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In this study, the insecticidal activity against Cowpea 
aphids (Aphis craccivora) of a series of 23 phenylazo, 
pyrrole-, dihydropyrrole-fused and chain-opening 
nitromethyleneneonicotinoids was evaluatedby using the 
multiple linear regression (MLR) and pharmacophore 
modelling. Conformer insecticide ensembles were 
modeled using the MMFF94s force field. Minimum 
energy conformers were employed to calculate structural 
parameters, which were related to the experimental 
pLC50 values. Several statistical criteria of goodness of 
fit and predictivity were checked to validate the models.  
Robust and predictable MLR models were obtained.  
Further, the Phase module from Schrodinger suite was 
engaged in the generation of the ligand-based 
pharmacophore models. The atom-based 3D-QSAR 
module from the aforementioned software was used for 
the validation of a best four-point pharmacophore model. 
The obtained significant statistical parameters attested 
the pharmacophore model validity. The MLR and 
pharmacophore models are useful for the prediction of 
new insecticides with activity against Cowpea aphids. 
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1 INTRODUCTION 

Neonicotinoid insecticides, first introduced in the mid-1990s, are chemicals with a 
major impact in the economy and the ecosystem of any country. Their high 
efficiency, low toxicity, broad insecticidal spectra and unique mode of action has 
turned them into key players for the development of safe insecticides in a short 
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time [1−3]. Insecticides are employed for the eradication of pests such as insects, 
mites, rodents, birds, etc. Controlling action of pests is very important in order to 
increase the quality and quantity of the products. Insects, e.g. Cowpea aphids 
(Aphis craccivora), are one of these pests very difficult to control. Cowpea aphid 
is considered to be one of the most serious pests of legumes that cause direct or 
indirect damages by feeding on the plant’s sap [4,5]. The significant increase in 
resistance to insecticides alongside with the detrimental effect on the bee health 
and the environment has led to the urgent need for the development of new control 
strategies and more potent insecticidal agents [2]. The design of new insecticides 
involves various methods, ranging from the analysis of the already known 
chemical scaffolds to the high-throughput screening of the candidates in order to 
find new chemical skeletons with improved activity profile [2,6].  

The structure of the first-generation neonicotinoid, imidacloprid [7], was 
the starting point for the generation of the second (e.g. thiamethoxam [8], 
clothianidin [9]) and third (e.g. dinotefuran [10], sulfoxaflor [11]) classes of 
insecticide analogs. The aromatic heterocycle (e.g. pyridine), a flexible linkage, a 
hydroheterocycle or guanidine/amidine fragment, and an electron-withdrawing 
part are essential features to synthesize new neonicotinoids. The pyridine unit is 
considered to be a significant intermediate for agrochemicals and pharmaceuticals, 
being present in more than 70 products available on the market [11−13]. 

Computational methods, such as Quantitative Structure-Activity 
Relationship (QSAR), pharmacophore modeling, protein-structure prediction, 
virtual screening, molecular docking, are considered as effective and indispensable 
tools for guiding the design of novel insecticides by reducing time, resources and 
costs. These methods are also an alternative solution to minimize the demand for 
animal test and to provide a rapid assessment of the potential impacts of chemicals 
on human health and the environment. In this context, the toxicity prediction of 
insecticides remains of continuous interest in QSAR modeling [14−16]. The 
literature survey shows a large number of QSAR approaches [14, 16−18] dedicated 
to the toxicity of neonicotinoids, but only a few refer to neonicotinoids with 
activity against Cowpea aphids [19−23]. 

In this regard, a data set consisting of lethal concentration, 50% (LC50) of 
23 phenylazo, pyrrole-, dihydropyrrole-fused and chain-opening 
nitromethyleneneonicotinoids to Cowpea aphids was used to establish the multiple 
linear regression (MLR) and pharmacophore models. The developed models were 
evaluated using various statistical parameters. Based on the analysis of the 
developed models, important information in connection with toxicity was obtained 
and helped us to better understand the neonicotinoids activity against Cowpea 
aphids. Furthermore, these QSAR and pharmacophore models may provide a 
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better way to evaluate and predict the toxicity of other untested neonicotinoid 
analogs, before they manifest side effects on both human and the ecosystem. 
 
2  METHODS 

2.1. DATASET AND DESCRIPTORS 

A series of 23 phenylazo, pyrrole-, dihydropyrrole-fused and chain-opening 
nitromethyleneneonicotinoid derivatives (Table 1) having insecticidal activity 
against the Cowpea aphids (Aphis craccivora) was collected from literature [24, 
25]. Experimental insecticidal lethal concentration, 50% (LC50) values were 
converted to pLC50 values, further used as the dependent variable. 
 
 
Table 1. Insecticide structures, experimental ( EXP50pLC ) insecticidal activity and 
descriptors of the neonicotinoids used in the MLR1. 
 
No Structure EXP50pLC  JGI2a BLIb Mor32vc 

1 

 

5.21 0.096 0.89 -0.197 

2* 

 

5.70 0.097 0.911 -0.198 

3 

 

5.80 0.092 0.972 -0.181 

4** 

 

5.71 0.088 1.007 -0.27 
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Table 1 (Continued). 

No Structure EXP50pLC  JGI2a BLIb Mor32vc 

5 

 

5.11 0.084 1.038 -0.276 

6* 

 

3.85 0.078 0.902 -0.101 

7 

 

4.55 0.087 0.906 -0.227 

8*,** 

 

4.52 0.085 0.927 -0.24 

9** 

 

4.41 0.083 0.947 -0.131 

10 

 

4.35 0.076 0.93 -0.195 

11** 

 

3.96 0.074 0.963 -0.185 
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Table 1 (Continued). 

No Structure EXP50pLC  JGI2a BLIb Mor32vc 

12 

 

4.16 0.072 0.984 -0.214 

13*,** 

 

3.97 0.07 1.003 -0.229 

14 
O N N

H

N

S

Cl

N

O

O

 

3.79 0.083 1.07 0.062 

15*,** 

 

4.25 0.081 1.088 0.026 

16** 

 

4.07 0.078 1.074 0.008 

17 

 

3.91 0.083 1.063 0.07 

18 

 

3.98 0.081 1.092 0.065 
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Table 1 (Continued). 

19** 

 

4.41 0.078 1.109 0.036 

20 

 

3.82 0.078 1.118 0.056 

21** 

 

3.86 0.074 1.12 0.053 

22 

 

3.58 0.074 0.951 -0.027 

23 

 

3.72 0.07 1.029 -0.076 

 
* test compounds in the MLR models 
** test compounds in the pharmacophore model. 
aJGI2 - mean topological charge index of order 2. 
bBLI - Kier benzene-likeliness index. 
cMor32v- 3D-MoRSE - signal 32 / weighted by atomic van der Waals volumes. 
 

The neonicotinoid structures were first modeled using molecular mechanics 
calculations, with the MMFF94s force field included in the OMEGA (version 
2.5.1.4, OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com) 
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software [26, 27]. Starting structures were generated using SMILES notation. A 
maximum of 400 conformers per compound, an energy cutoff of 10 kcal/mol 
relative to a global minimum identified from the search were employed for the 
conformer ensemble generation. Any conformer having an RMSD fit outside 0.5 Å 
to another conformer was removed to avoid redundant structures. 

Conformers of minimum energy thus obtained were further used to 
calculate structural 0D, 1D, 2D, and 3D descriptors. Thus, 1611 parameters were 
computed using the DRAGON software (Dragon Professional 5.5 (2007), Talete 
S.R.L., Milano, Italy), which includes 22 types of descriptors (constitutional, 
functional groups counts, topological descriptors: BLI (Kier benzene-likeliness 
index), Burden eigenvalues, eigenvalue-based indices, Galvez descriptors 
(topological charge indicies): JGI2 (mean topological charge index of order2), 
Getaway descriptors: R4u (R autocorrelation of lag 4 / unweighted) and HGM 
(geometric mean on the leverage magnitude), Randić descriptors (Randić 
molecular profiles), RDF descriptors (radial distribution function descriptors; 
MWC (Molecular walk counts, path counts – atomic and molecular descriptors) 
and 3D-MoRSE (3D-molecule representation of structure based on electron 
diffraction descriptors): Mor26p (3D-MoRSE signal 26 / weighted by atomic 
polarizabilities), Mor32v (3D-MoRSE - signal 32 / weighted by atomic van der 
Waals volumes), Mor15p  (3D-MoRSE - signal 15 / weighted by atomic 
polarizabilities), Mor21u (3D-MoRSE - signal 21 / unweighted), information 
indices, edge adjacency indices, topological charge indices, connectivity indices, 
2D-autocorrelations, molecular properties, 2D binary fingerprints, and 2D 
frequency fingerprints.). The InstantJchemsoftware was used for structure database 
management, search and prediction (InstantJchem 15.10.0, 2012, ChemAxon 
(http://www.chemaxon.com), and to calculate additional structural descriptors.  
 
2.2. MULTIPLE LINEAR REGRESSION (MLR) 

Multiple linear regression (MLR) [28] calculations were performed using the 
QSARINS v.2.2 program [29].  

In the MLR approach, one experimental variable yk, or dependent variable 
(e.g. the insecticidal activity), is correlated with one or several independent 
variables xi (e.g. molecular descriptors), using the equation: 





m

1j
iijj0i exbby       (1) 

where bj represents the partial regression coefficients and ei the deviations and 
residuals that account for the disagreement between the observed responses yi and 
the predicted results [30] (with n being the number of compounds (i = 1 ... n) and 



28                                                       CRISAN, BOROTA, BORA AND FUNAR−TIMOFEI 

 

m number of predictors). The regression coefficients bj are calculated by 
minimizing the sum of the squared residuals, using a least squares procedure, to 
give the smallest possible sum of squared differences between the values of real 
and predicted dependent variable. 

The Genetic Algorithm [31] (GA) was used for the 1611 structural 
descriptors calculated for the 23 neonicotinoid compounds to select variables in the 
multiple linear regression models. In the QSARINS package the following 
parameters were used: the RQK fitness function [32] with leave-one-out cross-
validation [33] correlation coefficient as a constrained function to be optimized, a 
crossover/mutation trade-off parameter of T = 0.5 and a model population size of P 
= 50. 
 
2.3. PHARMACOPHORE 

The atom-based pharmacophore models were realized whit the aid of PHASE [34, 
35] software from Schrödinger package (http://www.schrödinger.com). For this 
purpose, the dataset of 23 neonicotinoids with lethal concentration, 50% (LC50) 
insecticidal activity determined against Aphis craccivora were united from two 
literature studies [24, 25] For the preparation and optimization of these structures, 
the LigPrep program (LigPrep, Schrödinger, LLC, New York, NY, 2014, 
http://www.schrödinger.com) incorporated within PHASE (default settings) was 
used. The threshold for activity was set at > 5 for the active compounds and < 3.9 
for inactive ones.   

All the pharmacophore characteristics available in the PHASE [34, 35] 
(hydrophobic, hydrogen bond donor, hydrogen bondacceptor, aromatic rings, 
positive and negative ionisable feature) were taken in consideration for the 
generation of the common pharmacophore hypotheses. The 3D QSAR module was 
involved in statistical validation of the pharmacophore hypotheses obtained. The 
QSAR analysis was carried out using two partial least-squares (PLS) factors, and 
the split into training and test set was done randomly, using 60% of compounds for 
the training set. 
 
2.3. MODEL VALIDATION 

The MLR models were internally validated using the following robustness 
parameters (Eqs. 2 to 9): squared correlation coefficient for fitting (ݎ௧௥ଶ ), adjusted r2 
( 2

adjr ), leave-one-out cross-validation ( 2
LOOq ), Y-scrambling parameters ( 2

scrr & 2
scrq ) 

[36], root-mean-square errors for training set (ܴܧܵܯ௧௥) and mean absolute error 
for training set (ܧܣܯ௧௥) [37], concordance correlation coefficient for training set 
 standard deviation of regression ,(ܨ) Fischer test for the training set ,[38] (௧௥ܥܥܥ)
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for the training set (ܵܦ) and 2
LMOq  leave-more-out (LMO) cross-validation (carried 

out for 30% of data out of training, each run). In Y-scrambling the process was 
randomly mixed 2000 times. 

௧௥ଶݎ = 1 − ∑ (௬ො೔ି௬೔)೙
೔సభ

∑ (௬೔ି௬ത೙
೔సభ )మ        (2) 

௔ௗ௝ଶݎ = 1 − ∑ (௬ො೔ି௬೔)/(௡ି௠ିଵ)೙
೔సభ
∑ (௬೔ି௬ത೙
೔సభ )మ/(௡ିଵ)

      (3) 

௅ைைଶݍ = 1 −
∑ ൫௬ො೔/೔ି௬೔൯೙
೔సభ
∑ (௬೔ି௬ത೙
೔సభ )మ

       (4) 

௧௥ܧܵܯܴ =  ට
∑ (௬೔ି௬ො೔)మ
೙೟ೝ
೔సభ

௡೟ೝ        (5) 

௧௥ܧܣܯ =  
∑ |௬೔ି௬ො೔|
೙೟ೝ
೔సభ

௡೟ೝ         (6) 

௧௥ܥܥܥ =  
ଶ ∑ (௬೔ି௬ത)(௬ො೔ି௬ොത)೙೟ೝ

೔సభ
∑ (௬೔ି௬ത)మ೙೟ೝ
೔సభ ା∑ (௬ො೔ି௬ොത)మା ௡೟ೝ(௬തି௬ොത)మ೙೟ೝ

೔సభ      (7) 

ܨ =
௦௦௬

ௗ௙భൗ
௦௦௬

ௗ௙మൗ
ݕݏݏ ; =  ∑ ො௜ݕ) − ത)௡ݕ

௜ୀଵ ; ݀ ଵ݂ = ݉ + 1; ݀ ଶ݂ = ݊௧௥ −݉− 2 (8) 

ܦܵ = ට݁ݏݏ ݀ ଶ݂
ൗ ݁ݏݏ  ; =  ∑ ො௜ݕ) − ௜)ଶ௡ݕ

௜ୀଵ                (9) 

where: ݕ௜ - the experimental values of the dependent variable; ݕො௜ - the calculated 
dependent variable values;ݕത - the average of the experimental dependent variable 
values; ݕොത - the average of the predicted dependent variable values; ݕො௜/௜- the 
predicted value of the response calculated excluding the ith element from the model 
during computation; ݐݏ݁ݐ refers to prediction set and ݎݐ refers to training set; n - 
the number of objects; m – the number of predictor variables; ssy - the variance of 
the model; ݀ ଵ݂ - the degrees of freedom of the model; ݀ ଶ݂ - the degrees of freedom 
of the input data; sse  - the sum of squared errors. 

The domain of applicability was checked using the Williams plots 
(standardized cross-validated residuals versus leverage (Hat diagonal) values) [29]. 
A threshold of residual value greater than 3 times the value of standard error in 
calculation was employed for outlier detection. 

The model’s predictive power was tested using the following external 
parameters (eqs. 10 to 15): 2

1FQ [39]; 2
2FQ [40]; 2

3FQ  [41] (with acceptable values 
higher than 0.7) and the concordance correlation coefficient for the test set 
 root-mean-square errors for the ,(with a minimum threshold of 0.85) [38] (௧௘௦௧ܥܥܥ)
test set (ܴܧܵܯ௧௘௦௧) and mean absolute error for the test set(ܧܣܯ௧௘௦௧). 

ܳிଵଶ = 1 −  
∑ (௬೔ି௬ො೔)మ
೙೟೐ೞ೟
೔సభ

∑ (௬೔ି௬ത೟ೝ)మ೙೟೐ೞ೟
೔సభ       (10) 
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ܳிଶଶ = 1 −  
∑ (௬೔ି௬ො೔)మ
೙೟೐ೞ೟
೔సభ

∑ (௬೔ି௬ത೟೐ೞ೟)మ೙೟೐ೞ೟
೔సభ       (11) 

ܳிଷଶ = 1 −  
ൣ∑ (௬೔ି௬ො೔)మ

೙೟೐ೞ೟
೔సభ ൧ / ௡೟೐ೞ೟
ൣ∑ (௬೔ି௬ത೟ೝ)మ೙೟ೝ

೔సభ ൧ / ௡೟ೝ      (12) 

௧௘௦௧ܥܥܥ =  
ଶ ∑ (௬೔ି௬ത)(௬ො೔ି௬ොത)೙೟೐ೞ೟

೔సభ
∑ (௬೔ି௬ത)మ೙೟೐ೞ೟
೔సభ ା∑ (௬ො೔ି௬ොത)మା ௡೟೐ೞ೟(௬തି௬ොത)మ೙೟೐ೞ೟

೔సభ    (13) 

௧௘௦௧ܧܵܯܴ =  ට
∑ (௬೔ି௬ො೔)మ
೙೟೐ೞ೟
೔సభ

௡೟೐ೞ೟       (14) 

௧௘௦௧ܧܣܯ =  
∑ |௬೔ି௬ො೔|
೙೟೐ೞ೟
೔సభ

௡೟೐ೞ೟       (15) 
 
In addition, other statistical measures were used to check the model 

predictivity [42] (eqs. 16 to 20): 1) the squared correlation coefficient ( 2
testr ) 

between the predicted and observed activities, as well as squared correlation 
coefficient by cross-validation ( 2

LOOq ); 2) the coefficient of determination for linear 

regressions with intercepts set to zero, i.e. 2
0r  (predicted versus observed 

activities), and 2'
0r  (observed versus predicted activities); 3) slopes k and k’ of the 

above mentioned two regression lines. All these measures were applied over the 
test set compounds.  

2
LOOq > 0.5        (16) 
2
testr > 0.6        (17) 

15.1k85.0and1.0
r

)rr(
2

2
0

2


     (18) 

15.1'k85.0and1.0
r

)rr(
2

2'
0

2


      (19) 

3.0rr 2'
0

2
0          (20) 

and 2
mr  [43] (eq. 21) (values higher than 0.6 were considered as acceptable). 

 2
0

2
test

2
test

2
m rr1rr         (21) 

 
To test model collinearity variance inflation factors (VIF) [44] were 

calculated. It was considered that if VIF shows values > 10, or if the tolerance 
remains below 0.10, then the model present multicollinearity [45]. For VIF < 5, no 
significant collinearity is present. 
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3  RESULTS AND DISCUSSION 

3.1. MLR RESULTS 

The multiple linear regression approach was used to correlate the insecticidal 
activity of the series of the neonicotinoidanalogues with their calculated structural 
parameters.  

The structural data were normalized based on the autoscaling method, which 
can be described as: 

 

m

mmj
mj S

XX
XT


        (10) 

 
where for each variable m, XTmj and Xmj are the values j for the variable m after and 
before scaling respectively, mX is the mean and Sm the standard deviation of the 
variable. 

The neonicotinoid derivatives were divided into training and test sets 
randomly. Five compounds were taken out of the total number of compounds: 2, 6, 
8, 13, 15. 

Variables were selected using the genetic algorithm, with the leave-one-out 
fit criterion as a constrained function to be optimized. Five MLR models having 
acceptable statistical results and the predictive power are listed in Tables 2 to 4. 
The internal and external validation criteria show that they are satisfactory in the 
fitting, and have good predictive power. Among them, model MLR1 with good 
fitting and predictivity results is the most stable one, from a statistical point of 
view. Similar RMSE values were observed for fitting, cross-validation, and test 
sets. For this last model, the correlation matrix, variance of inflation factors, 
tolerances, and standardized coefficients are presented in Table 5. The 
experimental versus predicted pLC50 values plots for the MLR1 model fitting are 
included in Figure 1a. 

The applicability domain of the MLR models was checked using the 
Williams plot. For the best MLR1 model, for the model fitting and leave-one-out 
cross-validation, the plots are presented in Figure 2. No outliers or influential 
points are present in this model. 
 The internal and external validation criteria were checked for MLR1 
model. The small difference of CCC values between the training and test sets of 
0.1% was noticed, which demonstrates that this model is able to predict the 
response for chemicals not used in the model development (validation set) just as 
they do for chemicals used to find the relationship (training set). 
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Figure 1. Experimental versus predicted pLC50 values for the final MLR1 model 
(a) and atom-based QSAR for AHHR.62 hypothesis (b). Blue triangles and orange 
circles indicate training and test set compounds, respectively. 
 
Table 2. Calculated internal validation criteria of the MLR and pharmacophore 
(AHHR.62) models*. 

Model ݎ௧௥ଶ ௅ைைଶݍ  ௅ெைଶݍ  ௔ௗ௝ଶݎ   RMSEtr MAEtr CCCtr 
MLR1 0.882 0.797 0.766 0.857 0.226 0.179 0.937 
MLR2 0.902 0.803 0.783 0.881 0.206 0.170 0.949 
MLR3 0.924 0.875 0.859 0.908 0.181 0.157 0.961 
MLR4 0.876 0.786 0.754 0.850 0.231 0.211 0.934 
MLR5 0.873 0.786 0.756 0.845 0.234 0.192 0.932 

AHHR.62 0.954 0.808 - - 0.158 0.1099 0.976 

Model RMSECV MAECV CCCCV ݎ௦௖௥ଶ ௦௖௥ଶݍ   SD F 

MLR1 0.296 0.234 0.895 0.179 -0.380 0.256 34.876 
MLR2 0.292 0.229 0.902 0.175 -0.409 0.233 42.977 
MLR3 0.233 0.201 0.935 0.174 -0.390 0.205 57.086 
MLR4 0.304 0.276 0.886 0.180 -0.385 0.262 32.993 
MLR5 0.304 0.250 0.889 0.172 -0.386 0.266 31.977 

AHHR.62 - - - - -   
 

௧௥ଶݎ * - correlation coefficient; 2
LOOq - leave-one-out correlation coefficient; 2

LMOq - 
leave-more-out correlation coefficient; RMSEtr-training root-mean-square errors; 
MAEtr- training mean absolute error; CCCtr- training the concordance correlation 
coefficient; RMSECV-leave-one-out cross-validation root-mean-square errors; 
MAECV- leave-one-out cross-validation mean absolute error; CCCCV- leave-one-
out cross-validation the concordance correlation coefficient; 2

scrr - scrambled r2; 
2
scrq - scrambled cross-validated q2; SD-standard error of estimates; F-Fischer test. 
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Figure 2. Williams plot predicted by the final MLR1 (a) and leave-one-out cross-
validation procedure (b). Blue triangles and orange circles indicate training and 
test set compounds, respectively. 

 
Table 3. Calculated external validation criteria calculated for the MLR models and 
the descriptors selected in the MLR models*. 
 

Model 2
1FQ  2

2FQ  2
3FQ  RMSEext MAEext CCCext 2

mr  
Descriptors 
included in 
the model 

MLR1 0.874 0.871 0.868 0.239 0.201 0.927 0.817 
BLI 
JGI2  

Mor32v 

MLR3 0.858 0.855 0.851 0.253 0.190 0.925 0.829 
JGI2  

Mor26p  
R4u 

MLR2 0.841 0.837 0.833 0.269 0.237 0.923 0.892 
JGI2  

Mor26p  
HGM 

MLR4 0.868 0.865 0.861 0.245 0.199 0.934 0.796 
BLI 
JGI2  

Mor15p 

MLR5 0.816 0.812 0.807 0.288 0.248 0.903 0.783 
JGI2  

Mor21u  
Mor32v 

AHHR.62 0.807 0.806 0.899 0.233 0.217 0.896 0.780 - 
 
* 2

1FQ , 2
2FQ ,

2
3FQ , 2

mr -external validation parameter; RMSEext-root-mean-square 
errors; MAEext-mean absolute error; CCCext-the concordance correlation 
coefficient; JGI2 - mean topological charge index of order2; Mor26p - 3D-MoRSE 
- signal 26 / weighted by atomic polarizabilities; R4u - R autocorrelation of lag 4 / 
unweighted; HGM - geometric mean on the leverage magnitude; BLI - Kier 
benzene-likeliness index; Mor32v - 3D-MoRSE - signal 32 / weighted by atomic 
van der Waals volumes; Mor15p - 3D-MoRSE - signal 15 / weighted by atomic 
polarizabilities; Mor21u - 3D-MoRSE - signal 21 / unweighted. 
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Table 4. Other external validation criteria [42]. 
 

Model 2
testr  

2

2
0

2

r
rr   

2

2'
0

2

r
rr   k k’ 2'

0
2
0 rr   

MLR1 0.880 0.006 0.052 0.991 1.006 0.041 
MLR2 0.840 0.017 0.000 1.030 0.969 0.036 
MLR3 0.911 0.001 0.005 1.036 0.963 0.004 
MLR4 0.873 0.009 0.002 0.999 0.998 0.006 
MLR5 0.821 0.003 0.024 0.988 1.008 0.018 

AHHR.62 0.807 0.001 0.037 1.000 0.997 0.029 

 
Table 5. Correlation matrix, standardized coefficients (Std. coeff.), variance 
inflation factors (VIF) and tolerances of the descriptors of the MLR1 model. 
 

 BLI JGI2 Mor32v Std. 
coeff. VIF Tolerance 

BLI 1.000   0.429 2.247 0.445 
JGI2 -0.100 1.000  0.661 1.148 0.871 
Mor32v 0.607 0.156 1.000 -0.782 2.224 0.450 

 
 The LOO validation highlights that the model is stable, not obtained by 
chance; in fact, the difference between 2

trainingr and 2
LOOq is small: 8.5 % in case of 

the MLR1 model. This model is internally predictive with differences between 
2
LMOq and 2

LOOq of 3.1%. The absence of chance correlation in the MLR1 model is 
proved by the low values of the Y-scramble parameters (Table 2).  
 Topological indices used are mainly based on distances between atoms, 
calculated by the number of separating bonds and are thus considered through-
bond indices [46]. Topological charge indices were proposed to evaluate the 
charge transfer between pairs of atoms, and therefore the global charge transfer in 
the molecule [47]. 

Topological charge indices are derived from the eigenvalues of 
adjacency/square matrix with a series of weighting schema, including weighted by 
atomic masses, atomic van der Waals volumes, atomic Sanderson 
electronegativities, and atomic polarizabilities. The JGI2 (mean topological charge 
index of order 2) descriptor in the MLR1 linear equation has a positive coefficient 
value. The increase of its value will increase the pLC50 values. 
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Table 6. Score of different parameters of the best 20 hypotheses*. 

No ID Survival Survival 
-inactive Site Vector # Matches Activity Inactive 

1 AHHR.62 3.492 1.587 0.85 0.951 5 5.111 1.905 

2 AAHH.344 3.443 1.515 0.79 0.944 5 5.705 1.928 

3 AAAH.59 3.535 1.690 0.82 0.954 5 5.711 1.844 

4 AAHH.337 3.601 1.734 0.87 0.972 5 5.805 1.868 

5 AAHH.340 3.484 1.692 0.82 0.937 5 5.111 1.792 

6 AAHH.290 3.559 1.644 0.80 0.967 5 5.805 1.915 

7 AHHR.54 3.640 2.163 0.90 0.959 5 5.805 1.478 

8 AHHR.56 3.539 1.668 0.90 0.951 5 5.111 1.871 

9 AAHH.118 3.589 2.104 0.82 0.979 5 5.805 1.486 

10 AAHR.33 3.439 1.430 0.76 0.954 5 5.805 2.009 

11 AAHR.34 3.439 1.430 0.76 0.954 5 5.805 2.009 

12 AAHH.293 3.586 1.694 0.84 0.942 5 5.805 1.892 

13 AAHR.37 3.179 1.155 0.66 0.867 5 5.705 2.024 

14 AAHH.289 3.564 1.695 0.84 0.941 5 5.711 1.868 

15 AHHR.47 3.603 1.736 0.87 0.951 5 5.711 1.867 

16 AAAH.126 3.483 1.693 0.81 0.945 5 5.111 1.790 

17 AAHR.21 3.617 1.791 0.86 0.948 5 5.805 1.826 

18  AAHR.12 3.595 1.785 0.85 0.946 5 5.711 1.81 

19  AAAH.123 3.535 1.674 0.78 0.968 5 5.805 1.861 

20  AAHR.14 3.599 1.786 0.85 0.95 5 5.711 1.813 
 
A - Acceptor; H – Hydrophobic and R - Aromatic ring. Survival score represents 
the “Weighted combination of the vector, site, volume, and survival scores, and a 
term for the number of matches”; Survival – inactive score is “ Survival score for 
actives with a multiple of the survival score for inactives subtracted”; Site score 
measures “how closely the site points are superimposed in an alignment to the 
pharmacophore of the structures that contribute to this hypothesis, based on the 
RMS deviation of the site points of a ligand from those of the reference ligand”; 
Vector alignment score measure “how well the vectors for acceptors, donors, and 
aromatic rings are aligned in the structures that contribute to this hypothesis, when 
the structures themselves are aligned to the pharmacophore”; #Matches denotes the 
number of actives that match every hypothesis; Activity represents the activity in 
logarithm units for the reference ligand and Inactivity is survival score for inactive 
copounds[34,35]. 

 
The Kier benzene-likeliness index [48] is an aromaticity index calculated 

from molecular topology [49]. High values of the BLI (Kier benzene-likeliness 
index) descriptor would be expected to increase the insecticidal activity. 
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Table 7. The statistical parameters attained for the best atom based 3D-QSAR 
models using 2 PLS factors 
 
No ID SD* ݎ௧௥ଶ * F* P* RMSE# q2# Pearson-R# 
1 AHHR.62 0.178 0.954 113.400 4.56E-08 0.232 0.808 0.899 

2 AAHH.344 0.175 0.955 117.000 3.86E-08 0.244 0.788 0.918 

3 AAAH.59 0.199 0.942 89.300 1.58E-07 0.268 0.744 0.882 

4 AAHH.337 0.216 0.931 74.700 3.98E-07 0.279 0.722 0.910 

5 AAHH.340 0.191 0.947 97.700 9.95E-08 0.287 0.705 0.902 

6 AAHH.290 0.257 0.903 51.300 2.66E-06 0.301 0.676 0.831 

7 AHHR.54 0.173 0.956 119.200 3.50E-08 0.303 0.671 0.833 

8 AHHR.56 0.165 0.960 131.800 2.07E-08 0.304 0.669 0.858 

9 AAHH.118 0.236 0.918 61.700 1.05E-06 0.307 0.663 0.832 

10 AAHR.33 0.192 0.946 95.900 1.09E-07 0.318 0.639 0.823 

11 AAHR.34 0.192 0.946 95.900 1.09E-07 0.318 0.639 0.823 

12 AAHH.293 0.270 0.893 45.800 4.64E-06 0.320 0.635 0.813 

13 AAHR.37 0.207 0.937 82.400 2.41E-07 0.321 0.633 0.806 

14 AAHH.289 0.269 0.894 46.300 4.38E-06 0.325 0.622 0.818 

15 AHHR.47 0.191 0.947 97.700 9.94E-08 0.325 0.622 0.805 

16 AAAH.126 0.255 0.905 52.200 2.44E-06 0.326 0.619 0.891 

17 AAHR.21 0.232 0.921 64.000 8.76E-07 0.327 0.617 0.806 

18 AAHR.12 0.243 0.914 58.100 1.43E-06 0.328 0.616 0.801 

19 AAAH.123 0.279 0.886 42.700 6.57E-06 0.330 0.611 0.818 

20 AAHR.14 0.240 0.915 59.500 1.26E-06 0.334 0.601 0.803 

 
The parameters with the * symbol refer to the training set and the parameters with 
the #symbol refer to the test set. SD is the standard deviation of regression;  
௧௥ଶݎ  represents the regression coefficient; F is the Fisher test, defined as ratio of the 
model variance to the observed activity variance (variance ratio); P denotes the 
significance level of variance ratio; RMSE is the RMS error in the test set 
predictions; q2 depicts the leave-N-out cross-validated correlation coefficient for 
the test set (the default N is 1). 

 
3D-MoRSE (Molecule Representation of Structure based on Electron) [50] 

are geometrical descriptors, being the sums of atom weights with different angular 
scattering function. They extract information from the 3D atomic coordinates by 
using the same transform as in electron diffraction studies. They give an idea of 
how the weighting property is distributed in space. The Mor32v (3D-MoRSE - 
signal 32 / weighted by atomic van der Waals volumes) descriptor in the MLR1 
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linear equation has negative coefficient value. Therefore, the increase in its value 
will decrease the pLC50 values. 
 
3.2. PHARMACOPHORE RESULTS 

The PHASE module has generated 40 four-point pharmacophore hypotheses, 
which are common for all selected neonicotinoid derivatives.  Of them, 20 
hypotheses (see Tables 6 and 7) were externally validated using the atom-based 3D 
QSAR approach. Pharmacophore sites for 23 neonicotinoid derivatives (Table 7) 
consist of a set of chemical features of PHASE: hydrogen bond acceptors (A), 
hydrophobic (H), and an aromatic ring (R).  
 The model AHHR.62 with the highest statistical significance (r2 = 0.954, 
௅ைைଶݍ = 0.808 and Person-R [34, 35] = 0.899) contains: one hydrogen bond 
acceptor, two hydrophobic and one aromatic ring features (Figures 3 and 4) with 
high survival score (3.492). The predictive abilities of the atom-based 3D QSAR 
model of AHHR.62 hypothesis are statistically significant, as shown in Tables 3 
and 4. The statistical values obtained for the test set (compounds 4, 8, 9, 11, 13, 15, 
16, 19 and 21) proved that the selected QSAR model is stable and predictive. The 
plot of observed versus predicted pLC50 insecticidal activities for the training and 
test sets obtained for atom-based 3D QSAR model of AHHR.62 hypothesis is 
portrayed in Figure 1b. 

 
Figure 3. The most active compound 3 on AHHR.62 hypothesis. Hydrogen bond 
acceptor (A3) is shown by red sphere, hydrophobic features are indicated by green 
spheres (H4 and H5), and aromatic ring (R9) is displayed by orange circle. 
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Figure 4. Intersite distances (a) and angles (b) between the pharmacophoric points 
of the best model AHHR.62.  
 
 The representation of the hydrophobic and electron withdrawing maps 
resulted from 3D-QSAR model in the perspective of the best and the least active 
compound is shown in Figure 5. The positive coefficients for activity are depicted 
by blue cubes, while the negative contributions are represented in red, indicating 
the areas were the structural disposition decreases the biological activity. The 
hydrophobicity, an important feature for our pharmacophore model, as one can see 
from Figure 5a is better represented by blue cubes around the hydrophobic 
moieties (the hydrocarbon chains) of the compound 3 compared with those of 
compound 22. 
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Figure 5. The atom-based 3D-QSAR model visualization for the most active 
(compound 3 -carbon atoms colored in magenta) and the least active neonicotinoid 
(compound 22 - carbon atoms represented in green) in the context of hydrophobic 
(a), and electron withdrawing maps (b). 
 
 The blue cubes around the positions 3, 4 and 6 of the pyridine ring show 
that substitutions here with hydrophobic moieties would be favorable for 
improving the insecticidal activity. Comparing the disposition of the NO2 group 
(from compound 3 and 22) on the electron withdrawing map (Figure 5b) is 
noticing differences. The NO2 group belonging to compound 3 is placed in the 
favourable region, while the NO2 group of compound 22 migrates to the 
undesirable area of red cubs. The nitrogen atom of the pyridine ring, which has an 
electron acceptor character, seems to be an important feature for the biological 
activity of this series of insecticides. 
 
4  CONCLUSIONS 

The multiple linear regression (MLR) approach and pharmacophore modeling of a 
series of 23 phenylazo, pyrrole-, dihydropyrrole-fused and chain-opening 
nitromethyleneneonicotinoids were applied to study their insecticidal activity 
against the Cowpea aphids. Structures were optimized using molecular mechanics 
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calculations; the derived structural parameters were correlated with the 
experimental pLC50 values. Stable models with good fitting results and predictive 
power were obtained. New insecticides active against the Cowpea aphids can be 
predicted based on the best MLR model, including topological charge index, 
aromaticity index and 3DMorSE descriptors and the pharmacophore model with 
one hydrogen bond acceptor, two hydrophobic and one aromatic ring features. 
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