The generalized Airy functions for $n=1,2,3,4$

3. The Generalized Mass Transfer in Couette Flow

In this section we start with a theorem for the inverse Laplace transform of multi-valued function $F(s)$. We assume that the point $s=0$ is a branch point and F has no poles, then the inverse Laplace transform of $F(s)$, can be computed by means of the integral of a realvalued function.

Theorem 3.1 (Titchmarsh theorem [8]) Let $F(s)$ be an analytic function which has a branch cut on the real negative semiaxis, furthermore $F(s)$ has the following properties

$$
\begin{array}{ll}
F(s)=O(1), & |s| \rightarrow \infty, \\
F(s)=O\left(\frac{1}{|s|}\right), & |s| \rightarrow 0,
\end{array}
$$

for any sector $|\arg (s)|<\pi-\eta$ where $0<\eta<\pi$. Then the inverse Laplace transform of $F(s)$, can be written as the Laplace transform of the imaginary part of the function $F\left(r e^{-i \pi}\right)$

$$
\begin{equation*}
f(x)=L^{-1}\{F(s) ; x\}=\frac{1}{2 \pi} \lim _{s \rightarrow 0} \int_{-\pi}^{\pi} \varepsilon F\left(\varepsilon e^{i \theta}\right) e^{i \theta+x e^{i \theta}} d \theta-\frac{1}{\pi} \int_{0}^{\infty} e^{-r x} \mathfrak{J}\left(F\left(r e^{-i \pi}\right)\right) d r . \tag{3-1}
\end{equation*}
$$

3.1 The Couette Flow without Chemical Reaction: The Generalized LévêQue Problem

Problem 3.2 We consider a mass transfer without chemical reaction which is known as the Lévêque problem in the literature [7]. In this case we generalize and reformulate it with equation (1-5) as

$$
\begin{align*}
& \frac{\partial u}{\partial x}=D_{n} \frac{\partial^{2 n} u}{\partial y^{2 n}}, \quad n \in \mathrm{~N} \tag{3-2}\\
& u(0, y)=0, u(x, 0)=u_{0} \tag{3-3}\\
& \lim _{y \rightarrow \infty} u(x, y)<\infty . \tag{3-4}
\end{align*}
$$

For solving this problem, we apply the Laplace transform on both sided of equation (3-2) with respect to x

$$
\begin{equation*}
\widetilde{u}(s, y)=\int_{0}^{\infty} e^{-s x} u(x, y) d x \tag{3-5}
\end{equation*}
$$

and use the boundary condition to derive the relation

$$
\begin{equation*}
D_{n} \frac{\partial^{2 n} \widetilde{u}}{\partial y^{2 n}}-s y \widetilde{u}=0 \tag{3-6}
\end{equation*}
$$

In view of the finiteness of solution and $2 n$ linear independent solutions of the above differential equation, we get the solution with respect to the $\mathrm{A}_{2 n+1}(x)$ function in the following form

$$
\begin{equation*}
\widetilde{u}(s, y)=C(s) \mathrm{A}_{2 n+1}\left(s^{\frac{1}{2 n+1}} y\right) . \tag{3-7}
\end{equation*}
$$

Applying other boundary condition, we obtain the unknown coefficient $C(s)$, that is

$$
\begin{equation*}
\widetilde{u}(s, y)=\frac{u_{0}}{s \mathrm{~A}_{2 n+1}(0)} \mathrm{A}_{2 n+1}\left(s^{\frac{1}{2 n+1}} y\right) . \tag{3-8}
\end{equation*}
$$

The inverse of $(3-8)$ is obtained by considering the Bromwich's integral

$$
\begin{equation*}
u(x, y)=\frac{u_{0}}{2 \pi i \mathrm{~A}_{2 n+1}(0)} \int_{c-i \infty}^{c+i \infty} \frac{1}{s} \mathrm{~A}_{2 n+1}\left(s^{\frac{1}{2^{2 n+1}}} y\right) e^{s x} d s \tag{3-9}
\end{equation*}
$$

which has a branch point at the origin. By using the suitable change of the Bromwich contour of integration (Figure 1) and applying the Titchmarsh Theorem 3.1, we get the solution as

$$
\begin{equation*}
u(x, y)=u_{0}-\frac{u_{0}}{\pi \mathrm{~A}_{2 n+1}(0)} \int_{0}^{\infty} \frac{1}{r} e^{-r x} \mathfrak{J}\left\{\mathrm{~A}_{2 n+1}\left(1^{\frac{1}{2 n+1}} e^{-i \frac{\pi}{2 n+1}} y\right)\right\} d r . \tag{3-10}
\end{equation*}
$$

For simplification of the above solution for $n=1$ in terms of the Bessel functions, first consider the following identity in terms of the modified Bessel functions [7]

$$
A i(x)=\frac{\sqrt{x}}{3}\left(I_{-\frac{1}{3}}\left(\frac{2}{3} x^{\frac{3}{2}}\right)-I_{\frac{1}{3}}\left(\frac{2}{3} x^{\frac{3}{2}}\right)\right),
$$

and use the Theorem 3.1 to obtain the solution in terms of the imaginary parts of Airy function as follows

$$
\begin{equation*}
u(x, y)=u_{0}-\frac{u_{0} 3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)}{2 \pi} \int_{0}^{\infty} \frac{1}{r^{\frac{5}{6}}} e^{-r x} y^{\frac{1}{2}} J_{\frac{1}{3}}\left(\frac{2}{3} r^{\frac{1}{2}} y^{\frac{3}{2}}\right) d r \tag{3-11}
\end{equation*}
$$

Also, the solution of equation (3-2), can be generalized by replacing the term $\frac{\partial u}{\partial x}$ by ${ }^{c} D_{x}^{\alpha} u$ as the Caputo fractional derivative. In the sense, by using the fact [17]

$$
\begin{equation*}
\left.\Lambda^{{ }^{C}} D_{x}^{\alpha} u(x, y) ; s\right\}=s^{\alpha} \widetilde{u}(s, y)-s^{\alpha-1} u(0, y), \quad 0<\alpha \leq 1, \tag{3-12}
\end{equation*}
$$

and applying the similar procedure for solving the new problem, we obtain the solution (3-10) in the following form

$$
\begin{equation*}
u(x, y)=u_{0}-\frac{u_{0}}{\pi \mathrm{~A}_{2 n+1}(0)} \int_{0}^{\infty} \frac{1}{r} e^{-r x} \mathfrak{J}\left\{\mathrm{~A}_{2 n+1}\left(r^{\frac{\alpha}{2 n+1}} e^{-i \frac{\pi}{2 n+1}} y\right)\right\} d r . \tag{3-13}
\end{equation*}
$$

Problem 3.3 We consider other type of the generalized Lévêque problem as

$$
\begin{align*}
& (1+y) \frac{\partial u}{\partial x}=D_{n} \frac{\partial^{2 n} u}{\partial y^{2 n}}, n \in \mathrm{~N} \tag{3-14}\\
& u(0, y)=0, u(x, 0)=u_{0} \tag{3-15}\\
& \lim _{y \rightarrow \infty} u(x, y)<\infty \tag{3-16}
\end{align*}
$$

In similar procedure to the previous problem, after applying the Laplace transform we get

$$
\begin{equation*}
\widetilde{u}(s, y)=\frac{u_{0}}{s \mathrm{~A}_{2 n+1}\left(s^{\frac{1}{2 n+1}}\right)} \mathrm{A}_{2 n+1}\left(s^{\frac{1}{2 n+1}}(1+y)\right), \tag{3-17}
\end{equation*}
$$

which its inverse is obtained by the following Bromwich's integral

$$
\begin{equation*}
u(x, y)=\frac{u_{0}}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{1}{s \mathrm{~A}_{2 n+1}\left(s^{\frac{1}{2 n+1}}\right)} \mathrm{A}_{2 n+1}\left(s^{\frac{1}{2 n+1}} y\right) e^{s x} d s \tag{3-18}
\end{equation*}
$$

The integrand of the Bromwich's integral has the branch point at the origin and infinite number of poles s_{n} as

$$
\begin{equation*}
\mathrm{A}_{2 n+1}\left(s_{j}^{\frac{1}{2 n+1}}\right)=\mathrm{A}_{2 n+1}\left(\lambda_{n j}\right)=0, j=1,2, \cdots \tag{3-19}
\end{equation*}
$$

where $\lambda_{n j}$ are the zeros of the $\mathrm{A}_{2 n+1}$ function. It is evident that the all poles $s_{j}=\lambda_{n j}^{2 n+1}$ are outside the contour of integration except $n-1$ positive roots of them. Some of these positive zeros has been shown in Table 1. Therefore, for obtaining the residues at the simple poles $s_{j}, j=1, \cdots, n-1$, we have

$$
\begin{align*}
& I_{n}=\sum_{i=1}^{n-1} \operatorname{Res}\left\{\frac{1}{s \mathrm{~A}_{2 n+1}\left(s^{\frac{1}{2 n+1}}\right.} \mathrm{A}_{2 n+1}\left(s^{\frac{1}{2 n+1}} y\right) e^{s x} ; s_{i}=\lambda_{n i}^{2 n+1}\right\} \\
&=\sum_{i=1}^{n-1} \frac{(2 n+1)}{\lambda_{n i} \mathrm{~A}_{2 n+1}{ }^{\prime}\left(\lambda_{n i}\right)} \mathrm{A}_{2 n+1}\left(\lambda_{n i} y\right) e^{\lambda_{n i}^{2 n+1} x} . \tag{3-20}
\end{align*}
$$

According to the above value and Titchmarsh theorem, we finally get the solution of Problem 2 as

$$
\begin{equation*}
u(x, y)=\left(1+I_{n}\right) u_{0}-\frac{u_{0}}{\pi} \int_{0}^{\infty} \frac{1}{r} e^{-r x} \Im\left\{\frac{\mathrm{~A}_{2 n+1}\left(r^{\frac{1}{2 n+1}} e^{-i \frac{\pi}{2 n+1}} y\right)}{\mathrm{A}_{2 n+1}\left(r^{\frac{1}{2 n+1}} e^{-i \frac{\pi}{2 n+1}}\right)}\right\} d r \tag{3-21}
\end{equation*}
$$

Also, in the case of the fractional derivative model of problem with respect to x, we get the solution of problem in the following form

$$
\begin{equation*}
u(x, y)=\left(1+I_{n, \alpha}\right) u_{0}-\frac{u_{0}}{\pi} \int_{0}^{\infty} \frac{1}{r} e^{-r x} \mathfrak{J}\left\{\frac{\mathrm{~A}_{2 n+1}\left(r^{\frac{\alpha}{2 n+1}} e^{-i \frac{\pi}{2 n+1}} y\right)}{\mathrm{A}_{2 n+1}\left(r^{\frac{\alpha}{2 n+1}} e^{-i \frac{\pi}{2 n+1}}\right)}\right\} d r \tag{3-22}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{n, \alpha}=\sum_{i=1}^{n-1} \frac{(2 n+1)}{\alpha \lambda_{n i} \mathrm{~A}_{2 n+1} \prime\left(\lambda_{n i}\right)} \mathrm{A}_{2 n+1}\left(\lambda_{n i} y\right) e^{\frac{2 n+1}{\lambda_{n i} \alpha} x} . \tag{3-23}
\end{equation*}
$$

For simplification of the solution (3-21) in $n=1$ in terms of the Bessel functions, similar to the previous procedure in (3-11), we use Theorem 3.1 to obtain

$$
\begin{equation*}
u(x, y)=u_{0}-\frac{u_{0} 3^{\frac{1}{2}}(1+y)^{\frac{1}{2}}}{2 \pi} \int_{0}^{\infty} \frac{1}{r} e^{-r x} \frac{J_{\frac{1}{3}}\left(\frac{2}{3} r^{\frac{1}{2}}(1+y)^{\frac{3}{2}}\right) J_{-\frac{1}{3}}\left(\frac{2}{3} r^{\frac{1}{2}}\right)-J_{-\frac{1}{3}}\left(\frac{2}{3} r^{\frac{1}{2}}(1+y)^{\frac{3}{2}}\right) J_{\frac{1}{3}}\left(\frac{2}{3} r^{\frac{1}{2}}\right)}{J_{\frac{1}{3}}^{2}\left(\frac{2}{3} r^{\frac{1}{2}}\right)+J_{-\frac{1}{3}}^{2}\left(\frac{2}{3} r^{\frac{1}{2}}\right)-J_{-\frac{1}{3}}\left(\frac{2}{3} r^{\frac{1}{2}}\right) J_{\frac{1}{3}}\left(\frac{2}{3} r^{\frac{1}{2}}\right)}(\tag{3-24}
\end{equation*}
$$

3.2. The Couette Flow with a Chemical Reaction

At this point, we consider the Couette flow in the presence of a chemical reaction.
Problem 3.4 We consider the following Couette flow with a chemical reaction

$$
\begin{equation*}
y \frac{\partial u}{\partial x}=D_{n} \frac{\partial^{2 n} u}{\partial y^{2 n}}-u, n \in \mathrm{~N}, \tag{3-25}
\end{equation*}
$$

$$
\begin{align*}
& u(0, y)=0, u(x, 0)=u_{0} \tag{3-26}\\
& \lim _{y \rightarrow \infty} u(x, y)<\infty \tag{3-27}
\end{align*}
$$

For this problem similar to the previous problem, after applying the Laplace transform and boundary conditions, we get the solution as

$$
\begin{equation*}
\tilde{u}(s, y)=\frac{u_{0}}{s \mathrm{~A}_{2 n+1}\left(\frac{1}{\frac{2 n}{s^{2 n+1}}}\right)} \mathrm{A}_{2 n+1}\left(\frac{1+s y}{\frac{2 n}{s^{2 n+1}}}\right) \tag{3-28}
\end{equation*}
$$

In view of the $n-1$ positive simple poles $s_{i}=\frac{1}{\lambda_{n i}^{\frac{2 n+1}{2 n}}}, i=1,2, \cdots, n-1$, the inverse Laplace transform of the above function is given by

$$
\begin{equation*}
\left\{\frac{A_{2 n+1}\left[\frac{1+r e^{-i \pi}}{\left(r e^{-i \pi}\right)^{\frac{2 n}{2 n+1}}}\right]}{A_{2 n+1}\left[\frac{1}{\left(r e^{-i \pi}\right)^{\frac{2 n}{2 n+1}}}\right]}\right\} d r, \tag{3-29}
\end{equation*}
$$

where

$$
\begin{align*}
I_{n} & =\sum_{i=1}^{n-1} \operatorname{Res}\left\{\begin{array}{l}
\mathrm{A}_{2 n+1}\left(\frac{1+s y}{\frac{2 n}{2 n+1}}\right) \\
s \mathrm{~A}_{2 n+1}\left(\frac{s^{2 n}}{\frac{2 n}{2 n+1}}\right)
\end{array} e^{s x} ; s_{i}=\frac{1}{\frac{2 n+1}{\frac{2 n}{2 i}}}\right\} \\
& =-\sum_{i=1}^{n-1} \frac{(2 n+1)}{2 n \lambda_{n i} \mathrm{~A}_{2 n+1}{ }^{\prime}\left(\lambda_{n i}\right)} \mathrm{A}_{2 n+1}\left(\frac{y_{n}^{\frac{2 n+1}{2 n}}}{\lambda_{n i}}\right) e^{\frac{x}{\lambda_{n i}^{2 n+1}} .} . \tag{3-30}
\end{align*}
$$

Also, in the case of the fractional derivative model of problem, we get the solution of problem in the following form

$$
\begin{equation*}
u(x, y)=\left(1+I_{n}\right) u_{0}-\frac{u_{0}}{\pi} \int_{0}^{\infty} \frac{1}{r} e^{-r x} \mathfrak{F}\left\{\frac{A_{2 n+1}\left[\frac{1+r^{\alpha} e^{-i \pi \alpha} y}{\left(r e^{-i \pi}\right)^{\frac{2 n \alpha}{2 n+1}}}\right]}{A_{2 n+1}\left[\frac{1}{\left(r e^{-i \pi}\right)^{\frac{2 n \alpha}{2 n+1}}}\right]}\right\} d r, \tag{3-31}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.I_{n, \alpha}=-\sum_{i=1}^{n-1} \frac{(2 n+1)}{2 n \alpha \lambda_{n i} \mathbf{A}_{2 n+1}\left(\lambda_{n i}\right)} \mathrm{A}_{2 n+1}\left(\frac{1+\frac{y}{\lambda_{n i}^{\frac{2 n+1}{2 n \alpha}}}}{\lambda_{n i}}\right) e^{\frac{x}{\lambda_{n i}^{2 n+\alpha}}}\right) . \tag{3-32}
\end{equation*}
$$

Moreover, for simplification of the solution (3-29) in $n=1$ in terms of the Bessel functions, we get
$u(x, y)=u_{0} e^{-y}-\frac{u_{0} 3^{\frac{1}{2}}}{2 \pi} \int_{0}^{\infty} \frac{(1-r y)^{\frac{1}{2}}}{r} e^{-r x} \frac{J_{\frac{1}{3}}\left(\frac{2}{3 r}(1-r y)^{\frac{3}{2}}\right) J_{-\frac{1}{3}}\left(\frac{2}{3 r}\right)-J_{-\frac{1}{3}}\left(\frac{2}{3}(1-r y)^{\frac{3}{2}}\right) J_{\frac{1}{3}}\left(\frac{2}{3 r}\right)}{J_{\frac{1}{3}}^{2}\left(\frac{2}{3 r}\right)+J_{-\frac{1}{3}}^{2}\left(\frac{2}{3 r}\right)-J_{-\frac{1}{3}}\left(\frac{2}{3 r}\right) J_{\frac{1}{3}}^{3}\left(\frac{2}{3 r}\right)} d r$.

4. CONCLUDING REMARKS

This paper provides new results in obtaining the analytical solutions of some generalized partial differential equations. These equations have been interpreted as the Couette flows with (without) chemical reactions. We considered fractional derivative models (in Caputo sense) for these PDEs and solved them by the Laplace transform. We encountered with the generalized Airy functions in the Bromwich's integral of inverse Laplace transform. Zeros of these functions were the first steps in obtaining the solutions as the simple poles of integrands. Finally, the desired solutions have been written in terms of the Laplace transform of the imaginary parts of the generalized Airy functions.

REFERENCES

1. A. Ansari, H. Askari, On fractional calculus of $\mathrm{A}_{2 n+1}(x)$ function, Applied Mathematics and Computation 232 (2014), 487-497.
2. A. Ansari, Fractional exponential operators and nonlinear partial fractional differential equations in the Weyl fractional derivatives, Applied Mathematics and Computation 220 (2013) 149-154.
3. A. Ansari, M. Ahmadi Darani, M. Moradi, On fractional Mittag-Leffler operators, Reports on Mathematical Physics 70 (1) (2012) 119-131.
4. A. Ansari, A. Refahi Sheikhani, H. Saberi Najafi, Solution to system of partial fractional differential equation using the fractional exponential operators, Mathematical Methods in the Applied Sciences 35 (2012) 119-123.
5. A. Ansari, Fractional exponential operators and time-fractional telegraph equation, Boundary Value Problems 125 (2012).
6. K. Górska, A. Horzela, K. A. Penson, G. Dattoli, The higher-order heat-type equations via signed Lévy stable and generalized Airy functions, Journal of Physics A: Mathematical and Theoretical 46 (2013) 16 pages.
7. A. Apelblat, Mass transfer with a chemical reaction of the first order: analytical solutions, Chemical Engineering Journal 19 (1980) 19-37.
8. A. V. Bobylev, C. Cercignani, The inverse laplace transform of some analytic functions with an application to the eternal solutions of the boltzmann equation, Applied Mathematics Letters 15 (2002) 807-813.
9. Z. Chen, P. Arce, B. R. Locke, Convective-diffusive transport with a wall reaction in Couette flows, The Chemical Engineering Journal and the Biochemical Engineering Journal 61 (2) (1996) 63-71.
10. Z. Chen, P. Arce, An integral-spectral approach for convective-diffusive mass transfer with chemical reaction in Couette flow Mathematical formulation and numerical illustrations, Chemical Engineering Journal 68 (1) (1997) 11-27.
11. T. Elperin, A. Fominykh, Z. Orenbakh, Lighthill-Levich problem for a nonNewtonian fluid, International Communications in Heat and Mass Transfer 32 (2005) 620-626.
12. A. Lachal, A survey on the pseudo-process driven by the high-order heat-type equation $\frac{\partial}{\partial t}= \pm \frac{\partial^{N}}{\partial x^{N}}$ concerning the hitting and sojourn times, Methodology and Computing in Applied Probability, 14 (3) (2012) 549-566.
13. L. A. Punzi, Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations, International Journal of Geomathematics 1 (2011) 257-276.
14. K. B. Oldham, Fractional differential equations in electrochemistry, Advances in Engineering Software 41 (2010) 9-12.
15. E. Orsingher, M. D'Ovidio, Probabilistic representation of fundamental solutions to $\frac{\partial u}{\partial t}=k_{m} \frac{\partial^{m} u}{\partial x^{m}}$, Electronic Communications in Probability 17 (2012) 1-12.
16. E. Orsingher, B. Toaldo, Pseudoprocesses related to space-fractional higher-order heat-type equations, arXiv:1305.6409, 2013.
17. I. Podlubny: Fractional Differential Equations, Academic Press, San Diego, 1999.
18. M. Soliman, P. L. Chambre, On the time dependent Leveque problem, International Journal of Heat and Mass Transfer 10 (1967) 169-180.
19. O. Vallee, M. Soares, Airy Functions and Applications to Physics, Imperial College Press, London, 2004.

A Note on Hyper-Zagreb Index of Graph Operations

B. Basavanagoud and S. Patil
Department of Mathematics, Karnatak University, Dharwad - 580003 Karnataka, India
Correspondence should be addressed to b.basavanagoud@gmail.com (B. Basavanagoud)
Received 15 October 2015; Accepted 29 November 2015
Academic Editor: All Reza Ashrafi

Abstract

In this paper, the hyper-Zagreb index of the Cartesian product, composition and corona product of graphs are computed. These results correct some errors in G. H. Shirdel et al. [Iranian J. Math. Chem. 4 (2) (2013) 213-220].

KEYWORDS Hyper-Zagreb index \cdot Zagreb index \cdot graph operation.

1. Introduction

Throughout this paper, we consider only simple connected graphs. Let G be such a graph with vertex set $V(G)$ and edge set $E(G)$. The degree of a vertex $w \in V(G)$ is the number of vertices adjacent to w and is denoted by $d_{G}(w)$. We refer to [11] for unexplained terminology and notation.

In theoretical chemistry, the physico-chemical properties of chemical compounds are often modeled by means of molecular-graph-based structure-descriptors, which are also referred to as topological indices [10, 15]. The Zagreb indices are widely studied degree-based topological indices, and were introduced by Gutman and Trinajstic' [9] in 1972. The first and the second Zagreb indices of a graph G are respectively defined as

$$
M_{1}(G)=\sum_{u \in V(G)} d_{G}(u)^{2} \text { and } M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) d_{G}(v)
$$

The first Zagreb index can also be expressed as a sum over edges of G,

$$
M_{1}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right] .
$$

Recently, G.H. Shirdel, H. Rezapour and A.M. Sayadi [14] introduced a new version of Zagreb index named hyper-Zagreb index which is defined for a graph G as

$$
H M(G)=\sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{2}
$$

Some new results on the hyper-Zagreb index can be found in [7, 8].
The Cartesian product $G \times H$ of graphs G and H has the vertex set $V(G \times H)=$ $V(G) \times V(H)$ and $(a, x)(b, y)$ is an edge of $G \times H$ if $a=b$ and $x y \in E(H)$, or $a b \in$ $E(G)$ and $x=y$. If (a, x) is a vertex of $G \times H$, then $d_{G \times H}((a, x))=d_{G}(a)+d_{H}(x)$.

The composition $G[H]$ of graphs G and H with disjoint vertex sets $V(G)$ and $V(H)$ and edge sets $E(G)$ and $E(H)$ is the graph with vertex set $V(G) \times V(H)$ and (a, x) is adjacent to (b, y) whenever a is adjacent to b or $a=b$ and x is adjacent to y. If (a, x) is a vertex of $G[H]$, then $d_{G[H]}((a, x))=|V(H)| d_{G}(a)+d_{H}(x)$.

The corona product $G \circ H$ is defined as the graph obtained from G and H by taking one copy of G and $|V(G)|$ copies of H and then by joining with an edge each vertex of the $i^{\text {th }}$ copy of H which is named (H, i) with the $i^{\text {th }}$ vertex of G for $i=$ $1,2, \ldots,|V(G)|$. If u is a vertex of $G \circ H$, then

$$
d_{G \circ H}(u)= \begin{cases}d_{G}(u)+|V(H)| & \text { if } u \in V(G), \\ d_{H}(u)+1 & \text { if } u \in V(H, i) .\end{cases}
$$

G. H. Shirdel et al. [14] computed the hyper-Zagreb index of some graph operations. However, the formulae of Theorem 2, Theorem 3, and Theorem 4 of their paper for computing the hyper-Zagreb index of Cartesian product, composition, and corona product are incorrect. In this paper, we give correct expressions for the hyperZagreb index of the Cartesian product, composition and corona product of graphs. Readers interested in more information on computing topological indices of graph operations can be referred to $[1-6,12,13]$.

2. Results

Theorem 2.1 Let G and H be graphs. Then

$$
H M(G \times H)=|V(G)| H M(H)+|V(H)| H M(G)+12 M_{1}(G)|E(H)|+12 M_{1}(H)|E(G)| .
$$

Proof. By definition of the hyper-Zagreb index, we have

$$
\begin{aligned}
H M(G \times H) & =\sum_{(a, x)(b, y) \in E(G \times H)}\left[d_{G \times H}((a, x))+d_{G \times H}((b, y))\right]^{2} \\
& =\sum_{a \in V(G)} \sum_{x y \in E(H)}\left[d_{G}(a)+d_{H}(x)+d_{G}(a)+d_{H}(y)\right]^{2} \\
& +\sum_{x \in V(H)} \sum_{a b \in E(G)}\left[d_{H}(x)+d_{G}(a)+d_{H}(x)+d_{G}(b)\right]^{2} \\
& =\sum_{a \in V(G)} \sum_{x y \in E(H)}\left[2 d_{G}(a)+d_{H}(x)+d_{H}(y)\right]^{2} \\
& +\sum_{x \in V(H)} \sum_{a b \in E(G)}\left[2 d_{H}(x)+d_{G}(a)+d_{G}(b)\right]^{2} \\
& =\sum_{a \in V(G)} \sum_{x y \in E(H)}\left[4 d_{G}(a)^{2}+\left(d_{H}(x)+d_{H}(y)\right)^{2}+4 d_{G}(a)\left(d_{H}(x)+d_{H}(y)\right)\right] \\
& +\sum_{x \in V(H)} \sum_{a b \in E(G)}\left[4 d_{H}(x)^{2}+\left(d_{G}(a)+d_{G}(b)\right)^{2}+4 d_{H}(x)\left(d_{G}(a)+d_{G}(b)\right)\right] \\
& =4|E(H)| M_{1}(G)+|V(G)| H M(H)+8|E(G)| M_{1}(H) \\
& +4|E(G)| M_{1}(H)+|V(H)| H M(G)+8|E(H)| M_{1}(G) .
\end{aligned}
$$

As an application of Theorem 2.1, we list explicit formulae for the hyper-Zagreb index of the rectangular grid $P_{r} \times P_{s}, C_{4}$ - nanotube $P_{r} \times C_{q}$, and C_{4} - nanotorus $C_{p} \times C_{q}$. The formulae follow from Theorem 2.1 by using the expressions $M_{1}\left(P_{n}\right)=4 n-6$, $n>1 ; M_{1}\left(C_{n}\right)=4 \mathrm{n} ; H M\left(P_{n}\right)=16 n-30, n>2$ and $H M\left(C_{n}\right)=16 n$.

Corollary 2.2 $H M\left(P_{r} \times P_{s}\right)=128 r s-150 r-150 s+144, r, s>2$;

$$
H M\left(P_{r} \times C_{q}\right)=128 r q-150 q, r>2 ; H M\left(C_{p} \times C_{q}\right)=128 p q
$$

Theorem 2.3 Let G and H be graphs. Then

$$
\begin{aligned}
H M(G[H]) & =|V(H)|^{4} H M(G)+|V(G)| H M(H) \\
& +12|V(H)|^{2}|E(H)| M_{1}(G)+10|V(H)||E(G)| M_{1}(H)+8|E(H)|^{2}|E(G)|
\end{aligned}
$$

Proof. Using the definition of the hyper-Zagreb index, we have

$$
\begin{aligned}
H M(G[H]) & =\sum_{(a, x)(b, y) \in E(G[H])}\left[d_{G[H]}((a, x))+d_{G[H]}((b, y))\right]^{2} \\
& =\sum_{x \in V(H)} \sum_{y \in V(H)} \sum_{a b \in E(G)}\left[|V(H)| d_{G}(a)+d_{H}(x)+|V(H)| d_{G}(b)+d_{H}(y)\right]^{2} \\
& +\sum_{a \in V(G)} \sum_{x y \in E(H)}\left[|V(H)| d_{G}(a)+d_{H}(x)+|V(H)| d_{G}(a)+d_{H}(y)\right]^{2} \\
& =\sum_{x \in V(H)} \sum_{y \in V(H)} \sum_{a b \in E(G)}\left[|V(H)|^{2}\left(d_{G}(a)+d_{G}(b)\right)^{2}+d_{H}(x)^{2}+d_{H}(y)^{2}\right. \\
& \left.+2 d_{H}(x) d_{H}(y)+2|V(H)|\left(d_{G}(a)+d_{G}(b)\right)\left(d_{H}(x)+d_{H}(y)\right)\right] \\
& +\sum_{a \in V(G)} \sum_{x y \in E(H)}\left[4|V(H)|^{2} d_{G}(a)^{2}+\left(d_{H}(x)+d_{H}(y)\right)^{2}\right. \\
& \left.+4|V(H)| d_{G}(a)\left(d_{H}(x)+d_{H}(y)\right)\right] \\
& =|V(H)|^{4} H M(G)+|V(H)||E(G)| M_{1}(H)+|V(H)||E(G)| M_{1}(H)+8|E(H)|^{2}|E(G)| \\
& +2|V(H)|^{2} M_{1}(G)(2|E(H)|+2|E(H)|)+4|V(H)|^{2}|E(H)| M_{1}(G)+|V(G)| H M(H) \\
& +8|V(H)||E(G)| M_{1}(H) .
\end{aligned}
$$

As an application of Theorem 2.3, we present formulae for the hyper-Zagreb index of the fence graph $P_{n}\left[K_{2}\right]$ and the closed fence graph $C_{n}\left[K_{2}\right]$.

Corollary 2.4 $H M\left(P_{n}\left[K_{2}\right]\right)=500 n-816, n>2 ; H M\left(C_{n}\left[K_{2}\right]\right)=500 n$.
Theorem 2.5 Let G and H be graphs. Then

$$
\begin{aligned}
& H M(G \circ H)=H M(G)+|V(G)| H M(H)+5|V(H)| M_{1}(G)+5|V(G)| M_{1}(H)+ \\
& 4|V(H)|^{2}|E(G)|+4|V(G)||E(H)|+8|E(G)||E(H)|+|V(G)||V(H)|(|V(H)|+1)^{2} \\
& +4(|V(H)|+1)(|E(G)||V(H)|+|E(H)||V(G)|) .
\end{aligned}
$$

Proof. By definition of the hyper-Zagreb index, we have

$$
\begin{aligned}
H M(G \circ H) & =\sum_{u v \in E(G \circ H)}\left[d_{G \circ H}(u)+d_{G \circ H}(v)\right]^{2} \\
& =\sum_{u v \in E(G)}\left[d_{G}(u)+|V(H)|+d_{G}(v)+|V(H)|\right]^{2} \\
& +\sum_{u v \in E(H)} \sum_{i=1}^{|V(G)|}\left[d_{H}(u)+1+d_{H}(v)+1\right]^{2} \\
& +\sum_{u \in V(G)} \sum_{v \in V(H)}\left[d_{G}(u)+|V(H)|+d_{H}(v)+1\right]^{2} .
\end{aligned}
$$

It is easy to see that

$$
\begin{align*}
& \sum_{u v \in E(G)} {\left[d_{G}(u)+d_{G}(v)+2|V(H)|\right]^{2}=\sum_{u v \in E(G)}\left[\left(d_{G}(u)+d_{G}(v)\right)^{2}+4|V(H)|^{2}\right.} \tag{2.1}\\
&+\left.4|V(H)|\left(d_{G}(u)+d_{G}(v)\right)\right]=H M(G)+4|V(H)|^{2}|E(G)|+4|V(H)| M_{1}(G) . \\
& \sum_{u v \in E(H)} \sum_{i=1}^{|V(G)|}\left[d_{H}(u)+d_{H}(v)+2\right]^{2}=\sum_{u v \in E(H)} \sum_{i=1}^{|V(G)|}\left[\left(d_{H}(u)+d_{H}(v)\right)^{2}+4\right. \\
&\left.+4\left(d_{H}(u)+d_{H}(v)\right)\right]=|V(G)|\left(H M(H)+4|E(H)|+4 M_{1}(H)\right) . \tag{2.2}\\
& \sum_{u \in V(G)} \sum_{v \in V(H)}\left[d_{G}(u)+d_{H}(v)+|V(H)|+1\right]^{2}=\sum_{u \in V(G)} \sum_{v \in V(H)}\left[d_{G}(u)^{2}+d_{H}(v)^{2}\right. \\
&+\left.2 d_{G}(u) d_{H}(v)+(|V(H)|+1)^{2}+2(|V(H)|+1)\left(d_{G}(u)+d_{H}(v)\right)\right] \\
&=|V(H)| M_{1}(G)+|V(G)| M_{1}(H)+8|E(G)||E(H)|+|V(G)||V(H)|(|V(H)|+1)^{2}
\end{align*}
$$

$$
\begin{equation*}
+4(|V(H)|+1)(|E(G)||V(H)|+|E(\mathrm{H})||V(G)|) \tag{2.3}
\end{equation*}
$$

By adding Eqs. (2.1), (2.2), and (2.3) the proof is completed.
Using Theorem 2.5, we can compute the hyper-Zagreb index of the k-thorny cycle $C_{n} \circ \bar{K}_{k}$.

Corollary 2.6 $H M\left(C_{n} \circ \bar{K}_{k}\right)=16 n+25 n k+10 n k^{2}+n k^{3}$.
ACKNOWLEDGEMENT. This research is supported by UGC-UPE (Non-NET)-Fellowship, K. U. Dharwad, No. KU/Sch/UGC-UPE/2014-15/897, dated: 24 Nov 2014.

References

[1] H. Abdo, D. Dimitrov, The total irregularity of graphs under graph operations, Miskolc Math. Notes 15(1) (2014) 3-17.
[2] A. R. Ashrafi, T. Došlić, A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math. 158 (2010) 1571-1578.
[3] M. Azari, Sharp lower bounds on the Narumi-Katayama index of graph operations, Appl. Math. Comput. 239 (2014) 409-421.
[4] M. Azari, A. Iranmanesh, Some inequalities for the multiplicative sum Zagreb index of graph operations, J. Math. Inequal. 9 (3) (2015) 727-738.
[5] M. Azari, A. Iranmanesh, Chemical graphs constructed from rooted product and their Zagreb indices, MATCH Commun. Math. Comput. Chem. 70 (2013) 901-909.
[6] K. C. Das, A. Yurttas, M. Togan, A. S. Cevik, I. N. Cangul, The multiplicative Zagreb indices of graph operations, J. Inequal. Appl. 2013 2013:90.
[7] M. R. Farahani, The hyper-Zagreb index of $\mathrm{TUSC}_{4} C_{8}(\mathrm{~S})$ nanotubes, Int. J. Eng. Technol. Res. 3 (1) (2015) 1-6.
[8] M. R. Farahani, Computing the hyper-Zagreb index of hexagonal nanotubes, J. Chem. Mat. Res. 2 (1) (2015) 16-18.
[9] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[10] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin 1986.
[11] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass. 1969.
[12] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157 (2009) 804-811.
[13] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl. 56 (2008) 1402-1407.
[14] G. H. Shirdel, H. Rezapour, A.M. Sayadi, The hyper-Zagreb index of graph operations, Iranian J. Math. Chem. 4 (2) (2013) 213-220.
[15] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL 1992.

QSPR Study on Benzene Derivatives to some PhysicoChemical Properties by using Topological Indices

M. PASHM FORUSH ${ }^{1}$ F. ShAFIEI ${ }^{2}$ and F. DiALAMEHPOUR ${ }^{1}$
${ }^{1}$ Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
${ }^{2}$ Department of Chemistry, Science Faculty, Arak Branch, Islamic Azad University, Arak, Iran

Correspondence should be addressed to f-shafiei@iau-arak.ac.ir (Fatemeh Shafiei).
Received 17 May 2015; Accepted 30 May 2015
Academic Editor: Ivan Gutman

Abstract

QSPR study on benzene derivatives have been made using recently introduced topological methodology. In this study the relationship between the Randic' (${ }^{1} \mathrm{x}$), Balaban (J), Szeged (Sz),Harary (H), Wiener (W), HyperWiener(WW) and Wiener Polarity (W_{P}) to the thermal energy $\left(\mathrm{E}_{\mathrm{th}}\right)$, heat capacity $\left(\mathrm{C}_{\mathrm{V}}\right)$ and entropy (S) of benzene derivatives is represented. Physicochemical properties are taken from the quantum mechanics methodology with HF level using the ab initio 6-31G basis sets. The multiple linear regressions (MLR) and back ward methods (with significant at the 0.05 level) were employed to give the QSPR models. The satisfactory obtained results show that combining the two descriptors (Sz, WW) are useful topological descriptors for predicted $\left(\mathrm{C}_{\mathrm{v}}\right)$ and (S) of the 45 benzene derivatives. The training set models established by MLR method have not good correlation of ($\mathrm{E}_{\mathrm{t})}$), which means QSPR models could not predict the thermal energy of compounds.

KEYWORDS QSPR • Topological index • benzene derivatives • graph theory • multiple linear regressions (MLR).

1. Introduction

Benzene derivatives compounds are widely used industrial chemicals and thus have a high potential for environmental pollution. The eventual release and accumulation of these compounds into the environment in both terrestrial and aquatic systems requires an assessment of their environmental risk. Science experimental measurements of physicochemical properties are extremely time- consuming and expensive.

Quantitative structure - property relationships (QSPRs) have provided a valuable approach in research into physicochemical properties of organic chemicals [1]. Many investigators have used quantum - chemical parameters [2-5].Among the different approaches employing computational chemistry, those based on chemical graph theory have been useful in establishing QSPR [6].

The basic strategy of QSPR is to find the optimum quantitative relationship which can then be used for the prediction of the properties of molecular structures including those unmeasured or even unknown [7-9].

The premise of QSPR is that physicochemical properties can be correlated with molecular structure characteristics (geometric and electronic) expressed in terms of appropriate molecular descriptors [10].

QSPR have been traditionally developed by selecting, a priori, an analytical model (typically) linear, polynomial or lag-linear to quantity the correlation between selected molecular indices and desired physicochemical properties, followed by regression analysis to determine model parameters [11-13].

In the present study, the multiple linear regression (MLR) techniques and back ward methods are used for modeling the thermal energy $\left(\mathrm{E}_{\mathrm{th}}\right)$, heat capacity $\left(\mathrm{C}_{\mathrm{V}}\right)$ and entropy (S) of 45 benzene derivatives.

The proposed QSPR models were based on molecular descriptors (topological indices) that can be calculated for any compound utilizing only the knowledge of its molecular structure (molecular graph).

The topological indices used for the QSPR analysis were Wiener [14], Szeged [15], first order molecular connectivity [16], Balaban [17], HyperWiener [18], Wiener Polarity [19] and Harary [20] indices.

2. Materials and Methods

2.1. Quantum Chemistry Calculations

The thermal energy $\left(\mathrm{E}_{\mathrm{th}}\right)$, heat capacity $\left(\mathrm{C}_{\mathrm{V}}\right)$ and entropy (S) of 45 benzene derivatives are taken from the quantum mechanics methodology with Hartree-Fock (HF) level using the ab initio $6-31 \mathrm{G}$ basis sets. The quantum chemistry data of the 45 congeners are listed in Table 1.

2.2. TOPOLOGICAL INDICES

All the used topological indices were calculated using all hydrogen suppressed graph by deleting all the carbon hydrogen as well as heteroatomic hydrogen bonds from the
structure of the benzene derivatives. The descriptors were calculated with chemicalize software [21]. Six topological indices tested in the present study are recorded in Table 2.

2.3. Statistical Analysis

Structure- Property models (MLR models) are generated using the multilinear regression procedure of SPSS version 16. The thermal energy $\left(E_{t h} \frac{k c a l}{m o l}\right)$, heat capacity $\left(C v \frac{c a l}{m o l K}\right)$ and entropy $\left(S \frac{c a l}{m o l K}\right)$ are used as the dependent variable and ${ }^{1} \mathrm{x}, \mathrm{J}, \mathrm{Sz}, \mathrm{H}, \mathrm{W}_{\mathrm{P}}$ and WW indices as the independent variables. The models are assessed with R value (correlation coefficient), the R^{2} (coefficient of determination), the R^{2} - adjusted, the $S D$ value (root of the mean square of errors), the F value (Fischer statistic) and the sig (significant).

3. Results

Several linear QSPR models involving one, two, three, four and five descriptors are established and strongest multivariable correlations are identified by the back ward method are significant at the 0.05 level and regression analysis of the SPSS program.

In the first of this study we drown scattering plots of $\mathrm{C}_{\mathrm{V}}, \mathrm{S}$ and E_{th} versus the six topological indices, ${ }^{1} \mathrm{x}, \mathrm{J}, \mathrm{W}, \mathrm{Sz}, \mathrm{WW}$ and W_{P}. Some of these plots are given in Fig. (1-8), respectively. Distribution of the dependent variable against the independent variable for 45 chemicals employed in developing quantitative structure-properties relationship.

3.1. QSPR Models for Heat Capacity (CV)

Model 1

$\mathrm{C}_{\mathrm{V}}=18.000-0.573^{1} \mathrm{x}-4.038 \mathrm{~J}-0.051 \mathrm{H}-0.103 \mathrm{WW}-0.006 \mathrm{WP}+0.257 \mathrm{Sz}$
$\mathrm{N}=45 \quad \mathrm{R}=0.966 \quad \mathrm{R}^{2}=0.933 \quad R_{a d j}^{2}=0.922 \quad \mathrm{SD}=2.342$
$\mathrm{F}=88.125 \quad$ sig $=0.000$

Model 2

$\mathrm{C}_{\mathrm{V}}=18.045-0.574^{1} \mathrm{x}-4.048 \mathrm{~J}-0.051 \mathrm{H}-0.103 \mathrm{WW}-0.256 \mathrm{Sz}$
$\mathrm{N}=45 \quad \mathrm{R}=0.966 \quad \mathrm{R}^{2}=0.933 \quad R_{a d j}^{2}=0.924 \quad \mathrm{SD}=2.312$
$\mathrm{F}=108.531 \quad$ sig $=0.000$

Model 3

$$
\begin{array}{lllll}
\mathrm{C}_{\mathrm{V}}=18.351-0.556^{1} \mathrm{x}-4.180 \mathrm{~J}-0.106 \mathrm{WW}-0.266 \mathrm{Sz} \\
\mathrm{~N}=45 & \mathrm{R}=0.966 & \mathrm{R}^{2}=0.933 \quad R_{a d j}^{2}=0.926 & \mathrm{SD}=2.284
\end{array}
$$

$$
\begin{equation*}
\mathrm{F}=138.960 \quad \text { sig }=0.000 \tag{3}
\end{equation*}
$$

Model 4

$\mathrm{C}_{\mathrm{V}}=16.779-3.975 \mathrm{~J}-0.102 \mathrm{WW}-0.252 \mathrm{Sz}$
$\mathrm{N}=45 \quad \mathrm{R}=0.966 \quad \mathrm{R}^{2}=0.933 \quad R_{a d j}^{2}=0.928 \quad \mathrm{SD}=2.261$
$\mathrm{F}=188.938 \quad$ sig $=0.000$

Model 5

$\mathrm{C}_{\mathrm{V}}=10.629-0.085 \mathrm{WW}+0.216 \mathrm{Sz}$
$\mathrm{N}=45 \quad \mathrm{R}=0.964 \quad \mathrm{R}^{2}=0.929 \quad R_{a d j}^{2}=0.926 \quad \mathrm{SD}=2.292$
$\mathrm{F}=274.854 \quad$ sig $=0.000$

It turns out that the heat capacity $\left(\mathrm{C}_{\mathrm{V}}\right)$ has a good correlation with all six topological indices as well as with WW and Sz (Eq. (5)).

3.2. QSPR Models for Thermal Energy (Eth)

Model 6

$\mathrm{E}_{\mathrm{th}}=112.146-1.952^{1} \mathrm{x}-16.645 \mathrm{~J}+1.496 \mathrm{H}-0.167 \mathrm{WW}-0.702 \mathrm{~W}_{\mathrm{P}}-0.356 \mathrm{Sz}$
$\mathrm{N}=45 \quad \mathrm{R}=0.425 \quad \mathrm{R}^{2}=0.181 \quad R_{a d j}^{2}=0.052 \quad \mathrm{SD}=18.837$
$\mathrm{F}=1.400 \quad \operatorname{sig}=0.240$

Model 7

$\mathrm{E}_{\mathrm{th}}=106.705-15.971 \mathrm{~J}+1.473 \mathrm{H}+0.180 \mathrm{WW}+0.689 \mathrm{~W}_{\mathrm{P}}-0.396 \mathrm{Sz}$
$\mathrm{N}=45 \quad \mathrm{R}=0.425 \quad \mathrm{R}^{2}=0.180 \quad R_{\text {adj }}^{2}=0.075 \quad \mathrm{SD}=18.603$
$\mathrm{F}=1.715 \quad$ sig $=0.154$

Model 8

$\mathrm{E}_{\mathrm{th}}=102.046-14.980 \mathrm{~J}+1.454 \mathrm{H}+0.130 \mathrm{WW}-0.271 \mathrm{Sz}$
$\mathrm{N}=45 \quad \mathrm{R}=0.422 \quad \mathrm{R}^{2}=0.178 \quad R_{\text {adj }}^{2}=0.096 \quad \mathrm{SD}=18.396$
$\mathrm{F}=2.162 \quad \operatorname{sig}=0.091$

Model 9

$\mathrm{E}_{\mathrm{th}}=112.147-22.272 \mathrm{~J}+0.666 \mathrm{H}+0.021 \mathrm{WW}$
$\mathrm{N}=45 \quad \mathrm{R}=0.414 \quad \mathrm{R}^{2}=0.171 \quad R_{\text {adj }}^{2}=0.111 \quad \mathrm{SD}=18.240$
$\mathrm{F}=2.828 \quad \mathrm{sig}=0.050$

Model 10

$\mathrm{E}_{\mathrm{th}}=108.116-23.268 \mathrm{~J}+1.190 \mathrm{H}$
$\mathrm{N}=45 \quad \mathrm{R}=0.408 \quad \mathrm{R}^{2}=0.167 \quad R_{\text {adj }}^{2}=0.127 \quad \mathrm{SD}=18.074$
$\mathrm{F}=4.199 \quad$ sig $=0.022$

Model 11

$\mathrm{E}_{\mathrm{th}}=66.730+0.699 \mathrm{H}$
$\mathrm{N}=45 \quad \mathrm{R}=0.365 \quad \mathrm{R}^{2}=0.134 \quad R_{a d j}^{2}=0.113 \quad \mathrm{SD}=18.214$
$\mathrm{F}=6.629 \quad \mathrm{sig}=0.014$

It turns out that the correlation coefficient values of all models for E_{th}, is less than 0.2 , which means that there is no strong linear relation between E_{th} and descriptors.

3.3. QSPR MODELS FOR ENTROPY (S)

Model 12

$S=72.845-0.598^{1} \mathrm{x}-4.788 \mathrm{~J}+0.259 \mathrm{H}-0.116 \mathrm{WW}+0.334 \mathrm{~W}_{\mathrm{P}}+0.272 \mathrm{Sz}$
$\mathrm{N}=45$
$\mathrm{R}=0.948 \quad \mathrm{R}^{2}=0.898$
$R_{a d j}^{2}=0.882 \quad \mathrm{SD}=4.008$
$\mathrm{F}=55.810$

$$
\begin{equation*}
\operatorname{sig}=0.000 \tag{12}
\end{equation*}
$$

Model 13

$\mathrm{S}=71.179-4.581 \mathrm{~J}+0.252 \mathrm{H}-0.112 \mathrm{WW}-0.33 \mathrm{~W}_{\mathrm{P}}-0.259 \mathrm{Sz}$
$\mathrm{N}=45 \quad \mathrm{R}=0.948 \quad \mathrm{R}^{2}=0.898 \quad R_{a d j}^{2}=0.885 \quad \mathrm{SD}=3.960$
$\mathrm{F}=68.590 \quad$ sig $=0.000$

Model 14

$\mathrm{S}=72.903-5.259 \mathrm{~J}-0.130 \mathrm{WW}-0.322 \mathrm{~W}_{\mathrm{P}}+0.312 \mathrm{Sz}$
$\mathrm{N}=45 \quad \mathrm{R}=0.947 \quad \mathrm{R}^{2}=0.897 \quad R_{a d j}^{2}=0.887 \quad \mathrm{SD}=3.930$
$\mathrm{F}=86.936 \quad$ sig $=0.000$

Model 15

$\mathrm{S}=70.664-4.772 \mathrm{~J}-0.153 \mathrm{WW}+0.369 \mathrm{Sz}$
$\mathrm{N}=45 \quad \mathrm{R}=0.946 \quad \mathrm{R}^{2}=0.895 \quad R_{\text {adj }}^{2}=0.888 \quad \mathrm{SD}=3.910$
$\mathrm{F}=116.931 \quad$ sig $=0.000$

Model 16

$\mathrm{S}=63.280-0.133 \mathrm{WW}+0.324 \mathrm{Sz}$
$\mathrm{N}=45 \quad \mathrm{R}=0.945 \quad \mathrm{R}^{2}=0.893 \quad R_{a d j}^{2}=0.888 \quad \mathrm{SD}=3.911$
$\mathrm{F}=174.741 \quad$ sig $=0.000$

It turns out that the entropy(S) has a good correlation with all six topological indices as well as with WW and Sz (Eq. (16)).

4. DISCUSSION

We studied the relationship between topological indices and the thermal energy $\left(\mathrm{E}_{\mathrm{th}}\right)$, heat capacity $\left(\mathrm{C}_{\mathrm{V}}\right)$ and entropy (S).

The elaborated QSPR models (Eqs $1-5$) reveal that the heat capacity of the benzene derivatives could be explained by two, three, four, five and six parameter. All of models can explain about 93% of the experimental variance of the dependent variable C_{V}. The combination of the two parameters (WW, Sz) increases remarkably the predictive power of the QSPR model given by Eq. (5) ($R^{2}=0.929, R_{a d j}^{2}=0.926, \mathrm{SD}=2.29, \mathrm{~F}=$ 274.854).

As can be seen from the statistical parameters of the above equation, a high F of Fischer ($F=274.854$) which confirms that the model (5) predicts the heat capacity (dependent variable) in a statistically satisfactory significant manner.

The back ward values of the entropy shows that all of models (Eqs 12 - 16) can explain about 0.90% of the variance of the entropy. The combination of two parameters (WW, Sz) recorded in Eq (16) has highest F of Fischer ($\mathrm{F}=174.741$) which explain that the model (16) for predict entropy is better than another models. The QSPR models (Eqs 6 - 11) explains only 18% of the variance of the thermal energy besides a low F and a low standard deviation (SD) which confirms that all of models (Eqs 6-11) could not use to predicts the thermal energy.

The comparison between the observed data and predicted values using Eq (16) of entropy (S) is presented in Table 3. The linear relations between the observed and predicted values of the entropy of 45 benzene derivatives show in Figure (9).

The comparison between the observed data and predicted values using Eq (5) of C_{V} is presented in Table 3. The linear relations between the observed and predicted values of the heat capacity of 45 benzene derivatives show in Figure (10).

5. CONCLUSION

The aforementioned results and discussion lead us to conclude that combining the two descriptors (Sz, WW) can be used successfully for modeling and predicting the heat capacity $\left(\mathrm{C}_{\mathrm{V}}\right)$ and entropy (S) of 45 benzene derivatives. The training set models established by MLR method have not good correlation of the thermal energy (E_{th}), which means QSPR models could not predict the thermal energy of compounds.

Acknowledgements

The author is thankful to Islamic Azad University Shoushtar, Iran for their financial support.

Table 1. Benzene derivatives and their thermal energy $\left(\mathrm{E}_{\mathrm{th}}\right)$, heat capacity $\left(\mathrm{C}_{\mathrm{V}}\right)$ and entropy (S)

compounds	No.	$E_{t h} \mathrm{kcal} / \mathrm{mol}$	$\mathrm{Cv} \mathrm{cal} / \mathrm{molK}$	$S \mathrm{cal} / \mathrm{molK}$
Bromobenzene	1	65.29	18.974	77.412
Phenol	2	74.241	19.556	73.301
1,2-Dichlorobenzene	3	59.638	22.459	81.422
3-Chlorotoluene	4	84.812	24.561	86.151
1,3-Dihydroxybenzene	5	77.539	24.356	78.827
3-Hydroxyanisole	6	97.706	28.52	85.825
4-Methyl-3-nitroaniline	7	103.88	36.498	97.218
2,4-Dimethylphenol	8	113.333	31.213	95.395
2,6-Dimethylphenol	9	113.476	30.971	88.024
3-Nitrotoluene	10	93.604	28.973	92.842
2,6-Dinitrotoluene	11	93.307	39.695	104.851
4-Methyl-2,6-dinitroaniline	12	105.713	44.947	114.965
5-Methyl-2,6-dinitroaniline	13	105.837	44.81	107.737
5-Methyl-2,4-dinitroaniline	14	105.62	45.252	109.238
2,4-Dinitrotoluene	15	93.169	39.727	105.107
4-Nitrophenol	16	77.413	27.692	86.473
4-Chlorotoluene	17	77.206	31.85	96.426
2,4,6-Trichlorophenol	18	57.376	30.862	93.417
Toluene	19	82.941	27.892	89.047
3-Methyl-6-nitroaniline	20	104.149	35.841	96.864
4-Methyl-2-nitroaniline	21	106.04	33.951	94.282
1,2,4-Trichlorobenzene	22	53.93	26.321	88.346
3,4-Dichlorotoluene	23	79.161	28.303	93.362
2,4-Dichlorotoluene	24	79.266	28.227	88.762
Chlorobenzene	25	65.308	18.726	74.858
1,3,5-Trinitrobenzene	26	74.783	43.544	111.19
1,2,3,4-Tetrachlorobenzene	27	48.143	29.99	94.375

Table 1. (Continued).

2,3,4,5,6-Pentachlorophenol	28	45.776	38.209	105.427
1,3-Dichlorobenzene	29	59.625	22.593	81.815
2-Chlorophenol	30	68.741	23.201	79.752
3-Methylphenol	31	93.75	25.379	83.997
2,3-Dinitrotoluene	32	93.312	39.473	103.012
1,4-Dimethylbenzene	33	109.926	26.47	90.836
2,3,4,5-Tetrachlorophenol	34	51.504	34.552	99.256
2,3,6-Trinitrotoluene	35	96.277	47.777	115.335
4-Methylphenol	36	93.737	25.413	83.681
4-Methyl-3,5-dinitroaniline	37	105.556	45.32	110.557
1,3,5-Trichlorobenzene	38	53.896	26.473	88.731
Benzene	39	70.931	14.87	67.85
2-Nitrotoluene	40	93.788	28.598	87.958
1,4-Dinitrobenzene	41	75.38	32.677	96.457
2-Methyl-3,6-dinitroaniline	42	107.521	43.693	107.087
2-Methyl-4,6-dinitrophenol	43	96.803	43.786	108.582
2,5-Dinitrotolueno	44	93.252	39.676	105.278
1,2-Dinitrobenzene	45	75.477	32.524	95.425

Table 2. Benzene derivatives and their topological indices used in present study

Comp. No.	${ }^{1} \chi$	J	H	HW	WP	Sz
1	3.39	1.82	12.92	71	5	78
2	3.39	1.82	12.92	71	5	78
3	3.8	2.28	16.17	106	8	106
4	3.79	2.23	16.08	110	7	108
5	3.79	2.23	16.08	110	7	108
6	4.33	1.98	19.15	176	9	146
7	5.11	2.25	26.67	315	14	232
8	4.2	2.09	19.53	160	10	144
9	4.22	2.15	19.67	151	11	140
10	4.7	2.32	22.72	245	11	186
11	6.04	2.4	34.6	545	19	348
12	6.43	2.7	39.2	669	31	420
13	6.45	2.72	39.13	667	22	418
14	6.43	2.65	38.83	698	21	430
15	6.02	2.33	34.3	576	18	360
16	4.7	2.26	22.6	262	11	192
17	3.79	2.19	16.03	115	7	110
18	4.61	2.49	23.28	215	13	184
19	3.39	1.82	12.92	71	5	78
20	5.11	2.22	26.6	327	14	236
21	5.11	2.27	26.67	315	14	232
22	4.2	2.09	19.53	160	10	144
23	4.2	2.09	19.53	160	10	144
24	4.2	2.09	19.53	160	10	144
25	3.39	1.82	12.92	71	5	78
26	6.91	2.46	42.6	906	21	516
27	4.63	2.52	23.37	211	14	182
28	5.46	2.76	31.6	357	21	282
29	3.79	2.23	16.08	110	7	108
30	3.8	2.28	6.17	106	8	106
31	3.79	2.23	16.08	110	7	108
32	6.04	2.47	34.83	511	19	336
33	3.79	2.19	16.03	115	7	110
34	5.04	2.39	27.32	281	17	230
35	7.36	2.83	47.97	1036	26	588
36	2.18	2.19	16.3	115	7	110
37	6.43	2.7	39.02	669	21	420
38	4.18	2.08	19.5	159	9	144
39	3	2	10	42	3	54
40	4.72	2.4	22.9	231	12	180
41	5.61	2.3	29.74	521	15	314
42	6.45	2.64	38.87	717	22	434
43	6.43	2.66	38.85	691	21	428
44	6.02	2.28	34.14	616	18	372
45	5.63	2.54	30.43	416	16	278

Table 3. Comparison between predicted and observed values of entropy and heat capacity of respect benzene derivatives.

Comp. No.	Observed (S)	Predicted (S)	Residual	Observed (Cv)	Predicted (Cv)	Residual
1	77.41	79.11	1.70	18.97	21.44	2.47
2	73.30	79.11	5.81	19.57	21.44	1.87
3	81.42	83.53	2.11	22.46	24.52	2.06
4	86.15	83.64	-2.51	24.56	24.61	0.05
5	78.83	83.64	4.81	24.36	24.61	0.25
6	85.82	87.18	1.36	28.52	27.20	-1.32
7	97.22	96.55	-0.67	36.50	33.97	-2.53
8	95.40	88.66	6.74	31.21	28.13	-3.08
9	88.02	88.56	0.54	30.97	28.03	-2.94
10	92.84	90.96	-1.88	28.97	29.98	1.01
11	104.85	103.55	-1.30	39.70	39.47	-0.23
12	114.96	110.38	-4.58	44.95	44.48	-0.47
13	107.74	110.00	2.26	44.81	44.22	-0.59
14	109.24	109.77	0.53	45.25	44.18	-1.07
15	105.11	103.31	-1.80	39.73	39.43	-0.30
16	86.47	90.64	4.17	27.69	29.83	2.14
17	96.43	83.62	12.81	31.85	24.61	-7.24
18	93.42	94.30	0.88	30.86	32.09	1.23
19	89.05	79.11	-9.94	27.89	21.44	-6.45
20	96.86	96.25	-0.61	35.84	33.81	-2.03
21	94.28	96.55	2.27	33.95	33.97	0.02
22	88.35	88.66	0.31	26.32	28.13	1.81
23	93.36	88.66	-4.70	28.30	28.13	-0.17
24	88.76	88.66	-0.10	28.23	28.13	-0.10
25	74.86	79.11	4.25	18.73	21.44	2.71
26	111.19	109.97	-1.22	43.54	45.08	1.54
27	94.38	94.18	-0.20	29.99	32.01	2.02
28	105.43	107.17	1.74	38.21	41.20	2.99
29	81.82	83.64	1.82	22.59	24.61	2.02
30	79.75	83.53	3.78	23.20	24.52	1.32
31	84.00	83.64	-0.36	25.38	24.61	-0.77
32	103.01	104.18	1.17	39.47	39.77	0.30
33	90.84	83.49	-7.35	26.47	24.53	-1.94
34	99.26	100.29	1.03	34.55	36.34	1.79
35	115.34	116.00	0.66	47.78	49.58	1.80
36	83.68	83.62	-0.06	25.41	24.61	-0.80
37	110.58	110.38	-0.20	45.32	44.48	-0.84
38	88.73	88.79	0.06	26.47	28.22	1.75
39	67.85	75.19	7.34	14.87	18.72	3.85
40	87.96	90.88	2.92	28.60	29.87	1.27
41	96.46	95.72	-0.74	32.68	34.17	1.49
42	107.09	108.54	1.45	43.69	43.43	-0.26
43	108.58	110.05	1.47	43.79	44.34	0.55
44	105.28	101.88	-3.40	39.68	38.62	-1.06
45	95.42	98.02	2.60	32.52	35.32	2.8

References

1. M. Randić Quantitative Structure - property relationship: boiling points of planar benzenoids, New. J. Chem. 20 (1996) 1001-1009.
2. S. E. Rita, H. I. Sadigm and A. S. Bahjat, Quantum chemical QSAR study of 1-phenyl- X-benzimidazoles as inhibitors of PDGFRT Tyrosin Kinase, Int. J. Pharm. Tech. Res. 3 (4) (2011) 2183-2189.
3. A. S. Bahjat, S. E. Rita, H. I. Sadigm and A. H. Kawkab, Theoretically predicted descriptors based quantitative structure-activity relationship study of the activity of acridines against B-16 melanoma. Am. J. Sci. 8 (8) (2011)773-776.
4. A. H. Kawkab, A. H. Wisam and H. I. Sadigm, QSAR study and improving it of some Schiff- base ligands as anticancer for prostate cancer, J. Chem. Pharm. Res. 4 (3) (2012) 1702-1707.
5. A. A Toropov and O. M. Nabiev, QSPR modeling of hydrocarbon dipole moments, J. Theor. Comput. Chem. 2 (2003) 139-146.
6. H. Redmond and J. Thompson, Evaluation of a quantitative structure- Property relationship (QSPR) for predicting mid- visible refractive index of secondary organic aerosol (SOA), Phys. Chem. Chem. Phys. 13 (2011) 6872-6882.
7. U. Mahmood, S. Rashid, S. I. Ali, R. Parveen, Z. Ul-Haq, N. Ambreen, K. Mohammed Khan, S. Perveen and W. Voelter, 3D-QSPR method of computational technique applied on red reactive dyes by using COMFA strategy, Int. J. Mol. Sci. 12 (2011) 8862-8877.
8. A. Afantitis, G. Melagraki, K. Makridima, A. Alexandridis, H. Sarimveis and O. I. Markopoulou, Prediction of high weight polymers glass transition temperature using RBF neural networks, J. Mol. Struct. THEOCHEM 716 (2005) 193-198.
9. A. Sabljic and D. Horvatic, GRAPH III: A computer program for calculating molecular connectivity indices on microcomputers, J. Chem. Inf. Comput. Sci. 33 (1993) 292-295.
10. L. Pogliani, Molecular modeling by linear combination of connectivity indexes, J. Phy. Chem. 99 (1995) 925-937.
11. S. Chaterjee, A. Hadi and B. Price, Regression Analysis by Examples, $3^{\text {rd }}$. Ed., Wiley VCH: New York, 2000.
12. H. van de Waterbeemd (Ed) Chemometric Methods in Molecular Design, Methods and Principles in Medicinal Chemistry 12, Wiely-VCH, Weinleium, 1995.
13. J. Devillers and W. Karcher, (Eds) Applied Multivariate Analysis in SAR and Environmental Statistics, Chemical and Environmental Sciences 2, Klawer Academic Pub., Dorderch (Netherland), 1991.
14. H. Wiener, Structural determination of Paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
15. P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrynin, I. Gutman and G. J. Domotor, The Szeged index and an analogy with the Wiener index, J. Chem. Inf. Compt. Sci. 35 (1995) 547-550.
16. M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
17. A. T. Balaban, Highly discriminating distance based topological indices, Chem. Phys. Lett. 89 (1982) 399-404.
18. I. Gutman, A new Hyper-Wiener index, Croat. Chem. Acta 77 (1-2) (2004) 61-64.
19. A. Behmaram, H. Yousefi-Azari and A. R. Ashrafi, Wiener polarity index of fullerenes and hexagonal system, Appl. Math. Lett. 25 (2012) 1510-1513.
20. K. C. Das, B. Zhou and N. Trinajstić, Bounds on Harary index, J. Math. Chem. 46 (2009) 1369-1376.
21. Web search engine developed by ChemAxon; software available at http://www. chemicalize.org.

Figure 1. Plots of the Szeged index (Sz) versus entropy of 45 benzene derivatives.

Figure 2. Plots of the Randić index (${ }^{1} \mathrm{x}$) versus entropy of 45 benzene derivatives.

Figure 3. Plots of the Hyper-Wiener (WW) index versus entropy of 45 benzene derivatives.

Figure 4. Plots of the Balaban index (J) versus entropy of 45 benzene derivatives.

Figure 5. Plots of the Szeged index (Sz) indexversus heat capacity (Cv) of 45 benzene derivatives.

Figure 6. Plots of the Harrary index (H) versus heat capacity (Cv) of 45 benzene derivatives.

Figure 7. Plots of the Szeged index (Sz) index versus thermal energy $\left(\mathrm{E}_{\mathrm{th}}\right)$ of 45 benzene derivatives.

Figure 8. Plots of the Randić index (${ }^{1} \mathrm{x}$) index versus thermal energy $\left(\mathrm{E}_{\mathrm{th}}\right)$ of 45 benzene derivatives.

Figure 9. Comparison between the predicted and observed values of entropy by MLR.

Figure 10. Comparison between the predicted and observed values of thermal energy by MLR

ABSTRACTS
 IN

PERSIAN

Degree Distance Index of the Mycielskian and its Complement

Ali behtoei and Mahdi Anbarloei

Department of Mathematics, Imam Khomeini International University, P. O. Box: 34149-16818, Qazvin, Iran

شافه فاصله -درهم كراف ميسيليسكى و هكمل آن

اديتور رابط : بيڭ̇ن طائرى

چحكيده

A Note on Vertex-Edge Wiener Indices of Graphs

Mahdieh Azari

Department of Mathematics, Kazerun Branch, Islamic Azad University, P. O. Box: 73135-168, Kazerun, Iran

يادداشكى ير شاذههاى وينر رأسى -يالى كرافها

اديتور رابط : علیِضا اشرفى

چحكيده

$$
\begin{aligned}
& \text { شاخص وينر رأسى-يالى تراف همبند سادمى G به صورت مجموع فواصل بين رأس ها و يال هاى }
\end{aligned}
$$

در نظر گرفته شدند و با توجه به آنها شاخصهالى وينر رأسى-يالى مربوط به (G)
معرفى شدند. در اين مقاله فرمولهاى دقيقى براى محاسبهى شاخصهاى وينر رأسى-يالى دو گراف
تركيبى تحت عنوان بههمپييوستگى و اتصال گرافها ار ائه مى كنيم.

لغات كليدى: فاصله در گراف، شاخص وينر رأسى-يالى، بههمپييوستگى، اتصال.

Electro-Spunorganic Nanofibers Elaboration Process Investigations using BPs Operational Matrices

Hossein Jafari ${ }^{1}$ and Haleh Tajadodi ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran
${ }^{2}$ Department of Mathematical Science, University of Sistan and Baluchestan, Zahedan, Iran

بررسى فرآيند مِرفم توليد نانوفيبرهاى الكتروريسى شده اركانيك يا BP استفاده از داتريس عملِياتى

اديتور (ابط : ايوان كَوتمن

چچكيده

در اين مقاله، ماتريسهاى عملياتى حاصل از چندجملهاىهاى برنشتاين براى حل معادله براتو استفاده شده است. اين معادله غيرخطى، در چارحوب فرآيند ساخت نانوفيبرهاى الكترور يسىشده ويرّه مىشود. نانوفيبرهاى آلى الكتروريسىشده در گستره وسيعى از كاربردهاى فيلتراسيون از جمله صنايع
 حاصلضرب، معادله مورد بحث به دستگاهى از معادلات جبرى تبديل مىشود. جوابهاى عددى، دقت و سادگى روش پيشنهادى را نشان مىدهند.

لغات كليدى: معادله براتو، نانوفيبر هاى الكتروريسىشده، چندجملهاى برنشتاين، ماتريسهاى عملياتى.

Hosoya Polynomials of Random Benzenoid Chains

Shou-Jun Xu ${ }^{\text {a }}$, Qing-Hua He ${ }^{\text {a }}$, Shan Zhou ${ }^{\text {b }}$ and Wai Hong Chan ${ }^{\text {c }}$

${ }^{a}$ School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
${ }^{\text {c }}$ Department of Mathematics and Information Technology, The Hong Kong Institute of Education, Tai Po, Hong Kong, R. R. China

اديتّور رابط : على (فا اشهى

يكى زنجير بنزوئيد تصادفى با n-تا ششضلعى ارائه مىدهيه. همچحنين مقادير مورد انتظار از شاخصهاى
از يى زنجير بنزوئيد تصادفى با n ششضلى مىتواند توسط
محاسبات ساده رياضى بدست بيايد، كه با نتايج بدست آمده توسط ايوان گوتمن توليد مىشود.
لغات كليدى: شاخص وينر، زنجير بنزوئيد تصادفى، چند جمله ای هوسويا، مقدار مورد انتظار، تابع
توليد كننده.

Complete Forcing Numbers of Polyphenyl Systems

Bing jie LiU ${ }^{1}$, Hong Bian ${ }^{1}$ and Haizheng YU ${ }^{2}$

${ }^{1}$ School of Mathematical Sciences, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. China
${ }^{2}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P. R. China

اعداد نفوذ(امبار) كاهل سِيسلمههاى پָلى فنيل

اديتور (ابط : هسن يوسفى آذرى

حكيده

ايده " نفوذ(اجبار)" مدت زيادى در بسيارى از شاخههاى تحقيقاتى وجود داشته است، مانند: رنگَآميزى، جهت گيرى، كمترين فاصله و مجموعههاى غالب در نظريه گراف، كه به همان خوبى مربعهاى لاتين، طراحى هاى بلوك و سيستمهاى استينر در تركيبيات مى باشد. اخيرا بحث نفوذ روى جورسازىهاى كامل توجه بسيارى از محققان را به خود جلب كرده است. يكى مجموعه اجبارى از يكى جورسازى كامل كراف
 كه توسط واكيسويجّ و ديگران معرفى شد، يك زير مجموعه از E(G) با محدوديتهاى ذاتى كه براى هر دو جورسازى مختلف G وجود دارد، است. با تر كيب ايدههاى" اجبارى" و "سراسرى" يكى مجموعه، زو و
 براى هر جورسازى كامل M M از M ا تعريف مىشود، معرفى كردند. مينيمم كاردينال مجموعههاى اجبارى كامل، تعداد اجبارهاى كامل G است. در اين مقاله بيان صريحى براى عدد اجبارى كامل براى چندين دسته از سيستمهاى پلىفنيل ارائه مى كنيم. لغات كليدى: عدد اجبار كامل، سيستم پلىفنيل، عدد اجبارى سراسرى.

Quantitative Structure Activity Relationship Study of Inhibitory Activities of 5-Lipoxygenase and Design new Compounds by Different Chemometrics Methods

Fatemeh Baghban Shahri, Ali Niazi and Ahmad Akrami

Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

كطالعم ارتباط كمى فعاليت -ساذتار براى فعاليتهاى دهاركنند5ى 5-

 هخْلف

 هخْلف}

اديتور (ابط : ايوان كَوتمن
چحكيده

مطالعه ارتباط كمى فعاليت-ساختار (QSAR) براى پيشبينى بازدارندگى فعاليت 1-فنيل2H تتراهيدرو
 2H قبيل رگرسيون خطى چندتايى(MLR) وحداقل مربعات كه از ماشينهاى بردارى (LS-SVM)
 تر كيباتى كه در فرآيند مدلسازى نبودند، بهكار گرفته شدهاند. نتايج مدل ها نشان داد كه توانايى پيشبينى بالا با ميانگیين ريشه خطاى مربع براى MLR و LS-SVM به ترتيب برابر است با: 0/167 و 0.061 مىباشد. روش LS-SVM براى پيشبينى فعاليت مهاركننده مشتقات مهار كننده جديد مورد استفاده قرار گرفت.
لغات كليدى: QSAR، 1-فنيل2H تتراهيدرو تريازين3، LS-SVM ،MLR.

Three-Center Harary Index and its Applications

Boris Furtula, Ivan Gutman and Vladimir Katanić

Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia

شافص هارا(ى سمدركزی و كاريردهايش

اديتّور رابط : على (فا اشفى

چحكيده

شاخص هارارى H مى تواند به عنوان يى توصيفگر ساختار مولكولى در نظر گرفته شود كه متشكل از افزايش بر همكنشهاى نشاندادهشده بين جفتاتمهها است، به طورى كه مقدارشان با افزايش فاصله بارين بين دو اتم مربوطه، كاهش مى يابد. يك تعميم از شاخص هارارى،كه با Hk نشان داده مىشود، با بهكاركيرى
 صورت معنىدارى از نظر تنوع خواص فيزيك-شيمى آلكان ها، نسبت به خود H بهتر است. لغات كليدى: شاخص هارارى، شاخص هارارى چند مركزى، فاصله استينر، گراف مولكولى.

Investigation the Effect of Nanocomposite Material on Permeation Flux of Polyerthersulfone Membrane using a Mathematical Approach

MARJAN ADIB

Department of Mathematics, Payame Noor University (PNU), Iran
بر(سلى تأثيِر مواد نانوكامیِزيت (وى تفوذ شار غشاء يָلىاترسلفون با
با (ويكرد (ياضى)
اديتور (ابط : ايوان كَوتمن

چحكيده

غشاءهاى نامتقارن پوستهاى يكیارچه، بر اساس نانوكامیوزيت پلىاترسلفون توسط فرآيند جداسازى فوقبحرانى به عنوان يك غيرحلال براى يك محلول پليمر تهيه شدماند. در اين پزوهش، اثرات دما و نانوذرات بر عملكرد انتخابى و نفوذپذيرى گَازها مورد بررسى قرار گرفته است. همچچنين نشان داده شده است كه حضور نانوذرات سيليكا نه تنها بستهبندى زنجيرهاى پليمر اصلى را مختل مى كند، بلكه باعث ايجاد تغييرات شيميايى پانسيونها در ماتريسهاى پلى يور تسولفون مىشود. بهدليل حضور هيدروفيليى سيليكا ، CO2 پر كننده وابستگى، پيوند هيدروثن فعل و انفعالات بين اتمهاى اكسيرن از دى اكسيدكربن و اتمهاى هيدروزن از گروه هيدروكسيل روى سطح نانوسيليكا در پيوند اتفاق مىافتد و بنابراين
 اين، در مطالعه حاضر، يك رويكرد رياضى جديد پيشنهاد شده است تا يك مدل جديد براى شار نفوذى و عملكرد انتخابى از غشاءاى كه تحت پشتيبان ماشين بردارى استفاده مىشود، توسعه يابد. SVM براى توسعه مدلى به منظور تخمين فرآيند متغيرهاى خروجى از يك غشاء نانوكامیوزيت كه شامل شار نفوذى و عملكرد انتخابى است، بهكار گرفته مى شود. توسعه مدل كه شامل آموزش، بهيندسازى و و آزمايشى كه به ترتيب براى 80 درصد، 10 درصد انتخاب تصادفى و 10 درصد متغير ها به كار مىرود، انجام شد. نتايج آزمايش بر اساس مدل SVM نشاندهنده توافق بهترى با دادههاى تجربى در مقايسه با ساير مدلهاى رياضى پيشرفته است. كمترين مقدار همبستگى مربعى محاسبهشده براى فرآيند تخمين متغير ها برابر 0.99 مى باشد. بر اساس نتايج اين نمونه مطالعه SVM ثابت كرد كه اين روش تخمين، دقيق و قابل اعتماد است.

لغات كليدى: مواد نانوكاميوزيت، غشاء پلى|ترسلفون، نانو ذرات سيليكا، پشتيبان ماشين بردارى .(SVM)

On The Generalized Mass Transfer with a Chemical Reaction: Fractional Derivative Model

Alireza Ansari and Mohammadreza Ahmadi Darani

Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P.O.Box 115, Shahrekord, Iran

در باب انتمال يرم تُعميميافتَم يا يك واكنش شيميايِى: ددل دشتق كسرى

اديتور (ابط : على (ضا اشرفى

چچكيده

A Note on Hyper-Zagreb Index of Graph Operations

B. Basavanagoud and S. Patil

Department of Mathematics, Karnatak University, Dharwad - 580003 Karnataka, India

يادداشتى درباره شافص ابرزاكرب عملكرهاى كراف

اديتور رابط : على (ضا اشرفى

$$
\begin{aligned}
& \text { چچكيده }
\end{aligned}
$$

QSPR Study on Benzene Derivatives to some PhysicoChemical Properties by using Topological Indices

M. PASHM FORUSH ${ }^{1}$ F. SHAFIEI ${ }^{2}$ and F. DIALAMEHPOUR ${ }^{1}$
${ }^{1}$ Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
${ }^{2}$ Department of Chemistry, Science Faculty, Arak Branch, Islamic Azad University, Arak, Iran
\title{ دطالعم ارتباط كمى سافتار -فاميت يرفى از فواص فيزيكى -شيميايِى دشتَات بنزّ با استَاده از شافصههاى تَويولوزيكى }

اديتور (ابط : ايوان كوتمن

چـكيـده

امروزه با استفاده ازروشهاى تويولوزيكى به مطالعه ارتباط كمى ساختار -خاصيت مشتقات بنزن پرداخته شده است. در اين تحقيق ارتباط بين شاخصهاى تويولوزيك رانديك اتصال يك(1 1) ، بالابان(J)،
 بنزن موردنظر محاسبه گرديد. سپس همبستگى اين شاخصهاى تويولوزيك با خواصى نظير انرزى كرمايى(Eth)، ظرفيت ترمايى در حجم ثابت (Cv) وآنترويى (S) بدست آمده از روش مكانيك كوانتومى مورد بررسى قرار گرفت. خواص فيز يكى -شيميايى فوق باكمك نرمافزارارها

 كرمايى در حجم ثابت (CV) وآنترویى (S) مشتق هاى بنزن مورد مطالعه، تركيبى از دو توصيفگر

 ترتيب كارايى شاخصهاى تويولوزيكى مورد استفاده در مدلسازى و تعيين خاصيتهاى مولكولى مورد نظر، معين گرديد.

لغات كليدى: بررسى كمى ساختار - خاصيت، شاخص تويولوريكى، مشتقات بنزن، نظريه گراف، رگر سيون خطى چند متغيره (MLR).

$$
\begin{aligned}
& \text { اين نشريه طبق مجوز شماره 89/3/11/104372 مورخه 89/11/27 داراى }
\end{aligned}
$$

(ابسته به وزارت علوم ، تحقيقات و فناورى نمايه مى شود.

MATHEMATICAL CHEMISTRY

CONTENTS

Degree distance index of the Mycielskian and its complement
A. Behtoei and M. Anbarloei

A note on vertex-edge Wiener indices of graphs
M. Azari

Electro-spunorganic nanofibers elaboration process investigations	19
using BPs operational matrices	
H. Jafari and H. Tajadodi	

H. Jafari and H. Tajadodi

Hosoya polynomials of random benzenoid chains
S.-J. Xu, Q.-H. He, S. Zhou and W. H. Chan

Complete forcing numbers of polyphenyl systems 39
B. Liu, H. Bian and H. Yu

Quantitative structure activity relationship study of inhibitory activities 47 of 5-lipoxygenase and design new compounds by different chemometrics methods
F. Bagheban-Shahri, A. Niazi and A. Akrami

Three-center Harary index and its applications
B. Furtula, I. Gutman and V. Katanic'

Investigation the effect of nanocomposite material on permeation flux
of polyerthersulfone membrane using a mathematical approach
M. Adib

On the generalized mass transfer with a chemical reaction: Fractional derivative model
A. Ansari and M. Ahmadi Darani

A note on hyper-Zagreb index of graph operations
B. Basavanagoud and S. Patil

QSPR study on benzene derivatives to some physico-chemical
M. Pashm Forush, F. Shafiei and F. Dialamehpour

[^0]: ${ }^{\text {a }}$ Observed inhibitory activity .
 ${ }^{\mathrm{b}}$ The compounds selected as the test set.

[^1]: ${ }^{\text {a }}$ Calculated by LS-SVM model.

