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Fullerenes have wide application in various fields 
including electronic and optic, medical science, 
biotechnology and have received a lot of recent 
chemists and mathematicians’ attention. Due to many 
applications of fullerenes, the study of their stability is 
important. In this paper, we study the effective 
parameters that affect the fullerene's stability and then 
according to these parameters, we introduce a new 
function to examine the stability of every fullerene. By 
using this function, we determine the stable isometric 
of each fullerene in a unique way. 
 

© 2019 University of Kashan Press. All rights reserved 

Keywords:   

Fullerene graph  
Stability 
Optimization 

 
1 INTRODUCTION 

A fullerene is a polyhedral molecule consisting only of carbon atoms and exists 
only in pentagonal and hexagonal faces. Carbon atoms can form four chemical 
bonds. Three of these bonds are strong, and the other one is weak. A fullerene 
graph is planar, which contains 3-regular and 3-connected graph that has exactly 
12 pentagonal faces and ݉ ≔ ݊ ∕ 2 − 10  hexagonal faces. Such graphs on ݊ 
vertices exist for all even  ݊ ≥ 24  and for ݊ = 20 [15].  

However, the notation ܥ௡  works as a unique identifier only for the three 
simplest fullerenes (those with ݊ equal to 20, 24, or 26). For values other than 
those, the notation is ambiguous, as there are multiple ܥ௡  isomers, each one with a 
distinct fullerene graph. One popular solution to this problem involves ordering the 
isomers lexicographically using their smallest face spiral sequences [9,14]. For a 
given value of ݊, the notation for each isomer is combined with a number ݇ 
(corresponding to its position in this order), resulting in ܥ௡:݇. For example, the 
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Buckminster fullerene can be identified as ܥ଺଴: 1812 because its smallest face 
spiral is the last among the 1812  isomers. 

In the graphical representation of a fullerene, we draw the three strong 
bonds by the edges in the graph. The fourth bond tends to occur as a double bond. 
A perfect matching of a graph is a set of edges that each vertex is encountered with 
exactly one edge. In a fullerene, the edges of a perfect matching graph correspond 
to the double bonds, and chemists call this matching a Kekulé structure. 

Fullerenes have wide application in various fields including electronic, 
optic engineering [28], medical science [13], and biotechnology [6] and they have 
brought lots of recent chemists and mathematicians’ attention [19, 30]. 

Due to many applications, the stability of these molecules and their isomers 
is very important. For instance, ܥ଺଴ molecule contains 1812  isomers that the most 
stable of them is Buckminster fullerene. Various methods were introduced to 
predict the stability of fullerene molecules. Some of these methods are IPR, 
HOMO LUMO gap and calculating the number of  Kekulé structure, but each of 
these methods has pros and cons that we examine them later. For studying the 
stability, we can use another way that examines the Clar and Fries number of 
fullerenes. In the next section, we study the effective parameters that affects on 
fullerene stability and then according to these parameters, we introduce a new 
function to examine the stability of every fullerene and by using that, we determine 
the stable isometric of each fullerene in a unique way.  
 

2.  EFFECTIVE PARAMETERS RELATED TO STABILITY OF 
            FULLERENES 

The Clar and Fries numbers are two parameters that are related to the stability of 
fullerenes. The Fries number of a fullerene is the maximum number of hexagons 
contain three double bonds over all possible perfect matchings of a fullerene graph. 
The perfect matchings of fullerene graphs have been well studied [10, 11, 18, 22]. 
A set of hexagons contain three double bonds that attains the Fries number for a 
fullerene is called a Fries set. A set of disjoint hexagons of a perfect matching 
fullerene graph is called a sextet pattern if every hexagon in this set contains three 
double bonds. The Clar set is any sextet pattern with the maximum number of 
hexagons over all perfect matching of fullerene graph. The Clar number of a 
fullerene graph is the cardinality of a Clar set. In Clar theory, a fullerene is more 
stable if it has a larger Clar number [8, 17], but this criterion doesn`t determine the 
stable isomer in a unique way. For example, among isomers the ܥ଺଺ fullerene has 
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fifteen isomers with the largest number of Clar that the Clar number of them is 
equal to each other and it doesn`t clearly determine the stable isomer. In 1987, 
Kroto and colleagues suggested the Isolated Pentagon Rule (IPR) [21]. This rule 
can determine the most stable isomer of ܥ଺଴ and ܥ଻଴ fullerenes in a unique form, 
but this rule doesn`t apply for molecules with more atoms. For instance, ଼ܥସ 
fullerene has 24 isomers and ܥଵ଴଴ fullerene has 450 isomers that complies and 
follows the IPR rule [31]. 

In many cases, the ௣ܰ pentagon adjacency index is used for predicting the 
stability of C୬(݊ ≤ 70) fullerene [5, 7]. ௣ܰ pentagon adjacency index based on 
neighboring pentagons is calculated with the following equation: 

 ௣ܰ = ଵ
ଶ
∑ ݇௞ ௞݌  

where ݌௞  counts the number of pentagons that includes exactly ݇ pentagon with 
adjacent edge and ∑ ௞݌ = 12௞ . As it can be seen, the ௣ܰ equals to the number of 
edges between adjacent pentagons. 

According to the ௣ܰ  minimum criterion, the fullerene contains the minimal 

௣ܰ  is more stable than the isomers that don`t have this feature. For example, 
Buckminster fullerene has the highest stability among the isomers of ܥ଺଴  fullerene 
and it is the only isomer that the ௣ܰ has the zero minimum value [26].  

It is worth mentioning that the ௣ܰ minimum criterion isn`t enough for 
investigating the stability of molecules in a unique way, because some of the 
isomers of fullerene has the same ௣ܰ  adjacent pentagon. For example, among the 
isomers of ܥ଺଺ fullerene there exist 3 isomers with the same lowest index of ௣ܰ. In 
addition, the ܥ଺଼ fullerene contains the eleven isomers with ௣ܰ = 2. 

For predicting the stability of fullerene, Kekulé count method (perfect 
matchings of fullerene graph) is used, but the Kekulé count is not suitable for 
predicting the stability of fullerene. For example, Liu and colleagues noticed that 
some of the isomers of ܥ଺଴ fullerene have the bigger Kekulé count than the 
buckminsterfullerene [23, 24]. In addition, Austin and colleagues showed the 
configuration of the 20 different isomers of ܥ଺଴ fullerene that their Kekulé 
surpassed the buckminsterfullerene [4]. Therefore, the maximization of Kekulé for 
isomers of fullerene doesn`t correspond to the stability.  
 
3.  A FUNCTION TO DETECT THE MOST STABLE ISOMER OF A 
            FULLERENE 

Heretofore, different approaches have been discussed for studying the stability of a 
fullerene. Each of them has the advantages and disadvantages. In fullerene 
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structure, existence of pentagons and hexagons in this set creates different 
attributes to these molecules. The arrangements of these shapes together are the 
reason that different isomers of fullerene molecule exist.  For instance, the Kekulé 
count feature investigates the location of double bonds in this molecule and the 
pentagon adjacency index studies the manner of arrangements of pentagons. In 
addition, Clar and Fries numbers examine the manner of arrangements of 
hexagons. In Clar figure, the number of  hexagons that belong to resonance set are 
very important (these hexagons are discrete) and to get the Fries number, we 
remove the distinction constraint from the definition of Clar number.  

According to the preceding paragraphs, the aforementioned methods alone 
aren`t enough for predicting the stability of fullerene molecule. Therefore, finding 
the method that allows us to test the stability of these molecules better is very 
necessary. Here, we use a combination of benchmarks. 

It is known that increasing the Clar and Fries numbers are effective on 
stability of isomers. On the other hand, decreasing the ௣ܰ pentagon adjacency 
index and increasing the Kekulé count may also be effective on stability of an 
isomer.  

According to these features and given that, the ௣ܰ pentagon adjacency 
index is zero for some of the isomers of ܥ௡ fullerene (݊ ≥ 70), we define the 
following function: 

Δ =

⎩
⎪
⎨

⎪
⎧ ௣ܰ

ܥ × ܭ × ܨ               ݊ < 60

௣ܰ + 1
ܥ × ܭ × ܨ               ݊ ≥ 60

              

 

where ܥis the Clar number, ܭ is the Kekulé number, ܨ is the Fries number and ௣ܰ 
describes the pentagon adjacency index of fullerene graph. 

Since the stability of an isomer has direct relation with parameters like Clar 
number, Fries number and Kekulé count and it has opposite relation with ௣ܰ  
parameter, so the ∆ function can be considered as the stability parameter that its 
value for every isomer has opposite relation with the stability of that isomer. 
Therefore, the isomer that has the minimum value of ∆ is considered as the most 
stable isomer. So if we consider ܥ௡̅ as the set of all ܥ௡ isomers, then the most 
stable isomer can be obtained by solving the following minimization problem. 

݁ݖ݅݉݅݊݅ܯ (ܫ)∆
݋ݐݐ݆ܾܿ݁ݑݏ ܫ ∈ ௡̅ܥ
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We extract the required parameters to compute ∆ for ܥ௡,  ݊ ≤ 80 by the 
Fui Gui software [25] and for ݊ > 80 by the mathematical models presented in 
[2,27]. 
 
4.  NUMERICAL RESULTS 

In this section, we compute the value of ∆ for several different fullerenes. 
According to the results of this section, we can declare that ∆ function is another 
suitable criterion for investigating the stability of fullerene. Cଷସ fullerene has six 
different isomers that Cଷସ: 4 is the most stable isomer [3]. This isomer has the 
maximum value of Fries number  (ܨ = 5)  and maximum value of Clar number 
ܥ) = 3). For Cଷସ  fullerene, the value of ∆ is calculated for the different isomers of 
fullerene. Investigating the ∆ has shown that Cଷସ: 4  isomer has the minimum value 
of ∆ that corresponds to the most stable one among Cଷସ   isomers. In Figure 1, the 
isomers are drawn based on ∆. 

 

 

Figure 1: Graph of ∆ function in terms of fullerene isomers ܥଷସ. 
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Fullerene ܥଷ଺ has fifteen isomers that among these isomers the Cଷ଺: 6  is 
the most stable isomer [16]. According to Figure 2, this isomer has the maximum 
value of Fries number equals to 8 and has the maximum value of Clar number 
equals to 4. Investigating the ∆ has shown that Cଷ଺: 6 isomer has the minimum 
value of ∆ that corresponds to the most stable one among ܥଷ଺ isomers. In Figure 2, 
the isomers are drawn based on ∆. 

 

 
Figure 2: Graph of ∆ function terms of fullerene isomers Cଷ଺. 

 
Fullerene ܥଷ଼ has 17 isomers that ܥଷ଼:  is the most stable isomer (ଶܥ)17

[1,3]. As shown in Figure 3, this isomer has the maximum value of Fries number 
that equals to 6 and maximum value of Clar number that equals to 3, although the 
Kekulé number of this isomer isn`t the maximum value, the maximum of Clar and 
Fries numbers are adequate for the minimizing of ∆. By calculating of ∆ (Figure 
3), we noticed that the ܥଷ଼: 17 has the lowest value of ∆ that corresponds to the 
most stable of ܥଷ଼  isomer. 
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Figure 3: Graph of ∆ and HOMO-LUMO gap in terms of fullerene isomers ܥଷ଼. 

 
Fullerene ܥସ଴  has forty different isomers and from these isomers ܥସ଴: 39 

has the least HOMO-LUMO gap and is the most stable isomer [1]. This isomer has 
the maximum amount of Fries number (ܨ = 10) and the maximum Clar number 
ܥ) = :ସ଴ܥ .(4 38 is the second stable isomer among ܥସ଴  isomers that it’s only 
difference from 39  isomer is their Fries numbers. So based on the calculations in 
Figure 4, Cସ଴: 39 has the minimum value of ∆ that corresponds to the most stable 
isomer of ܥସ଴.  

Fullerene ܥସଶ has 45 different isomers that among of these isomers the 
Cସହ: 45 has the minimum value of HOMO–LUMO gapand is the most stable 
isomer. By calculating ∆ in Figure 5, we noticed that the lowest value of ∆ is 
proportional to the lowest of HOMO–LUMO gap. This isomer has the 8 value of 
Fries number and the maximum of Clar number that equals to 5. The numbers 
related to this fullerene are presented in Figure 5.  

As mentioned before, the Clar number doesn`t determine the stable isomer 
in an unique way. For example, among isomers the ܥ଺଴ fullerene has eighteen 
isomers with the largest number of Clar that the Clar number of them is equal to 
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each other and it doesn`t clearly determine the stable isomer. Hence, we obtained 
the value of ∆ for these eighteen isomers and predicted the most stable isomer. 

 

Figure 4: Graph of ߂ and HOMO-LUMO gap in terms of fullerene isomers ܥସ଴. 
 

According to Table 1, we noticed that the ܥ଺଴: 1812 isomer 
(buckminsterfullerene) has the maximum Clar number, Fries number, Kekulé 
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Figure 5: Graph of  ∆ and HOMO-LUMO gap in terms of fullerene isomers ܥସଶ. 

 
For the set of ܥ଻଴ fullerene that has the maximum of Fries number, we can 

examine the above function. The most stable isomer of ܥ଻଴ is C଻଴: 8149[20, 28, 
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Isomer Kekulé Clar No. Fries No. ܰ௣ ∆ 

:଺଴ܥ 43 11102 8 14 14 0.000120635 

:଺଴ܥ 44 11259 8 16 14 0.000104083 

:଺଴ܥ 1113 10370 8 16 6 5.27363E-05 

:଺଴ܥ 1114 10356 8 16 7 6.03515E-05 

:଺଴ܥ 1123 10386 8 16 6 5.2655E-05 

:଺଴ܥ 1124 10340 8 14 8 7.77148E-05 

:଺଴ܥ 1247 10538 8 14 10 9.32001E-05 

:଺଴ܥ 1251 10610 8 16 8 6.627E-05 

:଺଴ܥ 1279 10130 8 14 6 6.16979E-05 

:଺଴ܥ 1280 10258 8 14 6 6.09281E-05 

:଺଴ܥ 1283 10254 8 14 6 6.09518E-05 

:଺଴ܥ 1803 10250 8 14 3 3.48432E-05 

:଺଴ܥ 1804 10536 8 16 3 2.96602E-05 

:଺଴ܥ 1805 10476 8 16 4 3.72876E-05 

:଺଴ܥ 1808 10476 8 14 4 4.26144E-05 

:଺଴ܥ 1809 11230 8 18 2 1.85515E-05 

:଺଴ܥ 1810 10760 8 16 4 3.63034E-05 

:଺଴ܥ 1812 12500 8 20 0 0.000005 

Table 1:  Kekulé number, Clar number, Fries number, pentagon adjacency index 
௣ܰ and value of ∆ and related to ܥ଺଴  fullerene. 

 
Isomer Kekulé Clar No. Fries No. ܰ௣ ∆ 

:଻଴ܥ 1940 49070 9 20 5  6.79302E-06 

:଻଴ܥ 5635 48440 9 20 3 4.58758E-06 

:଻଴ܥ 6503 47206 9 20 4 5.88437E-06 

:଻଴ܥ 7106 51068 9 20 2 3.26362E-06 

:଻଴ܥ 7716 53064 9 20 2 3.14086E-06 

:଻଴ܥ 8142 47594 8 20 2 3.93957E-06 

:଻଴ܥ 8144 49185 9 20 2 3.38857E-06 

:଻଴ܥ 8149 52168 9 20 0 1.06494E-06 

 
Table 2: Kekulé number, Clar number, Fries number, pentagon adjacency index ௣ܰ 
and value of ∆  and related to ܥ଻଴ fullerene. 
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Isomer rank ∆ Min Max 

:଺଴ܥ 1812 1 0.000005 0.000005 0.000397703  

:଻଴ܥ 8149 1 1.06494E-06 1.06494E-06 5.16917E-05  

:଻଺ܥ 19150 1 4.01803E-07 4.01803E-07 1.62102E-05  

:଻଼ܥ 24105 3 2.77189E-07 

1.78437E-07 8.7726E-06 

 

:଻଼ܥ 24106 2 2.36323E-07  

:଻଼ܥ 24107 4 3.22732E-07  

:ସ଼ܥ 51590 11 9.54915E-08 
5.95963E-08 2.75186E-06 

 

:ସ଼ܥ 51591 8 8.79168E-08  

 
The value of ∆ can also be calculated for ܥ௡fullerenes with ݊ ≥ 86 and 

determined the most stable isomer in this way. But considering that calculating 
parameters like Clar number and Fries numberis generally an NP-hard problem, 
using optimization techniques that has been mentioned in [2, 27], ∆ can be 
calculated for ݊ ≤ 300 to determine the most stable isomer of ܥ௡. 
 
5.  CONCLUSION 

We showed that the parameters introduced to detect the stable isomer of fullerene, 
despite the advantages, are deficient. According to the numerical experiments, the 
function introduced by us has better performance for detecting the stability of a 
fullerene. 
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