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In this study, multiple linear regression method that is 
based on property-structure model has been used to 
predict the standard enthalpies of formation for the gas 
and liquid phases of the 33 different types of amines. It 
was indicated that among studied topological and 
geometric descriptors to predict the ∆H˚f(liquid), 
descriptors as PSA, H, MaxZL and V have more 
importance than the other descriptors. Also, the results 
of experiments on studied amines were compared with 
the results of multiple linear regression calculations and 
it was observed that such descriptors as MaxZL 
MaxPA, DE, J and WW are the best descriptors for 
predicting the values of ∆H˚f(gas) of this class of amines. 
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1 INTRODUCTION 

The progress of the chemometrics is stoutly related to the extension of computers 
in chemistry [1−2]. Representative applications of chemometric methods are the 
improvement of quantitative structure activity relationships or the valuation of 
analytical–chemical data. Those methods in chemistry are the obedience that uses 
mathematical and statistical methods to obtain appropriate information on 
chemical material.  

The most significant consequence of using statistical and analytic methods 
and chemometrics for modeling and performing statistical computations is that it 
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reduces time, costs and environmental pollution and allows for predicting most of 
the chemicals’ properties with high precision and without the need to laboratory 
equipment. The experimental methods for determinate of properties of chemical 
substances are not always available. Also, chemical hazards are caused by 
chemical substances causing significant damage to the environment. Different 
types of chemical substances have been associated with unsafe health effects. 
Common chemical hazards include: skin inflammation, deform burns, eye damage 
or blindness caused by corrosive chemical products. A chemical hazard is a type 
professional hazard caused by contact to chemicals in the place of work. Exposure 
to chemicals in the workplace can reason acute or long-term unfavorable health 
effects.  These hazards can cause physical and/or health dangers. 

Modeling using chemometrics involves three elements namely 
experimental data extracted from reliable resources, appropriate descriptors for 
chemical structure and an effective computational method in which the model is 
formula. Some modeling techniques of chemometrics enabled chemists to express 
the relationships between molecules structure and their properties which could 
predict continuous variables such as boiling point, enthalpy of formation, Gibbs 
free energy, etc. or rank discrete variables such as bitter/sweet, poisonous/non-
poisonous using structural parameters.  The chemists use various labels and 
formulas to convey information about chemicals and their structures. There are 
numerous methods for determining the numerical value assigned to structures. The 
experimental molecular descriptors derive from symbolic representation of a 
molecule and can be classified in terms of various types of molecular 
representation [3]. They are derived from different theories such as quantum 
chemistry, organic chemistry and physical chemistry and are analyzed using 
statistical and chemometric methods. Chemometrics has numerous applications in 
different branches of chemistry. One of the significant applications of 
chemometrics has been the studies which associate chemical structures and 
properties in a data-set of compound [4−6].  

Quantitative structure activity/property relationships (QSAR/QSPR) 
studies, as one of the most important areas in chemometrics, play a fundamental 
role in predicting the biological activity/property of new compounds. The most 
significant step in building QSAR models is the appropriate representation of the 
structural and physicochemical features of chemical entities [7]. 

The structure-property relationship among numerous computational 
methods plays the most important role in predicting chemicals’ properties. 
Chemical structure changes reflect changes in the physicochemical properties. One 
of the applications of this relationship is to predict various physicochemical 
properties of organic compounds. 
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2.  MATERIAL AND METHODS 

2.1  MATERIAL 

Amines are considered as one of the most abundant nitrogen-containing organic 
compounds which are present in definite plants and a restricted chemical 
intermediary, histamine that arises in most animal tissues. They are used for 
different applications from industrial manufacturing to medicine. 

A amine solution is polluted with various material such as hydrocarbon and 
non-hydrocarbon, organic acids, cations, anions or even oxygen. Some amines are 
toxic and carcinogenic. Experimental determination of properties of amines is both 
time and material consuming; it can only be done if the compounds are available. 
Modeling and computational methods using the software conveniences are used 
that abridged mentioned difficulties in determining the physico-chemical 
properties of amines [8]. 

 
2.2   COMPUTATIONAL METHOD 

The chemometric methods include Multivariate Calibration, Multivariate Linear 
Regression, Partitial Least Square, Multivariate Nonlinear Regression, K nearest 
neighbours and etc. Calibration levels is usually included experimental design, 
model selection, parameter estimation and prediction of indefinite. In a 
multivariate calibration there is not the possibility of correcting annoying without 
entering additional information. However, in multivariate Calibration methods it is 
possible to separate the useful information from inappropriate in a set. In nonlinear 
regression observational statistics consist of independent variables and their 
associated observed dependent variables are modeled by a function which is a 
nonlinear combination of the model parameters. The k-nearest neighbors algorithm 

is used in classification or regression machine learning responsibilities. In kNN 
classification an input is classified by a majority choose of its neighbours whereas 
regression involves organizing a relationship between input points and the rest of 
the data. The kNN is a very simple non-parametric method of marking unknown 
inputs. 

In this research is studied multivariate linear regression method for 
thermodynamics properties prediction of this class of amines. The advantage of 
multiple linear regressions to simple linear regression is that it has two or more 
independent variables. In multiple regression method, it is not necessary that there 
be a linear relationship between dependent variable y and independent variable x 
but the dependent variable y is a linear combination of coefficients (parameters) 
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[9−11]. The linear relationship between a dependent variable and independent 
variables is calculated by Equation 2.1: 

yi = β0 + β1xi1 + … + βpxip + Ɛi                           (2.1) 
where yi is modeled dependent variable; p is the number of predictors 
(independent variables) βi is regression coefficients, xip is i amount of the j 
independent variable; and Ɛi is the observed error amount for i. 

In present research, standard enthalpies of formation for the gas and liquid 
phases and two-dimensional and geometric descriptors of studied amines are 
considered as dependent and independent variables in the regression model, 
respectively. Recent studies have showed that molecular indices of molecules 
determine the physical-chemical properties of them, so it’s especially important to 
know that how change in the molecular structures changes the physical-chemical 
properties [12−14]. 
 
2.3  MOLECULAR DESCRIPTORS 

The two-dimensional (2D) indices and Geometric descriptors in this study due to 
are molecular descriptors which can be relayed to thermodynamics functions such 
as the standard enthalpies of formation for the gas and liquid phases of 33 different 
types of amines. It is worth mentioning, the standard enthalpy of formation of a 
chemical compound which was used as modeled variable is defined as the change 
of enthalpy during the formation of 1 mole of the compound from its constituent 
elements under standard conditions at the specified temperature 25˚C and P = 1˚. It 
should be noted that thermodynamics functions of organic chemical are susceptible 
to molecular geometry and structural indices, for this reason in this study 
mentioned geometric and topological descriptors as independent variables were 
employed. 

The studied 2D and geometric descriptors in this research are calculated 
using related formulas. To analyze the relationship between thermodynamics 
properties in contrast with molecular descriptors, the research data were collected 
as follows:                                 

First, standard enthalpies of formation for the gas and liquid phases; 
∆H˚

f(gas) and ∆H˚
f(liquid) related to the 33 different types of the amines were obtained 

from National Institute of Standard and Technology chemistry web book and were 
listed in Table 1.                          

Second, the two and three-dimensional descriptors of the amines were 
calculated [15−25] and utilized as independent variables in the regression model. 
As it is clear, Two-dimensional descriptors derive from 2D representation of a 
molecule, atoms connection. A molecular graph or chemical graph is a 
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representation of the structural formula of a chemical compound that bond type 
and the atom type are not necessarily specified. The numerical value of two-
dimensional descriptors is calculated using the matrixes which represent the 
molecular diagram. These diagrams can be sensitive to one or several structural 
characteristics of a molecule such as size, shape, symmetry, branched, or ring 
shaped molecules [26]. The geometric descriptors or spatial descriptors are used to 
depict a three-dimensional representation of molecule as a geographical solid 
structure. The geometric descriptors not only represent the nature and type of 
atomic bonds but also the spatial structure of atoms in a molecule. These 
descriptors involve spatial descriptors and Morse molecular mass distribution 
function [27]. 
 

Table 1. The used molecular descriptors, explanation and references. 

No Indices Explanation References 

1 Wiener  15−16 

2 Hyper wiener  17 

3 Wiener Polarity  18 

4 Platt ܨ = ෍ ௘ܦ
ெ

௜ୀଵ
 19 

5 Randic  20 

6 Balaban  21−22 

7 Harary  23 

8 Sz  24 

9 Geometry 
indices 

Geometric indices are taken from 
Chemicalize Web Book 

 
25 

 
In this study, 2D descriptors including Platt, Projection Surface Area, 

Balaban, Randić, Harary, Szeged, Wiener, Wiener-Polarity, Hyper-Wiener and 
geometric descriptors including Dreiding-Energy, Volume, Minimal projection 
Area, Minimal Z Length, Maximal projection Area and Maximal Z Length using 
the literatures [25] were used for the estimation of thermodynamic properties of 
amines.  
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Third, the relationships between ∆H˚
f(gas) and ∆H˚

f(liquid) of 33 different types 
of amines with 2D, and Geometric descriptors were investigated by SPSS 
software, and multiple linear regression method was used to find out the most 
appropriate molecular descriptors for predicting this class of thermodynamics 
function of amines. 

 
3. RESULTS AND DISCUSSION  

The standard enthalpies of formation of liquid and gas phases (∆H˚
f(gas) and 

∆H˚
f(liquid)) of 33 different types of the amines were listed in Table 2.  

After calculating the descriptors using the mentioned resources, we investigated 
the relationship between experimental values of the 
standard enthalpies of formation for the gas and liquid phases, namely ∆H˚

f(gas) and 
∆H˚

f(liquid) with above descriptors using Excel software. 
 

Table 2. The literature values of the ∆H˚f(gas) /kJmol-1  and ∆H˚f(liquid) /kJmol-1   
                    of training set. 

 
No Name  ∆H˚

f (Liq) ∆H˚
f ( gas ) No Name ∆H˚

f ( Liq ) ∆H˚
f ( gas ) 

1 Aminoethane            -84.5 -57.7 20 4-methylpyridine      59.2 103.8 

2 3-amino-1-
propene              

10.0 - 21 Aminocyclohexane    -141.5 -98.7 

3 1-aminopropane       -101.5 -69.9 22 1-aminohexane         -239.0 -193.9 
4 2-aminopropane       -112.3 -83.7 23 di-n-Propylamine      -154.6 -116.5 
5 Methylethylamine              -45.73 - 24 triethylamine 169.0 - 

6 Trimethaylamine      -45.73 -23.7 25 2-methylaniline        -4.7 53.2 
7 Pyrrolidine              -41.0 -3.4 26 3-methylaniline        42.3 61.1 
8 1-aminobutane         -127.7 -95.0 27 4-methylaniline       19.0 41.8 
9 1-amino-2- 

methylpropane           
-132.5 -98.6 28 N-Methylaniline       33.4 83.9 

10 2-Aminobutane     - -106.0 29 Quinuclidine            - -4.3 
11 2-methyl-2- 

aminopropane                   
-150.6  -120.0 30 1-aminoheptane         -266.0 -216 

12  Diethylamine                   -131.0 -99.80 31 2,4,6,- 
trimethylpyridine                  

31.0 - - 

13 Pyridine                 99.96 140.2 32 di-n-butylamine         -212.3 -171.1 
14  n-methylpyrrole                 62.38 103.1 33 tri-n-propylamine              -206.9 -160.8 

15 Piperidine              -86.44 -47.15 34 Carbazole              - 205.0 
16 Methylbuthylamine -141.2 -108.3 35 2-aminobiphenyl    - 184.4 
17 Aniline                  31.3 87.03 36 Diphenylamine       132.0 202 
18 2-methylpyridine      -68.99  -26.5  37    n,n-diphenylamino  

methane                          
120.5  - 
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The multiple linear regression method was used to explore the relationship 
between standard enthalpy value of formations and molecular descriptors using 
SPSS software version 16 with multiple linear regression method and backward 
procedure with an estimated error of 0.05. Whether or not the regression model 
explains a statistically significant percentage of data was found through the 
ANOVA Table of output based on the MLR model in terms of the relationship 
between properties and structural indices.  

In this method, 15 molecular descriptors were considered as independent 
variables and the values of ∆H˚

f(gas) and ∆H˚
f(liquid) were considered as dependent 

variables. As it can be seen in Table 3 and 3, the 12th and the 5th models indicate a 
highly acceptable validity to maintain the structure-property relationship for 
predicting ∆H˚

f(liquid) and ∆H˚
f(gas) among the proposed models, respectively. 

 
Table 3. The efficient statistical parameters for prediction of ∆H˚

f (liquid)/kJmol-1  

                             in 12 models. 
 

No Predictors R R2 R2
Adj STD F MS 

1 PSA, Platt, X, J, W, H, WW, 
Wp, Sz, DE, V, MinPA, 
MinZL, MaxPA, MaxZL 

0.972 0.945 0.896 34.474 19.307 22946.43 

2 PSA, Platt, X, J, W, H, WW, 
Sz, DE, V, MinPA, MinZL, 

MaxPA, MaxZL 

0.972 0.944 0.901 33.521 21.878 24583.90 

3 PSA, Platt, X, J, W, H, WW, 
Sz, DE, V, MinPA, MaxPA, 

MaxZL 

0.972 0.944 0.906 32.658 24.819 26471.95 

4 PSA, Platt, X, J, W, H, WW, 
Sz, DE, V, MinPA, MaxZL 

0.972 0.944 0.910 31.951 28.078 28665.22 

5 PSA, Platt, X, J, H, WW, Sz, 
DE, V, MinPA, MaxZL 

0.971 0.944 0.914 31.278 31.952 31259.62 

6 PSA, X, J, H, WW, Sz, DE, 
V, MinPA, MaxZL 

0.971 0.943 0.917 30.683 36.505  34368.841 

7 PSA, X, J, H, WW, Sz, V, 
MinPA, MaxZL 

0.971 0.942 0.920 30.223 41.768  38154.538 

8 PSA, X, J, H, WW, V, 
MinPA, MaxZL 

0.970 0.941  0.922 29.808 48.264  42884.507 

9 PSA, X, J, H, WW, 
V,MaxZL 

0.970 0.940 0.924 29.463 56.397  48956.987 

10 PSA, J, H, WW, V,MaxZL 0.968 0.937 0.922 29.823           63.951 56879.331 
11 PSA, H, WW, V, MaxZL 0.967 0.935 0.923 29.606           77.746 68146.928 
12 PSA, H, MaxZL, V 0.964 0.928 0.918 30.511           90.859 84583.718 
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Table 4. The efficient statistical parameters for prediction of ∆H˚
f (gas)/kJmol-1  

             in 5 models. 
 

No Predictors R R2 R2
Adj STD F MS 

1 MaxPA, PSA, MinPA, MinZL, 
DE, J, WW, Wp, MaxZL 

0.967 0.936 0.911 39.011 37.214 56635.512 

2 MaxZL, MaxPA, DE, Wp, 
PSA, MinPA, WW, , J 

0.967 0.936 0.914 38.211 43.633 63709.935 

3 MinPA, MaxPA, DE, J, WW, 
PSA,  MaxZL, 

0.967 0.935 0.917 37.622 51.407 72762.430 

4 MaxZL, MaxPA, PSA,  DE,  
 J, WW 

0.967 0.934  0.919 37.147 61.460 84807.622           

5 MaxZL MaxPA, DE, J, WW 0.964 0.930 0.917 37.646 71.472 101291.556         

 

4. STATISTICAL COEFFICIENTS  

Various statistical tests and coefficients can be used for validation of applied 
models. In the following, the most appropriate and important ones are represented. 

4. 1. R: Correlation coefficient indicates the correlation between two 
variables. Statistically, the higher correlation between variables X and Y, the 
more accurate the prediction will be. The R=0.964 in 12th and 5th models in 
Tables 3 and 4, illustrate a strong correlation between ∆H˚

f(gas) and ∆H˚
f(liquid) 

as dependent variables and significant molecular descriptors as independent 
variables using the MLR method respectively. 
4. 2. R2: The values of R2=0.930 and 0.928 in 12th and 5th models in Tables 3 
and 4, illustrate that 93% and 92.8% of ∆H˚

f(gas) and ∆H˚
f(liquid) can be 

explained by the best models, respectively. 
4. 3. Sig: level of significance (Sig) shows the maximum amount of errors in 
decision level in terms of testing the hypothesis. Thus, the appropriate level 
of significance (Sig. <0.05) indicates that the association between the 
dependent variables ∆H˚

f(gas) and ∆H˚
f(liquid) and the their predictor variables is 

statistically significant. 
4. 4. F Statistic: The lower the significance level is, the higher the Fischer 
statistic will be. The higher values of Fisher number equal to 71.472 and 
90.859 in 12th and 5th models according to the Tables 3 and 4, respectively, 
affirms the fact that there is sufficient data and the molecular indices in the 
best models have been selected appropriately. 
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4. 5. R2
Adjust: refers to adjusted determination coefficient. It should be noted 

that the percentage of adjusted determination coefficient does not represent 
the influence of all the independent variables, but it only illustrates the real 
influence of applied independent variables on the dependent variable. Thus, 
the equation R2

Adjust=0.917 for ∆H˚
f (gas) can be used to explain the ∆H˚

f(gas). 
Variations in terms of the values of independent variables MaxZL, MaxPA, 
DE, J and WW, and R2

Adjust=0.918 for ∆H˚
f (liquid) indicates that variations of 

∆H˚
f(liquid) can be explained in terms of the values of PSA, H, MaxZL and V. 

4. 6. STD: Standard error of estimate is used to indicate the spreadness of 
values in a distribution. It is a standard method for determining the normal or 
the abnormal values. The indices mentioned specify that the selected model 
possess the necessary quality for predicting the thermodynamics functions of 
amines. 

Finally, the comparison of models and the values of statistical coefficients 
showed that the best models for predicting ∆H˚

f(gas), ∆H˚
f(liquid) of amines using the 

MLR method are as follows:      
 

∆H˚
f(gas) = −4.725 MaxPA−75.145 MaxZL−76.773 J + 7.307 DE + 0.132 WW + 585.256       (4.1) 

∆H˚
f(liquid) = −2.143 PSA + 21.900 H −4.923 V −25.839 MaxZL + 357.763                           (4.2) 

 
Equation 4.1 with multiple linear regression model shows that the 

∆H˚
f(gas) of studied amines can be determined using the obtained 

coefficients for molecular descriptors of Maximum Projection Area, 
Maximum Z Length, Wiener-Polarity, Dreiding-Energy, Balaban. Also 
Equation 4.2 shows that the ∆H˚

f(liquid) of mentioned molecules can be 
determined using the obtained coefficients for molecular descriptors of 
Projection Surface Area, Harary, Maximum Z Length  and Volume. 

Table 4 shows the predicted and residual (literature-calculated) of 
the standard enthalpies of formation for gas and liquid phases of 33 
different types of amines. 

In Figures 2 and 3, the values of R2 show the linear correlation between 
experimental and predicting values resulted from the model that is related to the 
dependent variable. The larger values of R2 indicate a stronger correlation. 

R2 refers to the determination coefficient and represents the square of the 
multiple correlation coefficients. The obtained value for R2 =0.9298 in Figure 1. 
emphasizes the fact that 92.98% of change in ∆H˚

f(gas) has been explained with 5th 
model  in Table 4. Also the value of R2 equal to 0.9285 in Figure 2 indicates that 
92.85% of change in ∆H˚

f(liquid) has been explained with 12th model in Table 3. 
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These results show that there is the high linear correlation between 
the experimental and standard enthalpies of formation obtained using 
Equations 4.1 and 4.2. The values of determination coefficient of above 
figures confirm that change in the dependent variable with a good 
approximate can be determined using the values of independent variables. 
 

Table 5. The predicted and residual ∆H˚
f (gas)/kJmol-1 and ∆H˚

f (liquid)/kJmol-1  

                              of the training set. 

No 
∆H˚f 
( gas ) 
pred 

∆H˚f 
( gas ) 

[Residual] 

∆H˚f 
(liquid) 

Pred 

∆H˚f 
(liquid) 

Residual 
No 

∆H˚f 
( gas ) 
pred 

∆H˚f 
(gas) 

[Residual] 

∆H˚f 
(liquid) 

Pred 

∆H˚f 
(liquid) 

Residual 
1 -30.636 -27.063 -59.91 -24.58 20 93.4281 10.37186 45.20 13.99 
2 - - -54.81 64.80 21 -47.917 -50.7829 -113.21 -28.29 
3 -70.431 0.53069 -103.74 2.24 22 -120.43 -73.4701 -200.67 -38.32 
4 -74.786 -8.9137 -94.01 -18.29 23 -151.29 34.79249 -187.93 33.33 
5 - - -76.25 30.53 24 - - -157.10 -11.89 
6 11.1656 -34.8656 -34.39 -11.33 25 26.7642 26.43577 7.32 -12.04 
7 -36.082 32.68201 -51.00 10.00 26 35.4288 25.67119 8.08 34.22 
8 -102.9 7.900822 -143.11 15.41 27 36.3095 5.49046 6.16 12.83 
9 -130.8 32.18318 -145.40 12.90 28 44.9229 38.97707 25.97 7.43 
10 -111.63 5.632586 - - 29 29.0198 -33.3198 - - 
11 -179.01 59.01339 -148.49 -2.10 30 -200.28 -15.7218 -252.09 -13.90 
12 -96.797 -3.00289 -114.25 -16.74 31 - - 0.34 -31.34 
13 115.065 25.13491 78.17 21.79 32 -185.46 14.35947 -242.41 30.11 
14 113.651 -10.5511 58.85 3.52 33 -114.2 -46.5986 -211.32 4.43 
15 -38.674 -8.47554 -64.05 -22.79 34 221.935 -16.9347 - - 
16 -105.01 -3.28895 -145.37 4.17 35 101.844 82.56617 - - 
17 96.7445 -9.71449 34.80 -3.50 36 183.179 18.82063 125.81 6.19 
18 48.296 -74.796 32.21 -101.20 37 - - 110.08 10.41 
19 87.3428 16.25723 43.49 17.60 38 346.321 -19.3205 - - 
 

 
 

 
Figure 1. The diagram of the experimental versus predicted ∆H˚

f(gas) /kJmol-1.    
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Figure 2. The diagram of the experimental versus predicted ∆H˚

f(liquid) /kJmol-1 .  
       

To analyze the equal distribution of errors, curves indicating the 
relationship between experimental results and residuals were sketched. It was 
demonstrated that the errors around the axis X have an equal distribution 
indicating that the proposed method is an appropriate method for predicting the 
standard enthalpies of formation of amines. The comparison of experimental and 
predicted standard enthalpies of formation using the MLR model indicates that the 
Equations 3.1 and 3.2 might be used successfully to predict the ∆H˚

f(gas), ∆H˚
f(liquid) 

of studied organic molecules, respectively (see Figures 3 and 4). 
 

 
Figure 3. Comparison of the experimental and predicted ∆H˚

f(gas) /kJmol-1 . 
 

 
Figure 4. Comparison of the experimental and predicted ∆H˚

f(liquid) /kJmol-1 . 
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For evaluating the uniform distribution form of residuals, the scatter curves 
of the relation between residual values with the standard enthalpies of formation 
have been plotted. It was also shown that the residuals around x-axis have almost a 
uniform distribution which proves the suitability of the selected pattern for 
experimental values of the standard enthalpies of formation of studied amines 
(Figures 5 and 6). 

 

 
Figure 5. The scatter curves of the residuals against experimental ∆H˚

f(gas) /kJmol-1 
values. 

 
 

 
 

Figure 6. The scatter curve of the residuals against experimental ∆H˚
f(liquid) /kJmol-1  

values. 
 
5. VALIDATION METHODS 

5. 1. VIF TEST  

A variance inflation factor (VIF) quantifies how much the variance is inflated. The 
VIF may be calculated for each predictor by doing a linear regression of that 
predictor on all the other predictors. The computation formula of VIF is: 1/(1−R2).  
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The permissible values of VIF are between 1-10, confirming that there is no 
multicollinearity. The analysis of VIF values for all the descriptors indicate that the 
best descriptors for predicting ∆H˚

f(gas) and ∆H˚
f(liquid) values are: PSA, H, V and 

MaxZL, and also J, DE, WW, MaxPA and MaxZL on the 5th and 12th models, 
respectively (See Table 6). As it can be seen in the Table 8, the higher VIF is, the 
lower the tolerance will be. 
 

Table 6. The collinearity statistics. 
 

5th Model for 
predicting 

ΔH ͦf (gas)
 /kJmol-1 

Descriptors Tolerance VIF Beta 
MaxZL 0.741 1.349 -0.493 
MaxPA 0.282 3.544 -0.435 

DE 0.198 5.057 0.769 
J 0.622 1.607 -0.250 

WW 0.209 4.790 0.362 
12th Model for 

predicting 
ΔH ͦf (liquid)

 /kJmol-1 

PSA 0.873 1.146 -0.172 
H 0.256 3.901 1.592 
V 0.217 4.599 -1.450 

MaxZL 0.740 1.351 -0.199 
 

5. 2. β  

The values of standard coefficients β of the best descriptors which were used for 
predicting ∆H˚

f(gas) and ∆H˚
f(liquid) in the Equations 4.1 and 4.2 were listed in Table 6.  

The standard correlation coefficient β value is a measure of how strongly each 
predictor variable influences the dependent variable. According to the data in the 
Table 6, and the DE variable which is used for predicting ∆H˚

f(gas), the value of β 
equals to 0.769 indicate that compared to MaxZL, MaxPA, J, WW and PSA 
predictor variables, the DE index has the strongest influence on ∆H˚

f(gas). Also, the 
value of β=1.592 reveals that the descriptor H has the highest influence on 
dependent variable ∆H˚

f(liquid) than the PSA, V and MaxZL predictors. 
 

5. 3. LEAVE−ONE−OUT (LOO) CROSS−VALIDATION  

To determine the LOO cross validation, at first, a molecule from training set of 33 
primary amines was removed and then QSPR was examined on the 32 remaining 
molecules. Considering the amount of RSS and TSS, the amount of Q2 was 
calculated based on Formula (5.1) and this cycle was repeated resulting in 
elimination of 25% of amines which were being studied. This resulted in 
examination and calculation of Q2 for the remaining amines. 

  
TSS
RSS

YY
YY

Q
Trainingtrain

trainpredtrain 





 1

)(
)(

1 2
)exp(

2
)()exp(2                               (5.1) 
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where, RSS is the residual sum of squares and TSS represents the total 
sum of square. This formula is the most widely used measure of the ability 
of a QSPR model to reproduce the data in the training set. We have 
computed the values of Q2 (Equation 5.1) using %25 of training set 
randomly. The values of Q2 are defined as positive and less than one. (see 
Table 7 ). 
 

Table 7. The Q2 LOO values of ∆H˚
f (gas)/kJmol-1 and ∆H˚

f (liquid)/kJmol-1. 

No Q2LOO/ 
∆H˚

f(liquid) 

Q2LOO/ 
∆H˚

f(gas) 

No Q2LOO/ 
∆H˚

f(liquid) 

Q2LOO/ 
∆H˚

f(gas) 

1 0.9281 0.9297 5 0.9301 0.9423 

2 0.9284 0.9298 6 0.9582 0.9522 

3 0.9287 0.9318 7 0.9622 0.9553 

4 0.9300 0.9320 8 0.9626 0.9559 

  
            The small difference between mean Q2 values of ∆H˚

f(gas) and ∆H˚
f(liquid) are 

equal to 0.9410 and 0.9411 respectively, and the R2 values of them verify the 
precision and accuracy of the model for predicting the mentioned thermodynamic 
functions.         
 
5. 4. APPLICABILITY DOMAIN 

Applicability domain (AD) determines the degree of generalization of an obtained 
predictive model. The AD is an important tool for reliable application of a QSPR 
model. This study reports that the AD can be easily used for identification of the 
X-outliers for training set amines and detection of the test amines residing outside 
the AD through the use of molecular descriptors. The leverage approach along 
with the Williams Plot was used to determine the applicability domain in 
predictive QSAR models. To create the Williams Plot, the leverage hi for each 
compound in training set, in which QSPR model was used to predict its property, 
was calculated according to the equation (5.2):  

hi=xT(XTX)−1x                                                (5.2) 
where, x represents the descriptor vector of the considered compound and X 
represents the descriptor matrix derived from the training set descriptor values. 
The warning leverage (h*) was determined as: 

 h*=3(p+1)/n                                                    (5.3) 
where n is the number of training compounds and p is the number of predictor 
variables. According to the equation (5.3), the values of h* in 12th and 5th models 
(in which, n=33 and p=4 and 5) will be equal to 0.454 and 0.545, respectively. 
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In this research, in 12th and 5th models, the descriptor vector x includes the 
PSA, H, MaxZL, V and MaxZL MaxPA, DE, J, WW descriptors and X is PSA, H, 
MaxZL, V and MaxZL, MaxPA, DE, J, WW descriptors matrix related to training 
set of amines, respectively. (The leverage values are shown in Table 8). 

Then, the defined applicability domain (AD) was visualized 
through the use of a Williams plot, the plot of the standardized residuals 
versus the leverage values (h). A compound with hi > h* seriously 
influences the regression performance and may be excluded from the 
applicability domain, see Figures 7 and 8. The results indicated that among 
training set of 33 amines, there is just one and two outlier for prediction of 
∆H˚

f(liquid) and ∆H˚
f (gas), respectively.  

 

Table 8. The leverage values of the training set. 
No. h/ΔH˚

f (liquid) h/ΔH˚
f(gas) No. h/ΔH˚

f(liquid) h/ΔH˚
f (gas) 

1 0.1283 0. 1918 18 0.0564 0.0599 
2 0.0674 0.0779 19 0.0623 0.0760 
3 0.0703 0.0644 20 0.0518 0.0610 
4 0.0576 0.0965 21 0.1183 0.0699 
5 0.0859 0.1677 22 0.0692 0.0481 
6 0.1723 0.0389 23 0.1335 0.0525 
7 0.1564 0.0592 24 0.1001 0.0470 
8 0.0527 0.0457 25 0.1090 0.0397 
9 0.0670 0.2521 26 0.1056 0.6654 
10 0.1057 0.0348 27 0.0505 0.1683 
11 0.0484 0.1486 28 0.1753 0.2217 
12 0.1320 0.1605 29 0.0324 0.4169 
13 0.1388 0.0261 30 0.1777 0.2626 
14 0.0275 0.0267 31 0.3195 0.1386 
15 0.0432 0.1031 32 0.2707 0.1867 
16 0.1387 0.0306 33 0.6401 0.9050 
17 0.0333 0.0541  

 

 
Figure 7. The Williams plot of residual ∆H˚f (liquid) /kJmol-1 versus leverage. 
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Figure 8. The Williams plot of residual ∆H˚f (gas) /kJmol-1 versus leverage. 
 

5. 5. RESIDUALS SKEWNESS 

The normality of residuals was analyzed for obtaining more confidence in 
the accuracy of applied method. The skewness is a function indicating the 
symmetry or asymmetry of the distribution function. In general, if the 
skewness is placed at an interval between [2, -2], the data follow a normal 
distribution. The observed values 1.082, and 0.429 for residuals skewness 
of ∆H˚f(liquid) and ∆H˚f(gas) indicate their normality, respectively. 
 
5. 6. DW  

In a regression analysis, the Durbin–Watson statistic is used to detect the 
presence of autocorrelation in the residuals. The most optimum variation 
interval of Durbin-Watson coefficient is between 0-4. The values DW 
equal to 2.349 and 1.919 of 12th and 5th models in Tables 3 and 4 are 
acceptable values indicating the lower correlation between the errors and 
the independence of the residuals respectively. 
 

5. 7. CORRELATION  

The predictive power, firmness and reliability of a QSPR model 
dependents on the used molecular descriptors. Correlation measures the 
strength and direction of a linear relationship. As it’s seen in Tables 9 and 
10, the values of correlations between descriptors of final models indicate 
that descriptors in selective models had been chosen correctly. 
 

Table 9. Correlations between descriptors of 12th model of the Table 2. 

 
 
 

Correlations PSA H V MaxZL 
PSA 1    
H -0.334 1   
V -0.343 0.645 1  
MaxZL -0.075 0.199 0.418 1 
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Table 10. Correlations between descriptors of 5th model of the Table 3. 
Correlations J MaxZL DE WW MaxPA 
J 1     
MaxZL 0.137 1    
DE -0.403 0.242 1   
WW -0.307 0.382 0.651 1  
MaxPA -0.074 0.214 0.615 0.769 1 

 
Therefore, various statistical coefficients, tables and diagrams analyzed in 

the multiple linear regression method possess the necessary and sufficient validity 
for predicting the thermodynamic functions of amines. 

 
6. CONCLUSIONS 

In this study, a model was presented for predicting the enthalpies formation of 
amines in two gas and liquid phases. This model was based on topological and 
geometrical descriptors and the important rule of these molecular descriptors were 
specified for predicting the studied thermodynamic functions in this class of 
organic molecules. According to the result, it can be seen that there is good 
correlation between the ∆H˚

f(gas) of studied amines in this report with molecular 
descriptors of MaxPA, MaxZL, Wp, DE and J. Also it can be identified that the 
∆H˚

f(liquid) of mentioned molecules can be determined using the obtained 
coefficients for molecular descriptors of PSA, H, MaxZL and V. 
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