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Rhombellanes are mathematical structures existing in 
various environments, in crystal or quasicrystal 
networks, or even in their homeomorphs, further 
possible becoming real molecules. Rhombellanes 
originate in the K2.3 complete bipartite graph, a tile 
found in the linear polymeric staffanes. In close 
analogy, a rod-like polymer derived from 
hexahydroxy-cyclohexane was imagined. Further, the 
idea of linear polymer synthesized from dehydro-
adamantane was extended in the design of a three-
dimensional crystal network, named dia(s), of which 
tile is a hyper-adamantane (an adamantane of which 
vertices are just adamantanes). It was suggested that 
this network could be synthesized starting from the real 
molecule tetrabromo-adamantane, by dehydrogenation 
and polymerization. The crystal structures herein 
proposed were characterized by connectivity and ring 
surrounding sequences and also by the omega 
polynomial. 
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1 INTRODUCTION 

Rhombellanes are structures with all strong rings being rhombs/squares (Figure 1, 
left); they have been proposed by Diudea in 2017 [1]. Rombellanes are structurally 
related to [1,1,1]propellane, an organic molecule, first synthesized in 1982 [2];by 
IUPAC rules[3], it is named tricyclo[1.1.1.01,3]pentane, a hydrocarbon with 
formula C5H6, containing only triangles; its reduced form, C5H8, eventually named 
bicyclo[1.1.1]pentane, has only rhomb/square rings; it can be represented as the 
complete bipartite graph, K2,3 (Figure 1, right). [1,1,1]Propellane undergoes 
spontaneous polymerization, to bicyclo[1.1.1]pentyl oligo- and polymers (degree 
of polymerization up to 100), called [n]staffanes [4,5]; they are rigid, linear 
structures (Figure 2, left), molecular rods that exhibit restricted rotation along the 
rod axis. 

A rhombellane was defined by Diudea [6−8] as a structure fulfilling the 
conditions: 

(1) all strong rings are rhombs/squares;  
(2) vertex classes consist of all non-connected vertices;  
(3) Omega polynomial has a single term: 1X|E|;  
(4) line graph of the parent graph has a Hamiltonian circuit;  
(5) it contains at least one K2.3 subgraph.  

 

  
 

Cube-rhombellane.22 ada-rbl(C).14 K2.3.5 
 

Figure 1. Rhombellane basic structures. 
 
Construction of the cube-rhombellane (Figure 1, left) is illustrated in Figure 1. 

Each square face forms a K2.3 motif (Figure 1, middle and right) by joining the 
opposite corners with homeomorphic diagonals; these diagonals are joint together 
in an adamantane motif (Figure 1, middle, the red contour); K2.3 and adamantane 
ada.10 are both “tiles”, not polyhedra. 

Rhombellanes are, in general, designed by the “rhombellation” operation; it 
starts with diagonalizing each face of an all-rhomb map rh0 by a joint point (a 
“rbl”- vertex); then, new vertices are added opposite to the parent vertices and join 
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each of them with the rbl-vertices lying in the proximity of each parent vertex, thus 
local rh-cells being formed. The process can continue, considering the envelope rhn 
as “rh0” for rhn+1, in this way shell by shell being added to the precedent structure. 
Since the two diagonals of a rhomb may be topologically different, each generation 
may consist of two isomers. 

The cube-rhombellane.22(Figure 1, left) has the vertex connectivity 6 and 3, 
respectively. To synthesize itas a molecule, one may start from 1,2,3,4,5,6-
hexahydroxy-cyclohexane “hhch”, to provide the connectivity 6; connectivity 3 is 
more accessible [9,10]. By analogy to [1.1.1]propellane and staffanes [n]stf [5], a 
linear rod-like polymer [n]hhch (a poly-ether) was designed by Diudea (Figure 2, 
middle and right). 

 

[3]stf [2]stf [3]hhch 
 
Figure 2. Rhombellane-related linear polymers (in square brackets is the number 
of building blocks) 

 

 
This analogy was also exploited in the synthesis of linear (“zig-zag”) 

polymer of which building block is 1,3-dehydro-adamantane (Figure 3, left - 
named here [3]dhada, with the staffane system). Adamantane ada.10 molecule was 
discovered by Landa (a Czech chemist) in 1933 in petrol [11]; then a series of 
syntheses of ada.10 and its derivatives have been proposed [5,12-14]. Dehydro-
adamantane dhada.10 (Figure 3, middle) is obtained by eliminating the two 
bromine atoms from 1,3-dibromo-adamantane (Figure 3, right). The number 
suffixing the structure names counts the heavy atoms in the molecule. 

 

   

[3]dhada oligomer dehydro-adamantane 1,3-dibromo-adamantane 
 

Figure 3. Adamantane derivatives. 
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2.  RESULTS 

According to Steinhardt [15], crystals are highly ordered structures, with atomic 
clusters repeated periodically, in three independent directions of the space, and 
showing an essentially discrete diffraction diagram; there are only 14 ways to build 
the crystal structures, namely the Bravais lattices; they are completely described by 
the 230 symmetry groups of the space. 
 

2.1. SPONGY DIAMOND CRYSTAL NETWORK 

A hypothetical tetra-dehydro-adamantane tdada molecule, obtainable by 
eliminating the four bromine atoms in tetraboromo-adamantane, is conceivable to 
undergo a 3D-polymerization, to provide a triple-periodic crystal network, 
eventually named dia(s), as Diudea designed.  

The newly proposed 3D dia(s)-net (space group Fd-3m), has the 
unit/building block ada-ada.100 (Figure 4, left), a hyper-adamantane tile [16], (i.e., 
an adamantane, in which all atoms are changed by the classical adamantane, 
ada.10, named tricyclo[3.3.1.13.7]decane, by IUPAC nomenclature [3]). The unit 
has a tetrahedral symmetry, as the adamantane ada.10; dia(s)-net and its void 
(Figure 4, right) can be perfectly embedded in the dia-net (space group Fd-3m), as 
shown in ada-dia.129 (Figure 5, left); the missing part of dia-net, dia.29 (Figure 5, 
middle), consists of four ada.10 units sharing a common (central) point (in blue, 
Figure 5, middle). Thus, dia(s)-net is a kind of dia-net, with defects (namely, 
dia.29), as shown in Figure 6. The filled void(dia(s)).71 (Figure 5, right) is a 
tetrahedral tile, with faces having six ada.10 units (each shared by two faces) 
around a central ada.10 (i.e., dia.29, the core of four ada.10) and one ada.10 on 
each of the four corners, a total of twenty ada.10 units. The ada-dia.129 filled tile 
(Figure 5, left) has additional ten ada.10, a total of 30 ada.10 units; by the number 
of atoms, the dia(s)-net has 0.775 = 100/129 of the density of the classical dia-net. 
 

   
ada-ada.100 ada-ada.100 (projection) void(ada-ada.100).42 

 

Figure 4. The ada-ada unit and its void. 
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ada-dia.129 (ada.10 = 30) dia.29 (core)(ada.10 = 4) void(dia(s)).71 (ada.10 =20);  

  (4×6)/2+4+4) 
 

Figure 5. A filled (by dia-net) ada-ada unit (left), the missing core (middle)  and its 
void (right). 

 

  
 

dia(s)-embedding dia.29 defects in dia-net dia(s)-net  
  (empty of dia.29) 

 

Figure 6. The embedding of dia(s)-net in dia-net. 
 

Any crystal net has its co-net, the complementary net; of course, the two nets 
are one and the same, only the building blocks, can be distinctly designed (see 
Figure 4, left and right). Translating ada-ada.100 (Figure 4, left) along the 
orthogonal coordinates, results in the dia(s)-net (Figure 6, right); from this 
structure, one may cut-off the corresponding dia(s)-co-net (ortho, Figure 7, left); 
the translation failed in case of the complementary tile, the void(ada-ada.100).42 
(Figure 4, right), however, it was successful if translated this void by inclined (60o) 
coordinates [17] (Figure 7, middle and right). 

The dia(s) binodal net (Fd-3m space group) is characterized by the vertex 
connectivity (LC) and vertex ring surrounding (LR) sequences,as shown in Table 
1; LC is the layer matrix of connectivity [18−20] while LR is the corresponding 
matrix of rings around each vertex in the graph [21]. The characterization of 
crystal networks by rings, was used in crystallographic characterization as the 
vertex symbol vs; however, only in the Topo Group Cluj papers a sequence of all 
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rings surrounding (coming from the layer matrix of rings, of which entries are the 
sum of all rings around, of the choice length) was described [7, 22]. 

   
dia(s)-co-net (ortho) dia(s)-co-net (inclined) void-42 (inclined (60o)) 

 
Figure 7. The dia(s)-co-net. 

 

Table 1. The dia(s) binodal net characterization: connectivity (LC) and atom ring 
surrounding (LR). 
 

Tile: ada-ada.100; (deg=4(40); deg=2(60); r6=40; r8=30; r18=4) 
Degree and 
vertex type LC LR 

deg=4; 6^3.8^3.18^6 4. 6. 9. 15. 18. 27. 45. 54. 75. 105 12. 30. 54. 90. 108. 162. 270. 324. 486. 738. 756 
deg=2; 6^2.8^2.18^2 2. 6. 8. 9. 18. 24. 30. 54. 70. 74 6. 24. 48. 60. 102. 144. 180. 324. 432. 528. 780 

 

2.2. OMEGA POLYNOMIAL CHARACTERIZATION OF [N]HHCH AND DIA(S) 
        NETWORKS 
 
Omega polynomial Ω(x) is defined on the ground of opposite edge strips ops in the 
graph [23-25] Denoting by m, the number of ops of length s=|S|, one can write: 
Ω(x) = Ʃsmsxs. Its first derivative (in x = 1) can be taken as a graph invariant or a 
topological index: Ω`(1) = Ʃssms= |E(G)|. The CI (Cluj-Ilmenau) index [26] is 
calculated from Ω(x) (in x = 1) as: CI = Ω`2−(Ω`+ Ω``). The polynomial is 
computed fixing the limits (rmin.rmax) of the strong rings in the graph.  

There are graphs with single ops, which is a Hamiltonian circuit. For such 
graphs, Omega polynomial has a single term: Ω(x) = 1X s; s = |E(G)|; it is the case 
of rhombellanes, as defined in the introductory part of this paper. 

For the rod-like network [n]hhch, the Omega polynomial and CI-index 
(calculated at (r6.r8)) are as follows: 

6 6( 1)( ) 6 nx x nx x     ; 2108( 1) 36( 1) 30CI n n      

In case of dia(s)-network, the omega polynomial (calculated at (r6.r18)) is more 
complicate: 

2
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The above results were obtained by numerical analysis of series with increasing 
number of building blocks. 
 

Table 2. Omega polynomial in [n]hhch and dia(s)polymers (examples). 
n HHCH; (r6.r8) dia(s); (r6.r18) 

Polynomial CI Polynomial 
1 6X+1X6+1X12 390 4X3+X120 
2 6X+2X6+1X18 894 8X5+4X10+X648 
3 6X+3X6+1X24 1614 8X7+8X14+4X21+X1872 
4 6X+4X6+1X30 2550 8X9+8X18+8X27+4X36+X4080 
5 6X+5X6+1X36 3702 8X11+8X22+8X33+8X44+4X55+X7560 

 
Structures and data were performed by the Nano-Studio software program 

[27] developed at Topo Group Cluj. 
 
3. CONCLUSIONS 

Rhombellanes are mathematical structures existing in various environments, in 
crystal or quasicrystal networks, or even in their homeomorphs, the lasts providing 
a plethora of molecular graphs, finally candidates to the status of real molecules 
[see also 28−30]. 

Rhombellanes originate in the K2.3 complete bipartite graph, found as a motif in 
the linear polymeric staffanes. In close analogy, and using the cube-rhombellane 
structure, the rod-like (yet hypothetical) polymer [n]hhch was designed, with 
vertices of connectivity 6 coming from the hexahydroxy-cyclohexane, hhch. 
Further, the idea of linear polymer synthesized from dehydro-adamantane, dhada, 
was extended in the design of a three-dimensional spongy diamond dia(s)-network, 
of which tile/building block is a hyper-adamantane (an adamantane of which 
vertices are just adamantanes). It was suggested that dia(s)-net may be synthesized 
starting from the real molecule tetrabromo-adamantane, by dehydrogenation and 
polymerization. The crystal structures herein proposed were characterized by 
connectivity and ring sequences and also by the Omega polynomial, also used in 
defining the rhombellane structure. It is strongly believed that Mathematical 
Chemistry can approach to the real needs of Chemistry by studies as that herein 
presented. 
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