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scheme ,  inspired by Multi-objective Invasive Weed 
Optimization (MOIWO) and Non-dominated Sorting 
(NS) strategies ,  to find approximate solutions for multi-
objective optimal control problems (MOCPs) .  The 
desired control function may be subjected to severe 
changes over a period of time .  In response to 
deficiency ,  the process of dispersal has been modified 
in the MOIWO .  This modification will increase the 
explorative power of the weeds and reduces the search 
space gradually during the iteration process .   The 
performance of the proposed algorithm is compared 
with conventional Non-dominated Sorting Genetic 
Algorithm (NSGA-II) and Non-dominated Sorting 
Invasive Weed Optimization (NSIWO) algorithm .   
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1. INTRODUCTION 

In many real-world optimal control problems ,  there are several (possibly 
conflicting) objectives that need to be optimized simultaneously .  Such control 
problems arise in many applications such as designing optimal reactor feed 
ing rates in (bio)chemical engineering ,  optimal power management of fuel cells in 
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electrical engineering ,  optimal robot paths in  mechanical engineering and optimal 
rocket trajectories in aerospace engineering [17] . 

In multiobjective problems (MOPs) there are no exists one single optimal 
solution that is best with respect to all objective .  So we have a set of solutions ,  in 
which an objective can not be improved without worsening at least one of the other 
objectives .  This solution set is said to be the Pareto optimal (or non-dominated) 
solution set and its image in the objective space is usually called the Pareto optimal 
frontier. 

There are two different strategies for generating a set of Pareto optimal 
solutions representing the entire Pareto optimal frontier :  One-at-a-time strategy , 
 and Simultaneous strategy .  In the former ,  a multi-objective optimizer may be 
applied one at a time with the goal of finding one single Pareto optimal solution . 
 Most classical generating multi-objective optimization methods use such an 
iterative scalarization scheme ,  such as weighted sum (WS) method [23]. 

The WS method is a commonly used scalarization   technique which consists 
of assigning each  objective function a weight coefficient and then optimizing the 
function obtained   by summing up all the objective functions scaled by their   weight 
coefficients so that only one solution can be obtained .The trade off surface is then 
determined by repeating this process with different settings of the weights .  The 
drawback of this approach is that the solution of the problem is dependent on the 
choice of the relative weights assigned to different objectives [33]. 

Moreover ,  the main criticism of this method is that although there are 
results for convergence ,  an equal distribution of weights does not guarantee an 
even distribution of the points along the Pareto frontier .  Also this method has 
disadvantage of missing the non-convex portions of a Pareto frontier [6] .  In 
response to deficiencies in the WS method ,  several algorithms such as Normal 
Boundary Intersection (NBI) [6] and Normalized Normal Constraint (NNC) [22] 
have been proposed that use scalarization schemes providing an uniform 
distribution among solutions along the Pareto frontier . 

Recently ,  Logist et al . [17−20] successfully combined these methods with 
direct optimal control methods such as orthogonal collocation [1,2] ,  single and 
multiple shooting [3,15] to efficiently solve MOCPs . 

 In the simultaneous approach ,  several Pareto-optimal solutions are found in 
a single simulation run ,  thereby there is no need to perform a series of separate 
runs as in the case of classical optimization techniques .  These algorithms are 
usually population based and exchange important information among population 
members . 

 In past two decades several nature-inspired meta-heuristics were introduced 
to find approximate   solutions of multi-objective problems ,  such as the Multi-
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Objective Genetic Algorithm (MOGA) [10] ,  Vector Evaluated Genetic Algorithm 
(VEGA) [34] ,  Niched Pareto Genetic Algorithm (NPGA) [9] ,  Strength Pareto 
evolutionary algorithms (SPEA) [37] ,  SPEA2 [38] ,  Pareto Archive Evolution 
Strategy (PAES) [12] ,  Multi-Objective Particle Swarm Optimization (MOPSO) 
[5] ,  Multi-Objective Invasive Weed Optimization (MOIWO) [14] ,  Non - 
 Dominated Sorting Genetic Algorithm (NSGA) [35] and NSGA-II [8]. 
 

 1.1.   HISTORICAL DEVELOPEMENTS – A SHORT OVERVIEW  

Evolutionary strategies are potentially able to cover the entire Pareto set and have 
been also successfully used to solve MOOCPs .  For instance ,  sharker and modak 
used evolutionary strategy to solve two optimal  control problems related to fed-
batch bioreactors under NSGA-II framework [33] .  Zhang et .  al .  introduce an 
iterative multi-objective particle swarm optimization based control vector 
parameterization is proposed for the state constrained chemical and biochemical 
engineering problems [40] .  Sun et .  al .  proposed a hybrid improved genetic 
algorithm (HIGA) for solving dynamic optimization problems of chemical 
processes [36] .  Patel and Padhiyar introduce a modified genetic algorithm using 
Box Complex method and used it to solve optimal control problems [28]. 

Evolutionary optimization algorithms are better able to be converted to a 
global solution than the traditional methods in complex optimization problems 
[27] .  Some of their advantages are :  (I) the objective functions gradient is not 
required; (II) they are not sensitive to initial guess of solution and (III) they usually 
do not get stuck in to a local optimum [25]. 

The purpose of this study is to find approximate solutions of MOCPs by 
using an evolutionary optimization strategy .  This strategy is an improved version 
of Non-dominated Sorting Invasive Weed Optimization (INSIWO) [24] .  The most 
important motivation of the proposed strategy is to improve the process of 
dispersal in order to increase the explorative power of the weeds which causes 
further promote the convergence rate and diversity solution along Pareto frontier . 

The remainder of this study is organized as follows .  In Section 2 , 
 mathematical formulations of general multi-objective optimal control problem are 
briefly introduced .  The heuristic approaches for solving multi-objective 
optimization problems are described in Section 3 .  Section 4 describes the proposed 
algorithm .  Lastly in section 5 ,  the ability of proposed strategy is demonstrated with 
three practical multi-objective optimal control problems. 
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2.  MULTI−OBJECTIVE OPTIMAL CONTROL PROBLEM 

Mathematically ,  a general multi-objective optimal control problem contains a 
number of objectives to be minimized and (optional) constraints to be satisfied .  In 
this case ,  a multi-objective optimal control problem consists of optimizing a vector 
of functions : 

Opt൫J(x,u)൯=൫J1(x,u),J2(x,u),…,Jm(x,u)൯                           (1) 

ẋ=f(x(t),u(t),t),                                                     (2) 

b൫x(0)൯=0,                                                                           (3) 

bf൫x(tf)൯=0,                                                                           (4) 

cp(x(t),u(t),t)≤0,                                                                           (5) 

cf(x(tf),u(tf),tf)≤0,                                                                           (6) 

 where Ji=φ(x(tf),tf)+ ∫ Li
tf

t0
(x(t),u(t),t)dt,  𝑥 ∈ 𝑅௡ denotes the state variables  and 

𝑢 ∈ 𝑅௠ is the control in a given time interval [t0,tf].  The final time 𝑡௙ may be 

known or variable (free end time control problem) . The functions 𝑓: 𝑅௡ × 𝑅௠ ×

𝑅 → 𝑅௡ , 𝜑: 𝑅௡ × 𝑅 → 𝑅  and 𝐿: 𝑅௡ × 𝑅௠ × 𝑅 → 𝑅௡ are assumed to be sufficiently 
smooth on appropriate open sets .  The initial and terminal boundary conditions are 
given by the vectors  b  and 𝑏௙ ,  respectively .  The vectors 𝑐௣ and 𝑐௙ indicate path 

and final inequality constraints on the states and controls ,  respectively .  The 
admissible set Ω ⊆ 𝑅௡ × 𝑅௠ × 𝑅 is defined to be set of all feasible pair state and 
control (x,u) that satisfy in  E q.(2−6).  

 In MOCPs are usually objectives in conflict with each other thus the 
concept of optimum is not well defined in this context ,  so it is difficult to have an 

admissible pair ൫x*,u*൯ that optimizes all the objectives simultaneously .  Therefore , 

 the concept of Pareto optimality is used .  The concept of optimality in single 
objective is not directly applicable in multi-objective optimization problems .  For 
this reason a classification of the solutions is introduced in terms of Pareto 
optimality ,  according to the following definitions [40] .  In terms of minimization of 
objective functions  we have the following definitions: 
  

Definition 1.  An pair ൫x*,u*൯∈Ω is Pareto optimal solution of the MOCP if and 

only if there is no other pair (xത,uത)∈Ω ,  such that 𝐽௜(xത,uത) ≤ 𝐽௜൫x*,u*൯ for i = 1, 2,…,m 

and Ji(xത,uത)<Ji൫x*,u*൯  for at least one objective function i. 

  

Definition 2. (Pareto dominance):  A pair ൫x*,u*൯ ∈ Ω is said dominate another pair 

(xത,uത)∈Ω, denoted by (xത,uത)≺൫x*,u*൯, if the pair ൫x*,u*൯ is no worse than pair (xത,uത) 
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in all objectives and the pair ൫x*,u*൯ is strictly better than (xത,uത) in at least one 

objective .  If there are no solutions which dominate ൫x*,u*൯ ,  then it is non-

dominated . 
 

Definition 3. (Pareto set ):  A set of non-dominated pairs ൫x*,u*൯ ∈ Ω such that 

{∄(xത,uത)∈Ω | (xത,uത)≻൫x*,u*൯} is said to be a Pareto set . Also,   the set of vectors in the 

objective space that are image of a Pareto set  is said to be a Pareto frontier. 
 

3.  EVOLUTIONARY ALGORITHMS 

Evolutionary algorithms (EAs) are recognized to be suitable to solve multi 
objective optimization problems ,  since they deal simultaneously with a set of 
possible solutions ,  allowing an entire set of Pareto optimal solutions to be evolved 
in a single run of the algorithm .Moreover ,  EAs are less sensitive to the shape or 
continuity of the Pareto frontier [4]. 
 
3.1.  NON-DOMINATED SORTING GENETIC ALGORITHM II (NSGA-II) 

The Non-Dominated Sorting Genetic Algorithm (NSGA) was introduced by 
Srinivas and Deb [35] .  The NSGA has been successfully applied to solve multi-
objective optimization problems .  This algorithm identifies non-dominated 
solutions in the population ,  at each generation ,  to form non-dominated fronts .  Then 
the usual selection ,  crossover ,  and mutation operators are performed .  The main 
criticisms of this algorithm have been high computational complexity of non-
dominated sorting ,  lack of elitism and choosing the optimal parameter value for 
sharing parameter𝜎-share .  Recently ,  Deb et al [8] proposed a modified version of 
NSGA ,  which they called NSGA-II ,  which is faster and more reliable than its 
predecessor and has a better sorting algorithm ,  incorporates elitism and no sharing 
parameter needs to be chosen a priori [30]. 

 In this algorithm ,  the population is initialized as random ,  and the number of 
population is N .  Next the population is sorted based on non-domination into each 
front .  The first front is completely non-dominant set in the current population and 
the second front is dominated by the individuals in the first front only and the front 
goes so on .  Each individual in the first front is given a value of 1 and individuals in 
second are assigned fitness value as 2 and so on .  Next ,  the archive is created based 
on the order of ranking fronts ,  i.e.   the best rank is selected first .  If the number of 
individuals in the archive is smaller than the population size ,  the next front will be 
taken into account and so on .  This procedure is called fast non-dominated sorting 
[24]. 
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 If adding a front increases the number of individuals in the archive to 
exceed the initial population size ,  a truncation operator is applied to the front based 
on the crowding distance (CD) .  For a member of non-dominated set ,  CD is 
calculated by finding distance between two nearest solutions on either side of the 
member along each of the objectives .  These distances are normalized by dividing 
them by the difference between maximum and minimum values of corresponding 
objectives .  For those members in the non-dominated set ,  which have maximum or 
minimum value for any objective (boundary solution) ,  CD is assigned to have an 

infinite value .  Let 𝐽௞
[௜] represent the fitness value of the individual i in the sequence . 

 Then ,  crowdedness of the individual 𝑖 in dimension k in that rank can be expressed 
as follows: 

 CDk
[i]

=
Jk
[i+1]

-Jk
[i-1]

Jk
max-Jk

min ,                                                                  (7) 

 where 𝐽௞
௠௔௫ and 𝐽௞

௠௜௡ represent the maximum and minimum values in objective k , 
 respectively .  Let say individual 𝑖 in a Pareto rank has m values for m objectives 
according to (7) .  So ,  one can simply summarizes the distances to represent the 
overall crowdedness ,  crowding distance ,  of this individual as  

 CD[i]= ∑ CDk
[i]m

k=1 ,                                                              (8) 

where 𝐶𝐷௞
[௜] is calculated by (7) and 𝐶𝐷[௜] is the crowding distance of individual i . 

Finally ,  the members of the non-dominated set are sorted in monotonically 
decreasing order according to CDs and a desired number of members having the 
largest CD values are selected [13]. 

Parents are selected from the population by using binary tournament 
selection based on the rank and crowding distance .  The individual with lesser rank 
is selected .  In case of solutions that have the same rank ,  an individual with the 
greatest crowding distance is chosen .  The selected individuals generates offspring 
from crossover and mutation operators .  The population with the current population 
and current offspring is sorted again based on non-domination and only the best 
𝑁 individuals are selected and others are deleted .  The selection is based on rank 
and on crowding distance on the last front .  Then the new population will be 
selected as parents at the next round [30] .  This cycle iterates until stop conditions 
are satisfied .  After optimization process is completed ,  the Pareto frontier is 
produced by non-dominated solutions [11] . 

 
3.2.   INVASIVE WEED OPTIMIZATION (IWO) 

Invasive weed optimization was developed by Mehrabian and Lucas in 2006 [21] . 
 The IWO algorithm is an adaptive algorithm based on the metaphor of natural 
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biological evolution of weed colonizing in opportunity spaces for function 
optimization .  The algorithm is simple but has shown to be effective in converging 
to optimal solutions employing basic properties ,  e.g .  seeding ,  growth and 
competition ,  in a weed colony [39]. 

The IWO algorithm works with an initial population of  𝑁 weeds dispersed 
on d-dimensional problem space with random positions .  These weeds will 
eventually grow up and execute four steps :  initialization ,  reproduction ,  spatial 
distribution and competitive exclusion [14]. 

 In this algorithm ,  first a finite number of weeds (initial population) 
W={w1,w2,…,wn},  where each corresponding to a solution of the problem ,  are 
generated randomly in over feasible search space .Then the reproduction process is 
done ,  where  each member of the population of weeds will produce seeds based on 
its fitness ,  the colony's fitness and the highest fitness ,  to simulate the natural 
survival of the fitness process .  The number of seeds for each member begins with 
the value of 𝑆௠௜௡ for the worst member and increases linearly to 𝑆௠௔௫ for the best 
member .  The number of seeds that weed 𝑖 can produce is calculated by Equation 9 : 

 𝑠𝑒𝑒𝑑(𝑖) =
(ி௜௧(௜)ିி௜௧೘೔೙)(ௌ೘ೌೣିௌ೘೔೙)

ி௜௧೘ೌೣିி௜௧೘೔೙
                                              (9) 

where , 𝐹𝑖𝑡(𝑖) is the fitness of the i-th plant , 𝑆௠௔௫ is the maximum number of 
seeds , 𝑆௠௜௡ is the minimum number of seeds , 𝐹𝑖𝑡௠௔௫ and  𝐹𝑖𝑡௠௜௡ are the 
maximum fitness and the minimum fitness in the colony ,  respectively. 

 In the next step (spatial distribution) ,  the generated seeds are being 
randomly distributed over the entire d-dimensional search space by normally 
distributed random numbers with zero mean but varying variance .  This step 
ensures that seeds will be randomly distributed at the neighborhood of parent 
weed .  Here the standard deviation of the random function is given as follow : 

 𝜎௜௧ = ቀ
௜௧೘ೌೣି௜

௜௧೘ೌೣ
ቁ

௡

൫𝜎௜௡௜௧௜௔௟ − 𝜎௙௜௡௔௟൯ + 𝜎௙௜௡௔௟                              (10) 

 where 𝜎௜௧ is the standard deviation in the current iteration , 𝑖𝑡௠௔௫ is the maximum 
number of iterations , 𝜎௜௡௜௧௜௔௟ and 𝜎௙௜௡௔௟ are the maximum and minimum standard 

deviation and 𝑛 is the nonlinear modulation index .  This means that the standard 
deviation of the random function will be reduced from initial value 𝜎௜௡௜௧௜௔௟ to a 
final value 𝜎௙௜௡௔௟  in every iteration of the algorithm. 

 Finally in the fourth step ,  a competitive exclusion is conducted in the 
algorithm .  In fact ,  following a number of iterations the population size reaches its 
maximum .  At this point an elimination mechanism is needed .  To this end ,  the 
seeds and their parents are ranked together and those with better fitness survive 
and become reproductive . 
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3.3.     MULTI− OBJECTIVE INVASIVE WEED OPTIMIZATION 

In order to adopt IWO algorithm for solving multi-objective  optimization problems , 
 Nikoofard et .  al .  use a non-dominating sorting technique to find the strength of the 
weeds or sort the weeds [24] .  They called it the Non-dominated Sorting Invasive 
Weed Optimization (NSIWO) .  The sorting of weeds in MOIWO algorithm is 
similar to the   NSGA-II .  

 In this algorithm ,  the initial population of weeds is generated   randomly in a 
small region of the search space .  In each generation ,  candidate parents are selected 
from the current population (archive) by a binary tournament selection .  Next ,  a 
process of seed reproduction and seed dispersal are applied to generate the 
offspring population .  The offspring solution   set is added to the previous 
population ,  and the fronts are derived through fast nondominated sorting   
algorithm .  The crowding distance is also assigned for each individual  in the 
population .  Then ,  the weakness (opposite of fitness) of  each individual w is 
calculated according to the following formula : 

Weakness (𝑤) = 𝑟𝑎𝑛𝑘(𝑤) +   1/𝐶𝐷(𝑤) + 2 
 where , rank(w) is the front number and CD(w) is the crowding distance for w .  In 
this equation ,  the fitness (opposite of weakness) is   proportionate to the crowding 
distance ,  but it is disproportionate   to the rank .  Thus ,  the individuals in the lower 
fronts and with  better density have higher fitness .  Finally , the individuals with lower 
fitness are eliminated from the combined  population explained above ,  and a new 
population is formed  for the next iteration [24] . 
 
4.  PROPOSED IMPROVED NSIWO ALGORITHM 

In this section ,  we propose an improved version of NSIWO algorithm ,  which we 
called INSIWO . This algorithm is in the large part similar to NSIWO except in the 
process of dispersal . The whole procedure for INSIWO algorithm is given as 
follows. 

First discretize the control space and then the state space .  Choose an 
equidistance partition of the time interval [t0,tf].  with a step size ℎ = (𝑡௙ − 𝑡଴)/ℎ , 

 and equidistant nodes on the set of control values corresponds to i-th component of 
the control vector function as (ui0,ui1,…,uin). 

 At the primitive step ,  the algorithm generates a population of weeds in the 
entire search space .  So ,  each weed is represented by a smooth solution 
curves ,𝑢(𝑡),  that represent the candidate solutions for the optimal control signals. 
 For each solution vector , 𝑢(𝑡) ,  solve the given system of differential equations that 
represent the dynamic system to be controlled ,  for 𝑥(𝑡) numerically using any 
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numerical solver of high accuracy (RK4 ,  for instance) using the given initial 
conditions on the state variables. 

 Based on the generated initialization population ,  where each individual of 
the population is a vector in 𝑅ଶ௡ାଶ as (xi,ui)=(xi0,xi1,…,xin,ui0,ui1,…,uin) ,  find   the 
value of the objective function Ji(x,u);i=1,2,…,m to be minimized for each 
individual in the population   using any numerical integration formula of high 
accuracy .  Also ,  the fitness is calculated for all  individuals in the population in this 
step .  Next ,  a rank is assigned based on non-dominated sorting for evaluation of the 
quality of the given solutions .  

 In the next step ,  a binary tournament selection is used to select the 
candidate parents from the current solution curves , 𝑢(𝑡) ,  and correspondingly a 
higher fitness for individuals .  then ,  the offspring population is generated by a 
process of seed reproduction, Eq uation  9, and dispersal .  

Here, we improve the process of dispersal in order to increase the 
explorative power of the weeds and reduce the search space gradually during the 
iteration process so as to further promote the convergence rate and diversity of 
solutions .  When a weed is near to true Pareto optimal frontier ,  we reduce the 
standard deviation 𝜎 for it in the current population , so that the seeds will be 
dispersed over a small neighborhood of parent weed .  Thus in this process ,  we alter 
the standard deviation for each weed based on its fitness value instead of using a 
fixed 𝜎 for all weeds in each iteration .  The process of varing the standard deviation 
𝜎௜ of the i-th weed is explain as follow  

𝜎௜ = (1 − 𝑒ି∆೔)൫𝜎௜௡௜௧௜௔௟ − 𝜎௙௜௡௔௟൯ + 𝜎௙௜௡௔௟                                (11) 

 where  

 ∆௜= 𝑚𝑖𝑛௞ୀଵ
|௣∗|

൬∑ ቀ𝐽௠
(௜)

− 𝐽௠
∗(௞)

ቁ
ଶ

ெ
௠ୀଵ ൰

భ

మ

 

and 𝐽௠
(௜) represent the fitness value of the individual i in the sequence and also 𝐽௠

∗(௞) 
represent the fitness value of the i-th individual in the Pareto optimal set ,  so when 
∆௜→ 0 then 𝜎௜ → 𝜎௙௜௡௔௟ .  This means that the i-th weed lies close to the Pareto 

frontier.  
 The offspring solution set is added to the previous population ,  and the 

fronts are derived through fast non-dominated sorting algorithm for this combined 
population .  If adding a front increases the number of individuals in the archive to 
exceed the initial population size ,  a trunction operator is applied to the front based 
on the crowding distance (CD), Eq uation  8. 

The weakness of each weed in the current population is calculate that it 
sorts the weeds in the some front according to their crowding distances . Finally , 
 the individuals with lower fitness are eliminated from the combined population 
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explained above ,  and a new population is generated for the next iteration .  The 
Pseudo-code for NSIWO algorithm is summarized as follows . 

 
4.1.  PSEUDO−CODE FOR INSIWO ALGORITHM 
 
 Initialization step :  Discretization 

 First discretize the control space and then the state space .  Choose an equidistance 
partition of the time interval [t0,tf] as h with ℎ = (𝑡௙ − 𝑡଴)/ℎ ,  and equidistant 

nodes on the set of control values corresponds to i-th component of the control 
vector function as (ui0,ui1,…,uin). 
 
 Main Steps: 

 1 .  Randomly generate the original population of  𝑁 individuals ,  from the time-
control space and   numerical solving system of differential equations i.e. ,  random 
(2n  +  2) tuples as (xi,ui)=(xi0,xi1,…,xin,ui0,ui1,…,uin) where each individual of the 
population is a weed (w). 
 2 .  Evaluate each weed in W 
 3 .  For each weed 𝑤 ∈ 𝑊 
 3.1 .  Assign the rank based on fast non-dominated sorting 
 3.2 .  Assign the crowding distance 
 3.3 .  Compute the weakness of each weed according to its rankand crowding 
distance 
 4 .  Set the maximum number of generation MaxIt as the terminal condition of the 
algorithm  
 5 .  For iter = 1 to MaxIt  
 5.1 .  Use the binary tournament selection to obtain a selected parent population (W) 
 5.2 .  Find the maximum and minimum weakness in W 
 5.3 .  For each weed 𝑤 ∈ 𝑊 
 5.3.1 .  Compute the number of seeds of w ,  corresponding to its weakness  
 5.3.2 .  Randomly distribute the generated seeds over the search space by Equation 
 11 around the parent plant (w) 
 5.3.3 .  Evaluate each weed in the population 
 5.3.4 .  Add the generated seeds to the previous solution archive W 
 5.4 .  For each weed 𝑤 ∈ 𝑊 
 5.4.1 .  Assign the rank based on the fast non-dominated sorting 
 5.4.2 .  Assign the crowding distance 
 5.4.3 .  Compute the weakness of each weed according to its rank and crowding 
distance 
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 5.5 .  If |𝑊| = 𝑁 > 𝑝𝑜𝑝௠௔௫ 
 5.5.1 .  Sort the population W in descending order of their fitness 
 5.5.2 .  Truncate the population of weeds with smaller fitness until 𝑁 = 𝑝𝑜𝑝௠௔௫. 
 

 5.  PERFORMANCE METRICS  

Performance metrics are important performance assessment measure ,  which also 
allow us to compare algorithms .  Deb [7] classified them in three categories , 
 metrics   evaluating closeness to the pareto optimal frontier ,  metrics   evaluating 
diversity amongst non-dominated solutions and  metrics evaluating closeness and 
diversity .  We in this work   choose Generational Distance (GD) metric (𝜎) to 
represent  convergence to true Pareto frontier and metric ∆ to represent diversity 
among the non-dominated solutions .  They are defined as the follows ,  respectively : 

 𝛾 =
ቀ∑ ௗ೔

೛|ೂ|
೔సభ ቁ

భ
೛ൗ

|ொ|
                                                                 (12) 

where Q represents solution set having |Q| members .  we  use p=2 and𝑑௜is minimum 
distance between the member  in solution set and nearest member is true Pareto set , 
 which is defined as  

 di=min ට∑ ቀJm
(i)

-Jm
*(k)

ቁ
2

M
m=1                                       (13) 

 Here M represents number of objectives , i and k represent member index in 
solution set and true pareto set respectively. 

 Δ =
ௗ೑ାௗ೗ା∑ |ௗ೔ିௗത|

|ೂ|షభ
೔సభ

ௗ೑ାௗ೗ା(|ொ|ିଵ)ௗത
                                                       (14) 

 where 𝑑̅ is the average of all distances 𝑑௜ ,  and 𝑑௙ and 𝑑௟ are the Euclidean distance 

between the extreme solutions in true Pareto optimal frontier and the boundary 
solutions of the obtained non-dominated set .  The smaller their values are ,  the 
better performance the algorithm shows . 
 

6.  NUMERICAL RESULTS 

In this section ,  using practical examples the improved non-dominated 
solutioninvasive weed optimization (INSIWO) method compared with NSIWO 
and NSGA II methods .  Since the selected problems does not have known true   
Pareto frontier ,  an expected Pareto frontier is generated by   running EA for large 
number of generations .  INSIWO and NSGA-II are run for 1000 generations with  
each 500 population size .  The final populations of both runs are combined and the 
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obtained Pareto frontier of the combined  population is considered as the expected 
Pareto frontier  for optimal control problems .  

 The algorithms are implemented in MATLAB R2010a on Intel(R) 
Core(TM) i5 ,  2.5 GHz ,  4 GB RAM ,  Windows 7 computer configuration .  The 
parameters used for three algorithms are specified in Table 1 . 
 

Parameter NSGA II NSIWO INSIWO 
N 100 100 100 

Max It 150 150 150 
𝑃௖(Crossover Probability) 0.8 --- --- 

𝜇(mutation rate) 0.3 --- --- 
𝑆௠௔௫ --- 3 3 
𝑆௠௜௡ --- 1 1 

𝜎௜௡௜௧௜௔௟ --- 0.1 0.1 
𝜎௙௜௡௔௟ --- 0.01 0.01 

n --- 3 3 
  

Table 1 . The parameters of NSGA II ,  NSIWO and INSIWO for problems. 
 
6.1.   FED-BATCH BIOREACTOR 

The first MOCP is based on the fed-batch lysine fermentation process investigated 
by Ohno et al . ]26] .  The aim is to determine an optimal feeding profile and batch 
length with respect to conflicting yield and productivity objectives .  Assuming 
perfect mixing and no product degradation yields the following model equations 

dx1

dt
=μx1, 

dx2

dt
=-σx1+uCS,F, 

 dx3

dt
=πx1, 

dx4

dt
=u. 

 t [h]:  as the independent variable. 
 States variables: 
 𝑥ଵ [g]  :  the biomass.   
 𝑥ଶ[g]  :  the substrate. 
𝑥ଷ [g]  :  the product (lysine). 
 𝑥ସ[L]  :  the fermenter volume.  
 Control variables:   
 u [L/h]  :  the volumetric rate of the feed stream ,  which contains a limiting substrate 
concentration CS,F of 2.8 g/L.   

 Parameters: 
 𝜇[1/h]  :  the specific rates for growth ,  𝜇=0.125CS,F.   

 𝜎[g/gh]  :  the substrate consumption , 𝜎=𝜇 /0.135.  
𝜋[g/gh]  :  the production ,𝜋 = −138𝜇ଶ + 134𝜇.  
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 With the substrate concentration .  The final time is fixed at h and the initial 
conditions are specified as : 

[x1(0),x2(0),x3(0),x4(0)]=[0.1,14,0,5]. 
 The goal is to derive a feeding strategy and batch duration which maximize the 
productivity ,  i.e. ,  the ratio between the product formed and the process duration : 

𝐽௣ =
௫య(௧೑)

௧೑
. 

 While maximizing the yield ,  i.e. ,  the mass of product is added over the mass of 
substrate during the operation : 

Jy=
x3(tf)

ቀx4(tf)-x4(0)ቁCS,F

. 

To cast these maximization problems into a minimization framework ,  the objective 
functions are defined as the negative productivity and yield 𝐽ଵ = −𝐽௣ and 𝐽ଶ =

−𝐽௬.  Several constraints are imposed on the volume ,  the feed rate ,  the operation 

time and the amount to be added [16] . 
 

 
Figure 1. Pareto frontier at the end of 150 generations for FED-BATCH 
bioreactor. 
 

The Figure 1 depicts the Pareto frontier obtained by three strategies .  It is 
visually difficult to observe convergence from in those Pareto frontier plots .  The𝛾 
metric average and ∆diversity values at the end of 150 generations are shown at 
Table 2 .  It is clearly reflects that  the INSIWO have better average CPU time, 
convergence metric and diversity values for 150 generations consistently.  

The Figure 2 shows the results obtained from the implementation of the 
algorithms by considering the 𝛾 = 0.04 as the terminal condition of the algorithm . 
 The convergence (𝛾 = 0.04) is achieved at 59 s and 44 s using NSGA II ,  NSIWO 
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respectively ,  while it is 42 s using the INSIWO .  Also ,  the convergence (𝛾 = 0.04) 
for INSIWO is achieved in less generation than the NSIWO and NSGA II. 
 

Parameters NSGA II NSIWO INSIWO 
CPU Time 56 43 42 
Convergence Rate 𝛾 0.061 0.053 0.048 
Diversity ∆ 0.643 0.511 0.492 

 
Table 2 . Average CPU time , 𝛾and ∆measures at the end of 150 generations using 
different algorithms. 
 

  
Figure 2. Generation wise convergence (left) and convergence as a function CPU 
time (right). 
 

The optimal feeding profiles is shown in Figure 3.  When only productivity 
is considered the initial   max part is provide in order to stimulate biomass 
growth , and hence lysine production .  However ,  when concentrate on yield 
optimisation the max piece shortens and the singular   profile reduces in height but 
lasts longer . 
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Figure 3. Optimal control profile for FED-BATCH bioreactor. 

 
6.2.   FED BATCH REACTOR 

The second MOCP considers a fed batch reactor for induced foreign protein 
production by recombinant bacteria [32] .  The objective is to maximize the 
profitability of the process using the nutrient and the inducer feeding rates as the 
control variables .  The dynamic model is  

dx1

dt
=u1+u2,   

dx2

dt
=μx2-(u1+u2)

x2

x1
,   

dx3

dt
=CS,in

u1

x1
-(u1+u2)

x3

x1
-μ

x2

0.51
, 

dx4

dt
=πx2

u1

x1
-(u1+u2)

x4

x1
,  

dx5

dt
=Ci,in

u2

x1
-(u1+u2)

x5

x1
,   

dx6

dt
=-

0.09x5

0.034+x5
x6, 

dx7

dt
=

0.09x5

0.034+x5
(1-x7),   μ=

x3

14.35+x3+
x3

2

111.5

ቀx6+
0.22x7

0.22+x5
ቁ ,   π=

0.233x3

14.35+x3+
x3

2

111.5

ቀ
0.0005+x3

0.022+x5
ቁ . 

 State variables: 
 x1 [L]  :  the reactor volume. 
 x2 [g/L]  :  the cell density.   
 x3 [g/L]  :  the nutrient concentration.   
 x4 [g/L] :  the foreign protein concentration.  
 x5 [g/L]  :  the inducer concentration. 
 x6 [-]  :  the inducer shock factor on cell growth rate. 
 x7 [-] :  the inducer recovery factor on cell growth rate. 
 Control variables:   
 u1 [L/h]  :  the volumetric rates of the glucose.   
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 u2 [L/h]  :  the volumetric rates of the inducer.   
  The control variables are bounded between 0 and 1 (L/h) .  The 
concentrations of inducer and glucose in the feed streams are Ci,in= 4.0  g/L and 

CS,in= 100.0  g/L ,  respectively .  The initial conditions are [1, 0.1, 40, 0, 0,1, 0]T and 

the final time is fixed at 𝑡௙ = 10h .  As stated above ,  the objectives are maximizing 

the final amount of foreign protein , 𝐽ଵ = 𝑥ଵ൫𝑡௙൯𝑥ସ൫𝑡௙൯ and minimizing the amount 

of inducer added , 𝐽ଶ = Ci,in ∫ 𝑢ଶ(𝑡)𝑑𝑡
௧೑

଴
. 

The Pareto-optimal frontier obtained at the end of maximum allowable 
generation of 150 is shown in Fig ure 4 consist of three regions .  Region bottom left 
is shown a small increase  in the volume of inducer added results in substantial 
increase  in the amount of protein produced .  Region top right demonstrate a large 
increase in the volume   of inducer added results in insignificant increase in the  
amount of protein .  The curve part of the Pareto frontier represents a transition area 
between two regions.  

 The Table 3 is shown that although the CPU time of the NSIWO is less 
than the INSIWO ,  the INSIWO have better convergence metric and diversity 
values when compared to NSIWO and NSGA II algorithms .  Fig ure 5 shows the 
results obtained from the implementation of the algorithms by considering the 

0.04  as the terminal condition of the algorithm .  It is obviously seen that the 

INSIWO algorithm needs less computational time and number of generations 
compared to two other algorithms. 

 
Figure 4. Pareto frontier at 150 generation for fed batch reactor. 
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Parameters NSGA II NSIWO INSIWO 
CPU Time 51 31 39 
Convergence Rate 𝛾 0.069 0.057 0.046 
Diversity ∆ 0.537 0.421 0.406 

 
Table 3 . Average CPU time , 𝛾and ∆measures at the end of 150 generations using 
different algorithms 

 
Figure 5. Generation wise convergence (left) and convergence as a function CPU 
time (right). 
 

 
Figure 6. Optimal control profiles for glucose and inducer. 
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The corresponding optimal control trajectory profiles for the substrate 𝑢ଵ 
and induser 𝑢ଶ feed rate are shown in Figure 6 .  When we focus on the 
minimization of the inducer ,  the values for  both controls remain quite down .  Also , 
 when the maximization of the foreign protein production gradually increases ,  the 
inducer feed rates increase . 

 
6.3.   FED BATCH BIO-REACTOR WITH THREE OBJECTIVES 

A model for the production of secreted protein in fed-batch bio-reactor was 
reported by Park and Fred Ramirez [31] ,  which is also studied for three objective 
dynamic optimization application [29] . 

dx1

dt
x5=μ(x2-x1)x5,  

dx2

dt
x5=x5x3

x4exp⁡(-5x4)

0.1+x4
,  

dx3

dt
x5=x5x3K, 

dx4

dt
x5=-7.3x5x3K+uS,  

dx5

dt
=u,  μ=

4.75

0.12+k
,  K=

21.87x4

(0.4+x4)(62.5+x4)
. 

 State variables:   
 x1 [g/L]  :  the secreted protein concentration. 
 x2 [g/L]  :  the total protein concentration.   
 x3 [-]  :  the culture cell density.   
x4 [g/L]  :  the substrate concentration. 
 x5 [L]  :  the hold-up volume. 
 Control variable:  
 u [L/h]:  the substrate volumetric feed rate. 
 Parameter: 
 S [g/L] :  the substrate feed concentration. 
 The initial conditions aer𝑋(0) = [0, 0, 1, 5, 1] .  Substrate feed concentration is S= 
20 with bounds onfeed rate as 0≤u≤2.5 .  Three objectives ,  namely the 
productivity ,  yield and fed-batchtime have been considered in this subsection.  The 
productivity , 𝐽ଵ is defined as the ratio of the end point product concentration , 
𝑥ଵ(𝑡௙)  and the total time of bio-reactor operation , 

𝐽ଵ =
𝑃(𝑡௙)

𝑡௙
 

The yield , 𝐽ଶ is defined as the ratio of the total amount of product formed , 
𝑥ଵ(𝑡௙)𝑥ସ(𝑡௙) and the amount of substrate added in the reactor , 

𝐽ଶ =
𝑃(𝑡௙)𝑥ସ(𝑡௙)

∫ 𝑢(𝑡)𝑆𝑑𝑡
௧೑

଴

. 

 Finally ,  the total fed-batch time , ft is the third objective , 𝐽ଷ = 𝑡௙. 
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  In this problem ,  the upper bound on the reactor volume is kept as 10 L 
while that on the volumetric flow rate of the substrate is 2.5 L/h .  The fed-batch 
time , 𝑡௙ has lower and upper limit of 10 and 30 h ,  respectively. 

The resulting 3-dimensional Pareto frontier has been shown in Figure 7 . 
 We use population size of 150 for this case to capture the Pareto frontier .  The 
convergence metric 𝛾and diversity∆ for all three algorithms are shown in Table 4 , 
 it clearly demonstrate that the INSIWO is more efficient than the other algorithms . 

 
 Figure 7. Pareto frontier in 3D objective space for productivity ,  yield and fed 
batch time. 
 

Parameters NSGA II NSIWO INSIWO 
CPU Time 76 58 47 
Convergence Rate 𝛾 0.098 0.087 0.082 
Diversity ∆ 0.846 0.754 0.689 

 
Table 4. Average CPU time , 𝛾 and ∆ measures at the end of 150 generations using 
different algorithms. 
 

The corresponding optimal control trajectory profile for the substrate 
volumetric feed rate is shown in Figure 8. 

Table  5  shows the results obtained from the implementation of the 
algorithms by considering the 𝛾 =0.04 as the terminal condition of the algorithm .  It 
is clearly seen that the INSIWO algorithm needs less number of generations and 
also less computational time compared to NSIWO algorithm. 
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Example Generation No CPU Time 
INSIWO NSIWO INSIWO NSIWO 

6.1 165 174 42 44 
6.2 180 196 50 55 
6.3 204 219 57 72 

 
Table 5. Average CPU time and generation number using different algorithms. 

 

 
Figure 8. Optimal control profile for substrate volumetric feed rate. 

 
  6.  CONCLUSION 

 In this paper ,  a new multi objective evolutionary algorithm is presented in which 
some parameters of MOIWO have modified in order to reduce some shortcomings 
and find the more suitable solutions for multi objective optimal control problems .  
In this algorithm a non-dominating sorting strategy and crowding distance method 
are employed to adopt IWO for solving multi-objective optimal control problems . 

 The efficiency of the proposed algorithm in finding the entire Pareto 
optimal frontier is illustrated by solving several engineering examples involving 
bi -  and three-objective MOCPs related to  fed-batch reactor and fed-batch 
bioreactor . 

 The numerical results show that the proposed algorithm at the end of 150 
generations in Examples 6.1 and 6.3 has a better convergence rate and dispersal .  It 
also has a better performance in terms of computational time . In 6.2 the proposed 
algorithm was more successful in terms of convergence rate and dispersal while 
the NSIWO method has performed better in terms of computational time . Once ,  the 
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convergence rate 𝛾 =0.04 is used instead of 150 generations as the terminal 
condition of the algorithm .  The results illustrated that the INSIWO algorithm 
converges to this value in less number of generations and less CPU time . 
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